Matlab神经网络工具箱
第2章MATLAB神经网络工具箱函数
表2-1 神经网络的通用函数和功能
函数名
功能
init( )
初始化一个神经网络
initlay( ) 层-层结构神经网络的初始化函数
initwb( ) 神经网络某一层的权值和偏值初始化函数
initzero( ) 将权值设置为零的初始化函数
train( )
神经网络训练函数
adapt( )
神经网络自适应训练函数
b=[0;-1];q=3;
%权值向量和一致化所需要的长度
Z=concur(b,q)
%计算一致化了的矩阵
X1=netsum(Z1,Z2),X2=netprod(Z1,Z2) %计算向量的和与积
结果显示:
Z= 0 0 0
-1 -1 -1
X1 = 0 4 6
-2 -2 2
X2 = -1 4 8
-15 -24 1
11
7. 权值点积函数dotprod( ) 网络输入向量与权值的点积可得到加权输入。函数
dotprod ( )的调用格式为: Z=dotprod (W,X)
式中,W为SR维的权值矩阵;X为Q组R维的输入向量; Z为Q组S维的W与X 的点积。 8. 网络输入的和函数netsum( )
网络输入的和函数是通过某一层的加权输入和偏值相 加作为该层的输入。调用格式:
第2章 MATLAB神经网络 工具箱函数
2.1 MATLAB神经网络工具箱函数 2.2 MATLAB神经网络工具箱的图形用户界面
1
利用神经网络能解决许多用传统方法无法解 决的问题。神经网络在很多领域中都有应用,以 实现各种复杂的功能。这些领域包括商业及经济 估算、自动检测和监视、计算机视觉、语音处理、 机器人及自动控制、优化问题、航空航天、银行 金融业、工业生产等。而神经网络是一门发展很 快的学科,其应用领域也会随着其发展有更大的 拓宽。
Matlab神经网络工具箱介绍ppt课件
自然语言处理
利用神经网络实现文本分类、机器翻译等功 能。
计算机视觉
通过神经网络提高图像识别、目标检测等任 务的准确率。
语音识别
利用神经网络实现更高效和准确的语音转文 字和语音合成。
控制与决策
在机器人、自动驾驶等领域,神经网络能够 提高系统的智能水平和决策能力。
THANKS.
MATLAB神经网络工具箱特点
易于使用 高度可定制 强大的可视化功能 广泛的集成
MATLAB神经网络工具箱提供了直观的图形用户界面,使得用 户可以轻松地创建、训练和测试神经网络模型。
用户可以根据需要自定义神经网络的架构、训练参数和性能指 标。
该工具箱支持数据可视化,使得用户可以更好地理解数据和神 经网络的性能。
初始化网络权重
随机初始化神经网络的权 重和偏置项。
训练神经网络
前向传播
根据输入数据计算输出结果, 计算误差。
反向传播
根据误差调整权重和偏置项, 更新网络参数。
选择优化算法
选择适合的优化算法,如梯度 下降、牛顿法等。
设置训练参数
设置训练轮数、学习率等参数 ,控制训练过程。
测试神经网络
01
测试数据集
混合模型
结合多种神经网络结构和 算法,实现更高效和准确 的预测。
MATLAB神经网络工具箱未来发展方向
集成更多算法
不断集成最新的神经网络算法,满足不同领域 的需求。
优化工具箱性能
提高工具箱的运行速度和稳定性,降低使用门 槛。
增强可视化功能
提供更丰富的可视化工具,帮助用户更好地理解和分析神经网络。
神经网络在人工智能领域的应用前景
MATLAB神经网络
02
工具箱
MATLAB神经网络工具箱中的函数属性及其参数定义
3.2 MATLAB神经网络工具箱中的网 络对象属性
2.函数属性-函数属性定义了一个网络在进行权值/阈值 调整、初始化、误差性能计算或训练时采用 的算法。 (1)adaptFcn属性:net.adaptFcn属性定义了网络进行权值 /阈值自适应调整时所采用的函数,它可以被设置为任意 一个进行权值/阈值调整的函数名,包括trains函数。 (2)performFcn属性 net.performFcn属性定义了网络用于衡量网络性能所采用的函 数,其属性值为表示性能函数名称的字符串。
N 1
3.3 MATLAB神经网络工具箱中的网 络子对象属性
子对象的属性定义了网络的各个子对象:输入向量、 网络层、输出向量、目标向量、权值向量和阈值向量的属 性。 1.输入向量 (1)size属性: net.inputs{i}.size定义了网络各维输入向量 的元素数目,可以被设置为零或正整数。 (2)range属性:net.inputs{i}.range定义了第维输入向量中 每个元素的取值范围,其值是一个 的矩阵。 2 (3)userdata属性:net.input{i}.userdata和R erdata 为用 户提供了关于输入向量的用户信息的地方,它预先只定义 了一个字段,其值为一提示信息。
3.2 MATLAB神经网络工具箱中的网络对 象属性
(10)numTargets:该属性定义了网络目标矢量的个数, 属性值为只读变量,其数值为网络中目标层的总数 (sum(net.targetConnect))。 (11)numInputDelays:该属性定义了神经网络的输入延 迟,属性值为只读变量,其数值为网络各输入层输入延迟 拍数(net.inputWeights{i,j}.delays)中的最大值。 (12)numLayerDelays:该属性定义了神经网络的层输出 延迟,属性值为只读变量,其数值为各层的神经元之间连 接延迟拍数(yerWeights{i,j}.delays)中的最大值。
Matlab中的神经网络算法实现指南
Matlab中的神经网络算法实现指南1. 引言神经网络是一种基于生物神经系统的模型,旨在模拟人脑的学习和决策过程。
在现代机器学习领域,神经网络被广泛应用于图像识别、语言处理、预测分析等各种任务中。
而Matlab作为一种功能强大的数值计算和可视化软件,提供了丰富的神经网络工具箱,可以帮助开发人员快速实现和调试各种神经网络算法。
本文将介绍Matlab中的神经网络工具箱,并提供一些实现神经网络算法的指南。
2. Matlab中的神经网络工具箱Matlab提供了一个名为"Neural Network Toolbox"的工具箱,包含了大量的函数和工具,用于构建、训练和评估神经网络模型。
该工具箱支持多种类型的神经网络结构,包括前馈神经网络、递归神经网络、卷积神经网络等。
此外,Matlab还提供了各种用于优化神经网络的算法,如反向传播算法、遗传算法等。
3. 构建神经网络模型在Matlab中,我们可以使用"feedforwardnet"函数来构建一个前馈神经网络模型。
该函数接受一个包含神经网络层结构的向量作为输入参数,并返回一个神经网络对象。
我们可以通过修改这个向量的元素来调整神经网络的结构和参数。
例如,下面的代码展示了如何构建一个包含两个隐藏层的前馈神经网络模型:```matlabnet = feedforwardnet([10, 5]);```4. 导入和预处理数据导入和预处理数据对于构建和训练神经网络模型至关重要。
Matlab提供了各种用于数据导入和预处理的函数和工具。
例如,可以使用"csvread"函数来导入CSV 格式的数据文件;可以使用"mapminmax"函数来对数据进行归一化处理;可以使用"splittingData"函数将数据划分为训练集、验证集和测试集等。
5. 为神经网络模型训练数据在Matlab中,我们可以通过调用"train"函数来训练神经网络模型。
MATLAB神经网络工具箱的使用指南
MATLAB神经网络工具箱的使用指南引言:在当今信息时代的浪潮中,神经网络作为一种模仿人类神经系统运行方式的数学计算模型,被广泛应用于各个领域。
而MATLAB神经网络工具箱作为一款功能强大、易于使用的软件工具,成为许多科学家和工程师进行神经网络研究和应用实践的首选。
本文旨在为读者提供MATLAB神经网络工具箱的全面介绍,并指导读者如何利用其进行神经网络的搭建、训练和应用。
一、神经网络基础知识在正式介绍MATLAB神经网络工具箱之前,我们先来了解一些神经网络的基础知识。
神经网络由输入层、隐藏层和输出层组成,其中输入层接收外部输入,隐藏层进行数据转换和处理,输出层输出最终结果。
神经网络模拟人类大脑的工作原理,通过调整神经元之间的连接权重来实现对输入数据的学习和对未知数据的预测。
二、MATLAB神经网络工具箱的使用1. 环境准备在使用MATLAB神经网络工具箱之前,我们需要先安装MATLAB软件,并确保已经安装了神经网络工具箱。
安装完成后,可以通过在命令窗口输入“nntool”命令来打开神经网络工具箱界面。
2. 神经网络搭建在神经网络工具箱中,可以通过图形用户界面进行神经网络的搭建。
点击界面左上角的“New”按钮,选择“Feedforwardnet”或“Patternnet”等网络类型,并设置输入层、隐藏层和输出层的节点数。
接下来,可以通过拖拽节点和连接来构建网络。
此外,还可以使用“Layer”和“Connection”选项卡来对网络的结构和参数进行进一步设置。
3. 数据准备成功搭建神经网络后,我们需要准备用于训练和测试的数据。
MATLAB提供了丰富的数据处理函数,可以将数据从不同格式的文件中导入,或者通过代码生成。
导入数据后,可以使用数据处理工具对数据进行清洗、归一化等预处理操作,以提高神经网络的训练效果。
4. 神经网络训练数据准备完毕后,可以通过神经网络工具箱提供的训练函数对神经网络进行训练。
常用的训练函数包括“trainlm”、“traingd”、“trainrp”等,它们采用不同的优化算法来调整网络中的连接权重。
matlab神经网络工具箱简介
matlab神经网络工具箱简介MATLAB软件中包含MATLAB神经网络工具箱,工具箱以人工神经网络为基础,只要根据自己需要调用相关函数,就可以完成网络设计、权值初始化、网络训练等,MATLAB神经网络工具箱包括的网络有感知器、线性网络、BP神经网络、径向基网络、自组织网络和回归网络,BP神经网络工具箱主要包括newff,sim和train三个神经网络函数各函数的解释如下:1 newff::::BP神经网络参数设置函数神经网络参数设置函数神经网络参数设置函数神经网络参数设置函数函数功能:构建一个BP神经网络。
函数形式:net = newff(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF)P:输入数据矩阵T:输出数据矩阵S:隐含层节点数TF:节点传递函数,包括硬限幅传递函数hardlim,对称硬限幅传递函数hardlims,线性传递函数purelin,正切S型传递函数tansig,对数S型传递函数logsigBTF:训练函数,包括梯度下降BP算法训练函数traingd,动量反传的梯度下降BP算法训练函数traingdm,动态自适应学习率的梯度下降BP算法训练函数traingda,动量反传和动态自适应学习率的梯度下降BP算法训练函数traingdx,Levenberg_Marquardt 的BP算法训练函数trainlmBLF:网络学习函数,包括BP学习规则learngd,带动量项的BP 学习规则learngdmPF:性能分析函数,包括均值绝对误差性能分析函数mae,均方差性能分析函数mse IPF:输入处理函数OPF:输出处理函数DDF:验证数据划分函数一般在使用过程中设置前六个参数,后四个参数采用系统默认参数。
2 train::::BP神经网络训练函数神经网络训练函数神经网络训练函数神经网络训练函数函数功能:用训练数据训练BP神经网络。
函数形式:[net,tr] = train(NET,X,T,Pi,Ai)NET:待训练网络X:输入数据矩阵T:输出数据矩阵Pi:初始化输入层条件Ai:初始化输出层条件net:训练好的网络tr:训练过程记录一般在使用过程中设置前三个参数,后两个参数采用系统默认参数。
Matlab中的神经网络工具箱介绍与使用
Matlab中的神经网络工具箱介绍与使用神经网络是一种模拟人脑思维方式的计算模型,它通过由多个神经元组成的网络,学习数据的特征和规律。
在计算机科学领域,神经网络被广泛应用于模式识别、数据挖掘、图像处理等诸多领域。
Matlab作为一种功能强大的科学计算软件,提供了专门用于神经网络设计和实现的工具箱。
本文将介绍Matlab中的神经网络工具箱,并探讨其使用方法。
一、神经网络工具箱的概述Matlab中的神经网络工具箱(Neural Network Toolbox)是一款用于构建和训练神经网络的软件包。
它提供了丰富的函数和工具,可用于创建不同类型的神经网络结构,如前向神经网络、反向传播神经网络、径向基函数神经网络等。
神经网络工具箱还包括了各种训练算法和性能函数,帮助用户对神经网络进行优化和评估。
二、神经网络的构建与训练在使用神经网络工具箱前,我们需要先了解神经网络的基本结构和原理。
神经网络由输入层、隐藏层和输出层组成,每一层都包含多个神经元。
输入层接受外部输入数据,通过权重和偏置项传递给隐藏层,最终输出到输出层,形成网络的输出结果。
构建神经网络的第一步是定义网络的结构,可以使用神经网络工具箱中的函数创建不同层和神经元的结构。
例如,使用feedforwardnet函数可以创建一个前向神经网络,输入参数指定了每个隐藏层的神经元数量。
然后,可以使用train函数对神经网络进行训练。
train函数可以选择不同的训练算法,如标准反向传播算法、Levenberg-Marquardt算法等。
通过设置训练参数,例如训练迭代次数和学习速率等,可以对网络进行优化。
三、神经网络的应用案例神经网络在许多领域都有广泛的应用,下面以图像分类为例,介绍如何使用神经网络工具箱来训练一个图像分类器。
首先,我们需要准备训练数据和测试数据。
训练数据通常包含一组已经标记好的图像和相应的标签。
为了方便处理,我们可以将图像转化为一维向量,并将标签转化为二进制编码。
matlab神经网络工具箱怎么用
matlab神经网络工具箱怎么用标题:Matlab神经网络工具箱的使用方法导言:Matlab神经网络工具箱是一个功能强大的工具,用于建立、训练和评估各种类型的神经网络。
本文将介绍如何使用Matlab神经网络工具箱进行神经网络的建立、训练和评估,帮助您更好地理解和使用这个工具箱。
一、Matlab神经网络工具箱的安装首先,您需要确保已成功安装了Matlab软件。
然后,您可以通过以下步骤来安装Matlab神经网络工具箱:1. 打开Matlab软件。
2. 在工具栏上选择“工具”菜单。
3. 在下拉菜单中选择“添加预定目录”。
4. 在弹出的窗口中,选择“文件夹”选项。
5. 点击“浏览”按钮,并选择包含神经网络工具箱的文件夹。
6. 点击“选择文件夹”按钮,然后点击“添加文件夹”按钮。
7. 点击“关闭”按钮,完成神经网络工具箱的安装。
二、神经网络的建立Matlab神经网络工具箱提供了多种类型的神经网络模型,如前馈神经网络、递归神经网络和自组织神经网络。
下面我们以前馈神经网络为例,介绍神经网络的建立方法:1. 打开Matlab软件,并在命令窗口中输入“nprtool”命令,打开“神经网络模式选择器”窗口。
2. 在“神经网络模式选择器”窗口中,选择“构建”按钮。
3. 在“神经网络模式选择器”窗口中,选择“前馈神经网络”选项,并点击“下一步”按钮。
4. 在“选择网络架构”窗口中,选择神经网络的层数、神经元数量和输入、输出数据的维度。
5. 点击“下一步”按钮,然后点击“完成”按钮,完成神经网络的建立。
三、神经网络的训练神经网络的训练是指通过将已知的输入和输出数据进行反复迭代调整网络参数,从而使网络能够更好地拟合输入输出之间的关系。
下面我们介绍神经网络的训练方法:1.在命令窗口中输入“trainlm”命令,选择Levenberg-Marquardt算法作为训练函数。
2.输入训练数据和目标数据,通过“trains”命令开始训练神经网络。
MATLAB中的神经网络工具箱详解
MATLAB中的神经网络工具箱详解神经网络是一种模拟人脑神经系统工作方式的计算模型,广泛应用于科学、工程和金融等领域。
而在MATLAB软件中,也有专门的神经网络工具箱,提供了丰富的功能和算法,用于实现神经网络的建模、训练和应用。
本文将对MATLAB中的神经网络工具箱进行详细的解析和介绍。
一、神经网络基础知识在深入了解MATLAB神经网络工具箱之前,我们首先来了解一些神经网络的基础知识。
1. 神经元和激活函数神经元是神经网络的基本单位,它接收来自其他神经元的输入,并通过激活函数将输入转化为输出。
在MATLAB中,可以使用`newff`函数创建一个前馈神经网络,可以通过`sim`函数进行网络的模拟和计算。
2. 训练算法神经网络的训练是指通过一系列的输入和输出样本来调整网络的参数,使得网络能够正确地学习和推断。
常用的训练算法包括误差逆传播算法(Backpropagation)、Levenberg-Marquardt算法等。
在MATLAB中,可以使用`train`函数进行网络的训练,可以选择不同的训练算法和参数。
二、MATLAB神经网络工具箱的使用1. 创建神经网络对象在MATLAB中,可以使用`newff`函数创建一个前馈神经网络对象,该函数的参数包括网络的结构、激活函数等。
例如,`net = newff(input, target, hiddenSize)`可以创建一个具有输入层、隐藏层和输出层的神经网络对象。
2. 设置神经网络参数创建神经网络对象后,可以使用`setwb`函数设置网络的权重和偏置值,使用`train`函数设置网络的训练算法和参数。
例如,`setwb(net, weights, biases)`可以设置网络的权重和偏置值。
3. 神经网络的训练神经网络的训练是通过提供一系列的输入和输出样本,调整网络的参数使得网络能够正确地学习和推断。
在MATLAB中,可以使用`train`函数进行网络的训练,该函数的参数包括训练集、目标值、训练算法和其他参数。
12.Matlab神经网络工具箱
12.Matlab神经⽹络⼯具箱概述:1 ⼈⼯神经⽹络介绍2 ⼈⼯神经元3 MATLAB神经⽹络⼯具箱4 感知器神经⽹络5 感知器神经⽹络5.1 设计实例分析1 clear all;2 close all;3 P=[0011;0101];4 T=[0111];5 %建⽴神经⽹络6 net=newp(minmax(P),1,'hardlim','learnp');7 %对神经⽹络进⾏训练,net是建⽴⽹络,P是输⼊向量,T是⽬标向量8 net=train(net,P,T);9 %对⽹络进⾏仿真10 Y=sim(net,P);11 %绘制建模点12 plotpv(P,T);13 %绘制分界线14 plotpc(net.iw{1,1},net.b{1});1 clear all;2 close all;3 P=[-0.5 -0.50.4 -0.1 -0.8;-0.50.5 -0.30.20.9];4 T=[11001];5 plotpv(P,T);6 %建⽴感知器⽹络7 net=newp(minmax(P),1,'hardlim','learnpn');8 hold on;9 linehandle=plot(net.IW{1},net.b{1});10 E=1;11 net.adaptParam.passes=10;12 %误差没有达到要求会持续不断的训练13while mae(E)14 %进⾏感知器⽹络的训练15 [net,Y,E]=adapt(net,P,T);16 linehandle=plotpc(net.IW{1},net.b{1},linehandle);17 drawnow;18 end19 %对训练好的⽹络进⾏保存,保存成net120 save net1 net;21set(gcf,'position',[50,50,400,400]);1 clear all;2 close all;3 %加载⽹络4 load net1.mat;5 X=[-0.40.20.8;-0.70.30.9];6 %对⽹络进⾏仿真,输⼊向量为X7 Y=sim(net,X);8 figure;9 %绘制样本点和分界线10 plotpv(X,Y);11 plotpc(net.IW{1},net.b{1});12set(gcf,'position',[50,50,400,400]);5.2 线性神经⽹络1 clear all;2 close all;3 P=[1.02.134];4 T=[2.04.015.98.0];5 %获取最⼤的学习速率6 lr=maxlinlr(P);7 net=newlin(minmax(P),1,0,lr);8 %最⼤学习次数是3009 net.trainParam.epochs=300;10 %训练的⽬标误差为0.0511 net.trainParam.goal=0.05;12 net=train(net,P,T);13 Y=sim(net,P)6 设计实例分析1 clear all;2 close all;3 t=0:pi/10:4*pi;4 X=t.*sin(t);5 T=2*X+3;6 figure;7 plot(t,X,'+-',t,T,'+--');8 legend('系统输⼊','系统输出');9set(gca,'xlim',[04*pi]);10set(gcf,'position',[50,50,400,400]);11 net=newlind(X,T);12 %对⽹络进⾏仿真13 y=sim(net,X);14 figure;15 plot(t,y,'+:',t,y-T,'r:');16 legend('⽹络预测输出','误差');17set(gca,'xlim',[04*pi]);18set(gcf,'position',[50,50,400,400]); 7 BP⽹络7.1 BP⽹络的创建7.2 BP⽹络实例分析1 clear all;2 clear all;3 P=[012345678910];4 T=[01234321234];5 %隐含层为10个神经元6 net=newff(P,T,10);7 net.trainParam.epochs=100;8 %进⾏训练9 net=train(net,P,T);10 %对⽹络进⾏仿真11 Y=sim(net,P);12 figure;13 plot(P,T,P,Y,'o');BP神经⽹络进⾏曲线拟合1 clear all;2 clear all;3 P=-1:0.05:1;4 T=sin(2*pi*P)+0.1*randn(size(P));5 net=newff(P,T,20,{},'trainbr');6 net.trainParam.show=10;7 net.trainParam.epochs=50;8 net=train(net,P,T);9 Y=sim(net,P);10 figure;11 plot(P,T,'-',P,Y,'+');12 legend('原始信号','⽹络输出信号'); 13set(gcf,'position',[50,50,600,300]); 8 径向基审计⽹络1 clear all;2 close all;3 P=[12345];4 T=[2.13.45.46.95.6];5 net=newrb(P,T);6 x=2:0.5:57 y=sim(net,x)9 ⼴义回归神经⽹络1 clear all;2 close all;3 %输⼊向量4 P=1:20;5 %输出向量6 T=3*sin(P);7 net=newgrnn(P,T,0.2);8 y=sim(net,P);9 figure;10 plot(P,T,':+',P,T-y,'-o'); 10 概率神经⽹络1 clear all;2 close all;3 P=[1:8];4 Tc=[23123211];5 T=ind2vec(Tc)6 net=newpnn(P,T);7 Y=sim(net,P);8 Yc=vec2ind(Y)。
MATLAB-神经网络工具箱-PPT
train
net=train(net, P, T)
被训练网络 输入向量 目标向量
net.tranParam.epochs=10 ; %预定的最大训 练次数为10, 感知器经过最多训练10次后停止,
adapt
net=adapt(net, P, T) 自适应训练函数
权值和阀值学习函数
learnp
dW=learnp(W,P,Z,N,A,T,E,D,gW,gA,LP,LS)
两个长度为5的向量构成输入样本矩阵P,行向量T为目标向量。利用PLOTPV画 出这个向量的图像。例如: P = [-0.5 -0.5 +0.3 -0.1 -4; -0.5 +0.5 -0.5 +1.0 5]; T = [1 1 0 0 1]; plotpv(P,T); % plotpv函数利用感知器的输入向量和目标向量来画输入向量的图像
dW:权值或阀值的变化矩阵 W:权值矩阵或阀值向量 P:输入向量 T:目标向量 E:误差向量 其他可以忽略,设为[ ]
learnpn 归一化学习函数
网络仿真函数
sim
a = sim(net, P)
网络输出
输入向量
➢分类结果显示绘图函数
plotpv
plotpv(P,T)
画输入向量的图像
plotpc
plotpc(W,b)
这个感知器正确的区分了我们的新点(用红色表示)作为”zero”类(用圆圈表示), 而不是”one”类(用+号表示),尽管需要比较长的训练时间,这个感知器仍然适当的进 行了学习。最后放大感兴趣的区域
实验一 利用感知器进行分类(2)
Step3 添加神经元的初始化值到分类图
初始化的权值被设为0,因此任何输入都会给出同样的输出,并且分类线不会 出现在这个图中,不用害怕,我们会继续训练这个神经网。 hold on linehandle = plotpc(net.IW{1},net.b{1}); //plotpc函数用来画分类线
MATLAB神经网络工具箱函数
MATLAB神经网络工具箱函数说明:本文档中所列出的函数适用于MATLAB5.3以上版本,为了简明起见,只列出了函数名,若需要进一步的说明,请参阅MATLAB的帮助文档。
1. 网络创建函数newp 创建感知器网络newlind 设计一线性层newlin 创建一线性层newff 创建一前馈BP网络newcf 创建一多层前馈BP网络newfftd 创建一前馈输入延迟BP网络newrb 设计一径向基网络newrbe 设计一严格的径向基网络newgrnn 设计一广义回归神经网络newpnn 设计一概率神经网络newc 创建一竞争层newsom 创建一自组织特征映射newhop 创建一Hopfield递归网络newelm 创建一Elman递归网络2. 网络应用函数sim 仿真一个神经网络init 初始化一个神经网络adapt 神经网络的自适应化train 训练一个神经网络3. 权函数dotprod 权函数的点积ddotprod 权函数点积的导数dist Euclidean距离权函数normprod 规范点积权函数negdist Negative距离权函数mandist Manhattan距离权函数linkdist Link距离权函数4. 网络输入函数netsum 网络输入函数的求和dnetsum 网络输入函数求和的导数5. 传递函数hardlim 硬限幅传递函数hardlims 对称硬限幅传递函数purelin 线性传递函数tansig 正切S型传递函数logsig 对数S型传递函数dpurelin 线性传递函数的导数dtansig 正切S型传递函数的导数dlogsig 对数S型传递函数的导数compet 竞争传递函数radbas 径向基传递函数satlins 对称饱和线性传递函数6. 初始化函数initlay 层与层之间的网络初始化函数initwb 阈值与权值的初始化函数initzero 零权/阈值的初始化函数initnw Nguyen_Widrow层的初始化函数initcon Conscience阈值的初始化函数midpoint 中点权值初始化函数7. 性能分析函数mae 均值绝对误差性能分析函数mse 均方差性能分析函数msereg 均方差w/reg性能分析函数dmse 均方差性能分析函数的导数dmsereg 均方差w/reg性能分析函数的导数8. 学习函数learnp 感知器学习函数learnpn 标准感知器学习函数learnwh Widrow_Hoff学习规则learngd BP学习规则learngdm 带动量项的BP学习规则learnk Kohonen权学习函数learncon Conscience阈值学习函数learnsom 自组织映射权学习函数9. 自适应函数adaptwb 网络权与阈值的自适应函数10. 训练函数trainwb 网络权与阈值的训练函数traingd 梯度下降的BP算法训练函数traingdm 梯度下降w/动量的BP算法训练函数traingda 梯度下降w/自适应lr的BP算法训练函数traingdx 梯度下降w/动量和自适应lr的BP算法训练函数trainlm Levenberg_Marquardt的BP算法训练函数trainwbl 每个训练周期用一个权值矢量或偏差矢量的训练函数11. 分析函数maxlinlr 线性学习层的最大学习率errsurf 误差曲面12. 绘图函数plotes 绘制误差曲面plotep 绘制权和阈值在误差曲面上的位置plotsom 绘制自组织映射图13. 符号变换函数ind2vec 转换下标成为矢量vec2ind 转换矢量成为下标矢量14. 拓扑函数gridtop 网络层拓扑函数hextop 六角层拓扑函数randtop 随机层拓扑函数。
MATLAB神经网络工具箱中的神经网络模型共55页课件
阈值向量b(t)
标量元素bi (t ) ,i为行,t为时间或迭代函数
网络层符号
加 个权神和经元: ,nns为mm 加,m权为和第m个网络层, s m 为第
网 个络神层经输元出,a为: a输smm出, m为第m个网络层, s m 为第 s m
p2 2,2
p{2}2(,2)
例:
iw
1 ,1 2 ,3
=
iw{1,1}2(,3)
p1,(k1) p{1,k1}
p2 2,(k 1)p{2,k1 }2()
神经网络工具箱常用函数列表
重要的感知器神经网络函数:
初始化: initp 训练: trainp 仿真: simup 学习规则: learnp
Hardlim x>=0 y=1;x<0 y=0 Hardlims:x>=0 y=1; x<0 y=-1 Purelin :y=x Satlin:x<0 y=0;x>1 y=1;x>=0&&x<=1 y=x;
Logsig:y= 1 1 ex
人工神经网络的构成
单个神经元的功能是很有限的,人工神经 网络只有用许多神经元按一定规则连接构 成的神经网络才具有强大的功能。
MATLAB工具箱中的神经网络结构
多层网络的简化表示:
MATLAB神经网络工具箱中的神经 网络模型
基本概念: 标量:小写字母,如a,b,c等; 列向量:小写黑体字母,如a,b,c等,意为一列
数; 矩阵向量:大写黑体字母,如A,B,C等
权值矩阵向量W(t)
标量元素 wi, j (t) ,i为行,j为列,t为时间或迭代
n
(完整word版)Matlab的神经网络工具箱入门
Matlab的神经网络工具箱入门在command window中键入help nnet〉〉help nnetNeural Network ToolboxVersion 7。
0 (R2010b) 03-Aug-2010神经网络工具箱版本7.0(R2010b)03八月,2010图形用户界面功能.nnstart —神经网络启动GUInctool —神经网络分类工具nftool —神经网络的拟合工具nntraintool —神经网络的训练工具nprtool —神经网络模式识别工具ntstool - NFTool神经网络时间序列的工具nntool - 神经网络工具箱的图形用户界面。
查看—查看一个神经网络。
网络的建立功能。
cascadeforwardnet —串级,前馈神经网络。
competlayer —竞争神经层.distdelaynet - 分布时滞的神经网络。
elmannet —Elman神经网络。
feedforwardnet —前馈神经网络.fitnet - 函数拟合神经网络。
layrecnet —分层递归神经网络。
linearlayer —线性神经层.lvqnet —学习矢量量化(LVQ)神经网络。
narnet - 非线性自结合的时间序列网络。
narxnet —非线性自结合的时间序列与外部输入网络。
newgrnn —设计一个广义回归神经网络。
newhop —建立经常性的Hopfield网络。
newlind —设计一个线性层.newpnn —设计概率神经网络.newrb - 径向基网络设计.newrbe - 设计一个确切的径向基网络.patternnet - 神经网络模式识别.感知- 感知。
selforgmap - 自组织特征映射。
timedelaynet - 时滞神经网络。
利用网络。
网络—创建一个自定义神经网络。
SIM卡—模拟一个神经网络.初始化- 初始化一个神经网络.适应—允许一个神经网络来适应。
Matlab神经网络工具箱介绍(Neural Network Toolbox)
2020/5/6
10
• <step.3>建立网络
• Network/Data
Manager窗口中New… 打开Create Network or Data,如右图。
• Name:定义网络名为 network1
• 选择Input/Target Data,设置训练函数等参 数。
• View:查看模型
2020/5/6
f ( p)
Forecasting error xn1 t '
2020/5/6
6
• <step.1>数据构造与预处理 •
2020/5/6
7
• <step.2>训练数据导入nntool
• 根据数据的多少,数据文件的格式等获取样本 数据的方法有:
• 1)直接输入数据:通过采用元素列表方式输 入。适用于样本数目较少时。New…按钮
2020/5/6
21
总结
需要注意的是,源文件名及路径名不能是汉 字,否则导致读取文件失败。
本部分介绍了MATLAB 神经网络工具箱的 图形用户界面,为尚不熟悉以MATLAB 编程进 行神经网络设计与仿真的用户提供了一个非常 好的交互式图形界,使得神经网络的设计和仿真 变得轻而易举。
2020/5/6
22
单击Simulate Network按钮,则在Network/ Data Manager窗口的Outputs和Errors区域分 别显示出相应的仿真结果,选中变量名,单击该 窗口的Open按钮,弹出数据窗口,在该窗口可以 查看仿真结果的具体数据,如图 所示。
2020/5/6
19
• <step.6>结果Export和Save
matlab神经网络工具箱简介和函数及示例参考PPT
代码运行结果: 网络训练误差
结论:隐含层节点设为8
BP网络训练步骤
步骤1: 初始化 步骤2:计算网络各层输出矢量 步骤3:计算网络各层反向传播的误差变化,并计算各 层权值的修正值及修正值 步骤4:再次计算权值修正后的误差 平方和 步骤5:检查误差 平方和是否小于 误差期望值,若是, 停止训练,否则继续.
函数类型 输入函数
其它
函数名 称
netsum netprcd concur dotprod
函数用途
输入求和函数 输入求积函数 使权值向量和阈值向量的结构一致 权值求积函数
BP网络的神经网络工具箱函数
函数类型
函数名称 函数用途
前向网络创建 函数
传递函数
学习函数
函数类型 性能函数 显示函数
函数名 函数用途 称
MATLAB的神经网络工具箱函
数
函数类型
通用函数
函数名 函数用途 称
仿真函数 训练函数
学习函数 初始化函数
SIM train trainh adapt learn int intlay
针对给定的输入,得到网络输出 调用其它训练函数,对网络进行训练 对权值和阈值进行训练 自适应函数 网络权值和阈值的学习 对网络进行初始化 对多层网络初始化
说明:
参数TFi可以采用任意的可微传递函数,比如transig, logsig和purelin等; 训练函数可以是任意的BP训练函数,如trainm,trainbfg, trainrp和traingd等。BTF默认采用trainlm是因为函数的速度 很快,但该函数的一个重要缺陷是运行过程会消耗大量的内 存资源。如果计算机内存不够大,不建议用trainlm,而建议 采用训练函数trainbfg或trainrp。虽然这两个函数的运行速度 比较慢,但它们的共同特点是内存占用量小,不至于出现训 练过程死机的情况。
MATLAB神经网络工具箱
MATLAB神经网络工具箱与液位控制BP 模型的设计与仿真随着科学技术的发展,在控制领域中被控对象变得越来越复杂,控制系统呈现出复杂的非线性、时变及不确定性的特点,难于精确建模,有的虽然可以建立粗略的模型,但求解困难。
人工神经网络具有一定的自学习、自适应和非线性映射能力及容错性等优点,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了一条新的途径。
其中,BP 网络,即基于误差反向传播算法的多层前馈神经网络,由于它可以以任意精度逼近任意的连续函数,因此被广泛应用于非线性建模、函数逼近、模式分类、智能控制及预测等领域。
MATLAB神经网络工具箱是以神经网络理论作为背景的专业工具箱,本文针对某发电厂液位控制建立BP 预测模型,利用目前工程领域流行的MATLAB 6.1中提供的神经网络工具箱,对网络模型进行训练和仿真,给出优化的BP 模型实现步骤。
MATLAB及其神经网络工具箱MATLAB是由MATHWORKS公司开发的一个高性能的技术计算语言。
它在一个简单易用的交互式环境中集成了计算、可视化和程序设计等强大的功能。
神经网络工具箱是MATLAB中集成的一个重要工具箱,工具箱中提供了面向不同神经网络模型特别是BP网络模型的丰富多彩的网络学习和训练函数,其中包括了BP算法和各种改进BP算法,为神经网络的仿真分析提供了极大的方便,从而使MATLAB成为目前世界上最为流行的神经仿真平台。
用户只要调用工具箱中相关函数并输入参数,就可以完成相应的训练仿真。
在本文液位控制BP模型的设计与仿真研究中,主要用到以下几个函数及其主要参数:1)Newff格式: net = newff(PR,[S1 S2… S nl],{TF1 TF2… TF nl},BTF,BLF,PF)其中net是神经网络名;S i是第i层神经网络的神经元个数,网络共有nl层;TFi 是第i层网络神经元的转移函数,缺省为tansig; BTF是BP训练函数,缺省为trainlm;BLF 是学习函数,缺省为learngdm;PF是性能函数,缺省为mse。
[matlab工具箱]神经网络NeuralNet
[matlab⼯具箱]神经⽹络NeuralNet//⽬的是学习在BP神经⽹络的基础上添加遗传算法,蚁群算法等优化算法来优化⽹络,这是后话。
先简单了解了MATLAB中的神经⽹络⼯具箱,⼯具箱功能还是⾮常强⼤的,已经可以拟合出⾮常多的曲线来分析了。
神经⽹络⼯具箱选择(4种)今天下载了⾃带的example跑了⼀次试⼀下选择隐藏神经元个数训练结束后可以在plot查看各种图表,这⾥只对⼯具箱操作做简单介绍最近⼀段时间在研究如何利⽤预测其销量个数,在⽹上搜索了⼀下,发现了很多模型来预测,⽐如利⽤回归模型、时间序列模型,GM(1,1)模型,可是⾃⼰在结合实际的⼯作内容,发现这⼏种模型预测的精度不是很⾼,于是再在⽹上进⾏搜索,发现神经⽹络模型可以来预测,并且有很多是结合时间序列或者SVM(⽀持向量机)等组合模型来进⾏预测,本⽂结合实际数据,选取了常⽤的BP神经⽹络算法,其算法原理,因⽹上⼀⼤堆,所以在此不必⼀⼀展⽰,并参考了这篇博⽂,运⽤matlab 2016a,给出了下⾯的代码,并最终进⾏了预测clcclear allclose all%bp 神经⽹络的预测代码%载⼊输出和输⼊数据load C:\Users\amzon\Desktop\p.txt;load C:\Users\amzon\Desktop\t.txt;%保存数据到matlab的⼯作路径⾥⾯save p.mat;save t.mat;%注意t必须为⾏向量%赋值给输出p和输⼊tp=p;t=t;%数据的归⼀化处理,利⽤mapminmax函数,使数值归⼀化到[-1.1]之间%该函数使⽤⽅法如下:[y,ps] =mapminmax(x,ymin,ymax),x需归化的数据输⼊,%ymin,ymax为需归化到的范围,不填默认为归化到[-1,1]%返回归化后的值y,以及参数ps,ps在结果反归⼀化中,需要调⽤[p1,ps]=mapminmax(p);[t1,ts]=mapminmax(t);%确定训练数据,测试数据,⼀般是随机的从样本中选取70%的数据作为训练数据%15%的数据作为测试数据,⼀般是使⽤函数dividerand,其⼀般的使⽤⽅法如下:%[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio)[trainsample.p,valsample.p,testsample.p] =dividerand(p,0.7,0.15,0.15);[trainsample.t,valsample.t,testsample.t] =dividerand(t,0.7,0.15,0.15);%建⽴反向传播算法的BP神经⽹络,使⽤newff函数,其⼀般的使⽤⽅法如下%net = newff(minmax(p),[隐层的神经元的个数,输出层的神经元的个数],{隐层神经元的传输函数,输出层的传输函数},'反向传播的训练函数'),其中p为输⼊数据,t为输%tf为神经⽹络的传输函数,默认为'tansig'函数为隐层的传输函数,%purelin函数为输出层的传输函数%⼀般在这⾥还有其他的传输的函数⼀般的如下,如果预测出来的效果不是很好,可以调节%TF1 = 'tansig';TF2 = 'logsig';%TF1 = 'logsig';TF2 = 'purelin';%TF1 = 'logsig';TF2 = 'logsig';%TF1 = 'purelin';TF2 = 'purelin';TF1='tansig';TF2='purelin';net=newff(minmax(p),[10,1],{TF1 TF2},'traingdm');%⽹络创建%⽹络参数的设置net.trainParam.epochs=10000;%训练次数设置net.trainParam.goal=1e-7;%训练⽬标设置net.trainParam.lr=0.01;%学习率设置,应设置为较少值,太⼤虽然会在开始加快收敛速度,但临近最佳点时,会产⽣动荡,⽽致使⽆法收敛net.trainParam.mc=0.9;%动量因⼦的设置,默认为0.9net.trainParam.show=25;%显⽰的间隔次数%指定训练参数% net.trainFcn = 'traingd'; %梯度下降算法% net.trainFcn = 'traingdm'; %动量梯度下降算法% net.trainFcn = 'traingda'; %变学习率梯度下降算法% net.trainFcn = 'traingdx'; %变学习率动量梯度下降算法% (⼤型⽹络的⾸选算法)% net.trainFcn = 'trainrp'; % RPROP(弹性BP)算法,内存需求最⼩%共轭梯度算法% net.trainFcn = 'traincgf'; %Fletcher-Reeves修正算法% net.trainFcn = 'traincgp'; %Polak-Ribiere修正算法,内存需求⽐Fletcher-Reeves修正算法略⼤% net.trainFcn = 'traincgb'; % Powell-Beal复位算法,内存需求⽐Polak-Ribiere修正算法略⼤% (⼤型⽹络的⾸选算法)%net.trainFcn = 'trainscg'; % ScaledConjugate Gradient算法,内存需求与Fletcher-Reeves修正算法相同,计算量⽐上⾯三种算法都⼩很多% net.trainFcn = 'trainbfg'; %Quasi-Newton Algorithms - BFGS Algorithm,计算量和内存需求均⽐共轭梯度算法⼤,但收敛⽐较快% net.trainFcn = 'trainoss'; % OneStep Secant Algorithm,计算量和内存需求均⽐BFGS算法⼩,⽐共轭梯度算法略⼤% (中型⽹络的⾸选算法)%net.trainFcn = 'trainlm'; %Levenberg-Marquardt算法,内存需求最⼤,收敛速度最快% net.trainFcn = 'trainbr'; %贝叶斯正则化算法% 有代表性的五种算法为:'traingdx','trainrp','trainscg','trainoss', 'trainlm'%在这⾥⼀般是选取'trainlm'函数来训练,其算对对应的是Levenberg-Marquardt算法net.trainFcn='trainlm';[net,tr]=train(net,trainsample.p,trainsample.t);%计算仿真,其⼀般⽤sim函数[normtrainoutput,trainPerf]=sim(net,trainsample.p,[],[],trainsample.t);%训练的数据,根据BP得到的结果[normvalidateoutput,validatePerf]=sim(net,valsample.p,[],[],valsample.t);%验证的数据,经BP得到的结果[normtestoutput,testPerf]=sim(net,testsample.p,[],[],testsample.t);%测试数据,经BP得到的结果%将所得的结果进⾏反归⼀化,得到其拟合的数据trainoutput=mapminmax('reverse',normtrainoutput,ts);validateoutput=mapminmax('reverse',normvalidateoutput,ts);testoutput=mapminmax('reverse',normtestoutput,ts);%正常输⼊的数据的反归⼀化的处理,得到其正式值trainvalue=mapminmax('reverse',trainsample.t,ts);%正常的验证数据validatevalue=mapminmax('reverse',valsample.t,ts);%正常的验证的数据testvalue=mapminmax('reverse',testsample.t,ts);%正常的测试数据%做预测,输⼊要预测的数据pnewpnew=[313,256,239]';pnewn=mapminmax(pnew);anewn=sim(net,pnewn);anew=mapminmax('reverse',anewn,ts);%绝对误差的计算errors=trainvalue-trainoutput;%plotregression拟合图figure,plotregression(trainvalue,trainoutput)%误差图figure,plot(1:length(errors),errors,'-b')title('误差变化图')%误差值的正态性的检验figure,hist(errors);%频数直⽅图figure,normplot(errors);%Q-Q图[muhat,sigmahat,muci,sigmaci]=normfit(errors);%参数估计均值,⽅差,均值的0.95置信区间,⽅差的0.95置信区间[h1,sig,ci]= ttest(errors,muhat);%假设检验figure, ploterrcorr(errors);%绘制误差的⾃相关图figure, parcorr(errors);%绘制偏相关图运⾏之后的,结果如下:BP神经⽹络的结果分析图训练数据的梯度和均⽅误差之间的关系图验证数据的梯度与学习次数残差的正态的检验图(Q-Q图)在⽹上,发现可以通过神经⽹络⼯具箱这个GUI界⾯来创建神经⽹络,其⼀般的操作步骤如下:1:在输⼊命令⾥⾯输⼊nntool命令,或者在应⽤程序这个选项下找到Netrual Net Fitting 这个应⽤程序,点击打开,就能看见如下界⾯2:输⼊数据和输出数据的导⼊(在本⽂中选取了matlab⾃带的案例数据)3:随机选择三种类型的数据所占的样本量的⽐例,⼀般选取默认即可4:隐层神经元的确定5:训练算法的选取,⼀般是选择默认即可,选择完成后点击<train>按钮即可运⾏程序6:根据得到的结果,⼀般是MSE的值越⼩,R值越接近1,其训练的效果⽐较,并第⼆张图给出了神经⽹络的各参数的设置以及其最终的结果,其拟合图R越接近1,模型拟合的更好最终的结果图7:如果所得到的模型不能满⾜你的需求,则需重复上述的步骤直⾄能够得到你想要的精确度8:将最终的得到的各种数据以及其拟合值进⾏保存,然后查看,就可以得到所要的拟合值最后参考了⽹上和MATLAB的帮助,给出了⼀些与神经⽹络相关的函数,希望能够帮助⼤家。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
wkj ek p j
W epT
delta学 习规则
对于多层感知器网络:扩展的delta学习规 则,BP算法
前馈神经网络及其主要方法
前馈神经网络(feed
forward NN):各神经元 接受前级输入,并输出到下一级,无反馈, 可用一有向无环图表示。 前馈网络通常分为不同的层(layer),第i层的 输入只与第i-1层的输出联结。 可见层:输入层(input layer)和输出层(output layer) 隐层(hidden layer) :中间层
a f (n) n
a
n
Sigmoid函数
Sigmoid
特性:
Function :
1 a f (n) 1 e n
值域a∈(0,1) 非线性,单调性 无限次可微 |n|较小时可近似线性 函数 |n|较大时可近似阈值 函数
en e n a tanh(n) n n e e
BP神经网络的特点
非线性映射能力 能学习和存贮大量输入-输出模式映射关系,而无需事 先了解描述这种映射关系的数学方程。只要能提供足 够多的样本模式对供网络进行学习训练,它便能完成 由n维输入空间到m维输出空间的非线性映射。
泛化能力 当向网络训练时输入未曾见过的非样本数据时,网络 也能完成由输入空间向输出空间的正确映射。这种能 力称为泛化能力。
1 1 T 2 J ( n ) ek ( n ) e ( n )e( n ) 2 k 2
1 1 T 2 J E ek (n ) E e (n )e(n ) 2 2 k
第八章 人工神经网络 19
误差纠正学习
wk J 对于感知器和线性网络:
ANN 结构 (连接)
单层前向网络
y1
w1m
y2
. . .
w21 w22w2m
yn
wn1 w n2 wnm
w11 w12
x1
x2
xm
多层前向网络
y1 y2
. . .
yn
Output Layer Hidden Layer Input Layer
x1 x2
. . .
. . .
. . .
xm
单层 反馈网络
神经元经突触传递信号给其他神经元(胞体或树 突) 1011个神经元/人脑 104个连接/神经元
神经元
生物神经元
电脉冲 输 入 树 突 细胞体 信息处理 形成 轴突 传输 突 触 输 出
图 12.2 生物神经元功能模型 黑箱
一般而言, ANN与经典计算方法相比并非优越, 只有当常规方法解决不了或效果 不佳时ANN方法才能显示出其优越性。尤其对问题的机理不甚了解或不能用数学模 型表示的系统,如故障诊断、特征提取和预测等问题,ANN往往是最有利的工具。另
w12 w1R w21 w2 R wS 1 wSR
b1 b b 2 bS
a f (Wp + b)
多层神经网络模型
多层神经网络简化表示
前馈神经网络
前馈神经网络(feed
forward NN):各神经元 接受前级输入,并输出到下一级,无反馈, 可用一有向无环图表示。 前馈网络通常分为不同的层(layer),第i层的 输入只与第i-1层的输出联结。 可见层:输入层(input layer)和输出层(output layer) 隐藏层(hidden layer) :中间层
对数Sigmoid函数 1 a f (n) 1 e n
正切Sigmoid函数
en e n a tanh(n) n n e e
MATLAB函数: logsig(对数), tansig(正切)
单层神经网络模型
R维输入, S个神经元的单层神经网络模型
w11 w W 21 wS 1
1 y f (net ) 1 e net
BP网络的标准学习算法
学习的过程:
神经网络在外界输入样本的刺激下不断改变网 络的连接权值,以使网络的输出不断地接近期 望的输出。 学习的本质: 对各连接权值的动态调整 学习规则: 权值调整规则,即在学习过程中网络中各神经 元的连接权变化所依据的一定的调整规则。
. . .
dn
wn2 wnm
w12
w21
w22
m (k ) (k ) f wil xl di l 1
i 1, 2,, n k 1, 2,, p
x1
x2
. . .
xm-1 xm= 1
感知器学习规则
w ex
Learning Rate Error (d y) Input
监督学习
对训练样本集中的每一组输入能提供一组目标 输出 网络根据目标输出与实际输出的误差信号来调 节网络参数 导师
t(n) 期望输出
环境
输入
实际输出
神经网络
a(n)
比较
p(n)
误差信号
e(n)
非监督学习与强化学习
非监督学习:不存在导
师,网络根据外部数据 的统计规律来调节系统 参数,以使网络输出能 反映数据的某种特性 强化学习:外部环境对 网络输出只给出评价信 息而非正确答案,网络 通过强化受奖励的动作 来改善自身的性能
判断是否转入反向传播阶段:
若输出层的实际输出与期望的输出(导师信号)不 符
误差反传
误差以某种形式在各层表示----修正各层单元 的权值
网络输出的误差减少到可接受的程度 进行到预先设定的学习次数为止
径向基函数网络RBF
径向基函数网络:只有一个隐层,隐层单元采用径
向基函数。隐层把原始的非线性可分的特征空间变 换到另一个空间(通常是高维空间),使之可以线 性可分。 输出为隐层的线性加权求和。采用基函数的加权和 来实现对函数的逼近。 径向基函数(radial basis function, RBF):径向对称 的标量函数k(||x-xc||),最常用的RBF是高斯核函数
i 1 R
传递函数 f 输出
a f ( wp b)
常用传递函数
阈值函数
1 (n 0) MATLAB函数: hardlim a f (n) hardlim(n) 0 (n 0)
a 1 -1
-b
Wp
1 (n 0) a f (n) hardlim(n) 1 (n 0)
BP网络的标准学习算法-算法思想
学习的类型:有导师学习 核心思想:
将输出误差以某种形式通过隐层向输入层逐层反传
将误差分摊给各层的所有 单元---各层单元的误 差信号
学习的过程:
修正各单元权 值
信号的正向传播
误差的反向传播
BP网络的标准学习算法-学习过程
正向传播:
输入样本---输入层---各隐层---输出层
感知器学习规则
x
. . .
. . .
y
+
w (d y )x
d
BP神经网络
Rumelhart,McClelland于1985年提出了BP网络的误差反向 后传BP(Back Propagation)学习算法
David Rumelhart
J. McClelland
BP算法基本原理 利用输出后的误差来估计输出层的直接前导层的误差 ,再用这个误差估计更前一层的误差,如此一层一层 的反传下去,就获得了所有其他各层的误差估计。
MATLAB函数: hardlims
线性函数
Purelin Transfer Function :
a f (n) n
a
n
MATLAB函数: purelin
Sigmoid函数
Sigmoid
特性:
Function :
值域a∈(0,1) 非线性,单调性 无限次可微 |n|较小时可近似线性 函数 |n|较大时可近似阈值 函数
newp默认权值和阈值为零(零初始化函数initzero). net = newp([-2,+2;-2,+2],2); W=net.IW{1,1} %显示网络的权值 b=net.b{1} %显示网络的阈值 W= 0 0 b= 0
感知器(perceptron):
单层前馈网络 传递函数为阈值函数
主要功能是模式分类
感知器的生成
函数newp用来生成一个感知器神经网络
newp
net = newp( pr, s, tf, lf )
net: 函数返回参数,表示生成的感知器网络
pr: 一个R×2矩阵, 由R维输入向量的每维最小值和最
输入
环境
输出
神经网络
环境
输入 神经网络
评价信息误差纠正学习 对于输出层 Nhomakorabeak个神经元的
实际输出: ak(n) 目标输出: tk(n) 误差信号: ek(n) = tk(n) - ak(n) 目标函数为基于误差信号ek(n)的函数,如误差平方 和判据(sum squared error, SSE),或均方误差判据 (mean squared error, MSE, 即SSE对所有样本的期望)
(x x c ) (x x c ) k ( x x c ) exp( ) 2 2
T
径向基函数网络结构
MATLAB神经网络工具箱
神经元模型
Neuron Model: 多输入,单输出,带偏置
输入:R维列向量
p [ p1, pR ]T
阈值:标量 b