内蒙古鄂尔多斯中考数学试卷(及答案)
2024年内蒙古鄂尔多斯市中考数学模拟试题(解析版)
鄂尔多斯市2024年初中学业水平第二次调研考试试卷数学注意事项:1.本试卷共8页,满分120分.考试时间为120分钟.2.答题前,考生务必先将自己的考生号、姓名、座位号等信息填写在试卷和答题卡的指定位置.请认真核对条形码上的相关信息后,将条形码粘贴在答题卡的指定位置上.3.答题时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共有10小题,每小题3分,共30分每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑.1. 下列四个数,,)A. B. C. D. 【答案】C【解析】【分析】本题考查的是算术平方根的含义,乘方,绝对值,负整数指数幂的含义,先分别计算,,,再根据结果可得答案.【详解】解:∵,,,∴负数是,即;故选C2. 鄂尔多斯市2023年一般公共预算收入累计完成了910亿元,财政收入位列全内蒙古第一.数据910亿元用科学记数法表示为( )A. 元B. 元C. 元D. 元【答案】A【解析】22-3-212-⎛⎫- ⎪⎝⎭212-⎛⎫- ⎪⎝⎭3-22-22-3-212-⎛⎫- ⎪⎝⎭242-=-33-=22114212-⎛⎫-== ⎪⎝⎭⎛⎫- ⎪⎝⎭4-22-109.110⨯110.9110⨯119.110⨯99110⨯【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中为整数,表示时关键要正确确定的值以及的值.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【详解】解:亿故选:A3. 下列计算正确的是( )A. B. C. D. 【答案】C【解析】【分析】本题考查了同底数幂的乘除法等运算,掌握运算法则是解答本题的关键.结合选项分别进行合并同类项、同底数幂的乘法和除法,积的乘方等运算,然后选择正确的选项.【详解】解:A .,故A 不正确;B . ,故B 不正确;C .,故C 正确;D . ,故D 不正确.故答案为:C .4. 将一块含有角的直角三角板和一把直尺按如图所示的方式摆放,若,则∠2的度数是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解本题的关键.根据10n a ⨯110a n ≤<,a n n a n 10>n 1<n 910810910109.110=⨯=⨯2235a a a +=236a a a ⋅=()224224a b a b =()()43a a a -÷-=235a a a +=235a a a ⋅=()224224a b a b =()()43a a a -÷-=-30︒120∠=︒45︒50︒55︒60︒平行线的性质和三角形的外角的性质即可得到结论.【详解】解:如图所示,∵,∴,又∵是的外角,,,∴,故选:B .5. 中国古典四大名著:《西游记》《红楼梦》《水浒传》《三国演义》可谓家喻户晓若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两木恰好是《西游记》和《红楼梦》的概率是( )A. B. C. D. 【答案】C【解析】【分析】本题考查列表法和画树状图法求等可能事件的概率,掌握列表法和画树状图法求等可能事件概率的方法是解题的关键.用列表法或画树状图法列举出所有等可能的结果,从中找出抽取的两本恰好是《西游记》和《红楼梦》的可能结果,再利用概率公式求出即可.【详解】解:记《西游记》《红楼梦》《水浒传》《三国演义》分别为A ,B ,C ,D ,画树状图如下:一共有12种等可能的结果,其中抽取的两本恰好是《西游记》(即A )和《红楼梦》(即B )的可能结果有2种可能,∴恰好是《西游记》和《红楼梦》的概率是,故选:C .AB CD ∥2BAC ∠=∠BAC ∠ABE 30E ∠=︒120∠=︒21302050BAC E ∠=∠=∠+∠=︒+︒=︒1314161821126==6. 由几个大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则该几何体至少由几个小正方搭成( )A. 4B. 5C. 6D. 7【答案】B【解析】【分析】本题考查了由三视图判断几何体,主视图是从物体的前面看得到的视图,俯视图是从物体的上面看得到的视图,熟练掌握是关键. 仔细观察该几何体的主视图和俯视图,发挥空间想象能力,便可得出几何体的形状.【详解】解:仔细观察物体的主视图和俯视图可知:该几何体的下面最少要有四个小正方体,上面最少要有一个小正方体,故该几何体最少有5个小正方体组成,故选B .7. 如图,在中,,的平分线交于点D ,点P 是射线边上的动点,连接交于M ,若,,则的度数是( )A. B. C. 或 D. 或【答案】D【解析】【分析】本题考查了直角三角形的性质,角平分线的定义,三角形外角的性质;根据点P 是射线边上的动点分类讨论并计算即可;准确地画出图形并根据相关性质计算是关键.【详解】解:当点P 在边上时,的平分线交于点D ,,是的一个外角Rt ABC △90ACB ∠=︒BAC ∠BC AC BP AD 30BAC ∠=︒=20PBC ∠︒AMP ∠45︒55︒45︒135︒55︒95︒AC AC BAC ∠ BC 30BAC ∠=︒15BAM ∴∠=︒90ACB ∠=︒ =20PBC ∠︒90302040ABM ∠=︒-︒-︒=︒∴AMP ∠∵ABM当点在的延长线上时,是的一个外角的度数是或故选:D .8. 著名数学家华罗庚说过:“数缺形时少直觉,形缺数时难入微.数形结合百般好,隔离分家万事非.”寥窖数语,把图形之妙趣说的淋漓尽致.如图是函数的图象,那么无论x 为何值,函数值y 永远为负的条件是( )A. ,B. ,C. ,D. ,【答案】D【解析】【分析】本题考查了二次函数的图象与性质,解题的关键是掌握二次函数的图象与性质,根据二次函数的55AMP BAM ABM ∠=∠+∠=︒∴1P AC 90ACB ∠=︒60ABC ∴∠=︒1=20PBC ∠︒∵1180ABM ABC PBC ∠=∠+∠=︒∴11AM P ∠∵1ABM 111195AM P BAM ABM ∠=∠+∠=︒∴AMP ∴∠55︒95︒2y ax bx c =++0a >240b ac ->0a >240b ac -<0a <240b ac ->0a <240b ac -<图象在轴的下方,可得抛物线开口向下,与轴无交点,即可判断.【详解】解:二次函教的图象在轴的下方,抛物线开口向下,与轴无交点,即,,故选:D .9. 如图,内接于,已知的直径为10,弦的长为6,则的值为( )A. B. C. D. 【答案】A【解析】【分析】本题主要考查了直径所对的圆周角等于,同弧所对的圆周角相等以及勾股定理,连接并延长交于点D,连接,由直径所对的圆周角等于得出,由勾股定理求出,由同弧所对的圆周角相等可得出.【详解】解:连接并延长交于点D,连接,如下图:∵为的直径,∴,∵,,∴,∴∵∴∴,故选:A.,,x x 2y ax bx c =++x ∴x 0a <240b ac -<ABC O O AB tan C 3443354590︒AO O BD 90︒90ABD Ð=°BD 3tan tan 4C ADB ∠=∠=AO O BD AD O 90ABD Ð=°10AD =6AB=8BD ===63tan 84AB ADB BD ∠=== AB AB=C ADB ∠=∠3tan tan 4C ADB ∠=∠=10. 如图,菱形的边长为,,动点E 从点B 出发,以的速度沿射线方向运动,动点F 同时从B 出发,以的速度沿边向点C 运动,点F 到达点C 时点E 同时停止运动,若点F 运动的时间为t 秒,的面积为,则S 关于t 的函数图象是( )A. B.C. D.【答案】D【解析】【分析】本题考查动点的函数图象问题,菱形的性质,解直角三角形,分点在上,三种情况进行讨论求解即可.【详解】解:∵菱形的边长为,,∴,过点作,则:,①当点在上运动,即:时,,过点作,则:,∴,图象为过原点,开口向上的一段抛物线;ABCD 4cm 30B ∠=︒1cm/s BC 2cm/s BA AD DC 、、BEF △2cm S F ,,AB AD CD ABCD 4cm 30B ∠=︒4AB BC CD AD ====A AH BC ⊥sin 302AH AB =⋅︒=F AB 02t ≤≤2,BF t BE t ==F FG BC ⊥sin 30FG BF t =⋅︒=21122S BE FG t =⋅=②当点在上运动,即:时,此时点到的距离为定值的长,∴,图象为一段上升的直线;③当点在上运动,即:,过点作,则,∵菱形,∴,∴,∴,∴,此时图象为开口向下的一段抛物线;故选D .二、填空题:本大题共有6小题,每小题3分,共18分请将答案填在答题卡上对应的横线上.11.有意义,则x 的取值范围是____.【答案】F AD 24t <≤F BE AH 11222S BE FG t t =⋅=⨯=F CD 46t <≤F FG BC ⊥122CF t =-ABCD AB CD 30DCG B ∠=∠=︒sin 306FG CF t =⋅︒=-()211163222S BE FG t t t t =⋅=-=-+3x ≤【解析】【分析】二次根式要有意义,那么被开方数为非负数,解不等式即可有意义即故答案为:【点睛】本题考查了二次根式的性质,熟练二次根式的性质是解题的关键.12. 若,是一元二次方程的两个实数根,则的值为_______.【答案】【解析】【分析】本题主要考查了一元二次方程根与系数的关系,根据题意得到,,然后代入计算即可.【详解】解:,是一元二次方程的两个实数根,,,∴,故答案为:.13. 弹簧秤不挂重物时长,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上的物体后,弹簧伸长,则弹簧总长y (单位:)关于所挂物体质量x (单位:)的函数表达式为_______.【答案】##【解析】【分析】根据题意可知,弹簧总长度与所挂物体质量之间符合一次函数关系,从而可求解.此题考查函数解析式问题,关键是根据弹簧总长度与所挂物体质量之间符合一次函数关系解答.620x -≥3x ∴≤3x ≤1x 2x 260x x --=1211+x x 16-121x x =+126xx =-21121211x x x x x x ++=1x 2x 260x x --=121x x ∴+=126xx =-2112121116x x x x x x ++==-16-20cm 1kg 1cm cm kg 20y x =+20y x=+()cm y ()kg x ()cm y ()kg x【详解】解:弹簧总长y (单位:)关于所挂重物x (单位:)的函数关系式为,故答案为:.14. 蜜蜂是世界上最伟大的建筑师,观察下面的“蜂窝图”,如图,按照这样的规律,第2024个图案中的“”的个数是_______.【答案】【解析】【分析】本题主要考查图形变化的规律,解答的关键是从所给图形中总结出存在的规律.第一个图案中的个数为4,第2个图案中的个数为,第3个图案中的个数为,第4个图案中的个数为,再总结规律据此可求解.【详解】解:∵第一个图案中的个数为4,第2个图案中的个数为,第3个图案中的个数为,∴第n 个图案中个数为,∴第个图案中个数为.故答案为6073.15. 如图,矩形的对角线与双曲线相交于点D ,已知,且,则______.【答案】的的cm kg 20y x =+20y x =+6073431+⨯432+⨯433+⨯431+⨯432+⨯43(1)31n n +-=+20243202416073⨯+=OABC OB ()0k y x x=<50OABC S =矩形:3:2OD BD =k =18-【解析】【分析】过点D 作,根据矩形的性质及相似三角形的判定和性质得出,再由反比例函数的几何意义求解即可.【详解】解:过点D 作于,∵矩形,,∴,∴,∵,∴,∴,∵,则,∵,∴,∵,∴;故答案为:.【点睛】本题主要考查矩形的性质及相似三角形的判定和性质,反比例函数的几何意义,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.16. 如图,将边长为2的正方形沿折叠,点A 恰好落在边上的点P 处,点B 落在点G 处,交于点H ,连接AP ,则下列结论:①;②;③平分;④当DE OA ⊥29()25ODE OBA S OD S OB == DE OA ⊥E OABC AB AO ⊥DE BA ∥ODE OBA ∽:3:2OD BD =35OD OB =29()25ODE OBA S OD S OB == 150252OBA S =⨯= 9ODE S = 192k =18k =±0k <18k =-18-ABCD EF CD PG BC AP EF ⊥AP EF =AP DPH ∠点P 是边中点时,,其中正确的有______.(请填写所有正确的序号)【答案】①②③【解析】【分析】如图,连接,,由对折可得:,,可得是的垂直平分线,可得①符合题意;如图,过点F 作于点M ,证明,括号,可得②符合题意;由折叠可知,,, ,证明,可得③符合题意;设,则,由,可得 ,再进一步可得④不符合题意;【详解】解:如图,连接,,由对折可得:,,∴是的垂直平分线,∴,故①符合题意;如图,过点F 作于点M ,CD 4tan 3DPE ∠=FP FA EA EP =FA FP =EF AP FM AD ⊥ADP FME ≌ AP EF =AE PE =PAE APE ∠=∠90EAB EPG ∠=∠=︒DPA APG ∠=∠AE PE x ==2DE x =-222DP DE PE +=54x =FP FA EA EP =FA FP =EF AP AP EF ⊥FM AD ⊥四边形为正方形,,,,四边形为矩形,,,由折叠可知, ,,,,在和中,,,,故②符合题意;由折叠可知,,,,∴,,,∴平分,故③符合题意;由折叠可知,,设,则,为中点,,在中,, ABCD 90D DAB B ∴∠=∠=∠=︒AD AB =FM AD ⊥ ABFM MF AD AB ∴==90FME ∠=︒EF AP ⊥90FEA DAP ∴∠+∠=︒90DPA DAP ∠+∠=︒ FEM DPA ∴∠=∠ADP △MFE APD MEFADP FME AD MF∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)ADP FME ∴≌ AP EF ∴=AE PE =PAE APE ∠=∠90EAB EPG ∠=∠=︒90EPA APG ∠+∠=︒90DPA DAP ∠+∠=︒ DPA APG ∴∠=∠AP DPH ∠AE PE =AE PE x ==2DE x =-P CD 1DP \=Rt PDE △222DP DE PE +=,解得 ,,,∴,故④不符合题意;故答案为:①②③【点睛】本题考查的是正方形的性质,轴对称的性质,全等三角形的判定与性质,勾股定理的应用,锐角三角函数的应用,作出合适的辅助线是解本题的关键.三、解答题:本大题共有7小题,共72分.请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置.17. (1)计算:(2)先化简,再求值:,其中.【答案】(1);(2)化简得【解析】【分析】本题考查实数的混合运算与分式的化简求值,正确掌握运算步骤是解题关键.(1)结合特殊值的三角函数、绝对值进行实数运算即可;(2)利用分式混合运算的化简方法化简,再进行求值即可.【详解】解:(1);(2)2221(2)x x ∴+-=54x =324DE x ∴=-=54PE =3tan 4DE DPE DP ∠==202412cos301-+︒+-2344111x x x x ++⎛⎫+÷ ⎪--⎝⎭2x =-2-12x +202412cos301-+︒+-121=-+-11=--2=2344111x x x x ++⎛⎫+÷ ⎪--⎝⎭()213112x x x x -+-=⨯-+,将代入得:原式.18. 某校为了了解初一学生长跑能力,从初一1200名学生中随机抽取部分学生进行1000米跑步测试,并将得分情况绘制成如下统计图(如图,部分信息未给出).由图中给出的信息解答下列问题:(1)抽取学生的总人数为______,并补全频数分布直方图;(2)如果该校全体初一学生都参加测试,请你根据抽样测试的结果估计该校初一学生获得9分及以上的人数;(3)根据测试结果,请对该学校初一学生“1000米跑步”情况作出评价,并向学校提出一条合理的建议.【答案】(1)50,图见解析(2)432人 (3)见解析【解析】【分析】本题考查条形图与扇形图的综合应用,从统计图中有效的获取信息是解题的关键.(1)用8分的人数除以所占的比例求出总人数,进而求出7分的人数,补全条形图即可;(2)利用样本估计总体的思想进行求解即可;(3)根据统计图,提出建议即可.【小问1详解】()22112x x x x +-=⨯-+12x =+2x =-===解:抽取学生的总人数为;∴7分的人数为:,补全条形图如图:【小问2详解】(人);【小问3详解】由统计图可知,8分段的人数最多,建议学校加强初一学生“1000米跑步”的练习,提升学生的成绩.(合理即可)19. 鄂尔多斯市东胜区烈士陵园始建于1953年,核心建筑为位于陵园正中央的革命烈士纪念塔,是内蒙古自治区爱国主义教育基地.为了测算革命烈士纪念塔的高度,如图,无人机在离地面30米的D 处,测得操控者A 的俯角为,测得点C 处的俯角为,又经过人工测量得到操控者A 和革命烈士纪念塔间的水平距离为24米,则革命烈士纪念塔的高度为多少米?(点A ,B ,C ,D 都在同一平面内,结果保留根号)【答案】纪念塔的高度为米.【解析】【分析】如图,过作于,过作于,则四边形是矩形,则2040%50÷=504201268----=126120043250+⨯=BC 60︒45︒BC BCBC ()6D DE AB ⊥E C CF DE ⊥F BCFE,,由题意知,根据,求的值,根据,求的值即可.【详解】解:如图,过作于,过作于,则四边形是矩形,∴,,由题意知:,,,∴,,∴,∴,∴纪念塔的高度为米.【点睛】本题考查了解直角三角形的应用,矩形的判定与性质等知识,解题的关键在于理解仰角与俯角的含义.20. “绿品出塞,北京有约”2023年京蒙消费推介会在北京举行,来自鄂尔多斯的百余种名优特农畜产品集中亮相,阿尔巴斯羊肉独具特色某肉联食品厂销售该产品的成本价格为30元/,若按46元/销售,一个月可以售出4000,销售价每涨1元,月销量就会减少100.(1)当销售单价定为55元时,计算月销售量和销售利润;(2)写出月销售利润y 与销售价之间的函数解析式;(3)在(2)的情况下当销售单价定为多少元时会获得最大利润?并求出最大利润.【答案】(1)销量为千克,利润为元;(2) (3)当时,有最大利润为元.【解析】【分析】本题考查的是二次函数的实际应用,理解题意,确定正确的函数关系式是解本题的关键;CF BE =BCEF =tan 60DE AE ==︒DF CF =DF CF BE AB AE ===-DF BC EF DE DF ==-BC D DE AB ⊥E C CF DE ⊥F BCFE CF BE =BC EF =60DAE ∠=︒30DE =45DCF FDC ∠=︒=∠tan 60DE AE ===︒DF CF =24DF CF BE AB AE ===-=-(30246BC EF DE DF ==-=--=-BC ()6-kg kg kg kg ()46x x >310077500()21001160026400046y x x x =-+->58x =78400(1)根据“销售单价每涨1元,月销售量就减少100千克”,可知:月销售量(销售单价,再计算利润即可;(2)根据总利润等于每千克的利润乘以销售量可得函数关系式;(3)利用二次函数的性质可得二次函数的最值.【小问1详解】解:∵按46元/销售,一个月可以售出4000,销售价每涨1元,月销量就会减少100.∴销售单价定为55元时,每千克的利润为(元),销售数量为:(千克),∴销售利润为(元);【小问2详解】由题意可得:月销售利润y 与销售价之间的函数解析式为:;【小问3详解】∵∵,∴当时,有最大利润为元.21. 如图,为的直径,为弦,过圆上一点D 作的切线交的延长线于点E ,连接,,.(1)若,求的长;(2)若D 是的中点,求证.(请用两种证法解答)4000=-46)100-⨯kg kg kg 553025-=()400055461003100--⨯=31002577500⨯=()46x x >()()30400010046y x x =---⎡⎤⎣⎦()()308600100x x =--()21001160025800046x x x =-+->()21001160025800046y x x x =-+->()21005878400x =--+1000a =-<58x =78400AB O AC O OC CD DE =10OE =3tan 4ACD ∠=AD AC AC DE【答案】(1)6,详见解析(2)详见解析【解析】【分析】本题主要考查了圆的切线的性质,圆周角定理,解直角三角形,勾股定理等知识点(1)如图,连接,,由为圆的切线得出为直角三角形,由勾股定理得出的长,得出,再利用勾股定理即可得;(2)方法一,如图,连接,由为圆的切线得出,由D为的中点得出,进而即可得解;方法二,如图,连延长交于点F,连先证出,再由D为的中点,得出,进而即可得解;熟练掌握其性质,合理作出辅助线是解决此题的关键.【小问1详解】如图,连接,,∵为圆的切线,∴,∵,,∴,∵为直径,∴,∵所对的圆周角为和,∴,∴,∴,∵,,OD BD DE ODEOD3tan tan4ADACD ABDBD∠==∠=43BD AD=OD DE OD DE⊥ ACOD AC⊥DO OFCCDE F DAC∠=∠=∠ AC DAC DCA∠=∠OD BDDEOD DE⊥DE=10OE=5OD===AB90ADB∠=︒AD ABD∠ACD∠ABD ACD∠=∠3tan tan4ADACD ABDBD∠==∠=43BD AD=222AB AD BD=+5210AB=⨯=∴,∴(负值已舍);【小问2详解】方法一:如图,连接,∵为圆切线,∴,∵D 为的中点,∴,∴,∵,∴,∴;方法二:如图,连延长交于点F ,连,∴,∴∵为圆的切线,∴,∴,∴,∵D 为的中点,的2224103AD AD ⎛⎫=+ ⎪⎝⎭6AD =OD DE OD DE ⊥ AC AD DC =AOD DOC ∠=∠OA OC =OD AC ⊥AC DE ∥DO O FC 90DCF ∠=︒90ODC F ∠+∠=︒DE OD DE ⊥90CDE CDO ∠+∠=︒CDE F DAC ∠=∠=∠ AC∴,∴,∴,∴.22. 如图,点G 是矩形内一点,,把绕点C 按顺时针方向旋转,得到(点B 对应点,点G 对应点)延长交于点E ,连接.(1)判断四边形的形状,并说明理由;(2)如图1,若,,,求;(3)如图2,若,,求证:.【答案】(1)证明见解析(2)(3)证明见解析【解析】【分析】(1)先证明,,从而可得答案;(2)如图,过作于,证明,求解,由等面积法可得:,可得,再进一步解答即可;(3)如图,过作于,设,证明,可得,可得,求解,可得,可得.【小问1详解】AD DC =DAC DCA ∠=∠DCA CDE ∠=∠AC DE ∥ABCD 90BGC ∠=︒Rt BGC △90︒B CG ''△B 'G 'BG B G ''AG CGEG '10B C '=6EG '=4CD =ABG S AB AG =112AB k k BC ⎛⎫=<≤ ⎪⎝⎭()21B E k EG ''=-12.8ABG S = 90CGE GCG CG E ''∠=∠=∠=︒CG CG ='G GT BC ⊥T 6CG CG '==8B G ''==1122BG CG BC GT ⨯=⨯68 4.810GT ⨯==A AK BG ⊥K BK GK m ==CBK BAK ∠=∠ABK BCG ∽AB BK BC CG =m CG k =m CG CG EG k''===()()22121m m B E B G EG m k k EG k k'''''=-=-=-=-解:四边形是正方形,理由如下:由旋转可得:,,,∴,∴,∴四边形是矩形,∵,∴四边形是正方形.【小问2详解】如图,过作于,∵四边形为正方形,,∴,∵,∴,由旋转可得:,,由等面积法可得:,∴,∴,∵矩形,,∴,∴;【小问3详解】CGEG '90GCG '∠=︒90BGC B G C ''∠=︒=∠CG CG ='90CGE ∠=︒90CGE GCG CG E ''∠=∠=∠=︒CGEG 'CG CG ='CGEG 'G GT BC ⊥T GCG E '6EG '=6CG CG '==10B C '=8B G ''==10B BC C '==8BG B G ''==1122BG CG BC GT ⨯=⨯68 4.810GT ⨯== 6.4BT ==ABCD 4CD =4AB CD ==14 6.412.82ABG S =⨯⨯=如图,过作于,则,∵,∴,∵矩形,∴,∴,∵,∴,∴,∴,∴,由旋转可得:,∴.【点睛】本题考查的是旋转的性质,矩形的性质,正方形的判定与性质,勾股定理的应用,相似三角形的判定与性质,等腰三角形的判定与性质,作出合适的辅助线是解本题的关键.23. 如图,已知:抛物线与x 轴交于点和点,与y 轴交于点C .A AK BG ⊥K 90BAK ABK ∠+∠=︒AB AG =BK GK m ==ABCD 90ABC ABK CBK ∠=︒=∠+∠CBK BAK ∠=∠90AKB BGC ∠=∠=︒ABK BCG ∽AB BK BC CG=m CG k =m CG CG EG k''===2B G BG m ''==()()22121m m B E B G EG m k k EG k k '''''=-=-=-=-22y ax x c =-+()30A -,()10B ,(1)求抛物线的解析式;(2)如图1,点P 是抛物线(不包括坐标轴)上一个动点,连接和,当时,求出点P 的坐标;(3)如图2在(2)的条件下,连接CP 与x 轴交于点M ,求证:.【答案】(1)(2)(3)见解析【解析】【分析】(1)待定系数法求出函数解析式即可;(2)过点作轴,交于点,根据,进行求解即可;(3)先证明为等腰直角三角形,得到,求出的解析式,进而求出的坐标,过点作,等积法求出的长,进而求出的长,证明,得到,进而得到,再根据对顶角相等,和三角形的外角的性质,得到,即可.【小问1详解】解:抛物线与x 轴交于点和点,∴,解得:,∴;【小问2详解】∵,PA PC 4PAC OBC S S =△△45AMP OCB ∠-∠=︒223y x x =--+()4,5P --P PE x ⊥AC E 142PAC OBC S PE OA S =⋅=△△OAC 45OAC ∠=︒PC M M MN AC ⊥MN CN MNC BOC ∽MNC BOC ∽OCB ACM =∠∠45A AMP OCB O C ∠︒∠=-∠=22y ax x c =-+()30A -,()10B ,96020a c a c ++=⎧⎨-+=⎩13a c =-⎧⎨=⎩223y x x =--+223y x x =--+∴当时,,当时,,解得:;∴,∵,∴,设直线的解析式为,把代入,得:,∴,过点作轴,交于点,设,则:,∴,∴,∴,∴或,当时,解得:或(舍去);∴;当时,方程无实数根,不符合题意;综上:;【小问3详解】∵,0x =3y =0y =2x 2x 30--+=123,1x x =-=()()0,3,3,0C A -()10B ,133122OBC S =⨯⨯=△AC ()30y kx k =+≠()30A -,1k =3y x =+P PE x ⊥AC E ()2,23P m m m --+(),3E m m +23PE m m =+21133346222PAC S PE OA m m =⋅=⨯+=⨯=△234m m +=234m m +=234m m +=-234m m +=4m =-1m =()4,5P --234m m +=-()4,5P --()4,5P --()()0,3,3,0C A -∴,∴,设直线的解析式为:,把,代入,得:,∴,当时,,∴,∴,∴,过点作,则:,∴,∵,∴,3OA OC ==45CAO ACO ∠=∠=︒AC =PC 3y nx =+()4,5P--2n =23y x =+0y =32x =-3,02M ⎛⎫- ⎪⎝⎭12OM OA =1119332224AMC AOC S S ==⨯⨯⨯= M MN AC ⊥119224AMC S AC MN =⋅=⨯= MN =45CAO ∠=︒AN MN ==∴,∴∵,∴,∴,∴.【点睛】本题考查二次函数的综合应用,涉及待定系数法求函数解析式,求一次函数的解析式,等腰三角形的判定和性质,三角形的外角,相似三角形的判定和性质等知识点,正确的求出函数解析式,利用数形结合和分类讨论的思想进行求解,是解题的关键.CN AC AN =-=MN CN OB OC ==MNC COB ∠=∠MNC BOC ∽OCB ACM =∠∠45AMP OCB CMO ACM CAO ∠-∠=∠-∠=∠=︒。
鄂尔多斯市中考数学试题及答案
鄂尔多斯市中考数学试题及答案一、选择题(每小题 2 分,共 40 分)1. 30 ÷ (2 - 3 ÷ 4) 的值是(A) 20 (B) 30 (C) 40 (D) 502. 设函数 f(x) = 2x - 3,则 f t = f(t) 的值是(A) 5 (B) 2t - 3 (C) 3 - 2t (D) 2 - 3t3. 化简:(a + b)² - (a - b)²(A) 4ab (B) 2ab (C) a² + 2ab + b² (D) a² - 2ab + b²4. 若已知等差数列 {aₙ} 的公差为 2,首项为 3,则数列 {aₙ + 2aₙ₋₁} 的通项公式为(A) 2n + 3 (B) 4n + 1 (C) 2n - 3 (D) 4n - 15. 在平面直角坐标系中,点 A(4, 3) 关于 x 轴的对称点为(A) A'(-4, 3) (B) A'(4, -3) (C) A'(-4, -3) (D) A'(3, 4)......二、填空题(每小题 3 分,共 30 分)1. 解方程 2x - 5 = 3x = _______2. 已知图中的正方形 ABCD,AB = 3 cm,连接 AC,则△ABC 的面积为 _______ 平方厘米。
3. 若函数 y = ax² + bx + c 与 x 轴有两个不同的交点,则实数 a, b, c的关系是 _______。
4. 已知等差数列 {aₙ} 的公差为 3,首项为 2,则 a₁₀的值为_______。
......三、解答题(共 30 分)1. 计算:[(5 - 3) + 2] × (10 ÷ 2)2. 已知 sin A = 3/5,且 A 在第二象限,求 cos A 和 tan A 的值。
3. 解方程组:{ 2x - y = 3{ 4x + y = 74. 解直角三角形 ABC,已知 AC = 12 cm,BC = 5 cm。
2023年内蒙古鄂尔多斯市中考数学试题(Word版,含解析)
2023年内蒙古鄂尔多斯市中考数学试题(Word版,含解析)第一题题目:一辆汽车从鄂尔多斯市出发,经过120公里到达包头市,然后返回鄂尔多斯市。
汽车在往返的途中,每小时的速度都与公里数成正比。
已知汽车往返的总用时为6小时,求汽车的速度。
解析:设汽车的速度为x公里/小时,则汽车从鄂尔多斯到包头的时间为120/x小时,从包头返回鄂尔多斯的时间也是120/x小时。
由于往返总用时为6小时,所以有以下等式:120/x + 120/x = 6化简得:240/x = 6解得x = 40因此,汽车的速度为40公里/小时。
第二题题目:已知正方形ABCD的边长为6cm,E为边AB的中点,F为边BC的中点,连接DE、EF、FD三条线段,求三条线段的长度之和。
解析:连接DE、EF、FD三条线段可以得到一个小正方形和一条长方形。
小正方形DEBF的边长为3cm,长方形EFDC 的长为3cm,宽为6cm。
因此,DE、EF、FD三条线段的长度之和为:3 + 2 * (3 + 6) = 3 + 2 * 9 = 3 + 18 = 21所以,三条线段的长度之和为21cm。
第三题题目:若x = -2是方程x^2 + bx + c = 0的一个根,且该方程的另一个根是正数,求b的值。
解析:根据题意,方程x^2 + bx + c = 0的一个根为x = -2,所以(-2)^2 + b*(-2) + c = 0。
又已知另一个根是正数,由二次方程的性质可知,两个根的乘积等于常数项c。
即:(-2) * 正数 = c由于c为正数,所以(-2) * 正数为负数。
根据上述等式,可以推出b为负数。
因此,b的值为负数。
第四题题目:甲、乙两人从鄂尔多斯市出发同时往东方向骑自行车,甲每小时骑行12km,乙每小时骑行8km。
已知甲比乙多骑行1小时到达目的地,求目的地的距离。
解析:设目的地距离为x公里。
甲骑行x公里所需要的时间为x/12小时。
乙骑行x公里所需要的时间为x/8小时。
2022年内蒙古鄂尔多斯市中考数学试题及参考答案(word解析版)
2022年内蒙古鄂尔多斯市中考数学试题及参考答案(word解析版)一、选择题(本大题共10个小题,每小题3分,共30分)1.数轴上,表示数a的点的绝对值是()A.2B.12C.12D.﹣22.空气中有一种有害粉尘颗粒,其直径大约为0.000000017m,该直径可用科学记数法表示为()﹣﹣A.0.17某107mB.1.7某107mC.1.7某108mD.1.7某108m3.下列计算正确的是()A.a4·a1=a4B.(a3)2=a5C.3某2﹣某2=2D.2a2÷3a=2a34.四张形状大小完全一致的卡片,放在不透明的箱子中,每张卡片正反面上分别标的点的坐标如下表所示:第一张第二张第三张第四张正面(2,3)(1,3)(﹣1,2)(2,4)反面(﹣2,1)(﹣1,﹣3)(1,2)(﹣3,4)若从中随机抽取一张,其正反面上两点正好关于y轴对称的概率是()A.14B.13C.24D.15.如图是一副三角尺ABC和与DEF拼成的图案,若将三角尺DEF绕点M按顺时针方向旋转,则边DE与边AB第一次平行时,旋转角的度数是()A.75°B.60°C.45°D.30°6.桌上摆着一个由若干个相同正方体组成的几何体,其三视图如图所示,则组成此几何体需要正方体的个数是()A.6B.7C.8D.97.如图,在Rt△ABC中,∠C=90°,∠B=30°,以A为圆心适当长为半径画弧,分别交AC、AB于点M、N,分别以点M、N 为圆心,大于1MN的长为半径画弧交于点P,作射线AP交BC于点21D,再作射线DE交AB于点E,则下列结论错误的是()A.∠ADB=120°B.S△ADC:S△ABC=1:3C.若CD=2,则BD=4D.DE 垂直平分AB8.2022年5月15日从呼市到鄂尔多斯市的D6767次动车首发成功,鄂尔多斯市自此迎来了动车时代,已知两地铁路长为450千米,动车比火车每小时多行驶50千米,从呼市到鄂尔多斯市乘动车比乘火车少用40分钟,设动车速度为每小时某千米,则可列方程为()A.4504504504504504502450450240B.40C.D.某50某某某50某某503某50某3的中点P落在OP上的点P'处,且9.如图,将半圆形纸片折叠,使折痕CD与直径AB平行,CDOP'=1OP,折痕CD=23,则tan∠COP的值为()3A.655B.2355C.D.52210.如图1,正△ABC的边长为4,点P为BC边上的任意一点,且∠APD=60°,PD交AC于点D,设线段PB的长度为某,图1中某线段的长度为y,y与某的函数关系的大致图象如图2,则这条线段可能是图1中的()A.线段ADB.线段APC.线段PDD.线段CD二、填空题(本大题共6个小题,每小题3分,共18分)11.函数y某2的自变量某的取值范围是.10112.计算:3.1423in60.213.如图,由一些点组成形如正多边形的图案,按照这样的规律摆下去,则第n(n>0)个图案需要点的个数是.214.下列说法正确的是,(请直接填写序号)①2<23<3;②四边形的内角和与外角和相等;③64的立方根为4;④一元二次方程某2﹣6某=10无实数根;⑤若一组数据7,4,某,3,5,6的众数和中位数都是5,则这组数据的平均数也是5.15.如图所示,反比例函数yk(某<0)的图象经过矩形OABC的对角线AC的中点M,分别与某AB,BC交于点D、E,若BD=3,OA=4,则k的值为.16.如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为4,则线段CF的最小值是.三、解答题(本大题共8小题,共72分)2某24某4某217.(8分)(1)化简求值:,其中某是一元二次方程某(某﹣1)=2某﹣2某1某211某的解.2某3某3≥9①(2)解不等式组:2某1某2,并求其整数解的和.>1②5318.(9分)鄂尔多斯市加快国家旅游改革先行示范区建设,越来越多的游客慕名而来,感受鄂尔多斯市“24℃夏天的独特魅力”,市旅游局工作人员依据2022年7月份鄂尔多斯市各景点的游客数量,绘制了如下尚不完整的统计图;3根据以上信息解答下列问题:(1)2022年7月份,鄂尔多斯市共接待游客万人,扇形统计图中乌兰木伦景观湖所对应的圆心角的度数是,并补全条形统计图;(2)预计2022年7月份约有200万人选择来鄂尔多斯市旅游,通过计算预估其中选择去响沙湾旅游的人数;(3)甲、乙两个旅行团准备去响沙湾、成吉思汗陵、蒙古源流三个景点旅游,若这三个景点分别记作a、b、c,请用树状图或列表法求他们选择去同一个景点的概率.19.(7分)一般情况下,中学生完成数学家庭作业时,注意力指数随时间某(分钟)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)分别求出线段AB和双曲线CD的函数关系式;(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?20.(9分)某商场试销A、B两种型号的台灯,下表是两次进货情况统计:进货情况进货数量(台)进货资金(元)进货次数AB53230第一次104440第二次(1)求A、B两种型号台灯的进价各为多少元?(2)经试销发现,A型号台灯售价某(元)与销售数量y(台)满足关系式2某+y=140此商场决定两种型号台灯共进货100台,并一周内全部售出,若B型号台灯售价定为20元,求A型号台灯售价定为多少时,商场可获得最大利润?并通过计算说明商场获得最大利润时的进货方案.21.(8分)某机场为了方便旅客换乘,计划在一、二层之间安装电梯,截面设计图如图所示,已知两层AD与BC平行,层高AB为8米,A、D间水平距离为5米,∠ACB=21.5°.4(1)通过计算说明身高2.4米的人在竖直站立的情况下,搭乘电梯在D处会不会碰到头部;(2)若采用中段加平台设计(如图虚线所示),已知平台MN∥BC,且AM段和NC段的坡度均为1:2(坡度是指坡面的铅直高度与水平宽度的比),求平台MN的长度.(参考数据:in21.5°= 992,co21.5°=,tan21.5°=)1052522.(8分)如图,四边形ABCD中,MA=MC,MB=MD,以AB为直径的O过点M且与DC延长线相切于点E.(1)求证:四边形ABCD是菱形;的长(结果请保留π)(2)若AB=4,求BM23.(11分)已知抛物线y=a(某﹣1)2+3(a≠0)与y轴交于点A(0,2),顶点为B,且对称轴l1与某轴交于点M(1)求a的值,并写出点B的坐标;(2)有一个动点P从原点O出发,沿某轴正方向以每秒2个单位的速度运动,设运动时间为t秒,求t为何值时PA+PB最短;(3)将此抛物线向右平移所得新的抛物线与原抛物线交于点C,且新抛物线的对称轴l2与某轴交于点N,过点C作DE∥某轴,分别交l1,l2于点D、E,若四边形MDEN是正方形,求平移后抛物线的解析式.24.(12分)【问题情景】利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.5例如:张老师给小聪提出这样一个问题:如图1,在△ABC中,AB=3,AD=6,问△ABC的高AD与CE的比是多少?小聪的计算思路是:11BC·AD=AB·CE.22AD1.从而得2AD=CE,∴CE2根据题意得:S△ABC=请运用上述材料中所积累的经验和方法解决下列问题:(1)【类比探究】如图2,在ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF,求证:BO平分角AOC.(2)【探究延伸】如图3,已知直线m∥n,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间的距离为4.求证:P A·PB=2AB.(3)【迁移应用】如图4,E为AB边上一点,ED⊥AD,CE⊥CB,垂足分别为D,C,∠DAB=∠B,AB=34,BC=2,AC=26,又已知M、N分别为AE、BE的中点,连接DM、CN.求△DEM与△CEN的周长之和.参考答案与解析一、选择题(本大题共10个小题,每小题3分,共30分)1.数轴上,表示数a的点的绝对值是()A.2B.12C.12D.﹣26【考点】数轴;绝对值.【分析】根据绝对值的定义即可求出答案.【解答】解:由题意可知:a=﹣2∴|a|=2故选A.【点评】本题考查绝对值的性质,解题的关键是熟练运用绝对值的性质,本题属于基础题型.2.空气中有一种有害粉尘颗粒,其直径大约为0.000000017m,该直径可用科学记数法表示为()﹣﹣A.0.17某107mB.1.7某107mC.1.7某108mD.1.7某108m【考点】科学记数法—表示较小的数.﹣【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a某10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.﹣【解答】解:0.000000017=1.7某108,故选C.﹣【点评】本题考查用科学记数法表示较小的数,一般形式为a某10n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列计算正确的是()A.a4·a1=a4B.(a3)2=a5C.3某2﹣某2=2D.2a2÷3a=2a3【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同类项、同底数幂的乘法、幂的乘方和同底数幂的除法计算即可.【解答】解:A、a4·a1=a5,错误;B、(a3)2=a6,错误;C、3某2﹣某2=2某2,错误;D、2a2÷3a=2a,正确.3故选D.【点评】此题考查同类项、同底数幂的乘法、幂的乘方和同底数幂的除法,关键是根据法则进行计算.4.四张形状大小完全一致的卡片,放在不透明的箱子中,每张卡片正反面上分别标的点的坐标如下表所示:第一张第二张第三张第四张正面(2,3)(1,3)(﹣1,2)(2,4)反面(﹣2,1)(﹣1,﹣3)(1,2)(﹣3,4)若从中随机抽取一张,其正反面上两点正好关于y轴对称的概率是()A.14B.13C.24D.1【考点】概率公式;关于某轴、y轴对称的点的坐标.【分析】直接利用关于y轴对称点的性质得出符合题意的答案,进而求出概率.【解答】解:∵有四张形状大小完全一致的卡片,关于y轴对称的只有第三张,∴从中随机抽取一张,其正反面上两点正好关于y轴对称的概率是:1.4故选:A.【点评】此题主要考查了概率公式,正确应用概率公式是解题关键.5.如图是一副三角尺ABC和与DEF拼成的图案,若将三角尺DEF绕点M按顺时针方向旋转,则7。
2020年内蒙古鄂尔多斯市中考数学试卷和答案解析
2020年内蒙古鄂尔多斯市中考数学试卷和答案解析一、单项选择题(本大题共10小题,每小题3分,共30分)1.(3分)实数﹣的绝对值是()A.B.﹣C.﹣D.解析:直接利用绝对值的性质分析得出答案.参考答案:解:实数﹣的绝对值是:.故选:A.参考答案:此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.2.(3分)已知某物体的三视图如图所示,那么与它对应的物体是()A.B.C.D.解析:该几何体是下面是长方体,上面是一个圆柱体,且长方体的宽与圆柱底面直径相等,从而得出答案.参考答案:解:由三视图知,该几何体是下面是长方体,上面是一个圆柱体,且长方体的宽与圆柱底面直径相等,符合这一条件的是C选项几何体,故选:C.参考答案:本题主要考查由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.3.(3分)函数y=中自变量x的取值范围在数轴上表示正确的是()A.B.C.D.解析:根据二次根式有意义的条件可得x+3≥0,再解即可.参考答案:解:由题意得:x+3≥0,解得:x≥﹣3,在数轴上表示为,故选:C.参考答案:此题主要考查了二次根式有意义的条件和在数轴上表示不等式的解集,关键是掌握二次根式的被开方数为非负数.4.(3分)下列计算错误的是()A.(﹣3ab2)2=9a2b4B.﹣6a3b÷3ab=﹣2a2 C.(a2)3﹣(﹣a3)2=0D.(x+1)2=x2+1解析:直接利用积的乘方运算法则以及整式的除法运算法则、完全平方公式分别化简得出答案.参考答案:解:A、(﹣3ab2)2=9a2b4,原式计算正确,不合题意;B、﹣6a3b÷3ab=﹣2a2,原式计算正确,不合题意;C、(a2)3﹣(﹣a3)2=0,原式计算正确,不合题意;D、(x+1)2=x2++2x+1,原式计算错误,符合题意.故选:D.参考答案:此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.5.(3分)将三角尺按如图所示放置在一张矩形纸片上,∠EGF=90°,∠FEG=30°,∠1=125°,则∠BFG的大小为()A.125°B.115°C.110°D.120°解析:根据矩形得出AD∥BC,根据平行线的性质得出∠1+∠BFE =180°,求出∠BFE,根据三角形内角和定理求出∠EFG,即可求出答案.参考答案:解:∵四边形ABCD是矩形,∴AD∥BC,∴∠1+∠BFE=180°,∵∠1=125°,∴∠BFE=55°,∵在△EGF中,∠EGF=90°,∠FEG=30°,∴∠EFG=180°﹣∠EGF﹣∠FEG=60°,∴∠BFG=∠BFE+∠EFG=55°+60°=115°,故选:B.参考答案:本题考查了平行线的性质,矩形的性质,三角形的内角和定理等知识点,能灵活运用知识点进行推理是解此题的关键.6.(3分)一次数学测试,某小组5名同学的成绩统计如表(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分7781■808280■则被遮盖的两个数据依次是()A.81,80B.80,2C.81,2D.80,80解析:设丙的成绩为x,根据算术平均数的定义列出关于x的方程,解之求出x的值,据此可得第1个被遮盖的数据,再利用众数的定义可得第2个被遮盖的数据,从而得出答案.参考答案:解:设丙的成绩为x,则=80,解得x=80,∴丙的成绩为80,在这5名学生的成绩中80出现次数最多,所以众数为80,所以被遮盖的两个数据依次是80,80,故选:D.参考答案:本题主要考查众数,解题的关键是掌握众数和中位数的定义.7.(3分)在四边形ABCD中,AD∥BC,∠D=90°,AD=8,BC=6,分别以A,C为圆心,大于AC的长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O,若点O是AC的中点,则CD的长为()A.4B.2C.6D.8解析:连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF=FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=6,等量代换得到FC=AF=6,利用线段的和差关系求出FD=AD﹣AF=2.然后在Rt△FDC中利用勾股定理即可求出CD的长.参考答案:解:如图,连接FC,由题可得,点E和点O在AC的垂直平分线上,∴EO垂直平分AC,∴AF=FC,∵AD∥BC,∴∠FAO=∠BCO,在△FOA与△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=6,∴FC=AF=6,FD=AD﹣AF=2.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,即CD2+22=62,解得CD=.故选:A.参考答案:本题考查了基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质的综合运用.线段垂直平分线上任意一点,到线段两端点的距离相等,确定EO垂直平分AC是解决问题的关键.8.(3分)下列说法正确的是()①的值大于;②正六边形的内角和是720°,它的边长等于半径;③从一副扑克牌中随机抽取一张,它是黑桃的概率是;④甲、乙两人各进行了10次射击测试,他们的平均成绩相同,方差分别是s2甲=1.3,s2乙=1.1,则乙的射击成绩比甲稳定.A.①②③④B.①②④C.①④D.②③解析:分别根据黄金数的近似值、多边形的内角和与半径的定义与性质、概率公式、方差的意义分别判断可得.参考答案:解:①的值约为0.618,大于,此说法正确;②正六边形的内角和是720°,它的边长等于半径,此说法正确;③从一副扑克牌中随机抽取一张,它是黑桃的概率是,此说法错误;④∵s2甲=1.3,s2乙=1.1,∴s2甲>s2乙,故乙的射击成绩比甲稳定,此说法正确;故选:B.参考答案:本题主要考查概率公式,解题的关键是掌握多边形的内角和与半径的定义与性质、概率公式、方差的意义.9.(3分)如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3,再以对角线OA3为边作第四个正方形OA2A4B4,连接A2A4,得到△A2A3A4,…,设△AA1A2,△A1A2A3,△A2A3A4,…,的面积分别为S1,S2,S3,…,如此下去,则S2020的值为()A.B.22018C.22018+D.1010解析:首先求出S1、S2、S3,然后猜测命题中隐含的数学规律,即可解决问题.参考答案:解:∵四边形OAA1B1是正方形,∴OA=AA1=A1B1=1,∴S1=1×1=,∵∠OAA1=90°,∴OA12=12+12=2,∴OA2=A2A3=2,∴S2=2×1=1,同理可求:S3=2×2=2,S4=4…,∴S n=2n﹣2,∴S2020=22018,故选:B.参考答案:本题考查了勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到a n的规律是解题的关键.10.(3分)鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y(米)与时间x(分)的函数关系如图2所示,下列结论错误的是()A.第一班车离入口处的距离y(米)与时间x(分)的解析式为y=200x﹣4000(20≤x≤38)B.第一班车从入口处到达花鸟馆所需的时间为10分钟C.小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车D.小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)解析:设y=kx+b,运用待定系数法求解即可得出第一班车离入口处的距离y(米)与时间x(分)的解析式;把y=2500代入函数解析式即可求出第一班车从入口处到达花鸟馆所需的时间;设小聪坐上了第n班车,30﹣25+10(n﹣1)≥40,解得n≥4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.参考答案:解:由题意得,可设第一班车离入口处的距离y(米)与时间x(分)的解析式为:y=kx+b(k≠0),把(20,0),(38,3600)代入y=kx+b,得,解得,∴第一班车离入口处的路程y(米)与时间x(分)的函数表达为y =200x﹣4000(20≤x≤38);故选项A不合题意;把y=2000代入y=200x﹣4000,解得x=30,30﹣20=10(分),∴第一班车从入口处到达塔林所需时间10分钟;故选项B不合题意;设小聪坐上了第n班车,则30﹣25+10(n﹣1)≥40,解得n≥4.5,∴小聪坐上了第5班车,故选项C符合题意;等车的时间为5分钟,坐班车所需时间为:1600÷200=8(分),步行所需时间:1600÷(2000÷25)=20(分),20﹣(8+5)=7(分),∴比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟.故选项D不合题意.故选:C.参考答案:本题主要考查了一次函数的应用,熟练掌握待定系数法求出函数解析式是解答本题的关键.二、填空题(本大题共6题,每题3分,共18分)11.(3分)截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为 1.051×107..解析:绝对值大于10的数用科学记数法表示一般形式为a×10n,n 为整数位数减1.参考答案:解:1051万=10510000=1.051×107.故答案为:1.051×107.参考答案:本题考查了科学记数法﹣表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,12.(3分)计算:+()﹣2﹣3tan60°+(π)0=10.解析:直接利用零指数幂的性质以及特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.参考答案:解:原式=3+9﹣3+1=10.故答案为:10.参考答案:此题主要考查了实数运算,正确化简各数是解题关键.13.(3分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠BCD =30°,CD=2,则阴影部分面积S 阴影=.解析:连接OC.证明OC∥BD,推出S阴=S扇形OBD即可解决问题.参考答案:解:连接OC.∵AB⊥CD,∴=,CE=DE=,∴∠COD=∠BOD,∵∠BOD=2∠BCD=60°,∴∠COB=60°,∵OC=OB=OD,∴△OBC,△OBD都是等边三角形,∴OC=BC=BD=OD,∴四边形OCBD是菱形,∴OC∥BD,∴S△BDC=S△BOD,∴S阴=S扇形OBD,∵OD==2,∴S阴==,故答案为.参考答案:本题考查扇形的面积,菱形的判定和性质,平行线的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.14.(3分)如图,平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为6,4,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为12.解析:过点A作x轴的垂线,交CB的延长线于点E,根据A,B 两点的纵坐标分别为6,4,可得出横坐标,即可表示AE,BE的长,根据菱形的面积为2,求得AE的长,在Rt△AEB中,计算BE的长,列方程即可得出k的值.参考答案:解:过点A作x轴的垂线,交CB的延长线于点E,∵BC∥x轴,∴AE⊥BC,∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为6,4,∴A(,6),B(,4),∴AE=2,BE=﹣=,∵菱形ABCD的面积为2,∴BC×AE=2,即BC=,∴AB=BC=,在Rt△AEB中,BE===1,∴k=1,∴k=12.故答案为12.参考答案:本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.15.(3分)如图,在等边△ABC中,AB=6,点D,E分别在边BC,AC上,且BD=CE,连接AD,BE交于点F,连接CF,则CF 的最小值是2.解析:首先证明∠AFB=120°,推出点F的运动轨迹是O为圆心,OA为半径的弧上运动(∠AOB=120°,OA=2),连接OC交⊙O 于N,当点F与N重合时,CF的值最小.参考答案:解:如图,∵△ABC是等边三角形,∴AB=BC=AC,∠ABC=∠BAC=∠BCE=60°,∵BD=CE,∴△ABD≌△BCE(SAS)∴∠BAD=∠CBE,又∵∠AFE=∠BAD+∠ABE,∴∠AFE=∠CBE+∠ABE=∠ABC,∴∠AFE=60°,∴∠AFB=120°,∴点F的运动轨迹是O为圆心,OA为半径的弧上运动(∠AOB=120°,OA=2),连接OC交⊙O于N,当点F与N重合时,CF的值最小,最小值=OC﹣ON=4﹣2=2.故答案为2.参考答案:本题考查全等三角形的判定和性质、等边三角形的性质、圆的有关性质等知识,解题的关键是学会添加辅助圆解决问题,属于中考填空题中的压轴题.16.(3分)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③在点M的运动过程中,四边形CEMD可能成为菱形;④无论点M运动到何处,∠CHM一定大于135°.以上结论正确的有①②③④(把所有正确结论的序号都填上).解析:①正确.证明∠ADM=30°,即可得出结论.②正确.证明△DHM是等腰直角三角形即可.③正确.首先证明四边形CEMD是平行四边形,再证明,DM>CD即可判断.④正确.证明∠AHM<∠BAC=45°,即可判断.参考答案:解:如图,连接DH,HM.由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AD,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=2HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵CD∥EM,EC∥DM,∴四边形CEMD是平行四边形,∵DM>AD,AD=CD,∴DM>CD,∴四边形CEMD不可能是菱形,故③正确,∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故④正确;由上可得正确结论的序号为①②③.故答案为①②③④.参考答案:本题考查正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考填空题中的压轴题.三、解答题(本大题共8题,共72分.解答时写出必要的文字说明、演算步骤或推理过程)17.(8分)(1)解不等式组,并求出该不等式组的最小整数解.(2)先化简,再求值:(﹣)÷,其中a满足a2+2a ﹣15=0.解析:(1)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集;(2)先根据分式的混合运算顺序和运算法则化简原式,再由已知等式得出a2+2a=15,整体代入计算可得.参考答案:解:(1)解不等式①,得:x>﹣,解不等式②,得:x≤4,则不等式组的解集为﹣<x≤4,∴不等式组的最小整数解为﹣2;(2)原式=[+]÷=(+)•=•==,∵a2+2a﹣15=0,∴a2+2a=15,则原式=.参考答案:本题考查的是解一元一次不等式组和分式的化简求值,正确求出每一个不等式解集是基础,熟练掌握分式的混合运算顺序和运算法则是解题的关键.18.(9分)“学而时习之,不亦说乎?”古人把经常复习当作是一种乐趣.某校为了解九年级(一)班学生每周的复习情况,班长对该班学生每周的复习时间进行了调查,复习时间四舍五入后只有4种:1小时,2小时,3小时,4小时,已知该班共有50人,根据调查结果,制作了两幅不完整的统计图表,该班女生一周的复习时间数据(单位:小时)如下:1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4九年级(一)班女生一周复习时间频数分布表复习时间频数(学生人数)1小时32小时a3小时44小时6(1)统计表中a=7,该班女生一周复习时间的中位数为 2.5小时;(2)扇形统计图中,该班男生一周复习时间为4小时所对应圆心角的度数为72°;(3)该校九年级共有600名学生,通过计算估计一周复习时间为4小时的学生有多少名?(4)在该班复习时间为4小时的女生中,选择其中四名分别记为A,B,C,D,为了培养更多学生对复习的兴趣,随机从该四名女生中选取两名进行班会演讲,请用树状图或者列表法求恰好选中B 和D的概率.解析:(1)由已知数据可得a的值,利用中位数的定义求解可得;(2)先根据百分比之和等于1求出该班男生一周复习时间为4小时所对应的百分比,再乘以360°即可得;(3)用总人数乘以样本中一周复习时间为4小时的学生所占比例即可得;(4)通过树状图展示12种等可能的结果数,找出恰好选中B和D 的结果数,然后根据概率公式求解.参考答案:解:(1)由题意知a=7,该班女生一周复习时间的中位数为=2.5(小时),故答案为:7,2.5;(2)扇形统计图中,该班男生一周复习时间为4小时所对应的百分比为1﹣(10%+20%+50%)=20%,∴该班男生一周复习时间为4小时所对应的圆心角的度数为360°×20%=72°,故答案为:72;(3)估计一周复习时间为4小时的学生有600×(+20%)=300(名);答:估计一周复习时间为4小时的学生有300名.(4)画树状图得:∵一共有12种可能出现的结果,它们都是等可能的,恰好选中B 和D的有2种结果,∴恰好选中B和D的概率为P==.答:恰好选中B和D的概率为.参考答案:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.19.(8分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.解析:(1)利用待定系数法即可解答;(2)设点M的坐标为(x,2x﹣5),根据MB=MC,得到,即可解答.参考答案:解:(1)把点A(4,3)代入函数y=得:a=3×4=12,∴y=.OA==5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)方法一:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).方法二:∵B(0,﹣5)、C(0,5),∴BC=10,∴BC的中垂线为:直线y=0,当y=0时,2x﹣5=0,即x=2.5,∴点M的坐标为(2.5,0).参考答案:本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式.20.(8分)图1是挂墙式淋浴花洒的实物图,图2是抽象出来的几何图形.为使身高175cm的人能方便地淋浴,应当使旋转头固定在墙上的某个位置O,花洒的最高点B与人的头顶的铅垂距离为15cm,已知龙头手柄OA长为10cm,花洒直径AB是8cm,龙头手柄与墙面的较小夹角∠COA=26°,∠OAB=146°,则安装时,旋转头的固定点O与地面的距离应为多少?(计算结果精确到1cm,参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)解析:通过作辅助线构造直角三角形,分别在Rt△ABF和在Rt△AOE中,根据锐角三角函数求出OE、BF,而点B到地面的高度为175+15=190cm,进而求出OG即可.参考答案:解:如图,过点B作地面的垂线,垂足为D,过点A 作地面GD的平行线,交OC于点E,交BD于点F,在Rt△AOE中,∠AOE=26°,OA=10,则OE=OA•cos∠AOE≈10×0.90=9cm,在Rt△ABF中,∠BOF=146°﹣90°﹣26°=30°,AB=8,则BF=AB•sin∠BOF=8×=4cm,∴OG=BD﹣BF﹣OE=(175+15)﹣4﹣9=177cm,答:旋转头的固定点O与地面的距离应为177cm.参考答案:本题考查解直角三角形的应用,掌握直角三角形的边角关系是正确计算的前提,构造直角三角形是解决问题的关键.21.(9分)我们知道,顶点坐标为(h,k)的抛物线的解析式为y =a(x﹣h)2+k(a≠0).今后我们还会学到,圆心坐标为(a,b),半径为r的圆的方程(x﹣a)2+(y﹣b)2=r2,如:圆心为P(﹣2,1),半径为3的圆的方程为(x+2)2+(y﹣1)2=9.(1)以M(﹣3,﹣1)为圆心,为半径的圆的方程为(x+3)2+(y+1)2=3.(2)如图,以B(﹣3,0)为圆心的圆与y轴相切于原点,C是⊙B上一点,连接OC,作BD⊥OC,垂足为D,延长BD交y轴于点E,已知sin∠AOC=.①连接EC,证明:EC是⊙B的切线;②在BE上是否存在一点Q,使QB=QC=QE=QO?若存在,求点Q的坐标,并写出以Q为圆心,以QB为半径的⊙Q的方程;若不存在,请说明理由.解析:(1)由圆的方程的定义可求解;(2)①由“SAS”可证△CBE≌△OBE,可得∠BCE=∠BOE=90°,可得结论;②如图,连接CQ,QO,由余角性质可得∠AOC=∠BEO,由锐角三角函数可求EO的长,可得点E坐标,由QB=QC=QE=QO,可得点Q是BE中点,由中点坐标公式可求点Q坐标,即可求解.参考答案:解:(1)以M(﹣3,﹣1)为圆心,为半径的圆的方程为(x+3)2+(y+1)2=3,故答案为:(x+3)2+(y+1)2=3;(2)①∵OE是⊙B切线,∴∠BOE=90°,∵CB=OB,BD⊥CO,∴∠CBE=∠OBE,又∵BC=BO,BE=BE,∴△CBE≌△OBE(SAS),∴∠BCE=∠BOE=90°,∴BC⊥CE,又∵BC是半径,∴EC是⊙B的切线;②如图,连接CQ,QO,∵点B(﹣3,0),∴OB=3,∵∠AOC+∠DOE=90°,∠DOE+∠DEO=90°,∴∠AOC=∠BEO,∵sin∠AOC=.∴sin∠BEO==,∴BE=5,∴OE===4,∴点E(0,4),∵QB=QC=QE=QO,∴点Q是BE的中点,∵点B(﹣3,0),点E(0,4),∴点Q(﹣,2),∴以Q为圆心,以QB为半径的⊙Q的方程为(x+)2+(y﹣2)2=9.参考答案:本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,锐角三角函数等知识,理解圆的方程定义是本题的关键.22.(8分)某水果店将标价为10元/斤的某种水果.经过两次降价后,价格为8.1元/斤,并且两次降价的百分率相同.(1)求该水果每次降价的百分率;(2)从第二次降价的第1天算起,第x天(x为整数)的销量及储藏和损耗费用的相关信息如下表所示:时间(天)x销量(斤)120﹣x储藏和损耗费用(元)3x2﹣64x+400已知该水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<10)之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?解析:(1)根据题意,可以列出相应的方程,从而可以求得相应的百分率;(2)根据题意和表格中的数据,可以求得y与x(1≤x<10)之间的函数解析式,然后利用二次函数的性质可以求出第几天时销售利润最大,最大利润是多少.参考答案:解:(1)设该水果每次降价的百分率为x,10(1﹣x)2=8.1,解得,x1=0.1,x2=1.9(舍去),答:该水果每次降价的百分率是10%;(2)由题意可得,y=(8.1﹣4.1)×(120﹣x)﹣(3x2﹣64x+400)=﹣3x2+60x+80=﹣3(x﹣10)2+380,∵1≤x<10,∴当x=9时,y取得最大值,此时y=377,由上可得,y与x(1≤x<10)之间的函数解析式是y=﹣3x2+60x+80,第9天时销售利润最大,最大利润是377元.参考答案:本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和方程的知识解答.23.(10分)(1)【操作发现】如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC 的三个顶点均在格点上.①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的对应点为点B′,点C的对应点为点C′.连接BB′;②在①中所画图形中,∠AB′B=45°.(2)【问题解决】如图2,在Rt△ABC中,BC=1,∠C=90°,延长CA到D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE 的度数.(3)【拓展延伸】如图3,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=1,CD=3,AD=kAB(k为常数),求BD的长(用含k的式子表示).解析:(1)①根据旋转角,旋转方向画出图形即可.②只要证明△ABB′是等腰直角三角形即可.(2)如图2,过点E作EH⊥CD交CD的延长线于H.证明△ABC ≌△EAH(AAS)即可解决问题.(3)如图3中,由AE⊥BC,BE=EC,推出AB=AC,将△ABD 绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,只要证明∠GDC=90°,可得CG=,由此即可解决问题.参考答案:解:(1)①如图,△AB′C′即为所求.②由作图可知,△ABB′是等腰直角三角形,∴∠AB′B=45°,故答案为45.(2)如图2中,过点E作EH⊥CD交CD的延长线于H.∵∠C=∠BAE=∠H=90°,∴∠B+∠CAB=90°,∠CAB+∠EAH=90°,∴∠B=∠EAH,∵AB=AE,∴△ABC≌△EAH(AAS),∴BC=AH,EH=AC,∵BC=CD,∴CD=AH,∴DH=AC=EH,∴∠EDH=45°,∴∠ADE=135°.(3)如图③中,∵AE⊥BC,BE=EC,∴AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=kAB,∴DG=kBC=2k,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG==.∴BD=CG=.参考答案:本题属于几何变换综合题,考查了等边三角形的判定和性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会用旋转法添加辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.24.(12分)如图1,抛物线y=x2+bx+c交x轴于A,B两点,其中点A的坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数解析式;(2)点D为y轴上一点,如果直线BD与直线BC的夹角为15°,求线段CD的长度;(3)如图2,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO,求点P的坐标.解析:(1)将点A,点C坐标代入解析式可求解;(2)先求出点B坐标,可得OB=OC,可得∠OBC=∠OCB=45°,再分点D在点C上方或下方两种情况讨论,由锐角三角函数可求解;(3)在BO上截取OE=OA,连接CE,过点E作EF⊥AC,由“SAS”可证△OCE≌△OCA,可得∠ACO=∠ECO,CE=AC=,由面积法可求EF的长,由勾股定理可求CF的长,可求tan∠ECA =tan∠PAB=,分点P在AB上方和下方两种情况讨论,求出AP 解析式,联立方程组可求点P坐标.参考答案:解:(1)∵抛物线y=x2+bx+c交x轴于点A(1,0),与y轴交于点C(0,﹣3),∴,解得:,∴抛物线解析式为:y=x2+2x﹣3;(2)∵抛物线y=x2+2x﹣3与x轴于A,B两点,∴点B(﹣3,0),∵点B(﹣3,0),点C(0,﹣3),∴OB=OC=3,∴∠OBC=∠OCB=45°,如图1,当点D在点C上方时,∵∠DBC=15°,∴∠OBD=30°,∴tan∠DBO==,∴OD=×3=,∴CD=3﹣;若点D在点C下方时,∵∠DBC=15°,∴∠OBD=60°,∴tan∠DBO==,∴OD=3,∴DC=3﹣3,综上所述:线段CD的长度为3﹣或3﹣3;(3)如图2,在BO上截取OE=OA,连接CE,过点E作EF⊥AC,∵点A(1,0),点C(0,﹣3),∴OA=1,OC=3,∴AC===,∵OE=OA,∠COE=∠COA=90°,OC=OC,∴△OCE≌△OCA(SAS),∴∠ACO=∠ECO,CE=AC=,∴∠ECA=2∠ACO,∵∠PAB=2∠ACO,∴∠PAB=∠ECA,∵S△AEC=AE×OC=AC×EF,∴EF==,∴CF===,∴tan∠ECA==,如图2,当点P在AB的下方时,设AO与y轴交于点N,∵∠PAB=∠ECA,∴tan∠ECA=tan∠PAB==,∴ON=,∴点N(0,),又∵点A(1,0),∴直线AP解析式为:y=x﹣,联立方程组得:,解得:或,∴点P坐标为:(﹣,﹣),当点P在AB的上方时,同理可求直线AP解析式为:y=﹣x+,联立方程组得:,解得:或,∴点P坐标为:(﹣,),综上所述:点P的坐标为(﹣,),(﹣,﹣).参考答案:本题是二次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,直角三角形的性质,锐角三角函数等知识,求出tan∠ECA=tan∠PAB=是本题的关键.。
内蒙古自治区鄂尔多斯市初中毕业升学考试数学试题及参考答案
鄂尔多斯市初中毕业升学考试数 学(课标)注意事项:1.本试题满分120分,考试用时120分钟; 2.答题前将密封线内的项目填写清楚;3.考试结束后将试卷按页码顺序排好,全部上交.一、选择题(本大题10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一个是正确的,请把正确选项的标号填在下面的选项栏内.) 题号 1 2 3 4 5 6 7 8 9 10 选项 1.3-的相反数是( ) A .3-B .3C .13-D .132.图1是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )3.我市2006年财政收入近150亿元,居自治区首位.150亿用科学记数法可表示为( ) A .81.510⨯B .91.510⨯C .101.510⨯D .111.510⨯4.能够刻画一组数据离散程度的统计量是( )A .平均数B .众数C .中位数D .方差 5.将圆柱形纸筒沿母线AB 剪开铺平,得到一个矩形(如图2).如果将这个纸筒沿线路B M A →→剪开铺平,得到的图形是( ) A .平行四边形 B .矩形C .三角形D .半圆6.鄂尔多斯市成陵旅游区到响沙湾旅游区之间的距离为105公里,在一张比例尺为1:2000000的交通旅游图上,它们之间的距离大约相当于( )A .一根火柴的长度B .一支钢笔的长度C .一支铅笔的长度D .一根筷子的长度 7.下列说法正确的有( ) (1)如图3(a ),可以利用刻度尺和三角板测量圆形工件的直径; (2)如图3(b ),可以利用直角曲尺检查工件是否为半圆形; (3)如图3(c ),两次使用丁字尺(CD 所在直线垂直平分线段AB )可以找到圆形工件的圆心;(4)如图3(d ),测倾器零刻度线和铅垂线的夹角,就是从P 点看A 点时仰角的度数.图1 A . B . C . D . A B MAB M ()A ()B 图2A .1个B .2个C .3个D .4个8.一种蔬菜加工后出售,单价可提高20%,但重量减少10%.现有未加工的这种蔬菜30千克,加工后可以比不加工多卖12元,则这种蔬菜加工前和加工后每千克各卖多少元?设这种蔬菜加工前每千克卖x 元,加工后每千克卖y 元,根据题意,所列方程组正确的是( ) A .(120)30(110)3012y xy x =+⎧⎨+-=⎩%%B .(120)30(110)3012y xy x =+⎧⎨--=⎩%%C .(120)30(110)3012y xy x =-⎧⎨--=⎩%%D .(120)30(110)3012y xy x =-⎧⎨+-=⎩%%9.如图4,一只蚂蚁以均匀的速度沿台阶12345A A A A A →→→→爬行,那么蚂蚁爬行的高度..h 随时间t 变化的图象大致是( )10.观察表1,寻找规律.表2是从表1中截取的一部分,其中a b c ,,的值分别为( ) 表1 表2 1 2 3 4 …… 2 4 6 8 …… 3 6 9 12 …… 4 8 12 16 …… …………………………A .20,25,24B .25,20,24C .18,25,24D .20,30,25二、填空题(本大题8个小题,每小题3分,共24分)11.如图5,AB CD ∥,58B =o∠,20E =o∠,则D ∠的度数为 .16 a20 bc30图3(a )图3(b )图3(c )图3(d )AABCDP图4 1A 2A 3A 4A 5A O h t A . O h tB . O h tC . O ht D .图5 A BC D E F图6B (12)A , yx O 1 212.若43x y =,则y x y=+ . 13.如图6,双曲线1k y x=与直线2y k x =相交于A B ,两点,如果A 点的坐标是(12),,那么B 点的坐标为 .14.不等式组30240x x -⎧⎨+>⎩≤的解集是 .15.如图7,以O 为圆心的两个同心圆中,大圆的弦AB 切小圆于P ,如果4cm AB =,则图中阴影部分的面积为 2cm (结果用π表示).16.如图8,点P 在AOB ∠的平分线上,若使AOP BOP △≌△,则需添加的一个条件是 (只写一个即可,不添加辅助线). 17.在边长为a 的正方形纸片中剪去一个边长为b 的小正方形()a b >(如图9(1)),把余下的部分沿虚线剪开,拼成一个矩形(如图9(2)),分别计算这两个图形阴影部分的面积,可以验证的乘法公式是 (用字母表示).18.如图10,房间里有一只老鼠,门外蹲着一只小猫,如果每块正方形地砖的边长为1米,那么老鼠在地面上能避开小猫视线的活动范围为 平方米(不计墙的厚度).三、解答题(本大题8个小题,共66分.解答时要写出必要的文字说明、演算步骤或推证过程) 19.(本小题满分8分)(1)计算:11(12)42-⎛⎫++-- ⎪⎝⎭.图7 A B P O图8ABP O图9(1) 图9(2) ab图10 猫 房间 门 1米(2)化简:212111a a a a a -+⎛⎫+- ⎪-⎝⎭.20.(本小题满分6分)某市教育行政部门为了解初中学生参加综合实践活动的情况,随机抽取了本市初一、初二、初三年级各500名学生进行了调查.调查结果如图11所示,请你根据图中的信息回答问题.(1)在被调查的学生中,参加综合实践活动的有多少人?参加科技活动的有多少人? (2)如果本市有3万名初中学生,请你估计参加科技活动的学生约有多少名? 21.(本小题满分6分) 有四张背面相同的纸牌A B C D ,,,,其正面分别画有四个不同的几何图形(如图12).小明将这4张纸牌背面朝上洗匀后摸出一张,将剩余3张洗匀后再摸出一张. (1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A B C D ,,,表示);(2)求摸出的两张牌面图形既是轴对称图形又是中心对称图形纸牌的概率.22.(本小题满分6分) 如图13,A B ,两镇相距60km ,小山C 在A 镇的北偏东60o方向,在B 镇的北偏西30o方向.经探测,发现小山C 周围20km 的圆形区域内储有大量煤炭,有关部门规定,该区域内禁止建房修路.现计划修筑连接A B ,两镇的一条笔直的公路,试分析这条公路是否会经过该区域?初一 初二 初三 年级人数 0100 200 300 400 500 450 350 150 参加综合实践活动人数统计图60% 14% 16%文体活动 社会调查 社区服务 科技活动 参加综合实践活动人数分布统计图 图11正三角形 A 正方形 B 菱 形 C 等腰梯形D图12 北北 A C B60o30o 图1323.(本小题满分9分)如图14,在ABC △中,90ACB =o∠,D 是AB 的中点,以DC 为直径的O e 交ABC △的边于G F E ,,点. 求证:(1)F 是BC 的中点;(2)A GEF =∠∠.24.(本小题满分10分)有甲、乙两家通迅公司,甲公司每月通话的收费标准如图15所示;乙公司每月通话收费标准如表3所示.表3(1)观察图15,甲公司用户月通话时间不超过100分钟时应付话费金额是 元;甲公司用户通话100分钟以后,每分钟的通话费为 元;(2)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算?如果她的月通话时间超过100分钟,又将如何选择? 25.(本小题满分9分) 我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称 , ; (2)如图16(1),已知格点(小正方形的顶点)(00)O ,,(30)A ,,(04)B ,,请你画出以格点为顶点,OA OB ,为勾股边且对角线相等的勾股四边形OAMB ;(3)如图16(2),将ABC △绕顶点B 按顺时针方向旋转60o,得到DBE △,连结月租费 通话费 2.5元 0.15元/分钟A B C D E F GO图14图15 ()t 分()y 元O 100 20020 40 y B O A x 图16(1)AD DC ,,30DCB =o ∠.求证:222DC BC AC +=,即四边形ABCD 是勾股四边形. 26.(本小题满分12分)如图17,抛物线2229y x nx n =-++-(n 为常数)经过坐标原点和x 轴上另一点C ,顶点在第一象限.(1)确定抛物线所对应的函数关系式,并写出顶点坐标;(2)在四边形OABC 内有一矩形MNPQ ,点M N ,分别在OA BC ,上,点Q P ,在x 轴上.当MN 为多少时,矩形MNPQ 的面积最大?最大面积是多少?2007年鄂尔多斯市初中毕业升学考试 数学试题参考答案及评分说明(课标)(一)阅卷评分说明1.正式阅卷前先进行试评,在试评中认真阅读参考答案,明确评分标准,不得随意拔高或降低评分标准.试评的试卷必须在阅卷后期全部予以复查,防止阅卷前后期评分标准宽严不一致.2.评分方式为分步累计评分,解答过程的某一步骤发生笔误,只要不降低后继部分的难度,而后继部分再无新的错误,后继部分可评应得分数的50%;若是几个相对独立的得分点,其中一处错误不影响其它得分点的评分.ABCDE60o图16(2)yOC x图173.最小记分单位为1分,不得将评分标准细化至1分以下(即不得记小数分).4.解答题题头一律记该题的实际得分,不得用记负分的方式记分.对解题中的错误须用红笔标出,并继续评分,直至将解题过程评阅完毕,并在最后得分点处标上该题实际得分.5.本参考答案只给出一至两种解法,凡有其它正确解法都应参照本评分说明分步确定得分点,并同样实行分步累计评分.6.合理精简解题步骤者,其简化的解题过程不影响评分. (二)参考答案及评分标准一、选择题(本大题10个小题,每小题3分,共30分.) 题号 1 2 3 4 5 6 7 8 9 10 选项 B C C D A A D B B A 二、填空题(本大题8个小题,每小题3分,共24分.) 11.38o(或38)12.3713.(12)--, 14.23x -<≤ 15.4π16.OA OB =(或OAP OBP =∠∠或APO BPO =∠∠)17.22()()a b a b a b -=+-(或22()()a b a b a b +-=-)18.17(填空正确给3分,图形不正确不扣分;图形正确,计算不正确可给1分.) 三、解答题(本大题8个小题,共66分.) 19.(本小题满分8分)(1)计算:11(12)42-⎛⎫++-- ⎪⎝⎭解:原式124=+- ······················································· 3分(一处计算正确给1分) 1=- ······························································································· 4分(2)化简:212111a a a a a -+⎛⎫+- ⎪-⎝⎭解:原式2(1)(1)1a a a -=+-- ············································ 2分(一处计算正确给1分)(1)(1)a a =+-- ··············································································· 3分 2= ········································································································· 4分 20.(本小题满分6分) 解:(1)450350150950++=(人) ······································· 1分(无单位不扣分) 950(1601614)95⨯---=%%%(人) ···································· 3分(无单位不扣分) 答:参加综合实践活动的有950人,参加科技活动的有95人. ································ 4分(2)95030000105003⨯⨯⨯% ············································································· 5分95201900=⨯=(人) ··················································· 6分(无单位不扣分)答:参加科技活动的学生估计有1900人. 21.(本小题满分6分)树状图: 列表:··········································································· 4分 注:出现3处(共12处)错误扣1分,扣完为止.(2)21126P == ··························································································· 6分 答:概率是16.22.(本小题满分6分)解:作CD AB ⊥于D ,由题意知:30CAB =o∠ 60CBA =o∠ 90ACB =o∠ ································· 1分 30DCB ∴=o ∠ ··················································· 2分 ∴在Rt ABC △中,1302BC AB == ································································ 3分 在Rt DBC △中,cos30CD BC =o································································ 4分 3302=⨯··································································· 5分 15320=> ································································ 6分 答:这条公路不经过该区域. 23.(本小题满分9分) 证法一: (1)连结DF ,90ACB =o Q ∠,D 是AB 的中点12BD DC AB ∴==············································· 2分 DC Q 是O e 的直径DF BC ∴⊥ ······················································· 4分 BF FC ∴=,即F 是BC 的中点. ························· 5分 (2)D F Q ,分别是AB BC ,的中点A B C D A A BA C A DB A B BC BD C A C B C D C D A D B D D C AB C D D B C A D C A B D A B C 1 北北AD CB60o30oABCDEF GODF AC ∴∥ ································································································· 6分 A BDF ∴=∠∠ ···························································································· 7分 BDF GEF ∴=∠∠ ······················································································· 8分 A GEF ∴=∠∠ ···························································································· 9分 证法二:(1)连结DF DE , DC Q 是O e 直径90DEC DFC ∴==o ∠∠ ················································································ 1分 90ECF =o Q ∠ ∴四边形DECF 是矩形EF CD ∴=,DF EC = ······································· 2分 D Q 是AB 的中点,90ACB =o∠12EF CD BD AB ∴=== ····································· 3分 DBF EFC ∴△≌△ ············································· 4分 BF FC ∴=,即F 是BC 的中点. ························· 5分 (2)DBF EFC Q △≌△BDF FEC ∴=∠∠,B EFC =∠∠ ································································· 6分 90ACB =o Q ∠(也可证AB EF ∥,得A FEC =∠∠)A FEC ∴=∠∠····························································································· 7分 FEG BDF =Q ∠∠ ······················································································· 8分 A GEF ∴=∠∠ ···························································································· 9分 (此题证法较多,大纲卷参考答案中,又给出了两种不同的证法,可供参考.)24.(本小题满分10分) (1)20;0.2 ············································································ 4分(每空2分) (2)通话时间不超过100分钟选甲公司合算 ························································ 5分 解:设通话时间为t 分钟(100t >),甲公司用户通话费为1y 元,乙公司用户通话费为2y 元. 则:1200.2(100)0.2y t t =+-= ·························· 6分(条件100t >没有写出不扣分)2250.15y t =+ ····························································································· 7分当12y y = 即:0.2250.15t t =+时,500t = ···················································· 8分 当12y y > 即:0.2250.15t t >+时,500t >当12y y < 即:0.2250.15t t <+时,500t < ······················································ 9分 答:通话时间不超过500分钟选甲公司;500分钟选甲、乙公司均可;超过500分钟选乙公司. ··········································································································· 10分 25.(本小题满分9分)A BCD E F GO(1)正方形、长方形、直角梯形.(任选两个均可) ··············· 2分(填正确一个得1分) (2)答案如图所示.(34)M ,或(43)M ,.(没有写出不扣分)······· 2分(根据图形给分,一个图形正确得1分)(3)证明:连结ECABC DBE Q △≌△ ······················································································· 5分 AC DE ∴=,BC BE = ················································································· 6分 60CBE =o Q ∠ EC BC ∴=,60BCE =o ∠ ······················································ 7分 30DCB =o Q ∠ 90DCE ∴=o ∠ 222DC EC DE ∴+= ······································· 8分 222DC BC AC ∴+=,即四边形ABCD 是勾股四边形 ·········································· 9分 26.(本小题满分12分)解(1)Q 抛物线过(00),点.290n ∴-= ·························································· 1分 3n ∴=± ······································································································ 2分 Q 顶点在第一象限,02bn a∴-=>且22244044ac b n n a --==>-(不写不扣分) 3n ∴= ········································································································ 3分 ∴抛物线26y x x =-+ ···················································································· 4分顶点坐标为(39), ···························································································· 5分 (2)①B 点的坐标为(48), ·············································································· 6分 ②如图所示,作AH x ⊥轴于H .设M 点的坐标为()x y ,OMQ OAH ∴△∽△ OQ MQOH AH∴= ······················· 7分28x y∴= 4y x ∴= ·············································· 8分 由抛物线的对称性可知:62QP MN x ==- ············· 9分y B O MMA x ABC DE 60o y A MO Q H (39),B NP C x。
鄂尔多斯市数学中考试卷
数学试题 第1页(共8页) 数学试题 第2页(共8页)绝密★启用前鄂尔多斯市初中毕业生升学考试数 学考生须知:1.作答前,请将自己的姓名、准考证号填写在答题纸上相应位置,并核对条形码上的姓名、准考证号等有关信息。
2.答题内容一律填涂或书写在答题纸上规定的位置,在试题卷上作答无效。
3.本试题共8页,三大题,26小题,满分120分,考试时间共计120分钟。
一、单项选择(本大题共10题,每题3分,共30分.) 1.下列各组数中,互为相反数的是 A .3和3- B .3-和31 C .3-和31-D .31和3 2.如图,正方形OABC 的边长为1,OA 在数轴上, 以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是 A .1B .2C .1.5D .23.同学们,你们看过美国著名3D 卡通电影《里约大冒险》吗?该片在2011年3月、4月和5月蝉联全球票房冠军,累计票房达2.86亿美元. 数据“2.86亿”用科学记数法表示为 A .71086.2⨯B .81086.2⨯C .91086.2⨯D .7106.28⨯4.若a 是方程0322=--x x 的一个解,则a a 362-的值为A .3B .3-C .9D .9-5.一个几何体的三视图如图所示,那么这个几何体是ABCD6.我市某中学九年级(1)班为开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学捐款情况如下表: 捐款(元) 5 10 15 20 25 30 人数361111136问该班同学捐款金额的众数和中位数分别是 A .13,11 B .25,30 C .20,25D .25,207.下列说法中,正确的有①若0>b a +,则0>a ,0>b .②一元二次方程02432=++x x 没有实数根. ③矩形是轴对称图形且有四条对称轴. ④若直线a ∥b ,b ∥c ,则直线a ∥c .A .1个B .2个第5题图第2题图C.3个D.4个数学试题第1页(共8页)数学试题第2页(共8页)数学试题 第3页(共8页) 数学试题 第4页(共8页)8.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且 AB=CD ,已知CE=2,ED=8,则⊙O 的半径是 A .3 B .4C .5D .349.有一串彩色的珠子,按白黄蓝的顺序重复排列,其中有一部分放在盒子里,如图所 示,则这串珠子被放在盒子里的颗数可能是 A .2010 B .2011 C .2012D .201310.如图,△ABC 和△DEF 是全等的等腰直角三角形,∠ABC =∠DEF =90°,AB=4cm ,BC 与EF 在直线ɭ 上,开始时C 点与E 点重合,让△ABC 沿直线ɭ 向右平移,直到B 点与F 点重合为止. 设△ABC 与△DEF 的重叠部分(即图中影阴部分)的面积为y cm 2,CE 的长度为x cm ,则y 与x 之间的函数图象大致是二、填空(本大题共8题,每题3分,共24分.)11.如图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=35°24′,则∠2的度数为 . 12.计算:2)21(8114--+⨯--= .13.如果a ,b ,c 是整数,且b a c=,那么我们规定一种记号(a ,b )=c ,例如932=,那么记作(3,9)2=,根据以上规定,求(2-,1)= . 14.若关于x 的分式方程1131=-+-xx m 无解,则m 的值是 . 15.如图,在梯形ABCD 中,∠C =90°,AD=CD=4,BC=8,以A 为圆心,在梯形内画出一个最大的扇形(即图中影阴部分)的面积是 .(结果保留π)16.如图,点A 在双曲线xy 4=上,且OA=4,过点A 作 AC ⊥y 轴,垂足为C ,OA 的垂直平分线交OC 于点B ,则△ABC 的周长为 .17.如图,将两张长为4,宽为1的矩形纸条交叉并旋转,使重叠部分成为一个菱形. 旋转过程中,当两张纸条垂直时, 菱形周长的最小值是4,那么菱形周长的最大值是 . 18.某超市在“五一”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款60元和288元.如果小敏把这两次购物改为一次性购物,则应付款 元.第17题图第16题图第15题图第11题图第9题图第10题图第8题图ABCD3数学试题 第5页(共8页) 数学试题 第6页(共8页)三、解答(本大题共8题,共66分. 解答时请写出必要的文字说明,演算步骤或推证过程.)19.(本题满分8分)(1)先化简,再求代数式(113-+a )÷1442++-a a a 的值,其中32-=a . (2)解不等式组⎪⎩⎪⎨⎧+<+≤+--)2(2131215312x x x x ,并将解集表示在数轴上.20.(本题满分6分)某校为培养学生勤俭节约的好习惯,决定在全校范围内开展一次“一周花费统计”的活动. 小颖是九年级(3)班的一名寄宿生,她根据自己上周的各项花费情况,绘制了如下尚不完整的统计图,请根据图中相关信息,解答下列问题. (1)小颖上周共花费多少元?(2)在扇形统计图中,请算出“路费”所对圆心角的度数? (3)请将条形统计图补充完整.21.(本题满分7分)如图,有四张卡片(形状、大小和质地都相同),正面分别写有字母A 、B 、C 、D 和一个算式.将这四张卡片背面向上并洗匀,从中随机抽取一张,记录字母后放回,重新洗匀再从中随机抽取一张,记录字母.(1)用树状图或列表法表示两次抽取卡片可能出现的所有结果(用字母A 、B 、C 、D 表示).(2)求抽取的两张卡片上的算式都正确的概率.22.(本题满分8分)如图,海中有一小岛P ,在距小岛324海里范围内有暗礁,一轮船自西向东航行,它在A 处测得小岛P 位于北偏东45°,且A ,P 之间的距离为48海里,若轮船继续向正东方向航行,有无触礁的危险?请通过计算加以说明.如果有危险,轮船自A 处开始至少沿东偏南多少度方向航行,才能安全通过这一海域?A34=-a aB532·a a a =C632)(a a = D224)2(a a =-第22题图第21题图第20题图① ②23.(本题满分8分)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC,连接AG.(1)求证:FC= BE;(2)若AD=DC=2,求AG的长.24.(本题满分8分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC 的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,若AB=4,AD=3,求OE的长.25.(本题满分9分)某商场试销一种成本为每件60元的T恤,规定试销期间销售单价不低于成本单价,且获利不得高于40%.经试销发现,销售量y(件)与销售单价x(元)之间的函数图象如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围.(2)若商场销售这种T恤获得利润为W(元),求出利润W(元)与销售单价x(元)之间的函数关系式;并求出当销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?26.(本题满分12分)如图所示,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,且OA=3,OC=1.矩形OABC绕点B按顺时针方向旋转60°后得到矩形DFBE. 点A的对应点为点F,点O的对应点为点D,点C的对应点为点E,且点D恰好在y轴上,二次函数22++=bxaxy的图象过E、B两点.(1)请直接..写出点B和点D的坐标;(2)求二次函数的解析式;(3)在x轴上方是否存在点P,点Q,使以点O、A、P、Q为顶点的平行四边形的面积是矩形OABC面积的2倍,且点P在抛物线上.若存在,求出点P,点Q的坐标;若不存在,请说明理由.第23题图第24题图第25题图第26题图数学试题第7页(共8页)数学试题第8页(共8页)。
2023年内蒙古鄂尔多斯市中考数学真题及答案
2023年内蒙古鄂尔多斯市中考数学真题及答案注意事项:1.本试卷共6页,满分120分。
考试时间为120分钟。
2、答题前,考生务必先将自己的考生号、姓名、座位号等信息填写在试卷和答题卡的指定位置。
请认真核对条形码上的相关信息后,将条形码粘贴在答题卡的指定位置。
3、答题时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共有10小题,每小题3分,共30分。
每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑。
1.下列各式计算结果为a⁵的是A.(a³)²C.a⁴·a2.关于x的一元一次不等式x-1≤m的解集在数轴上的表示如图1所示,则m的值为A.3B.2C.1D.03.定义新运算“⊗”,规定:a⊗b=a²-|b|,则(-2)⊗(-1)的运算结果为A.-5B.-3C.5D.34.如图2,直线a∥b,直线l与直线a,b分别相交于点A,B,点C在直线b上,且CA=CB.若∠1=32°,则∠2的度数为A.32°B.58°C.74°D.75°A . B.c . D.8.在平面直角坐标系中,将正比例函数y =-2x 的图象向右平移3个单位长度得到一次函数y =k x +b (k≠0)的图象,则该一次函数的解析式为A.y =-2x +3B.y =-2x +6C.y =-2x -3D.y =-2x -69.如图5,⊙O是锐角三角形ABC的外接圆,OD⊥AB,OE⊥BC,OF⊥AC,垂足分别为D,E,F,连接DE,EF,FD.若DE+DF=6.5,△ABC 的周长为21,则EF的长为A.8 B.4C. 3.5D.310.如图6,在平面直角坐标系中,△OAB三个顶点的坐标分别为O(0,0),A(2,0),B(,1),△OA'B与△OAB关于直线OB对称,反比例函数的图象与A'B交于点 C.若则k的值为C.5.几个大小相同的小正方体搭成几何体的俯视图如图3所示,图中小正方形中数字表示对应位置小正方体的个数,该几何体的主视图是6.从1,2,3这三个数中随机抽取两个不同的数,分别记作m 和n .若点A的坐标记作(m ,n ),则点A在双曲线上的概率是A.B.C.D.7.图4源于我国汉代数学家赵爽的弦图,它是由四个全等直角三角形与一个小正方形拼成的一个大正方形.若小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为α,则c osα的值为二、填空题:本大题共有6小题,每小题3分,共18分。
2021年内蒙古鄂尔多斯中考数学真题及答案
4出现 次数最多,故众数为4,
方差是S2= ×[(2−6)2+(4−6)2+(4−6)2+(7−6)2+(9−6)2+(10-6)2]= .
综上只有选项D正确.
故选:D.
【点睛】本题考查了折线图、平均数、中位数、众数及方差等知识,读折线图得到用水量数据是解决本题的关键.
C. D.
【答案】C
【解析】
【分析】根据题中等量关系“2021年购买的口罩数量比2020年购买的口罩数量多100包”即可列出方程.
【详解】解:设2020年每包口罩x元,则2021年每包口罩(x-10)元.
根据题意,得,
即:
故选:C
【点睛】本题考查了列分式方程的知识点,寻找已知量和未知量之间的等量关系是列出方程的关键.
【详解】解:∵
∴AB= ,
∵S△ABC= ×AB×CN= ×AC×BC
∴CN= ,
∵AN= ,
∵折叠
∴AM=A'M,∠BCN=∠B'CN,∠ACM=∠A'CM,
∵∠BCN+∠B'CN+∠ACM+∠A'CM=90°,
∴∠B'CN+∠A'CM=45°,
∴∠MCN=45°,且CN⊥AB,
∴∠NMC=∠NCM=45°,
5.一块含 角的直角三角板和直尺如图放置,若 ,则 的度数为( )
A. B. C. D.
【答案】B
【解析】
【分析】先根据邻补角的定义得出∠3=180°-∠1=33°27′,再根据平行线的性质得到∠4=∠2,然后根据三角形的外角的性质即可得到结论.
【详解】解:∵ ,
2020年内蒙古鄂尔多斯中考数学试卷(解析版)
2020年内蒙古鄂尔多斯中考数学试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分)1.实数的绝对值是( ).A. B. C. D.2.已知某物体的三视图如图所示,那么与它对应的物体是( ).A. B.C. D.3.函数中自变量的取值范围在数轴上表示正确的是( ).A. B.C. D.4.下列计算错误的是( ).A.B.5.将三角尺按如图所示放置在一张矩形纸片上,,,,则的大小为( ).A.B.C.D.6.一次数学测试,某小组名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分■■则被遮盖的两个数据依次是( ).A.,B.,C.,D.,7.在四边形中,,,,,分别以,为圆心,大于的长为半径作弧,两弧交于点,作射线交于点交于点,若点是的中点,则的长为( ).A.D.8.下列说法正确的是( ).①的值大于;②正六边形的内角和是,它的边长等于半径;③从一副扑克牌中随机抽取一张,它是黑桃的概率是;④甲、乙两人各进行了次射击测试,它们的平均成绩相同,方差分别是,,则乙的射击成绩比甲稳定.A.①②③④B.①②④C.①④D.②③甲乙9.如图,四边形是边长为的正方形,以对角线为边作第二个正方形,连接,得到;再以对角线为边作第三个正方形,连接,得到,再以对角线为边作第四个正方形,连接,得到,,设,,,,的面积分别为,,,,如此下去,则的值为( ).A.B.C.D.10.鄂尔多斯动物园内的一段线路如图所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午发车,以后每隔分钟有一班车发车时间,于是从入口处出发,沿该线路步行分钟后到达花鸟馆,离入口处的路程(米)与时间(分)的函数关系如图所示,下列结论错误的是( ).大象馆入口图花鸟馆米米图分米第一班车小聪A.第一班车离入口处的距离(米)与时间(分)的解析式为B.第一班车从入口处到达花鸟馆所需的时间为分钟C.小聪在花鸟馆游玩分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车D.小聪在花鸟馆游玩分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了分钟(假设小聪步行速度不变)二、填空题(本大题共6小题,每小题3分,共18分)11.截至年月日,全球新冠肺炎确诊病例已超过万例,其中数据万用科学记数法表示为 .12.计算:.13.如图,是⊙的直径,弦,垂足为,,,则阴影部分面积.阴影14.如图,平面直角坐标系中,菱形在第一象限内,边与轴平行,,两点的纵坐标分别为,,反比例函数的图象经过,两点,若菱形的面积为,则的值为 .15.如图,等边中,,点、点分别在和上,且,连接、交于点,则的最小值为 .16.如图,已知正方形,点是边延长线上的动点(不与点重合),且,由平移得到,若过点作,为垂足,则有以下结论:①点位置变化,使得时,;②无论点运动到何处,都有;③在点的运动过程中,四边形可能成为菱形;④无论点运动到何处,一定大于.以上结论正确的有 (把所有正确结论的序号都填上).三、解答题(本大题共8小题,共72分)17.解答下列小题.(2)解不等式组,并求出该不等式组的最小整数解.先化简,再求值:,其中满足.(1)(2)(3)小时小时小时小时九年级(一)班男生一周复习时间扇形统计图(4)18.“学而时习之,不亦说乎?”古人把经常复习当作是一种乐趣.某校为了解九年级(一)班学生每周的复习情况,班长对该班学生每周的复习时间进行了调查,复习时间四舍五入后只有种:小时,小时,小时,小时,已知该班共有人,根据调查结果,制作了两幅不完整的统计图表,该班女生一周的复习时间数据(单位:小时)如下:,,,,,,,,,,,,,,,,,,,九年级(一)班女生一周复习时间频数分布表复习时间频率(学生人数)小时小时小时小时统计表中,该班女生一周复习时间的中位数为 小时.扇形统计图中,该班男生一周复习时间为小时所对应圆心角的度数为 .该校九年级共有名学生,通过计算估计一周复习时间为小时的学生有多少名?在该班复习时间为小时的女生中,选择其中四名分别记为,,,,为了培养更多学生对复习的兴趣,随机从该四名女生中选取两名进行班会演讲,请用树状图或者列表法求恰好选中和的概率.19.如图,一次函数的图象分别与反比例函数的图象在第一象限交于点,与(1)(2)求函数和的表达式.已知点,试在该一次函数图象上确定一点,使得,求此时点的坐标.20.图是挂墙式淋浴花洒的实物图,图是抽象出来的几何图形,为使身高的人能方便地淋浴,应当使旋转头固定在墙上的某个位置,花洒的最高点与人的头顶的铅垂距离为,已知龙头手柄长为,花洒直径是,龙头手柄与墙面的较小夹角,,则安装时,旋转头的固定点与地面的距离应为多少?(计算结果精确到,参考数据:,,)图图(1)(2)21.我们知道,顶点坐标为的抛物线的解析式为.今后我们还会学到,圆心坐标为,半径为的圆的方程,如:圆心为,半径为的圆的方程为.以为圆心,为半径的圆的方程为 .如图,以为圆心的圆与轴相切于原点,是⊙上一点,连接,作,垂足为,延长交轴于点,已知.12连接,证明:是⊙的切线.在上是否存在一点,使?若存在,求点的坐标,并写出以为圆心,以为半径的⊙的方程;若不存在,请说明理由.(1)(2)22.某水果店将标价为元斤的某种水果,经过两次降价后,价格为元斤,并且两次降价的百分率相同.求该水果每次降价的百分率.从第二次降价的第天算起,第天(为整数)的销量及储藏和损耗费用的相关信息如下表所示:时间(天)销量(斤)储藏和损耗费用(元)已知该水果的进价为元斤,设销售该水果第(天)的利润为(元),求与之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?图1(1)23.【操作发现】如图,在边长为个单位长度的小正方形组成的网格中,的三个顶点均在格点上.请按要求画图:将绕点顺时针方向旋转,点的对应点为点,点的对应点为点.连接2(2)(3)在①中所画图形中,.【问题解决】如图,在中,,,延长到,使,将斜边绕点顺时针旋转到,连接,求的度数.图【拓展延伸】如图,在四边形.中,,垂足为,,,,(为常数),求的长(用含的式子表示).图(1)24.如图,抛物线交轴于,两点,其中点的坐标为,与轴交于点.图求抛物线的函数解析式.【答案】解析:实数的绝对值是:.故选:.解析:由三视图知,该几何体是下面是长方体,上面是一个圆柱体,且长方体的宽与圆柱底面直径相等,符合这一条件的是选项几何体.(3)如图,连接,点在抛物线上,且满足,求点的坐标.图A 1.C 2.解析:由题意得:,解得:,在数轴上表示为:.故选:.解析:∵四边形是矩形,∴,∴,∵,∴,∵在中,,,∴,∴,故选:.解析:设丙的成绩为,则,解得,∴丙的成绩为,在这名学生的成绩中出现次数最多,所以众数为,所以被遮盖的两个数据依次是,.故选.C 3.D 4.B 5.D 6.解析:如图,连接,由题可得,点和点在的垂直平分线上,∴垂直平分,∴,∵,∴,在与,,∴≌,∴,∴,,在中,∵,∴,即,解得.故选.解析:①的值约为,大于,此说法正确;②正六边形的内角和是,它的边长等于半径,此说法正确;③从一副扑克牌中随机抽取一张,它是黑桃的概率是,此说法错误;④∵,,∴,故乙的射击成绩比甲稳定,此说法正确.A 7.B 8.甲乙甲乙故选.解析:∵四边形是正方形,∴,∴,∵,∴,∴,∴,同理可求:,,∴,∴,故选.解析:由题意得,可设第一班车离入口处的距离(米)与时间(分)的解析式为:,把,代入,得,解得,∴第一班车离入口处的路程(米)与时间(分)的函数表达为,故选项不合题意;把代入,解得,(分),∴第一班车从入口处到达塔林所需时间分钟;故选项不合题意;设小聪坐上了第班车,则,解得,B 9.C 10.∴小聪坐上了第班车,故选项符合题意;等车的时间为分钟,坐班车所需时间为:(分),步行所需时间:(分),(分),∴比他在花鸟馆游玩结束后立即步行到大象馆提前了分钟.故选项不合题意.故选:.11.解析:万.故答案为.12.解析:.故答案为:.13.解析:连接,∵,∴,,∴,∵,∴,∵,∴,都是等边三角形,∴,∴四边形是菱形,∴,∴,∴,∵,∴,故答案为.解析:过点作轴的垂线,交的延长线于点,∵轴,∴,∵,两点在反比例函数的图象,且纵坐标分别为,,∴,,∴,,∵菱形的面积为,∴,即,∴,在中,,∴,∴.阴菱形阴14.故答案为:.解析:等边,.≌..∴.∴作为边外正三角形的外接圆,在以为圆心,为半径的圆上,,.∴.解析:如图,连接,.由题可得,,∴,∵四边形是正方形,,∴,,,∴,∴≌,∴,,∴,是等腰直角三角形,∴,故②正确;15.①②④16.(1)(2)当时,,∴,∴中,,即,故①正确;∵,,∴四边形是平行四边形,∵,,∴,∴四边形不可能是菱形,故③错误;∵点是边延长线上的动点(不与点重合),且,∴,∴,故④正确;由上可得正确结论的序号为①②④.故答案为:①②④.解析:解不等式①,得:,解不等式②,得:,则不等式组的解集为,∴不等式组的最小整数解为.原式,∵,∴,(1);.(2).17.①②(1)(2)(3)(4)(1)则原式.解析:由题意知,该班女生一周复习时间的中位数为(小时),故答案为:,.扇形统计图中,该班男生一周复习时间为小时所对应的百分比为,∴该班男生一周复习时间为小时所对应的圆心角的度数为,故答案为:.估计一周复习时间为小时的学生有(名);答:估计一周复习时间为小时的学生有名.画树状图得:开始∵共有种可能出现的结果,它们都是等可能的,恰好选中和的有种结果,∴恰好选中和的概率为,答:恰好选中和的概率为.解析:把点代入函数得:,∴.,∵,(1) ; (2)(3)名.(4).18.(1),.(2).19.(2)∴,∴点的坐标为,把,代入得:,解得:,∴.∵点在一次函数上,∴设点的坐标为,∵,∴解得:,∴点的坐标为.解析:如图,过点作地面的垂线,垂足为,过点作地面的平行线,交于点,交于点,在中,,,则,在中,,,则,∴,答:旋转头的固定点与地面的距离应为.旋转头的固定点与地面的距离应为.20.(1)1(2)证明见解析.21.(1)12(2)解析:以为圆心,为半径的圆的方程为,故答案为:.∵是⊙切线,∴,∵,,∴,又∵,,≌,∴,∴,又∵是半径,∴是⊙的切线.如图,连接,,∵点,∴,∵,,∴,∵.∴,∴,∴,∴点,∵,2存在,,.(1)(2)1(1)∴点是的中点,∵点,点,∴点,∴以为圆心,以为半径的⊙的方程为.解析:设该水果每次降价的百分率为,,解得,,(舍去),答:该水果每次降价的百分率是.由题意可得,,∵,∴当时,取得最大值,此时,由上可得,与之间的函数解析式是,第天时销售利润最大,最大利润是元.解析:如图,即为所求.(1).(2)第天时销售利润最大,最大利润是元.22.12(1)画图见解析.(2).(3).23.图2(2)(3)由作图可知,是等腰直角三角形,∴,故答案为:.如图中,过点作交的延长线于,图∵ ,∴ , ,∴ ,∵ ,∴≌ ,∴, ,∵ ,∴ ,∴ ,∴ ,∴ .如图中,连接,∵ , ,∴ ,将绕点逆时针旋转得到,连接,则 ,(1)(2)图∵,∴,∵, ,∴,∴,∵,∴,∵, ,∴,∴,∴,∴.解析:∵抛物线交轴于点,与轴交于点,∴,解得:,∴抛物线解析式为:.∵抛物线与轴交于,两点,∴点,∵点,点,(1).(2)或.(3),.24.∴,∴,如图,当点在点上方时,图∵,∴,∴,∴,∴;若点在点下方时,∵,∴,∴,∴,∴,综上所述:线段的长度为或.(3)如图,在上截取,连接,过点作,图∵点,点,∴,,∴,∵,,,∴≌,∴,,∴,∵,∴,∵,∴,∴,∴,如图,当点在的下方时,设与轴交于点,图∵,∴,∴,∴点,又∵点,∴直线解析式为:,联立方程组得:,解得:或,∴点坐标为:,当点在的上方时,同理可求直线解析式为:,联立方程组得:,解得:或,∴点坐标为:,综上所述:点的坐标为,.。
内蒙古鄂尔多斯市2020年部编人教版中考数学试题及答案(word版)
.绝密★启用前2020年鄂尔多斯市初中毕业升学考试数 学考生须知:1.作答前,请将自己的姓名、准考证号填写在答题纸上相应位置,并核对条形码上的姓名、准考证号等有关信息。
2.答题内容一律填涂或书写在答题纸上规定的位置,在试题卷上作答无效。
3.本试题共8页,三大题,26小题,满分120分。
考试时间共计120分钟。
一、单项选择(本大题共10题,每题3分,共30分.)1.若“神舟十号”发射点火前15秒记为﹣15秒,那么发射点火后10秒应记为 A .-5秒B .5秒C .-10秒D .+10秒2.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需 按墙上的空洞造型(如图所示)摆出相同姿势,才能穿墙而 过,否则会被推入水池.若墙上的三个空洞恰是某个几何体的 三视图,则该几何体为A B C D3.2020年,鄂尔多斯市计划新建、改扩建中小学15所,规划投入资金计10.2亿元. 数据“10.2亿”用科学记数法表示为A .1.02×107B .1.02×108C .1.02×109D .10.2×108 4.下列汽车标志中,既是轴对称图形,又是中心对称图形的是A B C D5.不等式组⎩⎨⎧≤--+<-3)1(21112x x x 的解集在数轴上表示,正确的是A B C D6.一次数学模考后,李老师统计了20名学生的成绩. 记录如下:有6人得了85分,有5人得了80分,有4人得了65分,有5人得了90分.则这组数据的中位数和 平均数分别是 A .82.5,82.5B .85,81C .82.5,81D .85,82.57.下列说法中,正确的有 (1)25的平方根是5±. (2)五边形的内角和是540°. (3)抛物线432+-=x x y与x 轴无交点.(4)等腰三角形两边长为6cm 和4cm ,则它的周长是16cm. (5)若⊙O 1与 ⊙O 2的半径分别是方程0342=+-x x 的两根,且O 1O 2=3,则两圆相交. A .2个B .3个C .4个D .5个8.如图,A 和B 两地在一条河的两岸,现要在河上造一座桥MN , 使从A 到B 的路径AMNB 最短的是(假定河的两岸是平行直 线,桥要与河岸垂直)A B C D9.如图,小明随机地在对角线为6cm 和8cm 的菱形区域内投针,则针扎到其内切圆 区域的概率是 A .257πB .253πC .256πD .254π10.某校校园内有一个大正方形花坛,它由四个边长均为3米的小正方形组成,如图(1),且每个小正方形的种植方案相同.其中的一个小正方形ABCD 如图(2),DG =1米,AE=AF=x 米, 在五边形EFBCG 区域上种植花卉,则大正方形花坛种植花卉的面积y 与x 的函数图象大致是A B C D二、填空(本大题共8题,每题3分,共24分.)11.若二次根式5-a 有意义,则a 的取值范围为 . 12.方程123=-+x x x 的解为 . 13.小亮将一个直角三角板和一把直尺(如图所示)叠放在一起,如果∠α=43°,那么∠β是 度.14.如图,同学A 有3张卡片,同学B 有2张卡片,他们分别从自己的卡片中随 机抽取一张,则抽取的两张卡片上的 数字相同的概率是 .15.在平面直角坐标系中,点A 1(1,0),A 2(2,3),A 3(3,2),A 4(4,5)……用你发现的规律,确定点A 2020的坐标为 . 16.如图,将一朵小花放置在平面直角坐标系第一象限内,先将它向下平移4个单位后,再将它绕原点O 旋转180°, 则小花顶点A 的对应点A′ 的坐标为 .17.对于实数a 、b ,定义运算⊗如下:=⊗b a ⎪⎩⎪⎨⎧≠≤≠>-)0,()0,(a b a a a b a a b b ,例如,1612424==⊗-. 计算 [][]=⊗-⨯⊗2)3(23 . 18.如图,直线y=- x+4与两坐标轴交A 、B 两点,点P 为线段OA 上的动点,连接BP ,过点A 作AM 垂直于直线BP ,垂足为M ,当点P 从点O 运动到点A 时,则点M 运动路径的长为 .三、解答(本大题共8题,共66分. 解答时写出必要的文字说明,演算步骤或推证过程.) 19.(本题满分8分)(1)计算:-22+0)3(4π-+- | -3 |(2)先化简(x x x x -+-2244)÷)111(--x ,然后从33<<-x 范围内选取一个合适的整数作为x 的值代入求值.20.(本题满分7分)某校为了解学生的课外阅读情况,就“我最喜爱的课外读物”对文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),并根据调查结果绘制了两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次被调查的学生共有多少名?(2)请将条形统计图补充完整;并在扇形统计图中,计算出“其他类”所对应的圆心角的度数;(3)若该校有2400名学生,请你估计该校喜爱“科普类”的学生有多少名.21.(本题满分6分)在数学课外实践活动中,要测量教学楼的高度AM . 下面是两位同学的对话:请你根据两位同学的对话,结合图形计算教学楼的高度AM . (参考数据:sin20°5017≈,cos20°5047≈,tan20°259≈)22.(本题满分8分)如图,在梯形ABCD 中,AD ∥BC ,AB=CD ,分别以AB,CD 为边向外侧作等边三角形ABE 和等边三角形CDF ,连接AF ,DE .(1)求证:DE AF =;(2)若45=∠BAD °,22=AB ,BC=2, 求AD 的长. 23.(本题满分8分) 如图,反比例函数xm y 5-=(m 为常数)的图象经过点A (-2,4),过点A 作 直线AC 与反比例函数的图象交于点B ,与x 轴交于点C ,且AB =3BC. (1)求m 的值和点B 的坐标;(2)根据图象直接写出x 在什么范围内取值时,反比例函数的值大于一次函数的值.24.(本题满分8分)如图,△ABC 中,∠ABC=∠ACB ,以AC 为直径的⊙O 分别交AB 、BC 于点M 、N ,点P 在AB 的延长线上,且∠CAB=2∠BCP . (1)求证:PC 是⊙O 的切线;(2)若∠P AC =60°,直径AC=43,求图中阴影部分的面积.25.(本题满分9分)某校为表彰在美术展览活动中获奖的同学,老师决定购买一些水笔和颜料盒做为 奖品.请你根据图中所给的信息,解答下列问题:(1)每个颜料盒,每支水笔各多少元? (2)恰逢商店举行优惠促销活动,具体 办法如下:颜料盒按七折优惠,水笔10支以上超出部分按八折优惠,若买m 个颜料盒需要1y 元,买m 支水笔需要2y 元,求1y ,2y 关于m 的函数关系式;(3)若学校需购买同一种奖品,并且该奖品的数量超过10件,请你帮助分析,如何购买奖品比较合算.26.(本题满分12分)如图,抛物线的顶点为C (-1,-1),且经过点A 、点B 和坐标原点O ,点B 的 横坐标为-3.(1)求抛物线的解析式;(2)若点D 为抛物线上的一点,点E 为对称轴上的一点,且以点A 、O 、D 、E 为 顶点的四边形为平行四边形,请直接写出点D 的坐标;(3)若点P 是抛物线第一象限上的一个动点,过点P 作x PM 轴,垂足为M ,是否存在点P ,使得以P 、M 、A 为顶点的三角形与△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.2020年鄂尔多斯市初中毕业升学考试数学参考答案及评分标准阅卷评分说明:1.正式阅卷前先进行试评,在试评中认真阅读参考答案,统一评分标准,不得随意拔高或降低评分标准。
内蒙古鄂尔多斯2021年中考数学试题真题(Word版+答案+解析)
内蒙古鄂尔多斯2021年中考数学试卷一、单选题1.(2021·鄂尔多斯)在实数0,π,|−2|,−1中,最小的数是()A. |−2|B. 0C. -1D. π2.(2019·丽水模拟)如图所示的几何体是由五个小正方体组合而成的,它的左视图是( )A. B. C. D.3.(2021·鄂尔多斯)世卫组织宣布冠状病毒最大直径约为0.00000012m,“0.00000012”用科学记数法可表示为()A. 1.2×10−7B. 0.12×10−6C. 12×10−8D. 1.2×10−64.(2021·鄂尔多斯)下列运算正确的是()A. a2+a2=2a4B. a6÷a2=a3C. (a+3)(a−3)=a2−6a+9D. (−3a3)2=9a65.(2021·鄂尔多斯)一块含30°角的直角三角板和直尺如图放置,若∠1=146°33′,则∠2的度数为()A. 64°27′B. 63°27′C. 64°33′D. 63°33′6.(2021·鄂尔多斯)小明收集了鄂尔多斯市某酒店2021年3月1日~3月6日每天的用水量(单位:吨),整理并绘制成如图所示的折线统计图,下列结论正确的是()A. 平均数是234B. 众数是10C. 中位数是8.5D. 方差是 2537.(2021·鄂尔多斯)已知: ▱AOCD 的顶点 O(0,0) ,点C 在x 轴的正半轴上,按以下步骤作图: ①以点O 为圆心,适当长为半径画弧,分别交 OA 于点M , 交 OC 于点N . ②分别以点M , N 为圆心,大于 12MN 的长为半径画弧,两弧在 ∠AOC 内相交于点E . ③画射线 OE ,交 AD 于点 F(2,3) ,则点A 的坐标为( )A. (−54,3)B. (3−√13,3)C. (−45,3) D. (2−√13,3)8.(2021·鄂尔多斯)2020年疫情防控期间,鄂尔多斯市某电信公司为了满足全体员工的需要,花1万元购买了一批口罩,随着2021年疫情的缓解,以及各种抗疫物资充足的供应,每包口罩下降10元,电信公司又花6000元购买了一批口罩,购买的数量比2020年购买的数量还多100包,设2020年每包口罩为x 元,可列方程为( ) A. 1x +100=6000x−10 B. 10000x−100=6000x+10C.10000x =6000x−10−100 D.10000x−100=6000x−109.(2021·鄂尔多斯)如图,在 Rt △ABC 中, ∠ACB =90°,AC =8,BC =6 ,将边 BC 沿 CN 折叠,使点B 落在 AB 上的点 B ′ 处,再将边 AC 沿 CM 折叠,使点A 落在 CB ′ 的延长线上的点 A ′ 处,两条折痕与斜边 AB 分别交于点N 、M , 则线段 A ′M 的长为( )A. 95B. 85C. 75D. 6510.(2021·鄂尔多斯)如图①,在矩形 ABCD 中,H 为 CD 边上的一点,点M 从点A 出发沿折线 AH −HC −CB 运动到点B 停止,点N 从点A 出发沿 AB 运动到点B 停止,它们的运动速度都是 1cm/s ,若点M 、N 同时开始运动,设运动时间为 t(s ) , △AMN 的面积为 S(cm 2) ,已知S 与t 之间函数图象如图②所示,则下列结论正确的是( )①当 0<t ≤6 时, △AMN 是等边三角形.②在运动过程中,使得 △ADM 为等腰三角形的点M 一共有3个.③当 0<t ≤6 时, S =√34t 2 .④当 t =9+√3 时, △ADH ∽△ABM .⑤当 9<t <9+3√3 时, S =−3t +9+3√3 .A. ①③④B. ①③⑤C. ①②④D. ③④⑤二、填空题11.(2020八上·浙江月考)函数 y =√4−2x 的自变量x 的取值范围是________. 12.(2021·鄂尔多斯)计算: √−83+(2021−π)0+(−13)−1= ________.13.(2021·鄂尔多斯)如图,小梅把一顶底面半径为 10cm 的圆锥形小丑纸帽沿一条母线剪开并展平,得到一个圆心角为 120° 的扇形纸片,那么扇形纸片的半径为________ cm .14.(2021·鄂尔多斯)将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有________个“〇”.15.(2021·鄂尔多斯)下列说法错误的是________ (只填序号) ① 7−√17 的整数部分为2,小数部分为 √17−4 .②外角为 60° 且边长为2的正多边形的内切圆的半径为 √3 .③把直线 y =2x −3 向左平移1个单位后得到的直线解析式为 y =2x −2 . ④新定义运算: m ∗n =mn 2−2n −1 ,则方程 −1∗x =0 有两个不相等的实数根.16.(2021·鄂尔多斯)如图,已知正方形 ABCD 的边长为6,点F 是正方形内一点,连接 CF,DF ,且∠ADF =∠DCF ,点E 是 AD 边上一动点,连接 EB,EF ,则 EB +EF 长度的最小值为________.三、解答题17.(2021·鄂尔多斯)(1)解不等式组 {4x −3(x −2)≥4x−15>x+12−1,并把解集在数轴上表示出来.(2)先化简:x 2−4x+42x−x 2÷(2x −4+x 2x) ,再从 −2 ,0,1,2中选取一个合适的x 的值代入求值.18.(2021·鄂尔多斯)某中学对九年级学生开展了“我最喜欢的鄂尔多斯景区”的抽样调查(每人只能选一项):A -动物园;B -七星湖;C -鄂尔多斯大草原;D -康镇;E -蒙古源流,根据收集的数据绘制了如图所示的两幅不完整的统计图,其中B 对应的圆心角为 90° ,请根据图中信息解答下列问题.(1)求抽取的九年级学生共有多少人?并补全条形统计图;(2)扇形统计图中m=________,表示D的扇形的圆心角是________度;(3)九年级准备在最喜欢A景区的5名学生中随机选择2名进行实地考察,这5名学生中有2名男生和3名女生,请用树状图或列表法求选出的2名学生都是女生的概率.19.(2021·鄂尔多斯)如图,矩形ABCD的两边AB,BC的长分别为3,8,C,D在y轴上,E是AD的中点,反比例函数y=kx(k≠0)的图象经过点E,与BC交于点F,且CF−BE=1.(1)求反比例函数的解析式;(2)在y轴上找一点P,使得S△CEP=23S矩形ABCD,求此时点P的坐标.20.(2021·鄂尔多斯)图①是一种手机平板支架、由托板、支撑板和底座构成,手机放置在托板上,图②是其侧面结构示意图、托板长AB=115mm,支撑板长CD=70mm,板AB固定在支撑板顶点C 处,且CB=35mm,托板AB可绕点C转动,支撑板CD可绕点D转动,∠CDE=60°.(1)若∠DCB=70°时,求点A到直线DE的距离(计算结果精确到个位);(2)为了观看舒适,把(1)中∠DCB=70°调整为90°,再将CD绕点D逆时针旋转,使点B落在直线DE上即可、求CD旋转的角度.(参考数:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2,sin26.6°≈0.4,cos26.6°≈0.9,tan26.6°≈0.5,√3≈1.7)21.(2021·鄂尔多斯)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点D,BC 于点E,直线EF⊥AC于点F,交AB的延长线于点H.(1)求证:HF是⊙O的切线;时,求tanH的值.(2)当EB=6,cos∠ABE=1322.(2021·鄂尔多斯)鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x(元)和游客居住房间数y(间)符合一次函数关系,如图是y关于x的函数图象.(1)求y与x之间的函数解析式,并写出自变量x的取值范围;(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?23.(2021·鄂尔多斯)如图,抛物线y=x2+2x−8与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求A,B,C三点的坐标;(2)连接AC,直线x=m(−4<m<0)与该抛物线交于点E,与AC交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)点M在y轴上,点N在直线AC上,点P为抛物线对称轴上一点,是否存在点M,使得以C、M、N、P为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.24.(2021·鄂尔多斯)旋转是一种重要的图形变换,当图形中有一组邻边相等时往往可以通过旋转解决问题.(1)尝试解决:如图①,在等腰Rt△ABC中,∠BAC=90°,AB=AC,点M是BC上的一点,BM=1cm,CM=2cm,将△ABM绕点A旋转后得到△ACN,连接MN,则AM=________cm.(2)类比探究:如图②,在“筝形”四边形ABCD中,AB=AD=a,CB=CD,AB⊥BC于点B,AD⊥CD于点D,点P、Q分别是AB、AD上的点,且∠PCB+∠QCD=∠PCQ,求△APQ的周长.(结果用a表示)(3)拓展应用:如图③,已知四边形ABCD,AD=CD,∠ADC=60°,∠ABC=75°,AB=2√2,BC=2,求四边形ABCD的面积.答案解析部分一、单选题1.【答案】C【考点】实数大小的比较【解析】【解答】解:∵|-2|=2,∴-1<0<|-2|<π∴最小的数为:-1故答案为:C【分析】先求出-1<0<|-2|<π,再求出最小的数即可。
2021年鄂尔多斯市中考数学试题及答案(含评分标准)
2021年鄂尔多斯市中考数学试题及答案(含评分标准)绝密★启用前 2021年鄂尔多斯市初中毕业升学考试数学注意事项:1.作答前,请将自己的姓名、准考证号、考场号、座位号填写在答题纸上相应位置,并核对条形码上的姓名、准考证号等有关信息。
2.答题内容一律填涂或书写在答题纸上规定的位置,在试题卷上作答无效。
3.本试题共8页,3大题,24小题,满分120分。
考试时间共计120分钟。
一、单项选择题(本大题共10题,每题3分,共30分) 1.-12的相反数是A.-12B.12C.2 D.-22.如图所示几何体的左视图是 A.B.C.D.第2题图3.下列计算正确的是A.a3?a3?a6B.2x?3y?5xyC.a3?a?a4D.(2a2)3?6a54.如图,直线l1∥l2,∠1=50°,∠2=23°20′,则∠3的度数为 A.26°40′B.27°20′数学试题第1页(共8页)第4题图C.27°40′ D.73°20′5. 七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起.”家庭数/个 1 2 4 2 1 下节水量/m3 0.2 0.3 0.4 0.5 0.6 表是从七年级学生中选出10名学生统计出的各自家庭一个月的节水情况:那么这组数据的众数和平均数分别是 A.0.4和0.3 B.0.4和0.34 C.0.4和0.4D.0.4和0.426.如图,P是矩形ABCD的对角线AC的中点,E是 AD的中点,若AB=6,AD=8,则四边形ABPE的周长为 A.14B.16第6题图C.17D.187. 小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了 4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程A.24x?2?20x?1 B.20x?24x?2?1 C.24x?20x?2?1D.20x?2?24x?1 8.如图,A、B是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是数学试题第2页(共8页)第8题图A.625B.15 C.4725D.259.下列说法中,正确的有①等腰三角形两边长为2和5,则它的周长是9或12. ②无理数 -3在-2和1之间.③六边形的内角和是外角和的2倍. ④若a>b,则a-b>0.它的逆命题是假命题.⑤北偏东30°与南偏东50°的两条射线组成的角为80°. A.1个 B.2个C.3个D.4个10.如图,在矩形ABCD中,AD=2,AB=1,P是AD的中点,等腰直角三角板45°角的顶点与点P重合,当此三角板绕点P旋转时,它的直角边和斜边所在的直线与 BC分别相交于E、F两点.设线段BF=x ,CE=y,第10题图则下列图象中,能表示y与x的函数关系的大致图象是AB CD二、填空题(本大题共6题,每题3分,共18分)数学试题第3页(共8页)11.截止2021年12月30日,鄂尔多斯市“十个全覆盖”工程共完成投资19.24亿元.数据“19.24亿”用科学记数法表示为 .12.不等式组??3?3?x?x1?2(x?3)?2x?1??1的所有整数解的和是 .??2313.如图,某实践小组要在广场一角的扇形区域内种植红、黄两种花,半径OA=4米,C是OA的中点,点D在上,CD∥OB,则图中种植黄花(即阴影部分)的面积是(结果保留?).第13题图14.小奇设计了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数a2?3b?5,例如把(1,-2)放入其中,就会得到12?3?(?2)?5?2.现将实数对(m,3m)放入其中,得到实数5,则m= .15.如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若甲的速度是乙的速度的3倍,则它们第2021次相遇在边上. 第15题图16.如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=12∠A,BG⊥MG,垂足为G,MG与BC相交于点H,若MH=8cm,则BG= cm. 第16题图三、解答题(本大题共8题,共72分,解答时写出必要的文字说明,演算步骤或推证过程)数学试题第4页(共8页)17.(本题满分8分)(1)计算:(13)?2?3?8??5?(3?2)0(2)先化简(1?2a2a?1)??2a?1a2?a,再从2a?1有意义的范围内选取一个整数作为a的值代入求值. 18.(本题满分10分)某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:第18题图(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).数学试题第5页(共8页)19.(本题满分8分)为响应国家的“节能减排”政策,某厂家开发了一种新型的电动车,如图,它的大灯A射出的光线AB、AC与地面MN的夹角分别为22°和31°,AT⊥MN,垂足为T,大灯照亮地面的宽度BC的长为56m.(1)求BT的长(不考虑其他因素).(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到电动车完全停下所行驶的距离叫做最小安全距离.某人以20km/h的速度驾驶该车,从做出刹车动作到电动车停止的刹车距离是149m,请判断该车大灯的设计是否能满足最小安全距离的要求(大灯与前轮前端间水平距离忽略不计),并说明理由. (参考数据:sin22°≈ 3,tan22°≈ 2,sin31°≈1325,tan31°≈3855)第19题图20.(本题满分8分)如图,在同一直角坐标系中,一次函数y?3x?2的图象和反比例函数y?kx的图象的一个交点为A(3,m). (1)求m的值及反比例函数的解析式.(2)若点P在x轴上,且△AOP为等腰三角形,数学试题第6页(共8页)请直接写出点P的坐标.21. (本题满分9分)如图,在□ABCD中,E、F分别为AB、BC的中点,连接EC、AF,AF与EC交于点M,AF的延长线与DC的延长线交于点N. (1)求证:AB=CN(2)若AB=2n,BE=2MF,试用含n的式子表示线段AN的长. 第21题图22. (本题满分8分)如图,⊙O是△ABC的外接圆,圆心O在AB上,且∠B=2∠A,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,EF=FC. (1)求证:CF是⊙O的切线.(2)设⊙O的半径为2,且AC=CE,求AM的长.数学试题第7页(共8页)第22题图23.(本题满分9分)某足球协会举办了一次足球联赛,其记分规定及奖励方案如下表:胜一场平一场负一场积分 3 1 0 奖金(元/人) 1300 500 0 当比赛进行到第11轮结束(每队均须比赛11场)时,A队共积17分,每赛一场,每名参赛队员均得出场费300元.设A队其中一名参赛队员所得的奖金与出场费的和为w(元).(1)试说明w是否能等于11400元.(2)通过计算,判断A队胜、平、负各几场,并说明w可能的最大值.24.(本题满分12分)如图,抛物线 y?12x2?32x?2与x轴交于A、B两点(点A在点B的左侧),与 y轴交于点C,M是直线BC下方的抛物线上一动点.(1)求A、B、C三点的坐标.(2)连接MO、MC,并把△MOC沿CO翻折,得到四边形MO M′C,那么是否存在点M,使四边形MO M′C为菱形?若存在,求出此时点M的坐标;若不存在,说明理由.(3)当点M运动到什么位置时,四边形ABMC的数学试题第8页(共8页)点的坐标和四边形ABMC 数学试题第9页(共8页)数学试题第10页(共8页)面积最大,并求出此时M的最大面积.感谢您的阅读,祝您生活愉快。
2023鄂尔多斯市中考数学试题
中考数学试题一、单项选择题(共12分)1.一个由相同正方体堆积而成的几何体如图所示,从正面看,这个几何体的形状是()。
A.B.C.D.2.对于反比例函数y=kx(k≠0),下列所给的四个结论中,正确的是()A.过图象上任一点P作x轴、y轴的垂线,垂足分别A,B,则矩形O APB 的面积为kB.若点(2,4)在其图象上,则(−2,4)也在其图象上C.反比例函数的图象关于直线y=x和y=−x成轴对称D.当k>0时,y随x的增大而减小3.在正方形网格中,△ABC的位置如图所示,则tanB的值为()A.1B.√22C.√3D.√334.已知m3=n4,那么下列式子中一定成立的是()A.4m=3n B.3m=4n C.m=4n D.mn=12二、填空题(共24分)5.如图,一架长为6米的梯子AB斜靠在一竖直的墙AO上,这时测得∠ABO= 70∘,如果梯子的底端B外移到D,则梯子顶端A下移到C,这时又测得∠CDO=50∘,那么AC的长度约为()米。
6.两圆的半径分别为3和5,当这两圆相交时,圆心距d的取值范围是。
7.将抛物线y=﹣x2向右平移一个单位,所得函数解析式为。
三、解答题(共20分)8.如图,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C,在x轴的正半轴上(C在B的右侧),BC=2,AB=2根号3,△ADC与△ABC关于AC所在的直线对称。
(1)当OB=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OB的长;9.如图,D,E分别是△ABC的边AB,AC上的点,DE∥BC,AB=7,AD=5,DE=10,求BC的长.=3解相同。
10.已知关于x的方程x2+kx﹣2=0的一个解与方程x+1x−1(1)求k的值;(2)求方程x2+kx﹣2=0的另一个解.(x<0)图象上的点,过点11.如图,在平面直角坐标系中,点A是函数y=kxA作y轴的垂线交y轴于点B,点C在x轴上,若△ABC的面积为1,则k的值为()。
内蒙古自治区鄂尔多斯市准格尔旗达标名校2024届中考联考数学试卷含解析
内蒙古自治区鄂尔多斯市准格尔旗达标名校2024届中考联考数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.如图,一段抛物线:y=﹣x (x ﹣5)(0≤x≤5),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2, 交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3, 交x 轴于点A 3;…如此进行下去,得到一“波浪线”,若点P (2018,m )在此“波浪线”上,则m 的值为( )A .4B .﹣4C .﹣6D .62.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒3.已知二次函数y=(x+m )2–n 的图象如图所示,则一次函数y=mx+n 与反比例函数y=mn x的图象可能是( )A .B .C .D .4.下面说法正确的个数有( )①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=∠C,那么△ABC是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.A.3个B.4个C.5个D.6个5.安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是()A.3804.2×103B.380.42×104C.3.8042×106D.3.8042×1056.不等式组21xx≥-⎧⎨>⎩的解集在数轴上表示为()A.B.C.D.7.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E (A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米8.某青年排球队12名队员年龄情况如下:年龄18 19 20 21 22人数 1 4 3 2 2则这12名队员年龄的众数、中位数分别是()A.20,19 B.19,19 C.19,20.5 D.19,209.小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是()百合花玫瑰花小华6支5支小红 8支 3支 A .2支百合花比2支玫瑰花多8元B .2支百合花比2支玫瑰花少8元C .14支百合花比8支玫瑰花多8元D .14支百合花比8支玫瑰花少8元10.下列计算正确的是( )A .x 2+x 3=x 5B .x 2•x 3=x 5C .(﹣x 2)3=x 8D .x 6÷x 2=x 3 二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:4ax 2-ay 2=________________.12.计算:12+3=_______.13.如图,在ABC ∆中,AB AC =,点D 、E 分别在边BC 、AB 上,且ADE B ∠=∠,如果:2:5DE AD =,3BD =,那么AC =________.14.分解因式:= .15.1017年11月7日,山西省人民政府批准发布的《山西省第一次全国地理国情普查公报》显示,山西省国土面积约为156700km 1,该数据用科学记数法表示为__________km 1.16.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是___.三、解答题(共8题,共72分)17.(8分)某公司销售A ,B 两种品牌的教学设备,这两种教学设备的进价和售价如表所示A B 进价(万元/套) 1.5 1.2售价(万元/套) 1.8 1.4该公司计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润12万元.(1)该公司计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该公司决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B 种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过68万元,问A种设备购进数量至多减少多少套?18.(8分)如图,在平面直角坐标系中,等边三角形ABC的顶点B与原点O重合,点C在x轴上,点C坐标为(6,0),等边三角形ABC的三边上有三个动点D、E、F(不考虑与A、B、C重合),点D从A向B运动,点E从B向C运动,点F从C向A运动,三点同时运动,到终点结束,且速度均为1cm/s,设运动的时间为ts,解答下列问题:(1)求证:如图①,不论t如何变化,△DEF始终为等边三角形.(2)如图②过点E作EQ∥AB,交AC于点Q,设△AEQ的面积为S,求S与t的函数关系式及t为何值时△AEQ 的面积最大?求出这个最大值.(3)在(2)的条件下,当△AEQ的面积最大时,平面内是否存在一点P,使A、D、Q、P构成的四边形是菱形,若存在请直接写出P坐标,若不存在请说明理由?19.(8分)在眉山市樱花节期间,岷江二桥一端的空地上有一块矩形的标语牌ABCD(如图).已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30°,在地面的点F处,测得标语牌点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1m,参考数据:2≈1.41,3≈1.73)20.(8分)我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=12(m2﹣n2),b=mn,c=12(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.21.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.求∠APB的度数;已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?.22.(10分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.23.(12分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD 于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE= ;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.24.已知:如图,在平面直角坐标系xOy中,直线AB分别与x轴、y轴交于点B,A,与反比例函数的图象分别交于点C,D,CE⊥x轴于点E,tan∠ABO=12,OB=4,OE=1.(1)求该反比例函数的解析式;(1)求三角形CDE的面积.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由2017÷5=403…2,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.详解:当y=0时,﹣x(x﹣5)=0,解得x1=0,x2=5,则A1(5,0),∴OA1=5,∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…;如此进行下去,得到一“波浪线”,∴A1A2=A2A3=…=OA1=5,∴抛物线C404的解析式为y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),当x=2018时,y=(2018﹣2015)(2018﹣2020)=﹣1,即m=﹣1.故选C.点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.2、B【解题分析】分析:根据∠AOC 和∠BOC 的度数得出∠AOB 的度数,从而得出答案.详解:∵∠AOC=70°, ∠BOC=30°, ∴∠AOB=70°-30°=40°,∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故选B .点睛:本题主要考查的是角度的计算问题,属于基础题型.理解各角之间的关系是解题的关键.3、C【解题分析】试题解析:观察二次函数图象可知: 00m n ,,∴一次函数y =mx +n 的图象经过第一、二、四象限,反比例函数mn y x的图象在第二、四象限. 故选D.4、C【解题分析】试题分析:①∵三角形三个内角的比是1:2:3,∴设三角形的三个内角分别为x ,2x ,3x ,∴x+2x+3x=180°,解得x=30°,∴3x=3×30°=90°,∴此三角形是直角三角形,故本小题正确;②∵三角形的一个外角与它相邻的一个内角的和是180°,∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;③∵直角三角形的三条高的交点恰好是三角形的一个顶点,∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;④∵∠A=∠B=∠C ,∴设∠A=∠B=x ,则∠C=2x ,∴x+x+2x=180°,解得x=45°,∴2x=2×45°=90°,∴此三角形是直角三角形,故本小题正确;⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,∴三角形一个内角也等于另外两个内角的和,∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.故选D.考点:1.三角形内角和定理;2.三角形的外角性质.5、C【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【题目详解】∵3804.2千=3804200,∴3804200=3.8042×106;故选:C.【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、A【解题分析】根据不等式组的解集在数轴上表示的方法即可解答.【题目详解】∵x≥﹣2,故以﹣2为实心端点向右画,x<1,故以1为空心端点向左画.故选A.【题目点拨】本题考查了不等式组解集的在数轴上的表示方法,不等式的解集在数轴上表示方法为:>、≥向右画,<、≤向左画,“≤”、“≥”要用实心圆点表示;“<”、“>”要用空心圆点表示.7、A【解题分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AM EM,构建方程即可解决问题.【题目详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A.【题目点拨】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.8、D【解题分析】先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.【题目详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为20202+=1.故选D.【题目点拨】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.9、A【解题分析】设每支百合花x元,每支玫瑰花y元,根据总价=单价×购买数量结合小华一共花的钱比小红少8元,即可得出关于x、y的二元一次方程,整理后即可得出结论.【题目详解】设每支百合花x 元,每支玫瑰花y 元,根据题意得:8x +3y ﹣(6x +5y )=8,整理得:2x ﹣2y =8,∴2支百合花比2支玫瑰花多8元.故选:A .【题目点拨】考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.10、B【解题分析】分析:直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.详解:A 、不是同类项,无法计算,故此选项错误;B 、235x x x ⋅=, 正确;C 、()326x x -=-,故此选项错误; D 、624x x x ÷=, 故此选项错误;故选:B .点睛:此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、a (2x+y )(2x-y )【解题分析】首先提取公因式a ,再利用平方差进行分解即可.【题目详解】原式=a (4x 2-y 2)=a (2x+y )(2x-y ),故答案为a (2x+y )(2x-y ).【题目点拨】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12、【解题分析】化成.【题目详解】原式=23+3=33. 故答案为33【题目点拨】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.13、152【解题分析】根据ADE B ∠=∠,EAD DAB ∠=∠,得出AED ABD ∆∆∽,利用相似三角形的性质解答即可.【题目详解】∵ADE B ∠=∠,EAD DAB ∠=∠,∴AED ABD ∆∆∽,∴DE BD AD AB =,即325AB =, ∴152AB =, ∵AB AC =,∴152AC =, 故答案为:152 【题目点拨】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.14、【解题分析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。
2024届内蒙古鄂尔多斯附属校中考联考数学试卷含解析
2024届内蒙古鄂尔多斯附属校中考联考数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.2.如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.3.如图是一个几何体的主视图和俯视图,则这个几何体是()A.三棱柱B.正方体C.三棱锥D.长方体4.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.15.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A.0.76×104B.7.6×103C.7.6×104D.76×1026.据《关于“十三五”期间全面深入推进教育信息化工作的指导意见》显示,全国6000万名师生已通过“网络学习空间”探索网络条件下的新型教学、学习与教研模式,教育公共服务平台基本覆盖全国学生、教职工等信息基础数据库,实施全国中小学教师信息技术应用能力提升工程.则数字6000万用科学记数法表示为()A.6×105B.6×106C.6×107D.6×1087.已知关于x的一元二次方程mx2+2x-1=0有两个不相等的实数根,则m的取值范围是().A.m>-1且m≠0B.m<1且m≠0C.m<-1 D.m>18.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于( )A.2﹣2B.1 C.2D.2﹣l9.如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为()A.(-a,-b)B.(-a,-b-1)C.(-a,-b+1)D.(-a,-b-2)10.(3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A.10B41C.2D51二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在平面直角坐标系中,已知点A(﹣4,0)、B(0,3),对△AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是_____,第(2018)个三角形的直角顶点的坐标是______.12.请写出一个一次函数的解析式,满足过点(1,0),且y 随x 的增大而减小_____.13.计算1x x +﹣11x +的结果为_____. 14.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,BC=5,点A ,B 的坐标分别为(﹣1,0),(﹣4,0),将△ABC 沿x 轴向左平移,当点C 落在直线y=﹣2x ﹣6上时,则点C 沿x 轴向左平移了_____个单位长度.15.如图,在△ABC 中,CA=CB ,∠ACB=90°,AB=2,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为__________.16.如图,二次函数y=ax 2+bx +c (a ≠0)的图象与x 轴相交于点A 、B ,若其对称轴为直线x =2,则OB –OA 的值为_______.三、解答题(共8题,共72分)17.(8分)画出二次函数y =(x ﹣1)2的图象.18.(8分)计算:31|+(﹣1)2018﹣tan60°19.(8分)如图,在平面直角坐标系中,抛物线y=-x 2+bx+c 与x 轴交于点A (-1,0),点B (3,0),与y 轴交于点C ,线段BC 与抛物线的对称轴交于点E 、P 为线段BC 上的一点(不与点B 、C 重合),过点P 作PF ∥y 轴交抛物线于点F ,连结DF .设点P 的横坐标为m .(1)求此抛物线所对应的函数表达式.(2)求PF 的长度,用含m 的代数式表示.(3)当四边形PEDF 为平行四边形时,求m 的值.20.(8分)如图,在平面直角坐标系中,一次函数1(0)y ax b a =+≠的图象与y 轴相交于点A ,与反比例函数2(0)k y k x=≠的图象相交于点(3,2)B ,(1,)C n -.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出12y y >时,x 的取值范围;(3)在y 轴上是否存在点P ,使PAB △为等腰三角形,如果存在,请求点P 的坐标,若不存在,请说明理由.21.(8分)解不等式组22(4)113x x x x -≤+⎧⎪-⎨+⎪⎩<,并写出该不等式组的最大整数解. 22.(10分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y (元/双)与一次性购买的数量x (双)之间满足的函数关系如图所示.当10≤x <60时,求y 关于x 的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?23.(12分)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.24.计算532224mmm m-⎛⎫+-÷⎪--⎝⎭.参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解题分析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.2、A【解题分析】试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形.故选A.考点:轴对称图形3、A【解题分析】【分析】根据三视图的知识使用排除法即可求得答案.【题目详解】如图,由主视图为三角形,排除了B、D,由俯视图为长方形,可排除C,故选A.【题目点拨】本题考查了由三视图判断几何体的知识,做此类题时可利用排除法解答.4、A【解题分析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.详解:根据题意,得:67955x++++=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选A.点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.5、B【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】解:7600=7.6×103,故选B.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的值以及n 的值.6、C【解题分析】将一个数写成10n a ⨯的形式,其中110a ≤<,n 是正数,这种记数的方法叫做科学记数法,根据定义解答即可.【题目详解】解:6000万=6×1. 故选:C .【题目点拨】此题考查科学记数法,当所表示的数的绝对值大于1时,n 为正整数,其值等于原数中整数部分的数位减去1,当要表示的数的绝对值小于1时,n 为负整数,其值等于原数中第一个非零数字前面所有零的个数的相反数,正确掌握科学记数法中n 的值的确定是解题的关键.7、A【解题分析】∵一元二次方程mx 2+2x -1=0有两个不相等的实数根,∴m ≠0,且22-4×m ×(﹣1)>0,解得:m >﹣1且m ≠0.故选A.【题目点拨】本题考查一元二次方程ax 2+bx +c =0(a ≠0)根的判别式:(1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根;(2)当△=b 2﹣4ac =0时,方程有有两个相等的实数根;(3)当△=b 2﹣4ac <0时,方程没有实数根.8、D【解题分析】∵△ABC 绕点A 顺时针旋转45°得到△A′B′C′,∠BAC=90°,,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,,∴AD ⊥BC ,B′C′⊥AB ,∴AD=12BC=1,AC′=1,∴DC′=AC′,∴图中阴影部分的面积等于:S △AFC′-S △DEC′=12×1×1-12×(2 -1)2=2-1, 故选D.【题目点拨】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD ,AF ,DC′的长是解题关键. 9、D【解题分析】设点A 的坐标是(x ,y ),根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可.【题目详解】根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则 2a x +=0, 2b y +=-1, 解得x=-a ,y=-b-2,∴点A 的坐标是(-a ,-b-2).故选D . 【题目点拨】本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A 、A′关于点C 成中心对称是解题的关键 10、B【解题分析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【题目详解】根据三角形数列的特点,归纳出每n ()112n n -+9行从左至右第5个数是()9911(51)2-++-41故选B【题目点拨】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.二、填空题(本大题共6个小题,每小题3分,共18分)11、(1645,125)(806845,125)【解题分析】利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O的距离,然后写出坐标即可.【题目详解】∵点A(﹣4,0),B(0,3),∴OA=4,OB=3,∴,∴第(2)个三角形的直角顶点的坐标是(445,125);∵5÷3=1余2,∴第(5)个三角形的直角顶点的坐标是(1645,125),∵2018÷3=672余2,∴第(2018)个三角形是第672组的第二个直角三角形,其直角顶点与第672组的第二个直角三角形顶点重合,∴第(2018)个三角形的直角顶点的坐标是(806845,125).故答案为:(1645,125);(806845,125)【题目点拨】本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环.12、y=﹣x+1【解题分析】根据题意可以得到k的正负情况,然后写出一个符合要求的解析式即可解答本题.【题目详解】∵一次函数y随x的增大而减小,∴k<0,∵一次函数的解析式,过点(1,0),∴满足条件的一个函数解析式是y=-x+1,故答案为y=-x+1.【题目点拨】本题考查一次函数的性质,解答本题的关键是明确题意,写出符合要求的函数解析式,这是一道开放性题目,答案不唯一,只要符合要去即可.13、11 xx-+.【解题分析】根据同分母分式加减运算法则化简即可.【题目详解】原式=11 xx-+,故答案为11 xx-+.【题目点拨】本题考查了分式的加减运算,熟记运算法则是解题的关键.14、1【解题分析】先根据勾股定理求得AC的长,从而得到C点坐标,然后根据平移的性质,将C点纵轴代入直线解析式求解即可得到答案.【题目详解】解:在Rt△ABC中,AB=﹣1﹣(﹣1)=3,BC=5,∴=1,∴点C的坐标为(﹣1,1).当y=﹣2x﹣6=1时,x=﹣5,∵﹣1﹣(﹣5)=1,∴点C沿x轴向左平移1个单位长度才能落在直线y=﹣2x﹣6上.故答案为1.【题目点拨】本题主要考查平移的性质,解此题的关键在于先利用勾股定理求得相关点的坐标,然后根据平移的性质将其纵坐标代入直线函数式求解即可.15、1 42π-.【解题分析】连接CD,根据题意可得△DCE≌△BDF,阴影部分的面积等于扇形的面积减去△BCD的面积.【题目详解】解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=12AB=1,四边形DMCN是正方形,DM=22.则扇形FDE的面积是:2901= 3604ππ⨯.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,则在△DMG和△DNH中,DMG DNHGDM HDN DM DN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=12.则阴影部分的面积是:1 42π-.故答案为:1 42π-.本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG ≌△DNH ,得到S 四边形DGCH =S 四边形DMCN 是关键. 16、4 【解题分析】试题分析:设OB 的长度为x ,则根据二次函数的对称性可得:点B 的坐标为(x+2,0),点A 的坐标为(2-x ,0),则OB-OA=x+2-(x-2)=4.点睛:本题主要考查的就是二次函数的性质.如果二次函数与x 轴的两个交点坐标为(1x ,0)和(2x ,0),则函数的对称轴为直线:x=122x x .在解决二次函数的题目时,我们一定要注意区分点的坐标和线段的长度之间的区别,如果点在x 的正半轴,则点的横坐标就是线段的长度,如果点在x 的负半轴,则点的横坐标的相反数就是线段的长度.三、解答题(共8题,共72分) 17、见解析 【解题分析】首先可得顶点坐标为(1,0),然后利用对称性列表,再描点,连线,即可作出该函数的图象. 【题目详解】 列表得: x … ﹣1 0 1 2 3 … y …4114…如图:.【题目点拨】此题考查了二次函数的图象.注意确定此二次函数的顶点坐标是关键. 18、1原式利用绝对值的代数意义,乘方的意义,以及特殊角的三角函数值计算即可求出值. 【题目详解】1|+(﹣1)2118﹣tan61°1+1=1. 【题目点拨】本题考查了实数的运算,涉及了绝对值化简、特殊角的三角函数值,熟练掌握各运算的运算法则是解题的关键. 19、(1)y=-x 2+2x+1;(2)-m 2+1m .(1)2. 【解题分析】(1)根据待定系数法,可得函数解析式;(2)根据自变量与函数值的对应关系,可得C 点坐标,根据平行于y 轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得答案;(1)根据自变量与函数值的对应关系,可得F 点坐标,根据平行于y 轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得DE 的长,根据平行四边形的对边相等,可得关于m 的方程,根据解方程,可得m 的值. 【题目详解】解:(1)∵点A (-1,0),点B (1,0)在抛物线y=-x 2+bx+c 上,∴10{930b c b c -++=-++=,解得23b c =⎧⎨=⎩,此抛物线所对应的函数表达式y=-x 2+2x+1; (2)∵此抛物线所对应的函数表达式y=-x 2+2x+1, ∴C (0,1).设BC 所在的直线的函数解析式为y=kx+b ,将B 、C 点的坐标代入函数解析式,得303k b b +=⎧⎨=⎩,解得1{3k b =-=, 即BC 的函数解析式为y=-x+1. 由P 在BC 上,F 在抛物线上,得 P (m ,-m+1),F (m ,-m 2+2m+1). PF=-m 2+2m+1-(-m+1)=-m 2+1m . (1)如图,∵此抛物线所对应的函数表达式y=-x 2+2x+1, ∴D (1,4).∵线段BC 与抛物线的对称轴交于点E , 当x=1时,y=-x+1=2, ∴E (1,2), ∴DE=4-2=2.由四边形PEDF 为平行四边形,得 PF=DE ,即-m 2+1m=2, 解得m 1=1,m 2=2.当m=1时,线段PF 与DE 重合,m=1(不符合题意,舍). 当m=2时,四边形PEDF 为平行四边形. 考点:二次函数综合题. 20、(1)24y x =-; 6y x=;(2)10x -<<或3x >;(3)存在,(0,435)P -+或(0,435)P --或(0,8)P 或10,4P ⎛⎫- ⎪⎝⎭.【解题分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C 坐标,最后用再用待定系数法求出一次函数解析式; (2)利用图象直接得出结论;(3)分BP BA =、BP BA =、PA PB =三种情况讨论,即可得出结论. 【题目详解】 (1)一次函数1y ax b 与反比例函数ky x=,相交于点(3,2)B ,(1,)C n -, ∴把(3,2)B 代入k y x=得:23k =,∴6k =,∴反比例函数解析式为6y x=, 把(1,)C n -代入6y x =得:61n =-, ∴6n =-,∴点C 的坐标为(1,6)--,把(3,2)B ,(1,6)C --代入y ax b =+得:23k bb k b =+⎧⎨-=-+⎩,解得:24k b =⎧⎨=-⎩,∴一次函数解析式为24y x =-; (2)根据函数图像可知:当10x -<<或3x >时,一次函数的图象在反比例函数图象的上方, ∴当10x -<<或3x >时,12y y >;(3)存在(0,435)P -+或(0,435)P --或(0,8)P 或10,4P ⎛⎫- ⎪⎝⎭时,PAB △为等腰三角形,理由如下: 过B 作BD y ⊥轴,交y 轴于D ,∵直线124y x =-与y 轴交于点A , ∴令0x =得,4y =-, ∴点A 的坐标为(0,4)-, ∵点B 的坐标为(3,2)B , ∴点D 的坐标为(0,2)D ,∴22(30)(24)AB =-++2236=+35=,①当AP AB =时,则35AP =,(0,4)A -,∴点P 的坐标为:1(0,435)P -+、2(0,435)P --; ②当BP BA =时,BAP △是等腰三角形,BD AP ⊥, BD ∴平分AP ,2(4)6DA DP ∴==--=,∵点D 的坐标为(0,2)D ,∴点P 的坐标为(0,26)+,即3(0,8)P ; ③当PA PB =时,如图:设PA PB x ==,则6DP DA PA x =-=-,在Rt BDO △中,3DB =,6DP x =-,PB x =,∴由勾股定理得:222PB DB DP =+,2223(6)x x =+-,解得:154x =, (0,4)A -,∴点P 的坐标为150,44⎛⎫-+⎪⎝⎭,即410,4P ⎛⎫- ⎪⎝⎭,综上所述,当(0,4P -+或(0,4P --或(0,8)P 或10,4P ⎛⎫- ⎪⎝⎭时,PAB △为等腰三角形.【题目点拨】本题是反比例函数综合题,主要考查了待定系数法,利用图象确定函数值满足条件的自变量的范围,等腰三角形的性质,勾股定理,解(1)的关键是待定系数法的应用,解(2)的关键是利用函数图象确定x 的范围,解(3)的关键是分类讨论. 21、﹣2,﹣1,0 【解题分析】分析:先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集. 本题解析:()224113x x x x ⎧-≤+⎪⎨-<+⎪⎩①②, 解不等式①得,x≥−2, 解不等式②得,x<1, ∴不等式组的解集为−2≤x<1. ∴不等式组的最大整数解为x=0,22、(1)y =150﹣x ; (2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元. 【解题分析】(1)若购买x 双(10<x <1),每件的单价=140﹣(购买数量﹣10),依此可得y 关于x 的函数关系式;(2)①设第一批购买x 双,则第二批购买(100﹣x )双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x ≤40时,则1≤100﹣x <75;当40<x <1时,则40<100﹣x <1. ②把两次的花费与第一次购买的双数用函数表示出来. 【题目详解】解:(1)购买x 双(10<x <1)时,y =140﹣(x ﹣10)=150﹣x . 故y 关于x 的函数关系式是y =150﹣x ;(2)①设第一批购买x 双,则第二批购买(100﹣x )双.当25<x ≤40时,则1≤100﹣x <75,则x (150﹣x )+80(100﹣x )=9200,解得x1=30,x2=40;当40<x<1时,则40<100﹣x<1,则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,解得x=30或x=70,但40<x<1,所以无解;答:第一批购买数量为30双或40双.②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,∴x=26时,w有最小值,最小值为9144元;当40<x<1时,w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,∴x=41或59时,w有最小值,最小值为9838元,综上所述:第一次买26双,第二次买74双最省钱,最少9144元.【题目点拨】考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23、(1)甲种材料每千克25元,乙种材料每千克35元.(2)共有四种方案;(3)生产A产品21件,B产品39件成本最低.【解题分析】试题分析:(1)、首先设甲种材料每千克x元,乙种材料每千克y元,根据题意列出二元一次方程组得出答案;(2)、设生产B产品a件,则A产品(60-a)件,根据题意列出不等式组,然后求出a的取值范围,得出方案;得出生产成本w与a的函数关系式,根据函数的增减性得出答案.试题解析:(1)设甲种材料每千克x元,乙种材料每千克y元,依题意得:解得:答:甲种材料每千克25元,乙种材料每千克35元.(2)生产B产品a件,生产A产品(60-a)件. 依题意得:解得:∵a的值为非负整数∴a=39、40、41、42∴共有如下四种方案:A种21件,B种39件;A种20件,B种40件;A种19件,B种41件;A种18件,B种42件(3)、答:生产A产品21件,B产品39件成本最低.设生产成本为W 元,则W 与a 的关系式为:w=(25×4+35×1+40)(60-a)+(35×+25×3+50)a=55a+10500 ∵k=55>0 ∴W 随a 增大而增大∴当a=39时,总成本最低. 考点:二元一次方程组的应用、不等式组的应用、一次函数的应用. 24、26m + 【解题分析】 分析:先计算522m m +--,再做除法,结果化为整式或最简分式. 详解:532224m m m m -⎛⎫+-÷⎪--⎝⎭()()()2252423m m m m m +---=⋅-- ()222923m m m m --=⋅-- ()()()332223m m m m m -+-=⋅--26m =+.点睛:本题考查了分式的混合运算.解题过程中注意运算顺序.解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年鄂尔多斯市初中毕业升学考试数学注意事项:1.本试题满分120分,考试用时120分钟.答题前将密封线内的项目填写清楚.题号一二三总分1~10 11~18 19 20 21 22 23 24 25 26得分一、选择题(本大题10个小题,每小题3分,共30分.每小题给出的四个选项中只有一个是正确的,请把正确选项填在下面的选项栏内)题号 1 2 3 4 5 6 7 8 9 10 选项1.如果a与1互为相反数,则a等于().A.2B.2-C.1D.1-2.如图,数轴上的点P表示的数可能是().A.5B.-5-C. 3.8-D.10-3.下列计算正确的是().A.2323a a a+=B.326a a a=gC.329()a a=D.341(0)a a a a-÷=≠4.如图,形状相同、大小相等的两个小木块放在一起,其俯视图如图所示,则其主视图是().5.用折纸的方法,可以直接剪出一个正五边形.折纸过程如图所示,则α∠等于().A.108︒B.90︒C.72°D.60°第5题图第4题图(俯视图)A.B.C.D.第2题图6.如图,小明从家走了10分钟后到达了一个离家900米的报亭,看了10分钟的报纸,然后用了15分钟返回到家,下列图象中能表示小明离家距离y (米)与时间x (分)关系的是( ).7.如图,在ABCD Y中,E 是BC 的中点,且AEC DCE ∠=∠,则下列结论不正确...的是( ). A .2ADF EBF S S =△△B .12BF DF =C .四边形AECD 是等腰梯形D .AEB ADC ∠=∠8.已知二次函数2y x bx c =-++中函数y 与自变量x 之间的部分对应值如右表所示,点1122()()A x y B x y ,,,在函数的图象上,当12123o x x <<<<,时,1y 与2y 的大小关系正确的是( ).A .12y y ≥B .12y y >C .12y y <D .12y y ≤9.定义新运算:1()(0)a a b a b a a b b b⎧-⎪⊕=⎨->≠⎪⎩且≤,则函数3y x =⊕的图象大致是( ).10.某移动通讯公司提供了A 、B 两种方案的通讯费用y (元)与通话时间x (分)之间的关系,如图所示,则以下说法错误..的是( ).A .若通话时间少于120分,则A 方案比B 方案便宜20元 B .若通话时间超过200分,则B 方案比A 方案便宜C .若通讯费用为60元,则B 方案比A 方案的通话时间多D .若两种方案通讯费用相差10元,则通话时间是145分或185分第6题图D .C .B .A . D .第9题图C .B .A .第7题图第10题图二、填空题(本大题8个小题,每小题3分,共24分) 11.在函数2y x =-中,自变量x 的取值范围是__________.12.把[]332(1)a a +--化简得_________.13.“五一”期间,某服装商店举行促销活动,全部商品八折销售,小华购买一件原价为140元的运动服,打折后他比按原价购买节省了________元. 14.为参加“初中毕业升学体育考试”,小亮同学在练习掷实心球时,测得5次投掷的成绩分别为:8,8.2,8.5,8,8.6(单位:m ),这组数据的众数、中位数依次是___________. 15.如图,用小棒摆下面的图形,图形(1)需要3根小棒,图形(2)需要7根小棒……照这样的规律继续摆下去,第n 个图形需要__________根小棒(用含n 的代数式表示).16.已知关于x 的方程232x mx +=-的解是正数,则m 的取值范围为________. 17.如图,现有圆心角为90°的一个扇形纸片,该扇形的半径为50cm .小红同学为了在“圣诞”节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),那么被剪去的扇形纸片的圆心角应该是______度.18.如图,1O ⊙和2O ⊙的半径分别为1和2,连接12O O ,交2O ⊙于点P ,125O O =,若将1O ⊙绕点P 按顺时针方向旋转360°,则1O ⊙与2O ⊙共相切_________次.三、解答题(本大题8个小题,共66分,解答时要写出必要的文字说明、演算步骤或推证过程) 19.(本小题满分8分)(1)计算:12031227(π2)3-⎛⎫-+--⨯- ⎪⎝⎭;第15题图第17题图第18题图1O2OP(2)先化简:再求值:22222a b ab baa ab a⎛⎫-+÷+⎪-⎝⎭,其中211a b=-=,.20.(本小题满分7分)近年来,随着经济的快速发展,我市城市环境不断改观,社会知名度越来越高,吸引了很多外地游客.某旅行社对5月份本社接待外地游客来我市观光的首选景点作了一次抽样调查,调查结果图表如下:(1)此次共调查了多少人?并将上面的图表补充完整.(2)如果将上表制成扇形统计图,那么“恩格贝”所对的圆心角是多少度?(3)该旅行社预计6月份接待外地来我市的游客2 500人,请你估算一个首选去成陵观光的约有多少人?景点频数频率成陵116 29%响沙湾25%恩格贝84 21%七星湖63 15.75%巴图湾37 9.25%21.(本小题满分6分)如图,A信封中装有两张卡片,卡片上分别写着7cm、3cm;B信封中装有三张卡片,卡片上分别写着2cm、4cm、6cm;信封外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从两个信封中各取出一张卡片,与信封外的卡片放在一起,用卡片上标明的数量分别作三条线段的长度.(1)求这三条线段能组成三角形的概率(画出树状图);(2)求这三条线段能组成直角三角形的概率.第20题图第21题图22.(本小题满分8分)如图,在梯形ABCD 中,90AD BC C E ∠=∥,°,为CD 的中点,EF AB ∥交BC 于点F .(1)求证:BF AD CF =+; (2)当17AD BC ==,,且BE 平分ABC ∠时,求EF 的长. 23.(本小题满分7分)某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB 的影长AC 为12米,并测出此时太阳光线与地面成30°夹角.(2 1.43 1.7)≈,≈(1)求出树高AB ;(2)因水土流失,此时树AB 沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.(用图(2)解答) ①求树与地面成45°角时的影长; ②求树的最大影长.第22题图 第23题图24.(本小题满分9分)如图,AB 为O ⊙的直径,劣弧»»BCBE BD CE =,∥,连接AE 并延长交BD 于D . 求证:(1)BD 是O ⊙的切线; (2)2AB AC AD =·. 25.(本小题满分10分)在实施“中小学校舍安全工程”之际,某市计划对A 、B 两类学校的校舍进行改造,根据预算,改造一所A 类学校和三所B 类学校的校舍共需资金480万元,改造三所A 类学校和一所B 类学校的校舍共需资金400万元.(1)改造一所A 类学校的校舍和一所B 类学校的校舍所需资金分别是多少万元?(2)该市某县A 、B 两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A 、B 两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A 、B 两类学校各有几所.第24题图26.(本小题满分11分)如图,四边形OABC 是一张放在平面直角坐标系的矩形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,159OA OC ==,,在AB 上取一点M ,使得CBM △沿CM 翻折后,点B 落在x 轴上,记作N 点. (1)求N 点、M 点的坐标;(2)将抛物线236y x =-向右平移(010)a a <<个单位后,得到抛物线l ,l 经过N 点,求抛物线l 的解析式;(3)①抛物线l 的对称轴上存在点P ,使得P 点到M N ,两点的距离之差最大,求P 点的坐标;②若点D 是线段OC 上的一个动点(不与O 、C 重合),过点D 作DE OA ∥交CN 于E ,设CD 的长为m ,PDE △的面积为S ,求S 与m 之间的函数关系式,并说明S 是否存在最大值.若存在,请求出最大值;若不存在,请说明理由.第26题图2010年鄂尔多斯市初中毕业升学考试数学试题参考答案及评分说明(一)阅卷评分说明1.正式阅卷前先进行试评,在试评中认真阅读参考答案,明确评分标准,不得随意拔高或降低评分标准.试评的试卷必须在阅卷后期予以复查,防止前后期评分标准宽严不一致. 2.评分方式为分步累计评分,解答过程的某一步骤发生笔误,只要不降低后继部分的难度,而后继部分再无新的错误,后继部分可评应得分数的50%;若是几个相对独立的得分点,其中一处错误不影响其它得分点的评分.3.最小记分单位为1分,不得将评分标准细化至1分以下(即不得记小数分).4.解答题题头一律记该题的实际得分,不得用记负分的方式记分.对解题中的错误须用红笔标出,并继续评分,直至将解题过程评阅完毕,并在最后得分点处标上该题实际得分. 5.本参考答案只给出一至两种解法,凡有其它正确解法都应参照本评分说明分步确定得分点,并同样实行分步累计评分.6.合理精简解题步骤者,其简化的解题过程不影响评分. (二)参考答案及评分标准二、填空题(本大题8个小题,每小题3分,共24分) 11.2x ≥ 12.5a + 13.28 14.8,8.215.41n -16.64m m >-≠-且17.18(18)°18.3三、解答题(本大题8个小题,共66分) 19.(本小题满分8分)(1)计算:12012(π3-⎛⎫-⨯ ⎪⎝⎭解:原式=433--- ····························································· 3分(一处正确给1分)10=-. ······································································································· 4分(2)先化简:再求值:22222a b ab b a a ab a ⎛⎫-+÷+ ⎪-⎝⎭,其中11a b ==,.解:原式=2()()()()a b a b a b a a b a+-+÷- ·········································· 2分(一处正确给1分)=1a b+ ·········································································································· 3分2==·························································································· 4分 20.(本小题满分7分)景点 频数 频率 成陵 116 29% 响沙湾 100 25% 恩格贝 84 21% 七星湖 63 15.75% 巴图湾379.25%解:(1)8421%400÷=(人).答:共调查了400人. ········································ 2分40025%100⨯=(人),补充图表如下 ················································ 4分(各1分) (2)36021%75.6⨯=°°.答:“恩格贝”所对的圆心角是75.6°. ·························· 6分 (3)250029%725⨯=(人).答:首选去成陵的人数约725人. ··························· 7分 21.(本小题满分6分) 解:(1)树状图:············································· 3分42()63P ==组成三角形.···················································································· 5分 (2)1()6P =组成直角三角形. ··········································································· 6分 22.(本小题满分8分) (1)证法一: 如图(1),延长AD 交FE 的延长线于N ,90NDE FCE DEN FEC DE EC ∠=∠=∠=∠=Q °,,,NDE FCE ∴△≌△. ····················································································· 3分 DN CF ∴=. ······························································································· 4分 AB FN AN BF Q ∥,∥,∴四边形ABFN 是平行四边形. ··································· 5分 BF AD DN AD FC ∴=+=+. ······································································· 6分 (2)解:1.AB EF BEF ∴∠=∠Q ∥,122BEF ∠=∠∴∠=∠Q ,.EF BF ∴=. ································································································ 7分 17422AD BC EF AD CF ++∴=+=+=. ························································· 8分 (1)证法二:如图(2)过D 点作DN AB ∥交BC 于N ,AD BN AB DN AD BN ∴=Q ∥,∥,. ····················· 1分 EF AB DN EF ∴Q ∥,∥. ····································· 2分 CEF CDN ∴△∽△. ············································· 3分 图(1)图(2)CE CFDC CN∴=. ······························································································ 4分 1122CE CF NF CF DC CN ===∴Q,,即. ····································································· 5分 BF BN NF AD FC ∴=+=+. ········································································ 6分 23.(本小题满分7分) 解:(1)tan30AB AC =° ··············································································· 1分3124373=⨯=≈(米).(结果也可以保留一位小数,下同) 答:树高约7米. ···························································································· 2分(2)①如图(2),112sin 454352B N AN AB ===⨯°≈(米) ························ 3分 11tan602638NC NB ==⨯°≈(米) ··························································· 4分 115813AC AN NC =+=+=(米).答:树与地面成45°角时影长约13米. ······························································· 5分 ②如图(2)当树与地面成60°角时影长最大2AC (或树与光线垂直时影长最大或光线与半径为AB 的A ⊙相切时影长最大) ······································································ 6分22214AC AB =≈(米).答:树的最大影长约14米. ·············································································· 7分24.(本小题满分9分)证明:(1)»»CBBE =Q , »»12AC AE AC AE ∴∠=∠==,,, ······························ 2分AB CE ∴⊥. ·························································· 3分 CE BD AB BD ∴⊥Q ∥,. ········································ 4分 BD ∴是O ⊙的切线. ················································ 5分 (2)连接CB .AB Q 是O ⊙的直径,90ACB ∴∠=°. ······························································ 6分 90ABD ACB ABD ∠=∴∠=∠Q °,. ································································· 7分 12ACB ABD ∠=∠∴Q ,△∽△. ····································································· 8分2AC AB AB AD AC AB AD∴=∴=,·. ····································································· 9分 (证法二,连接BE ,证明略) 25.(本小题满分10分)解:(1)设改造一所A 类学校的校舍需资金x 万元,改造一所B 类学校的校舍需资金y 万元,则34803400x y x y +=⎧⎨+=⎩ ···························································· 3分(正确一个方程组2分) 解之得90130x y =⎧⎨=⎩. ·························································································· 4分 答:改造一所A 类学校的校舍需资金90万元,改造一所B 类学校的校舍需资金130万元. ···················································································································· 5分(2)设A 类学校应该有a 所,则B 类学校有(8)a -所,则2030(8)210(9020)(13030)(8)770a a a a +-⎧⎨-+--⎩≥≤ ························· 7分(正确一个不等式给1分) 解得31a a ⎧⎨⎩≤≥. ································································································ 8分 13a ∴≤≤,即123a =,,. ············································································· 9分 答:有3种改造方案:方案一:A 类学校1所,B 类学校7所;方案二:A 类学校2所,B 类学校6所;方案三:A 类学校3所,B 类学校5所. ··························································· 10分26.(本小题满分11分)解:如图(1)159CN CB OC ===Q ,,2215912(120)ON N ∴=-=∴,,.································ 1分 又15123AN OA ON =-=-=Q ,设AM x =,2223(9)x x ∴+=-, ···················································· 2分4(154)x M ∴=,,. ······················································································· 3分(2)解法一:设抛物线l 为2()36y x a =--,则2(12)36.a -= ···························································································· 4分 16a ∴=或218a =(舍去). ············································································· 5分∴抛物线2:(6)36l y x =--. ·········································································· 6分解法二:21236066x x x -==-=Q ,,,236y x ∴=-与x 轴的交点为(60)-,和(60),. ···················································· 4分 由题意知,交点(60),向右平移6个单位到N 点, ·················································· 5分 所以236y x =-向右平移6个单位得到抛物线2:(6)36l y x =--. ························· 6分(3)①由“三角形任意两边的差小于第三边”知,P 点是直线MN 与对称轴6x =的交点,···································· 7分 设直线MN 的解析式为y kx b =+,则120154k b k b +=⎧⎨+=⎩,解之得4316k b ⎧=⎪⎨⎪=-⎩ 416.(68)3y x P ∴=-∴-,. ············································································· 8分 ②DE OA ACB ABD ∴Q ∥,△∽△,49123m DE DE m ∴==,. ···························· 9分 214234(98)2333S m m m m ∴=⨯⨯+-=-+. ···················································· 10分 203a =-<Q ,开口向下,又343431739234223m ⨯=-==<⨯⎛⎫⨯- ⎪⎝⎭,S ∴有最大值, 2217341728932326S ⎛⎫=-⨯+⨯= ⎪⎝⎭最大. ······························································ 11分。