历年自主招生试题分类汇编—导数

合集下载

导数专题(含答案

导数专题(含答案
是曲线 上点〔 〕处的切线的斜率
说明:导数的几何意义
可以简记为"k= ",
强化这一句话"斜率导数,导数斜率"
导数的物理意义:s=s<t>是物体运动的位移函数,物体在t= 时刻的瞬时速度是 .可以简记为 =
例1、已知函数 的图象在点 处的切线方程是 ,则 .
2、若函数 的导函数在区间[a,b]上是增函数,则函数 在区间[a,b]上的图像可能是〔〕
〔2〕设函数 则 〔〕
A.有最大值B.有最小值C.是增函数D.是减函数
3〕设 分别是定义在R上的奇函数和偶函数,当 时,
的解集为▲.
3>已知函数的单调性求参数范围
方法:常利用导数与函数单调性关系:即
"若函数单调递增,则 ;若函数单调递减,则 "来求解,注意此时公式中的等号不能省略,否则漏解.从而转化为不等式恒成立问题或利用数形结合来求参数〔 是二次型〕
[例]1函数y = f < x > = x3+ax2+bx+a2,在x = 1时,有极值10,则a = ,b =.
15.已知函数f<x>=-x3+3x2+9x+a.
〔I〕求f<x>的单调递减区间;
〔II〕若f<x>在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
解:〔I〕f’<x>=-3x2+6x+9.令f‘<x><0,解得x<-1或x>3,
综上,
4某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x〔x 10〕层,则每平方米的平均建筑费用为560+48x〔单位:元〕.为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?

(完整版)导数的综合大题及其分类.(可编辑修改word版)

(完整版)导数的综合大题及其分类.(可编辑修改word版)

a - a 2-4 2 a + a 2-42导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用.题型一 利用导数研究函数的单调性、极值与最值题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论.(1) 单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论.(2) 极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点.(3) 最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值.已知函数 f (x )=x 1g (x )=a ln x (a ∈R ).- , x(1) 当 a ≥-2 时,求 F (x )=f (x )-g (x )的单调区间;(2) 设 h (x )=f (x )+g (x ),且 h (x )有两个极值点为 x ,x ,其中 x ∈ 1,求 h (x )-h (x)的最121(0,]1 2 2小值.[审题程序]第一步:在定义域内,依据 F ′(x )=0 根的情况对 F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立 x 1、x 2 及 a 间的关系及取值范围;第四步:通过代换转化为关于 x 1(或 x 2)的函数,求出最小值.[规范解答] (1)由题意得 F (x )=x 1a ln x ,- - xx 2-ax +1其定义域为(0,+∞),则 F ′(x )= ,x 2令 m (x )=x 2-ax +1,则 Δ=a 2-4.①当-2≤a ≤2 时,Δ≤0,从而 F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞);②当 a >2 时,Δ>0,设 F ′(x )=0 的两根为 x 1= ,x 2= ,x∴F (x )的单调递增区间为( a - a 2-4) (a + a 2-4)0, 2和 ,+∞ , 2F (x )(a - a 2-4 a + a 2-4)的单调递减区间为 ,. 2 2综上,当-2≤a ≤2 时,F (x )的单调递增区间为(0,+∞); 当 a >2 时,F (x )的单调递增区间为(a - a 2-4) (a + a 2-4)0, 2和 ,+∞ , 2F (x )(a - a 2-4 a + a 2-4)的单调递减区间为 ,. 2 2(2)对 h (x )=x 1a ln x ,x ∈(0,+∞)- + x1 a x 2+ax +1求导得,h ′(x )=1+ + = ,x 2 x x 2设 h ′(x )=0 的两根分别为 x 1,x 2,则有 x 1·x 2=1,x 1+x 2=-a , 1 1∴x 2= ,从而有 a =-x 1- .x 1 x 1令 H (x )=h (x )-h(1) 111 11=x -x +(-x -x )ln x -[x -x +(-x -x )·ln x ]1 1 =2[(-x -x )ln x +x -x ],1 2(1-x )(1+x )ln x H ′(x )=2(x 2-1)ln x = x 2. 当 x ∈1 时,H ′(x )<0, (0,] 2 ∴H (x )在 1 上单调递减,(0, ]2 又 H (x 1)=h (x 1)-h1 =h (x 1)-h (x 2),(x 1)∴[h (x 1)-h (x 2)]min =H 1=5ln2-3.(2)[解题反思] 本例(1)中求 F (x )的单调区间,需先求出 F (x )的定义域,同时在解不等式 F ′(x )>0 时需根据方程 x 2-ax +1=0 的根的情况求出不等式的解集,故以判别式“Δ”的取值作为分类讨论的依据.在(2)中求出 h (x 1)-h (x 2)的最小值,需先求出其解析式.由题可知 x 1,x 2 是 h ′(x )=0 的两根,可得到 x 1x 2=1,x 1+x 2=-a ,从而将 h (x 1)-h (x 2)只用一个变量 x 1 导出.从而得到 H (x 1)= h (x )-h 1 ,这样将所求问题转化为研究新函数 H (x )=h (x )-h 1 在 1上的最值问题,体现 1 (x 1) (x) (0, )2转为与化归数学思想.[答题模板] 解决这类问题的答题模板如下:- = .- =[题型专练]1.设函数 f (x )=(1+x )2-2ln(1+x ).(1) 求 f (x )的单调区间;(2) 当 0<a <2 时,求函数 g (x )=f (x )-x 2-ax -1 在区间[0,3]上的最小值.[解] (1)f (x )的定义域为(-1,+∞). ∵f (x )=(1+x )2-2ln(1+x ),x ∈(-1,+∞),∴f ′(x )=2(1+x ) 2 2x (x +2)1+x x +1 由 f ′(x )>0,得 x >0;由 f ′(x )<0,得-1<x <0.∴函数 f (x )的单调递增区间为(0,+∞),单调递减区间为(-1,0). (2)由题意可知 g (x )=(2-a )x -2ln(1+x )(x >-1), 则 g ′(x )=2-a 2 1+x ∵0<a <2,∴2-a >0,(2-a )x -a=. 1+x 令 g ′(x )=0,得 x a,2-a ∴函数 g (x )在(0, a )上为减函数,在( a,+∞)上为增函数.2-a 2-a①当 0< a,即 0<a <3[0,3]上, 2-a 时,在区间 2 g (x )在(0, a )上为减函数,在( a,3)上为增函数,2-a 2-a ∴g (x ) =g ( a )=a -2ln 2mina ②当 ≥3 2-a 32-aa <2 时,g (x )在区间[0,3]上为减函数, 2-a ,即 ≤2∴g (x )min =g (3)=6-3a -2ln4.<3 .综上所述,当 0<a <3 2时, g (x ) =a -2ln ; min2 2-a3当 ≤a <2 时,g (x )min =6-3a -2ln4. 2北京卷(19)(本小题 13 分)已知函数 f (x )=e x cos x −x .(Ⅰ)求曲线 y = f (x )在点(0,f (0))处的切线方程; (Ⅱ)求函数 f (x )在区间[0, π]上的最大值和最小值.2[0, ] [0, ] 0(19)(共 13 分)解:(Ⅰ)因为 f (x ) = e x cos x - x ,所以 f '(x ) = e x (cos x - sin x ) -1, f '(0) = 0 .又因为 f (0) = 1,所以曲线 y = f (x ) 在点(0, f (0)) 处的切线方程为 y = 1.(Ⅱ)设 h (x ) = e x (cos x - sin x ) -1 ,则 h '(x ) = e x (cos x - sin x - sin x - cos x ) = -2e x sin x .当x ∈ π (0, ) 2时, h '(x ) < 0 , 所以 h (x ) 在区间 π 2上单调递减.所以对任意 x ∈ π (0, ] 2有 h (x ) < h (0) = 0 ,即 f '(x ) < 0 . 所以函数 f (x ) 在区间 π 2上单调递减.因此 f (x ) 在区间[0, π] 上的最大值为 f (0) = 1,最小值为 f ( π) = - π.2 2 221.(12 分)已知函数 f (x ) = ax 3 - ax - x ln x , 且 f (x ) ≥ 0 .(1) 求 a ;(2) 证明: f (x ) 存在唯一的极大值点 x 0 ,且e -2 <f (x ) < 2-3.21.解:(1) f ( x ) 的定义域为(0,+∞)设 g (x ) = ax - a - lnx ,则 f (x ) = xg (x ) , f (x ) ≥ 0 等价于 g (x ) ≥ 0xx0 0因为 g (1) =0,g (x ) ≥ 0, 故g' (1) =0, 而g' (x ) = a - 1 , g' (1) =a - 1, 得a = 1若 a =1,则 g' (x ) = 1 - 1.当 0<x <1 时, g' (x ) <0, g (x ) 单调递减;当 x >1 时, g' (x ) >0, g ( x ) 单调递增.所以 x=1 是g (x ) 的极小值点,故g (x ) ≥ g (1)=0综上,a=1(2)由(1)知f (x ) = x 2 - x - x l n x , f ' ( x ) = 2x - 2 - l n x设h (x )= 2x - 2 - l n x , 则 h ' ( x ) = 2 - 1x当x ∈ ⎛ 0, 1 ⎫ 时, h ' (x ) <0 ;当x ∈ ⎛ 1 , +∞⎫ 时, h ' (x ) >0 ,所以h (x ) 在⎛ 0, 1 ⎫ 单调递减,在⎛ 1 , +∞⎫ 单调递增 2 ⎪ 2 ⎪ 2 ⎪ 2 ⎪⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ 又h (e -2)>⎛ 1 ⎫ <0, h (1) = 0 ,所以h (x ) 在⎛ 0, 1 ⎫ 有唯一零点 x 0,在⎡1 , +∞⎫ 有唯一零点 1,且当x ∈ (0, x ) 时, h (x ) >0 ;当x ∈ (x , 1) 时, 0, h 2 ⎪ 2 ⎪ ⎢ 2 ⎪ 0 0 ⎝ ⎭ ⎝ ⎭ ⎣ ⎭h (x ) <0 ,当x ∈ (1, +∞) 时, h (x ) >0 .因为f ' (x ) = h (x ) ,所以 x=x 0 是 f(x)的唯一极大值点由f ' (x 0 ) = 0得l n x 0 = 2( x 0 - 1) , 故f (x 0 ) =x (0 1 - x 0 )由x ∈ (0, 1) 得f ' (x ) < 14因为 x=x 0 是 f(x)在(0,1)的最大值点,由e -1∈ (0, 1) , f ' (e-1)≠ 0 得f (x ) >f (e-1)= e-2所以e -2<f (x ) <2- 2题型二 利用导数研究方程的根、函数的零点或图象交点题型概览:研究方程根、函数零点或图象交点的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.已知函数f(x)=(x+a)e x,其中e 是自然对数的底数,a∈R. (1)求函数f(x)的单调区间;(2)当a<1 时,试确定函数g(x)=f(x-a)-x2 的零点个数,并说明理由.[审题程序]第一步:利用导数求函数的单调区间;第二步:简化g(x)=0,构造新函数;第三步:求新函数的单调性及最值;第四步:确定结果.[规范解答] (1)因为f(x)=(x+a)e x,x∈R,所以f′(x)=(x+a+1)e x.令f′(x)=0,得x=-a-1.当x 变化时,f(x)和f′(x)的变化情况如下:x (-∞,-a-1) -a-1 (-a-1,+∞)f′(x) -0 +f(x)故f((2)结论:函数g(x)有且仅有一个零点.理由如下:由g(x)=f(x-a)-x2=0,得方程x e x-a=x2,显然x=0 为此方程的一个实数解,所以x=0 是函数g(x)的一个零点.当x≠0 时,方程可化简为e x-a=x.设函数F(x)=e x-a-x,则F′(x)=e x-a-1,令F′(x)=0,得x=a.当x 变化时,F(x)和F′(x)的变化情况如下:0 xx即 F (x )a ). 所以 F (x )的最小值 F (x )min =F (a )=1-a . 因为 a <1,所以 F (x )min =F (a )=1-a >0, 所以对于任意 x ∈R ,F (x )>0, 因此方程 e x -a =x 无实数解. 所以当 x ≠0 时,函数 g (x )不存在零点. 综上,函数 g (x )有且仅有一个零点.典例 321.(12 分)已知函数 f (x ) = ax 3 - ax - x ln x , 且 f (x ) ≥ 0 .(1) 求 a ;(2) 证明: f (x ) 存在唯一的极大值点 x 0 ,且e -2 <f (x ) < 2-3.21. 解:(1) f ( x ) 的定义域为(0,+∞)设 g (x ) = ax - a - lnx ,则 f (x ) = xg (x ) , f (x ) ≥ 0 等价于 g (x ) ≥ 0因为 g (1) =0,g (x ) ≥ 0, 故g' (1) =0, 而g' (x ) = a - 1 , g' (1) =a - 1, 得a = 1若 a =1,则 g' (x ) = 1 - 1.当 0<x <1 时, g' (x ) <0, g (x ) 单调递减;当 x >1 时, g' (x ) >0, g ( x ) 单调递增.所以 x=1 是g (x ) 的极小值点,故g (x ) ≥ g (1)=0综上,a=1(2)由(1)知f (x ) = x 2 - x - x l n x , f ' ( x ) = 2x - 2 - l n x设h (x )= 2x - 2 - l n x , 则 h ' ( x ) = 2 - 1x当x ∈ ⎛ 0, 1 ⎫ 时, h ' (x ) <0 ;当x ∈ ⎛ 1 , +∞⎫ 时, h ' (x ) >0 ,所以h (x ) 在⎛ 0, 1 ⎫ 单调递减,在⎛ 1 , +∞⎫ 单调递增 2 ⎪ 2 ⎪ 2 ⎪ 2 ⎪⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭0 0又h (e -2)>⎛ 1 ⎫ <0, h (1) = 0 ,所以h (x ) 在⎛ 0, 1 ⎫ 有唯一零点 x 0,在⎡1 , +∞⎫有唯一零点 1,且当x ∈ (0, x ) 时, h (x ) >0 ;当x ∈ (x , 1) 时,0, h 2 ⎪ 2 ⎪ ⎢ 2 ⎪ 0 0 ⎝ ⎭ ⎝ ⎭ ⎣ ⎭h (x ) <0 ,当x ∈ (1, +∞) 时, h (x ) >0 .因为f ' (x ) = h (x ) ,所以 x=x 0 是 f(x)的唯一极大值点由f ' (x 0 ) = 0得l n x 0 = 2( x 0 - 1) , 故f (x 0 ) =x (0 1 - x 0 )由x ∈ (0, 1) 得f ' (x ) < 14因为 x=x 0 是 f(x)在(0,1)的最大值点,由e -1 ∈ (0, 1) , f ' (e-1)≠ 0 得f (x ) >f (e-1)= e-2所以e -2<f (x ) <2- 2[解题反思] 在本例(1)中求 f (x )的单调区间的关键是准确求出 f ′(x ),注意到 e x >0 即可.(2)中由 g (x )=0 得 x e x -a =x 2,解此方程易将 x 约去,从而产生丢解情况.研究 e x -a =x 的解转化为研究函数 F (x )=e x -a -x 的最值,从而确定 F (x )零点,这种通过构造函数、研究函数的最值从而确定函数零点的题型是高考中热点题型,要熟练掌握.[答题模板] 解决这类问题的答题模板如下:[题型专练]2.(2017·浙江金华期中)已知函数f(x)=ax3+bx2+(c-3a-2b)x+d 的图象如图所示.(1)求c,d 的值;(2)若函数f(x)在x=2 处的切线方程为3x+y-11=0,求函数f(x)的解析式;1(3)在(2)的条件下,函数y=f(x)与y=f′(x)+5x+m 的图象有三个不同的交点,求m 的取值范围.3[解] 函数f(x)的导函数为f′(x)=3ax2+2bx+c-3a-2b.(1)由图可知函数f(x)的图象过点(0,3),且f′(1)=0,得E rr o r!解得E rr o r!(2)由(1)得,f(x)=ax3+bx2-(3a+2b)x+3,所以f′(x)=3ax2+2bx-(3a+2b).由函数f(x)在x=2 处的切线方程为3x+y-11=0,得E rr o r!所以E rr o r!解得E rr o r!所以f(x)=x3-6x2+9x+3.(3)由(2)知f(x)=x3-6x2+9x+3,所以f′(x)=3x2-12x+9.1函数y=f(x)与y=f′(x)+5x+m 的图象有三个不同的交点,3等价于x3-6x2+9x+3=(x2-4x+3)+5x+m 有三个不等实根,等价于g(x)=x3-7x2+8x-m 的图象与x 轴有三个交点.因为g′(x)=3x2-14x+8=(3x-2)(x-4),g(2)=68-m,g(4)=-16-m,3 27当且仅当E rr o r!时,g(x)图象与x 轴有三个交点,解得-16<m<68. 所以m 的取值范围为(-16,68).27 2721.(12 分)已知函数(f x)=a e2x+(a﹣2) e x﹣x.(1)讨论f (x) 的单调性;(2)若f (x) 有两个零点,求a 的取值范围.21.解:(1)f (x) 的定义域为(-∞, +∞) ,f '(x) = 2ae2x+ (a - 2)e x-1 = (ae x-1)(2e x+1) ,(十字相乘法)(ⅰ)若a ≤ 0 ,则f '(x) < 0 ,所以f (x) 在(-∞, +∞) 单调递减.(ⅱ)若 a > 0 ,则由 f '(x) = 0 得 x =-ln a .当x ∈(-∞, -ln a) 时,f '(x) < 0 ;当x ∈(-ln a, +∞) 时,f '(x) > 0 ,所以f (x) 在(-∞, -ln a) 单调递减,在(-ln a, +∞) 单调递增.110 0 0 0 3(2)(ⅰ)若 a ≤ 0 ,由(1)知, f (x ) 至多有一个零点.1 (ⅱ)若 a > 0 ,由(1)知,当 x = -ln a 时, f (x ) 取得最小值,最小值为 f (- ln a ) = 1- + ln a .(观察特殊值 1)a①当 a = 1 时,由于 f (-ln a ) = 0 ,故 f (x ) 只有一个零点;②当 a ∈ (1, +∞) 时,由于1-+ ln a > 0 ,即 f (-ln a ) > 0 ,故 f (x ) 没有零点; a③当 a ∈(0,1) 时,1- + ln a < 0 ,即 f (-ln a ) < 0 .a又 f (-2) = a e -4 + (a - 2)e -2 + 2 > -2e -2 + 2 > 0 ,故 f (x ) 在(-∞, -ln a ) 有一个零点.设正整数n 0 满足 n 0 > ln( a3-1) ,则 f (n ) = e n 0 (a e n 0 + a - 2) - n > e n 0 - n > 2n 0 - n > 0 .由于ln( a-1) > -ln a ,因此 f (x ) 在(-ln a , +∞) 有一个零点.综上, a 的取值范围为(0,1) .题型三 利用导数证明不等式题型概览:证明 f (x )<g (x ),x ∈(a ,b ),可以直接构造函数 F (x )=f (x )-g (x ),如果 F ′(x )<0,则 F (x )在(a ,b )上是减函数, 同时若 F (a )≤0,由减函数的定义可知,x ∈(a ,b )时,有 F (x )<0,即证明了 f (x )<g (x ).有时需对不等式等价变形后间接构造.若上述方法通过导数不便于讨论 F ′(x )的符号,可考虑分别研究 f (x )、g (x )的单调性与最值情况,有时需对不等式进行等价转化.(2017·陕西西安三模)已知函数 f (x ) e x .(1) 求曲线 y =f (x )在点 P ( = xe 2)处的切线方程;2, 2- = (x(2)证明:f (x )>2(x -ln x ). [审题程序]第一步:求 f ′(x ),写出在点 P 处的切线方程;第二步:直接构造 g (x )=f (x )-2(x -ln x ),利用导数证明 g (x )min >0. [规范解答] (1)因为 f (x ) e x f ′(x )=e x ·x -e xe x (x -1),f ′(2) e 2 e 2,所以切线方 程为 ye 2 e2 2 4 = ,所以 x -2),即 e 2x -4y =0. = x 2 x 2= 4 ,又切点为(2, 2 )(2) 证明:设函数 g (x )=f (x )-2(x -ln x )e x2x +2ln x ,x ∈(0,+∞),则 g ′(x ) e x (x -1)-2 2= -x (e x -2x )(x -1),x ∈(0,+∞).= + =x 2 x x 2设 h (x )=e x -2x ,x ∈(0,+∞),则 h ′(x )=e x -2,令 h ′(x )=0,则 x =ln2.当 x ∈(0,ln2)时,h ′(x )<0;当 x ∈(ln2,+∞)时,h ′(x )>0.所以 h (x )min =h (ln2)=2-2ln2>0,故 h (x )=e x -2x >0.令 g ′(x ) (e x-2x )(x -1)=0,则 x =1.=x 2当 x ∈(0,1)时,g ′(x )<0;当 x ∈(1,+∞)时,g ′(x )>0.所以 g (x )min =g (1)=e -2>0,故 g (x )=f (x )-2(x -ln x )>0,从而有 f (x )>2(x -ln x ).[解题反思] 本例中(2)的证明方法是最常见的不等式证明方法之一,通过合理地构造新函数 g (x ).求 g (x ) 的最值来完成.在求 g (x )的最值过程中,需要探讨 g ′(x )的正负,而此时 g ′(x )的式子中有一项 e x -2x 的符号不易确定,这时可以单独拿出 e x -2x 这一项,再重新构造新函数 h (x )=e x -2x (x >0),考虑 h (x )的正负问题,此题看似简单,且不含任何参数,但需要两次构造函数求最值,同时在(2)中定义域也是易忽视的一个方向.[答题模板] 解决这类问题的答题模板如下:=[题型专练]3.(2017·福建漳州质检)已知函数 f (x )=a e x -b ln x ,曲线 y =f (x )在点(1,f (1))处的切线方程为 y =(1)x +1.(1)求 a ,b ; (2)证明:f (x )>0.[解] (1)函数 f (x )的定义域为(0,+∞).e-1 f ′(x )=a e x bf (1) 1f ′(1) 1 1,- ,由题意得 = , = - x e e所以E rr o r !解得E rr o r !(2)由(1)知 f (x ) 1 ·e x-ln x . e 2 因为 f ′(x )=e x -2 1(0,+∞)上单调递增,又 f ′(1)<0,f ′(2)>0,- 在x= + 2 20 0 0所以 f ′(x )=0 在(0,+∞)上有唯一实根 x 0,且 x 0∈(1,2). 当 x ∈(0,x 0)时,f ′(x )<0,当 x ∈(x 0,+∞)时,f ′(x )>0, 从而当 x =x 0 时,f (x )取极小值,也是最小值.由 f ′(x )=0,得 e x 0-2 1x -2=-ln x .0 = , 则 0 0 x 0故 f (x )≥f (x )=e x 0-2-ln x 1 x -2>2 1 ·x 0-2=0,所以 f (x )>0. x 0 x 04、【2017 高考三卷】21.(12 分)已知函数 f (x ) =x ﹣1﹣a ln x .(1)若 f (x ) ≥ 0 ,求 a 的值;(2)设 m 为整数,且对于任意正整数 n ,(1+ 1) ( 1+ 1) (1+ 2221) ﹤m ,求 m 的最小值. 2n 21.解:(1) f ( x ) 的定义域为(0,+∞) .f ⎛ 1 ⎫1①若a ≤ 0 ,因为 ⎪ =- +a ln 2<0,所以不满足题意;⎝ ⎭ ②若a >0,由 f ' ( x ) = 1- a = x - a知,当x ∈(0,a ) 时, f ' ( x )<0 ;当 x ∈(a ,+∞) 时, f ' ( x )>0 ,所以 f ( x ) 在(0,a ) 单调递减,x x在(a ,+∞) 单调递增,故 x=a 是 f ( x ) 在 x ∈(0,+∞) 的唯一最小值点. 由于 f (1) = 0 ,所以当且仅当 a =1 时, f ( x ) ≥ 0.故 a =1(2)由(1)知当 x ∈(1,+∞) 时, x -1- ln x >0令 x =1+ 1 得ln ⎛1+ 1 ⎫< 1,从而 2n 2n ⎪ 2n ⎝⎭ln ⎛1+ 1 ⎫+ln ⎛1+ 1 ⎫+⋅⋅⋅+ln ⎛1+ 1 ⎫<1 + 1 +⋅⋅⋅+ 1 =1-1<12 ⎪ 22 ⎪ 2n ⎪ 2 22 2n 2n ⎝ ⎭ ⎝ ⎭ ⎝ ⎭故⎛1+ 1 ⎫⎛1+ 1 ⎫ ⋅⋅⋅⎛1+ 1 ⎫<e2 ⎪ 22 ⎪ 2n⎪ ⎝ ⎭⎝ ⎭ ⎝ ⎭而⎛1+ 1 ⎫⎛1+ 1 ⎫⎛1+ 1 ⎫>2 ,所以 m 的最小值为 3. 2 ⎪ 22 ⎪ 23 ⎪ ⎝⎭⎝ ⎭⎝ ⎭21.(12 分)已知函数f (x) =ln x+ax2+(2a+1)x.(1)讨论f (x) 的单调性;(2)当 a﹤0 时,证明 f (x) ≤-34a- 2 .【答案】(1)当a ≥ 0 时, f (x) 在(0,+∞) 单调递增;当 a < 0 时,则 f (x) 在(0,-1) 单调递增,在(-2a1,+∞) 单调递减;(2)详见解析2a题型四利用导数研究恒成立问题题型概览:已知不等式恒成立求参数取值范围,构造函数,直接把问题转化为函数的最值问题;若参数不便于分离,或分离以后不便于求解,则考虑直接构造函数法,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围.,对∀ = 0<x < ;由E rr o r !得 x > .,则 ln x1 2 1 2已知函数 f (x ) 1ln x -mx ,g (x )=x a(a >0).= - 2 x(1) 求函数 f (x )的单调区间; (2) 若 m =1x ,x ∈[2,2e 2]都有 g (x )≥f (x )成立,求实数 a 的取值范围. 2e 2[审题程序]第一步:利用导数判断 f (x )的单调性,对 m 分类讨论;第二步:对不等式进行等价转化,将 g (x 1)≥f (x 2)转化为 g (x )min ≥f (x )max ; 第三步:求函数的导数并判断其单调性进而求极值(最值); 第四步:确定结果.[规范解答] (1)f (x ) 1ln x -mx ,x >0,所以f ′(x ) 1m ,= = - 2 2x当 m ≤0 时,f ′(x )>0,f (x )在(0,+∞)上单调递增.当 m >0 时,由 f ′(0)=0 得 x 1 ;由E rr o r !得 1 12m 2m 2m 综上所述,当 m ≤0 时,f ′(x )的单调递增区间为(0,+∞);当 m >0 时,f (x )的单调递增区间为(0,1),单调递减区间为( 1,+∞).2m 2m(2)若 m =1f (x )=1 - 1x . 2e 2 2 2e 2对∀x 1,x 2∈[2,2e 2]都有 g (x 1)≥f (x 2)成立, 等价于对∀x ∈[2,2e 2]都有 g (x )min ≥f (x )max ,由(1)知在[2,2e 2]上 f (x )的最大值为 f (e 2) 1= , 2+g ′(x )=1 a >0(a >0),x ∈[2,2e 2],函数 g (x )在[2,2e 2]上是增函数,g (x ) =g (2)=2 a2 a 1 a ≤3,min - , 由 - ≥ , 得 x2 又 a >0,所以 a ∈(0,3],所以实数 a 的取值范围为(0,3].2 2 2[解题反思] 本例(1)的解答中要注意 f (x )的定义域,(2)中问题的关键在于准确转化为两个函数 f (x )、g (x )的最值问题.本题中,∀x 1,x 2 有 g (x 1)≥f (x 2)⇔g (x )min ≥f (x )max .若改为:∃x 1,∀x 2 都有 g (x 1)≥f (x 2),则有 g (x )max ≥f (x )max .若改为:∀x 1,∃x 2 都有 g (x 1)≥g (x 2),则有 g (x )min ≥f (x )min 要仔细体会,转化准确.[答题模板] 解决这类问题的答题模板如下:[题型专练]4.已知 f (x )=x ln x ,g (x )=-x 2+ax -3.(1) 对一切 x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数 a 的取值范围;(2)证明:对一切 x ∈(0,+∞),ln x > 1 e x 2- 恒成立.e x[解] (1)由题意知 2x ln x ≥-x 2+ax -3 对一切 x ∈(0,+∞)恒成立, 则 a ≤2ln x +x 3,x 设 h (x )=2ln x +x +3,(x >0) x+e= - (x则 h ′(x ) (x +3)(x -1),=x 2①当 x ∈(0,1)时,h ′(x )<0,h (x )单调递减,②当 x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,所以 h (x )min =h (1)=4,对一切 x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以 a ≤h (x )min =4.即实数 a 的取值范围是(-∞,4].(2) 证明:问题等价于证明 x ln x > x -2∈(0,+∞)).e x e 又f (x )=x ln x ,f ′(x )=ln x +1,当 x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当 x ∈(1 )时,f ′(x )>0,f (x )单调递增,所以 f (x ) =f (1)1.,+∞emin =- e e设 m (x ) x 2∈(0,+∞)),e x则 m ′(x ) e1-x ,=易知 m (x ) e x=m (1) 1max =- ,e从而对一切 x ∈(0,+∞),ln x > 1 e x 2- 恒成立.e x②当 x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,所以 h (x )min =h (1)=4,对一切 x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以 a ≤h (x )min =4.即实数 a 的取值范围是(-∞,4].题型五:二阶导主要用于求函数的取值范围23.(12 分)已知函数 f (x )=(x+1)lnx ﹣a (x ﹣1).(x(I)当a=4 时,求曲线 y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a 的取值范围.【解答】解:(I)当a=4 时,f(x)=(x+1)lnx﹣4(x﹣1). f(1)=0,即点为(1,0),函数的导数f′(x)=lnx+(x+1)•﹣4,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率 k=f′(1)=﹣2,则曲线 y=f(x)在(1,0)处的切线方程为 y=﹣2(x﹣1)=﹣2x+2;(II)∵f(x)=(x+1)lnx﹣a(x﹣1),∴f′(x)=1++lnx﹣a,∴f″(x)=,∵x>1,∴f″(x)>0,∴f′(x)在(1,+∞)上单调递增,∴f′(x)>f′(1)=2﹣a.①a≤2,f′(x)>f′(1)≥0,∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;②a>2,存在 x0∈(1,+∞),f′(x0)=0,函数 f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,由 f(1)=0,可得存在 x0∈(1,+∞),f(x0)<0,不合题意.综上所述,a≤2.23.(12 分)已知函数f(x)=(x+1)lnx﹣a(x﹣1).(I)当a=4 时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a 的取值范围.【解答】解:(I)当a=4 时,f(x)=(x+1)lnx﹣4(x﹣1).f(1)=0,即点为(1,0),函数的导数f′(x)=lnx+(x+1)•﹣4,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′(1)=﹣2,则曲线y=f(x)在(1,0)处的切线方程为y=﹣2(x﹣1)=﹣2x+2;(II)∵f(x)=(x+1)lnx﹣a(x﹣1),∴f′(x)=1++lnx﹣a,∴f″(x)= ,∵x>1,∴f″(x)>0,∴f′(x)在(1,+∞)上单调递增,∴f′(x)>f′(1)=2﹣a.①a≤2,f′(x)>f′(1)≥0,∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;②a>2,存在x0∈(1,+∞),f′(x0)=0,函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.综上所述,a≤2.题型六:求含参数求知范围此类问题一般分为两类:一、也可分离变量,构造函数,直接把问题转化为函数的最值问题.此法适用于方便分离参数并可求出函数最大值与最小值的情况,若题中涉及多个未知参量需分离出具有明确定义域的参量函数求出取值范围并进行消参,由多参数降为单参在求出参数取值范围。

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套)函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数$f(x)=x\ln(x+a+x^2)$为偶函数,则$a=$解析】由题知$y=\ln(x+a+x^2)$是奇函数,所以$\ln(x+a+x^2)+\ln(-x+a+x^2)=\ln(a+x-x)=\ln a$,解得$a=1$。

考点:函数的奇偶性。

2.(2018年2卷11)已知$$f(x)=\begin{cases}\frac{x+1}{x},x<0\\ax^2,x\geq0\end{cases}$$ 是定义域为$(-\infty,0)\cup[0,+\infty)$的奇函数,满足$f(\frac{1}{2})=1$。

若,$f'(-1)=-2$,则$a=$解:因为$f(x)$是奇函数,所以$f(-\frac{1}{2})=-1$,$f(0)=0$。

又因为$f'(-1)=-2$,所以$f'(-x)|_{x=1}=2$,$f'(0+)=0$,$f'(0-)=0$。

由此可得$$\begin{aligned}a&=\lim\limits_{x\to 0^+}\frac{f(x)-f(0)}{x-0}\\&=\lim\limits_{x\to 0^+}\frac{ax^2}{x}\\&=\lim\limits_{x\to0^+}ax\\&=\lim\limits_{x\to 0^-}ax\\&=-\frac{1}{2}\end{aligned}$$ 故选B。

3.(2016年2卷12)已知函数$f(x)(x\in R)$满足$f(-x)=2-f(x)$,若函数$y=\sum\limits_{i=1}^m(x_i+y_i)$的图像的交点为$(x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)$,则$\sum\limits_{i=1}^m(x_i+y_i)=( )$解析】由$f(x)$的奇偶性可得$f(0)=1$,又因为$f(x)$是偶函数,所以$f'(0)=0$。

导数复习题(含答案)

导数复习题(含答案)
所以由 ,解得 .
22.已知函数 ,若函数 的图象在 处的切线方程为 ,则 __________.
【答案】0
【解析】因为 ,所以由导数的几何意义可得切线的斜率 ,即 ,切线方程为 ,又 ,故 ,则 ,应填答案 。
23.若函数 的图象在点 处的切线斜率为 ,则函数 的极小值是__________.
【答案】
6.函数 的图象是()
A. B.
C. D.
【答案】A
【解析】由函数 ,则 ,所以函数 为奇函数,
图象关于原点对称,
又 时, ,
所以当 时, 单调递增,当 时, 单调递减,
综上,函数的图象大致为选项A,故选A.
7.已知函数 是函数 的导函数, ,对任意实数都有 ,设 则不等式 的解集为()
A. B. C. D.
4.设 、 分别是定义在 上的奇函数和偶函数,当 时, .且 .则不等式 的解集是()
A. B.
C. D.
【答案】A
【解析】因 .,即[f(x)g(x)]'>0
故f(x)g(x)在(﹣∞,0)上递增,
又∵f(x),g(x)分别是定义R上的奇函数和偶函数,
∴f(x)g(x)为奇函数,关于原点对称,所以f(x)g(x)在(0,+∞)上也是增函数.
【答案】B
【解析】∵

∵对任意实数都有
∴ ,即 在 上为单调减函数
又∵

∴不等式 等价于
∴不等式 的解集为
故选B
点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如 构造 , ,构造 , 构造 , 构造 等.
8.若函数 在定义域上单调递增,则实数 的取值范围为()

专题16 导数及其应用小题综合(学生卷)-十年(2015-2024)高考真题数学分项汇编(全国通用)

专题16 导数及其应用小题综合(学生卷)-十年(2015-2024)高考真题数学分项汇编(全国通用)

专题16导数及其应用小题综合考点十年考情(2015-2024)命题趋势考点1导数的基本计算及其应用(10年4考)2020·全国卷、2018·天津卷2016·天津卷、2015·天津卷1.掌握基本函数的导数求解,会导数的基本计算,会求切线方程,会公切线的拓展,切线内容是新高考的命题热点,要熟练掌握2.会利用导数判断函数的单调性及会求极值最值,会根据极值点拓展求参数及其他内容,极值点也是新高考的命题热点,要熟练掌握3.会用导数研究函数的零点和方程的根,会拓展函数零点的应用,会导数与函数性质的结合,该内容也是新高考的命题热点,要熟练掌握4.会构建函数利用导数判断函数单调性比较函数值大小关系,该内容也是新高考的命题热点,要熟练掌握考点2求切线方程及其应用(10年10考)2024·全国甲卷、2023·全国甲卷、2022·全国新Ⅱ卷2022·全国新Ⅰ卷、2021·全国甲卷、2021·全国新Ⅱ卷2021·全国新Ⅰ卷、2020·全国卷、2020·全国卷2020·全国卷、2019·江苏卷、2019·全国卷2019·天津卷、2019·全国卷、2019·全国卷2018·全国卷、2018·全国卷、2018·全国卷2018·全国卷、2017·全国卷、2016·全国卷2016·全国卷、2015·全国卷、2015·陕西卷2015·陕西卷考点3公切线问题(10年3考)2024·全国新Ⅰ卷、2016·全国卷、2015·全国卷考点4利用导数判断函数单调性及其应用(10年6考)2024·全国新Ⅰ卷、2023·全国新Ⅱ卷、2023·全国乙卷2019·北京卷、2017·山东卷、2016·全国卷2015·陕西卷、2015·福建卷、2015·全国卷考点5求极值与最值及其应用(10年5考)2024·上海卷、2023·全国新Ⅱ卷、2022·全国乙卷2022·全国甲卷、2021·全国新Ⅰ卷、2018·全国卷2018·江苏卷考点6利用导数研究函数的极值点及其应用(10年5考)2022·全国新Ⅰ卷、2022·全国乙卷、2021·全国乙卷、2017·全国卷、2016·四川卷5.要会导数及其性质的综合应用,加强复习考点7导数与函数的基本性质结合问题(10年6考)2024·全国新Ⅰ卷、2023·全国新Ⅰ卷、2022·全国新Ⅰ卷2021·全国新Ⅱ卷、2017·山东卷、2015·四川卷考点8利用导数研究函数的零点及其应用(10年6考)2024·全国新Ⅱ卷、2023·全国乙卷、2021·北京卷、2018·江苏卷、2017·全国卷、2015·陕西卷考点9利用导数研究方程的根及其应用(10年3考)2024·全国甲卷、2021·北京卷、2015·安徽卷2015·全国卷、2015·安徽卷考点10构建函数利用导数判断函数单调性比较函数值大小关系(10年3考)2022·全国甲卷、2022·全国新Ⅰ卷、2021·全国乙卷考点01导数的基本计算及其应用1.(2020·全国·高考真题)设函数e ()xf x x a=+.若(1)4e f '=,则a =.2.(2018·天津·高考真题)已知函数f (x )=exlnx ,()'f x 为f (x )的导函数,则()'1f 的值为.3.(2016·天津·高考真题)已知函数()(2+1)e ,()x f x x f x '=为()f x 的导函数,则(0)f '的值为.4.(2015·天津·高考真题)已知函数()()ln ,0,f x ax x x =∈+∞,其中a 为实数,()f x '为()f x 的导函数,若()13f '=,则a 的值为.考点02求切线方程及其应用1.(2024·全国甲卷·高考真题)设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在点()0,1处的切线与两坐标轴所围成的三角形的面积为()A .16B .13C .12D .232.(2023·全国甲卷·高考真题)曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为()A .e4y x =B .e 2y x =C .e e 44y x =+D .e 3e24y x =+3.(2022·全国新Ⅱ卷·高考真题)曲线ln ||y x =过坐标原点的两条切线的方程为,.4.(2022·全国新Ⅰ卷·高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是.5.(2021·全国甲卷·高考真题)曲线2x 1y x 2-=+在点()1,3--处的切线方程为.6.(2021·全国新Ⅱ卷·高考真题)已知函数12()1,0,0x f x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是.7.(2021·全国新Ⅰ卷·高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则()A .e b a <B .e a b <C .0e ba <<D .0e ab <<8.(2020·全国·高考真题)若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +129.(2020·全国·高考真题)函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为()A .21y x =--B .21y x =-+C .23y x =-D .21y x =+10.(2020·全国·高考真题)曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为.11.(2019·江苏·高考真题)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是.12.(2019·全国·高考真题)已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则A .,1a eb ==-B .,1a eb ==C .1,1a eb -==D .1,1a eb -==-13.(2019·天津·高考真题)曲线cos 2xy x =-在点()0,1处的切线方程为.14.(2019·全国·高考真题)曲线23()e x y x x =+在点(0,0)处的切线方程为.15.(2019·全国·高考真题)曲线y =2sin x +cos x 在点(π,–1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=16.(2018·全国·高考真题)设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为()A .2y x=-B .y x=-C .2y x=D .y x=17.(2018·全国·高考真题)曲线()1e xy ax =+在点()01,处的切线的斜率为2-,则=a .18.(2018·全国·高考真题)曲线2ln y x =在点()1,0处的切线方程为.19.(2018·全国·高考真题)曲线2ln(1)y x =+在点(0,0)处的切线方程为.20.(2017·全国·高考真题)曲线21y x x=+在点(1,2)处的切线方程为.21.(2016·全国·高考真题)已知()f x 为偶函数,当0x ≤时,1()e x f x x --=-,则曲线()y f x =在点(1,2)处的切线方程是.22.(2016·全国·高考真题)已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是.23.(2015·全国·高考真题)已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则=a .24.(2015·陕西·高考真题)设曲线x y e =在点(0,1)处的切线与曲线1(0)y x x=>上点P 处的切线垂直,则P 的坐标为.25.(2015·陕西·高考真题)函数x y xe =在其极值点处的切线方程为.考点03公切线问题1.(2024·全国新Ⅰ卷·高考真题)若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a .2.(2016·全国·高考真题)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b =.3.(2015·全国·高考真题)已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a=.考点04利用导数判断函数单调性及其应用1.(2024·全国新Ⅰ卷·高考真题)(多选)设函数2()(1)(4)f x x x =--,则()A .3x =是()f x 的极小值点B .当01x <<时,()2()f x f x <C .当12x <<时,4(21)0f x -<-<D .当10x -<<时,(2)()f x f x ->2.(2023·全国新Ⅱ卷·高考真题)已知函数()e ln xf x a x =-在区间()1,2上单调递增,则a 的最小值为().A .2eB .eC .1e -D .2e -3.(2023·全国乙卷·高考真题)设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是.4.(2019·北京·高考真题)设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =;若f (x )是R 上的增函数,则a 的取值范围是.5.(2017·山东·高考真题)若函数()e xf x (e=2.71828L ,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A .()2xf x -=B .()2f x x=C .()-3xf x =D .()cos f x x=6.(2016·全国·高考真题)若函数()1sin 2sin 3f x x x a x =-+在R 上单调递增,则a 的取值范围是A .[]1,1-B .11,3⎡⎤-⎢⎥⎣⎦C .11,33⎡⎤-⎢⎥⎣⎦D .11,3⎡⎤--⎢⎣⎦7.(2015·陕西·高考真题)设()sin f x x x =-,则()f x =A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数8.(2015·福建·高考真题)若定义在R 上的函数()f x 满足()01f =-,其导函数()f x '满足()1f x k '>>,则下列结论中一定错误的是()A .11f k k ⎛⎫<⎪⎝⎭B .111f k k ⎛⎫>⎪-⎝⎭C .1111f k k ⎛⎫<⎪--⎝⎭D .111k f k k ⎛⎫>⎪--⎝⎭9.(2015·全国·高考真题)设函数'()f x 是奇函数()f x (x R ∈)的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是A .(,1)(0,1)-∞-B .(1,0)(1,)-È+¥C .(,1)(1,0)-∞-- D .(0,1)(1,)⋃+∞考点05求极值与最值及其应用1.(2024·上海·高考真题)已知函数()f x 的定义域为R ,定义集合()()(){}0000,,,M x x x x f x f x ∞=∈∈-<R ,在使得[]1,1M =-的所有()f x 中,下列成立的是()A .存在()f x 是偶函数B .存在()f x 在2x =处取最大值C .存在()f x 是严格增函数D .存在()f x 在=1x -处取到极小值2.(2023·全国新Ⅱ卷·高考真题)若函数()()2ln 0b cf x a x a x x =++≠既有极大值也有极小值,则().A .0bc >B .0ab >C .280b ac +>D .0ac <3.(2022·全国乙卷·高考真题)函数()()cos 1sin 1f x x x x =+++在区间[]0,2π的最小值、最大值分别为()A .ππ22-,B .3ππ22-,C .ππ222-+,D .3ππ222-+,4.(2022·全国甲卷·高考真题)当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=()A .1-B .12-C .12D .15.(2021·全国新Ⅰ卷·高考真题)函数()212ln f x x x =--的最小值为.6.(2018·全国·高考真题)已知函数()2sin sin 2f x x x =+,则()f x 的最小值是.7.(2018·江苏·高考真题)若函数()()3221f x x ax a R =-+∈在()0,+∞内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为.考点06利用导数研究函数的极值点及其应用1.(2022·全国新Ⅰ卷·高考真题)(多选)已知函数3()1f x x x =-+,则()A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线2.(2022·全国乙卷·高考真题)已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是.3.(2021·全国乙卷·高考真题)设0a ≠,若a 为函数()()()2f x a x a x b =--的极大值点,则()A .a b<B .a b>C .2ab a <D .2ab a >4.(2017·全国·高考真题)若2x =-是函数21()(1)e x f x x ax -=+-的极值点,则()f x 的极小值为.A .1-B .32e --C .35e -D .15.(2016·四川·高考真题)已知a 为函数f (x )=x 3–12x 的极小值点,则a=A .–4B .–2C .4D .2考点07导数与函数的基本性质结合问题1.(2024·全国新Ⅰ卷·高考真题)(多选)设函数2()(1)(4)f x x x =--,则()A .3x =是()f x 的极小值点B .当01x <<时,()2()f x f x <C .当12x <<时,4(21)0f x -<-<D .当10x -<<时,(2)()f x f x ->2.(2023·全国新Ⅰ卷·高考真题)(多选)已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则().A .()00f =B .()10f =C .()f x 是偶函数D .0x =为()f x 的极小值点3.(2022·全国新Ⅰ卷·高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则()A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=4.(2021·全国新Ⅱ卷·高考真题)写出一个同时具有下列性质①②③的函数():f x .①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.5.(2017·山东·高考真题)若函数()x y e f x = 2.71828...e =(是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中所有具有M 性质的函数的序号为①=2xf x -()②=3xf x -()③3=f x x ()④2=2f x x +()6.(2015·四川·高考真题)已知函数f (x )=2x ,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设m =1212()()f x f x x x --,n =1212()()g x g x x x --,现有如下命题:①对于任意不相等的实数x 1,x 2,都有m >0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n >0;③对于任意的a ,存在不相等的实数x 1,x 2,使得m =n ;④对于任意的a ,存在不相等的实数x 1,x 2,使得m =-n.其中真命题有(写出所有真命题的序号).考点08利用导数研究函数的零点及其应用1.(2024·全国新Ⅱ卷·高考真题)(多选)设函数32()231f x x ax =-+,则()A .当1a >时,()f x 有三个零点B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心2.(2023·全国乙卷·高考真题)函数()32f x x ax =++存在3个零点,则a 的取值范围是()A .(),2-∞-B .(),3-∞-C .()4,1--D .()3,0-3.(2021·北京·高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论:①若0k =,()f x 恰有2个零点;②存在负数k ,使得()f x 恰有1个零点;③存在负数k ,使得()f x 恰有3个零点;④存在正数k ,使得()f x 恰有3个零点.其中所有正确结论的序号是.4.(2018·江苏·高考真题)若函数()()3221f x x ax a R =-+∈在()0,+∞内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为.5.(2017·全国·高考真题)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a A .12-B .13C .12D .16.(2015·陕西·高考真题)对二次函数2()f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是A .1-是()f x 的零点B .1是()f x 的极值点C .3是()f x 的极值D .点(2,8)在曲线()y f x =上考点09利用导数研究方程的根及其应用1.(2024·全国甲卷·高考真题)曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为.2.(2021·北京·高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论:①若0k =,()f x 恰有2个零点;②存在负数k ,使得()f x 恰有1个零点;③存在负数k ,使得()f x 恰有3个零点;④存在正数k ,使得()f x 恰有3个零点.其中所有正确结论的序号是.3.(2015·安徽·高考真题)函数()32f x ax bx cx d =+++的图象如图所示,则下列结论成立的是()A .0a >,0b <,0c >,0d >B .0a >,0b <,0c <,0d >C .0a <,0b <,0c >,0d >D .0a >,0b >,0c >,0d <4.(2015·全国·高考真题)设函数()(21)x f xe x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是()A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,2e 4⎡⎫-⎪⎢⎣⎭C .33,2e 4⎡⎫⎪⎢⎣⎭D .3,12e ⎡⎫⎪⎢⎣⎭5.(2015·安徽·高考真题)设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是.(写出所有正确条件的编号)①3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==.考点10构建函数利用导数判断函数单调性比较函数值大小关系1.(2022·全国甲卷·高考真题)已知3111,cos ,4sin 3244a b c ===,则()A .c b a>>B .b a c>>C .a b c >>D .a c b>>2.(2022·全国新Ⅰ卷·高考真题)设0.110.1e ,ln 0.99a b c ===-,则()A .a b c <<B .c b a <<C .c<a<bD .a c b<<3.(2021·全国乙卷·高考真题)设2ln1.01a =,ln1.02b =,1c =-.则()A .a b c<<B .b<c<aC .b a c<<D .c<a<b。

历年自主招生试题分类汇编—导数

历年自主招生试题分类汇编—导数

历年自主招生试题分类汇编——不等式5. ( 2014 年北约) 已知 xy1 且 x, y 都是负数 ,求 xy1的最值 .xy【解】由 x 0, y 0可知 , x y 1 | x y | 1 | x | | y | 1 ,所以 | xy | | x || y | (| x || y |)21 ,即 xy (0, 1] ,44 4令 t xy(0, 1] ,则易知函数 yt 1 在 (0,1] 上递减 ,所以其在 (0, 1] 上递减 ,4t4 于是 xy 1 有最小值41 17 ,.无最大值xy4 4解答二: 1(x) ( y)2 xy 得 0 xy1 ,而函数 f (t) t 1 在 (0,1) 上单一递4 t减,在 (1,) 单一递加, 故 f ( xy) f (1) ,即 xy1 17 ,当且仅当 x y1 时4 xy 42取等号.10. ( 2014 年北约) 已知 x 1, x 2 , ,x nR ,且 x 1x 2x n 1,求证: ( 2 x 1 )( 2 x 2 ) ( 2 x n ) ( 2 1)n .【证】 (一法 :数学概括法 )①当 n 1 时,左侧 2 x 12 12 1 右侧 ,不等式建立 ;②假定 nk( k 1,k N * ) 时 ,不等式 ( 2x 1)( 2x 2 ) ( 2x k ) ( 2 1)k 建立 .那么当n k 1时 ,则 x 1x 2x k x k1 ,k 1个正数不可以同时都大于 1,1 因为这也不可以同时都小于 1,所以存在两个数 ,此中一个不大于 1,另一个不小于 1,不如设 x k 1,0x k 11,进而 ( x k 1)(x k 1 1) 0x k x k 11 x k x k 1 ,所以( 2 x 1 ) ( 2 x 2) ( x2k ) ( x k 2 1)( 2 x 1 ) ( 2 x 2 ) [ 2k x2 ( x k 1x k ) k x 1]( 2 x 1 ) ( 2 x 2) ( x2k x k 1) ( 2 1 ) (k 2 1 ) ( 2 1k ) 1( 2 1 )此中推导上式时利用了x 1x 2 x k 1 (x k x k 1) 1 及 nk 时的假定 ,故 n k 1 时不等式也成立 .综上①②知 ,不等式对随意正整数n 都建立 .(二法 )左侧睁开得 ( 2 x 1 )( 2 x 2 ) ( 2x n )( 2)n( 2)n 1n( 2)n 2(( 2)n k(x ix i x j )x i 1xi 2x i k)x 1x2xni 11 i j n1 i 1 i 2i k n由均匀 不等式得11x i x ix iC n k(x i x ix i)CnkC n k(( x 1x 2k 1C n kk2x n ) Cn 1 ) Cnk1 i 1 i 2i k n121k1 i 1 i 2i k n故 ( 2 x 1 )( 2 x 2 ) ( 2 x n )n( n 11( n 22( n kkC n n( n2 ) 2 )C n 2 C)n2C)n,2即 1. )(三法 )由均匀 不等式有n 2n21nx knx k1n(n⋯⋯① ;n() n⋯⋯②)2 x k2 x kk 12 x kk 12 x kk 1k 11①+②得 n n2 ( x 1 x 2x n )n, 即 ( 2 x 1 )( 2 x 2 ) (2 x n ) ( 2 1)nn1建立 .(2 x k ) nk 11 n 22( 四 法 )由AM GM不 等 式 得 :()n ,n i1 x i2n( x i2)i 11 ( n x i )n1, 两 式 相 加 得 : 12 1, 故n i1 x i2nn( x i2)n( x i2)i 1i 1nn.(2 x i)(1 )2i 11.( 2011 年北 文) 02,求 : sintan .【分析】 不如 f ( x)x sin x , f (0)0 ,且当 0x, f ( x)1 cos x 0 .于是2f ( x) 在 0 x上 增.∴ f ( x)f (0) 0 .即有 xsin x .2同理可 g (x) tan x x 0 .g(0) 0 ,当 0 x, g ( x)110 .于是 g ( x) 在 0x上 增。

历年《高校自主招生考试》数学真题专题分类解析Word版含答案及解斩(共九大专题)

历年《高校自主招生考试》数学真题专题分类解析Word版含答案及解斩(共九大专题)

历年《高校自主招生考试》数学真题专题分类解析(共九大专题)目录:专题一:不等式 01~11页专题二:复数、平面向量 12~20页专题三:三角函数 21~27页专题四:创新与综合题 28~33页专题五:概率 34~43页专题六:数列与极限 44~55页专题七:解析几何 56~74页专题八:平面几何 75~83页专题九:排列、组合与二项式定理 84~88页历年《高校自主招生考试》数学真题分类解析专题一:不等式一、选择题。

1.(复旦大学)若实数x满足对任意实数a>0,均有x2<1+a,则x的取值范围是( )A.(-1,1)B.[-1,1]C.(-,)D.不能确定【答案】B【解析】对任意实数a>0,函数f(a)=1+a的值域是(1,+∞),因此只要x2≤1即可.由x2≤1,解得x∈[-1,1].2.(复旦大学)已知点A(-2,0),B(1,0),C(0,1),如果直线y=kx将△ABC分割为两个部分,则当k= 时,这两个部分的面积之积最大. ( )A.-B.-C.-D.-【答案】A【解析】3.(复旦大学)将同时满足不等式x-ky-2≤0(k>0),2x+3y-6≥0,x+6y-10≤0的点(x,y)组成的集合D称为可行域,将函数z=称为目标函数,所谓规划问题就是求解可行域内的点(x,y),使目标函数达到在可行域内的最小值.如果这个规划问题有无穷多个解,则( ) A.k≥1 B.k≤2 C.k=2 D.k=1【答案】C【解析】可行域如图中阴影部分所示,目标函数z=的几何意义是可行域内的点与点(0,-1)连线的斜率,如果要使其取得最小值的点有无穷多个,则直线x-ky-2=0必过点(0,-1),即k=2.选C. 在解含有参数的平面区域问题时要注意含有参数的直线系的特点,本题的突破点是直线系x-ky-2=0过定点(2,0).4.(复旦大学)设n是一个正整数,则函数y=x+在正实半轴上的最小值是( )A. B. C. D.【答案】C【解析】题中函数为非常规函数,可利用导数求其最值.因为y=x+=x+x-n,所以y'=1-x-n-1=1-,令y'=0得x=1,且函数y在(0,1)上递减,在(1,+∞)上递增,故函数y在正实半轴上的最小值为1+=.5.(复旦大学)若对一切实数x,都有|x-5|+|x-7|>a,则实数a的取值范围是( )A.a<12B.a<7C.a<5D.a<2【答案】D【解析】可先求出函数y=|x-5|+|x-7|的最小值,然后根据不等式恒成立的条件求得a的取值范围.由于|x-5|+|x-7|≥|5-7|=2,即函数y=|x-5|+|x-7|的最小值等于2,所以要使|x-5|+|x-7|>a恒成立,应有a<2.6.(2011年清华大学等七校联考)已知向量a=(0,1),b=(-,-),c=(,-),xa+yb+zc=(1,1),则x2+y2+z2的最小值为( )A.1B.C.D.2【答案】B 【解析】方法二∵xa+yb+zc=(1,1),∴-y+z=1,x-y-z=1,∴-y+z=,y+z=2x-2,∴z=+x-1,y=-+x-1,∴x2+(-+x-1)2+(+x-1)2=3x2-2(+1)x+(+1)2+2(-1)x+(-1)2=3x2-4x++2=3(x2-x+)++2-=3(x-)2+≥,当且仅当x=,z=,y=时等号成立.二、填空题。

导数(学生版)—2024年高考真题数学试题分类汇编

导数(学生版)—2024年高考真题数学试题分类汇编

2024年高考数学真题分类汇编--导数一、选择题:在每小题给出的四个选项中,只有一个选项是正确的.1(新课标II卷)设函数f(x)=(x+a)ln(x+b),若f(x)≥0,则a2+b2的最小值为()A.18B.14C.12D.12(甲卷理科)设函数f x =e x+2sin x1+x2,则曲线y=f x 在0,1处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.23二、选择题:在每小题给出的选项中,有多项符合题目要求.3(新课标II卷). 设函数f(x)=2x3-3ax2+1,则()A.当a>1时,f(x)有三个零点B.当a<0时,x=0是f(x)的极大值点C.存在a,b,使得x=b为曲线y=f(x)的对称轴D.存在a,使得点1,f1为曲线y=f(x)的对称中心三、填空题:4(新课标I卷)若曲线y=e x+x在点0,1处的切线也是曲线y=ln(x+1)+a的切线,则a= .5曲线y=x3-3x与y=-x-12+a在0,+∞上有两个不同的交点,则a的取值范围为.四、解答题:6(新课标I卷)已知函数f(x)=lnx2-x+ax+b(x-1)3(1)若b=0,且f (x)≥0,求a的最小值;(2)证明:曲线y=f(x)是中心对称图形;(3)若f(x)>-2当且仅当1<x<2,求b的取值范围.7(新课标II卷). 已知函数f(x)=e x-ax-a3.(1)当a=1时,求曲线y=f(x)在点1,f(1)处的切线方程;(2)若f(x)有极小值,且极小值小于0,求a的取值范围.8(甲卷理科)已知函数f x =1-ax-x.ln1+x(1)当a=-2时,求f x 的极值;(2)当x≥0时,f x ≥0恒成立,求a的取值范围.9已知函数f x =a x-1-ln x+1.(1)求f x 的单调区间;(2)若a≤2时,证明:当x>1时,f x <e x-1恒成立.10(北京卷)已知f x =x+k ln1+x处切线为l.在t,f tt>0(1)若切线l的斜率k=-1,求f x 单调区间;(2)证明:切线l不经过0,0;(3)已知k=1,A t,f t,其中t>0,切线l与y轴交于点B时.当2S△ACO=15S△ABO,,O0,0,C0,f t符合条件的A的个数为?(参考数据:1.09<ln3<1.10,1.60<ln5<1.61,1.94<ln7<1.95)11设函数f x =x ln x .(1)求f x图象上点1,f 1 处切线方程;(2)若f x ≥a x -x 在x ∈0,+∞ 时恒成立,求a 的取值范围;(3)若x 1,x 2∈0,1 ,证明f x 1 -f x 2 ≤x 1-x 2 12.12(上海卷)对于一个函数f x 和一个点M a ,b ,令s x =x -a 2+f x -b 2,若P x 0,f x 0 是s x 取到最小值的点,则称点P 是M 在f x 的 “最近点”.(1)对于f x =1xx >0 ,求证:对于点M 0,0 ,存在点P ,使得点P 是M 在f x 的 “最近点”;(2)对于f x =e x ,M 1,0 ,请判断是否存在一个点P ,它是M 在f x 的 “最近点”,且直线MP 与y =f x 在点P 处的切线垂直;(3)已知y =f x 在定义域R 上存在导函数f x ,且函数g x 在定义域R 上恒正. 设点M 1t -1,f t -g t ,M 2t +1,f t +g t ,若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的 “最近点”,试判断f x 的单调性.。

2020年四川单招数学导数大题练习

2020年四川单招数学导数大题练习

试卷4.10一、单选题1.若lg 5,lg 7a b ==,用a ,b 表示7log 5=()A .+a bB .-a bC .b aD .ab2.在长方形ABCD 中,2AB =,1AD =,点E 为BC 的中点,点F 为CD 的中点,则AE BF ⋅= ()A .1-B .32-C .2-D .52-3.22sin 25cos 256sin 75cos 75︒+︒-︒︒=()A .12-B .0C .12D .524.函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值是A .1-B.2-C .22D .05.班主任要从甲、乙、丙、丁、戊5个人中随机抽取3个人参加活动,则甲、乙同时被抽到的概率为()A .110B .15C .310D .256.已知32121=0.3log 22a b c -⎛⎫== ⎪⎝⎭,,,则a ,b ,c 的大小关系()A .a b c >>B .a c b >>C .c b a >>D .b a c >>7.已知,(0,)16∈+∞=,x y xy ,若x y +的最小值为()A .4B .8C .16D .328.函数()sin 2f x x x π⎛⎫=+ ⎪⎝⎭的导函数在[,]-ππ上的图象大致是()A .B .C.D .9.在平面直角坐标系xOy 中,椭圆2221()43x y m R m +=∈+的离心率的取值范围为()A .10,2⎛⎤ ⎥⎝⎦B .,12⎛⎫ ⎪ ⎪⎝⎭C .1,12⎡⎫⎪⎢⎣⎭D .11,32⎛⎤⎥⎝⎦二、填空题10.已知复数()()22563m m m m i -++-是纯虚数,则实数m 为__________.11.在△ABC 中,已知C =120°,sinB =2sinA ,且△ABC 的面积为AB 的长为________.三、解答题12.已知函数32()1f x ax bx x =+++,当1x =时,函数()f x 有极值1.(1)求函数()f x 的解析式;(2)若关于x 的方程()0f x m -=有一个实数根,求实数m 的取值范围.13.设函数()ln f x x ax =-,⑴当2a =时,求()f x 在点()()1,1f 处的切线方程;⑵求()f x 的单调区间.14.设函数()22ln f x x x a x =-+.(Ⅰ)当4a =-时,求()f x 的极值;(Ⅱ)当12a >时,判断()f x 的单调性.15.已知函数()2ln f x x ax x =+-,a R ∈.(1)若1a =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若函数()f x 在[1,3]上是减函数,求实数a 的取值范围.16.已知()ln f x x =-.(1)求()f x 的单调区间;(2)若存在x 使()f x m <成立,求实数m 的取值范围.。

导数专项训练及答案

导数专项训练及答案

导数专项训练 例题讲解【1】导数的几何意义及切线方程1.已知函数()a f x x =在1x =处的导数为2-,则实数a 的值是________.2. 曲线y =3x -x 3上过点A (2,-2)的切线方程为___________________.3. 曲线xy 1=和2x y =在它们的交点处的两条切线与x 轴所围成的三角形的面积是 . 4.若直线y =kx -3与曲线y =2ln x 相切,则实数k =_______.5.已知直线2+=x y 与曲线()a x y +=ln 相切,则a 的值为 _______. 6. 等比数列{}n a 中,120121,9a a ==,函数122012()()()()2f x x x a x a x a =---+,则曲线()y f x =在点(0,(0))f 处的切线方程为_____________.7.若点P 是曲线y=x 2-ln x 上的任意一点,则点P 到直线y=x-2的最小距离为________. 8. 若点P 、Q 分别在函数y =e x 和函数 y =ln x 的图象上,则P 、Q 两点间的距离的最小值是_____. 9. 已知存在实数a ,满足对任意的实数b ,直线y x b =-+都不是曲线33y x ax =-的切线,则实数a 的取值范围是_________.10. 若关于x 的方程3x e x kx -=有四个实数根,则实数k 的取值范围是_____________. 11. 函数f (x)=ax 2+1(a >0),g (x )=x 3+bx .若曲线y =f (x )与曲线y =g(x )在它们的交点(1, c )处具有公 共切线,则c 的值是___________.【2】常见函数的导数及复合函数的导数1.f(x)=2 , 则f ’(2) =______. 2. 设曲线y =ln 1xx +在点(1, 0)处的切线与直线x -ay +1=0垂直,则a =_______.3.函数333()(1)(2)(100)f x x x x =+++在1x =-处的导数值为___________.4. 已知函数f (x )在R 上满足f (x )=2f (2-x )-x 2+8x -8,则曲线y =f (x )在点(1, f (1))处的切线方程是____________.5. 若函数()1*()n f x x n N +=∈的图像与直线1x =交于点P ,且在点P 处的切线与x 轴交点的横坐标为n x ,则20131201322013320132012log log log log x x x x ++++的值为 .6. 设f 1(x )=cos x ,定义)(1x f n +为)(x f n 的导数,即)(' )(1x f x f n n =+,n ∈N *,若ABC ∆的内角A 满足1220130f A f A f A ()()()+++=,则sin A 的值是______.【3】导数与函数的单调性22x xe e -⎛⎫+ ⎪⎝⎭1. 函数21ln 2y x x =-的单调递减区间为______. 2. 已知函数()ln ()f x x a R =∈,若任意12[2,3]x x ∈、且12x x >,t =()2121()f x f x x x --,则实数t的取值范围____________.3. 已知函数f (x )=x 3-6x 2+9x +a 在x R ∈上有三个零点,则实数a 的取值范是 .4.设'()f x 和'()g x 分别是f (x )和()g x 的导函数,若'()'()0f x g x ≤在区间I 上恒成立,则称f (x )和g (x )在区间I 上单调性相反.若函数f(x)=3123x ax -与g (x )=x 2+2bx 在开区间(a , b )上单调性相反(a >0),则b -a 的最大值为 . 【4】导数与函数的极值、最值1. 已知函数322()3f x x mx nx m =+++在1x =-时有极值0,则m n += . 2. 已知函数()2(1)ln f x f x x '=-,则()f x 的极大值为 .3. 已知函数f (x )=x 4+ax 3+2x 2+b ,其中a , b R ∈.若函数f (x )仅在x =0处有极值,则a 的取值范围是______________.4. 设曲线(1)x y ax e =-在点()10,y x A 处的切线为1l ,曲线()x e x y --=1在点02(,)B x y 处的切 线为2l .若存在030,2x ⎡⎤∈⎢⎥⎣⎦,使得12l l ⊥,则实数a 的取值范围为____________.5.已知函数f (x )=e x -1, g(x )= -x 2+4x -3若有f (a )=g (b ),则b 的取值范围为______.6. '()f x 是函数3221()(1)3f x x mx m x n =-+-+的导函数,若函数['()]y f f x =在区间[m ,m+1]上单调递减,则实数m 的取值范围是__________. 【解答题】1. 某企业拟建造如上图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左 右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r ≥.假设该容器的建造 费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米 建造费用为()3c c >.设该容器的建造费用为y 千元. (1)写出y 关于r 的函数表达式,并求该函数的定义域; (2)求该容器的建造费用最小时的r2. 已知函数f (x )=2ax -(a +2)x +ln x .(1)当a =1时,求曲线y = f(x )在点(1, f(1))处的切线方程;(2)当a >0时,若f (x )在区间[1,e )上的最小值为-2,求a 的取值范围.3. 已知函数x a x x f ln )()(-=,(0≥a ).(1)当0=a 时,若直线m x y +=2与函数)(x f y =的图象相切,求m 的值; (2)若)(x f 在[]2,1上是单调减函数,求a 的最小值;(3)当[]e x 2,1∈时,e x f ≤)(恒成立,求实数a 的取值范围.(e 为自然对数的底).4.已知函数2()ln ,af x x a x=+∈R . (1)若函数()f x 在[2,)+∞上是增函数,求实数a 的取值范围; (2)若函数()f x 在[1,]e 上的最小值为3,求实数a 的值.5.设函数2()1x f x e x ax =---(1)若0a =,求()f x 的单调区间; (2)若当0x ≥时()0f x ≥,求a 的取值范围导数专项练习答案 【1】导数的几何意义及切线方程1. 2;2. y =-2或9x +y -16=03.34; 4. 2e ; 5. 3; 6.201232y x =+; 7. 2; 8. 2; 9. 13a < 10. ()0,3e -11. 4【2】常见函数的导数及复合函数的导数 1. e -1e; 2. 12- 3. 3⨯99! 4. 2x -y -1=0; 5. -1 ; 6. 1;【3】导数与函数的单调性1. (0, 1);2. 11,32⎛⎫⎪⎝⎭; 3. (-4, 0); 4. 12【4】导数与函数的极值、最值1. 11;2. 2ln2-2;3. 88,33⎡⎤-⎢⎥⎣⎦; 4. 312a ≤≤; 5. []1,3 ; 6.0m ≥[5] 解答题 1. 答案解:(1)由题意可知()23480233r l r l r πππ+=≥,即2804233l r r r =-≥,则02r <≤. 容器的建造费用为2228042346433y rl r c r r r c rππππ⎛⎫=⨯+⨯=-+ ⎪⎝⎭, 即2216084y r r c rπππ=-+,定义域为{}02x r <≤. (2)2160168y r rc r πππ'=--+,令0y '=,得3202r c =-.令32022r c ==-,得92c =,①当932c <≤时,32022c ≥-,当02r <≤时,0y '<,函数单调递减,∴当2r =时y有最小值;②当92c >时,32022c <-,当32002r c <<-时,0y '<;当3202r c >-时,0y '>, ∴当3202r c =-时y 有最小值. 综上所述,当932c <≤时,建造费用最小时2r =;当92c >时,建造费用最小时3202r c =-2. 答案()()()()()()()22(2)2ln 0+22110220......5f x ax a x x ax a a f x ax a x x x =-++∞-+-'>=-++=>函数的定义域是,,当时,分()()()()()22212110=0,11..............................................................62ax a x ax f x f x x xx x a -+---''=====⋯⋯⋯令,即所以或分3. 解答4.若21a <,则20x a ->,即()0f x '>在[1,]e 上恒成立,此时()f x 在[1,]e 上是增函数.5. 解答导数专题复习(配详细答案)体型一:关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。

北京考生专用 导数大题(含答案)

北京考生专用  导数大题(含答案)

(18)(本小题满分13分)已知函数22()3x af x x a+=+(0a ≠,a ∈R ). (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当1a =时,若对任意12,[3,)x x ∈-+∞,有12()()f x f x m -≤成立,求实数m 的最小值.(18)(本小题满分13分) 解:222()(3)'()(3)x a x a f x x a --+=+.令'()0f x =,解得x a =或3x a =-. ……………………………………2分 (Ⅰ)当0a >时,'()f x ,()f x 随着x 的变化如下表函数()f x 的单调递增区间是(3,)a a -,函数()f x 的单调递减区间是(,3)a -∞-,(,)a +∞. ……………………………………4分当0a <时,'()f x ,()f x 随着x 的变化如下表函数()f x 的单调递增区间是(,3)a a -,函数()f x 的单调递减区间是(,)a -∞,(3,)a -+∞. ……………………………………6分(Ⅱ)当1a =时,由(Ⅰ)得()f x 是(3,1)-上的增函数,是(1,)+∞上的减函数.又当1x >时,21()03x f x x +=>+. ……………………………………8分 所以 ()f x 在[3,)-+∞上的最小值为1(3)6f -=-,最大值为1(1)2f =.……………………………………10分 所以 对任意12,[3,)x x ∈-+∞,122()()(1)(3)3f x f x f f -≤--=. 所以 对任意12,[3,)x x ∈-+∞,使12()()f x f x m -≤恒成立的实数m 的最小值为23. ……………………………………13分 18.(本小题满分14分)已知函数2()2ln f x x a x =+.(Ⅰ)若函数()f x 的图象在(2,(2))f 处的切线斜率为1,求实数a 的值; (Ⅱ)求函数()f x 的单调区间; (Ⅲ)若函数2()()g x f x x=+在[1,2]上是减函数,求实数a 的取值范围. 18.(本小题满分14分)解:(Ⅰ)2222'()2a x a f x x x x+=+= …………1分 由已知'(2)1f =,解得3a =-. …………3分(II )函数()f x 的定义域为(0,)+∞.(1)当0a ≥时, '()0f x >,()f x 的单调递增区间为(0,)+∞;……5分(2)当0a <时'()f x =当x 变化时,'(),()f x f x 的变化情况如下:由上表可知,函数()f x 的单调递减区间是;单调递增区间是)+∞. …………8分 (II )由22()2ln g x x a x x =++得222'()2ag x x x x=-++,…………9分 由已知函数()g x 为[1,2]上的单调减函数,则'()0g x ≤在[1,2]上恒成立,即22220ax x x -++≤在[1,2]上恒成立. 即21a x x≤-在[1,2]上恒成立. …………11分令21()h x x x =-,在[1,2]上2211'()2(2)0h x x x x x=--=-+<,所以()h x 在[1,2]为减函数. min 7()(2)2h x h ==-,所以72a ≤-. …………14分(18)(本小题共13分)已知1=x 是函数()(2)e xf x ax =-的一个极值点. (Ⅰ)求实数a 的值;(Ⅱ)当1x ,[]20,2x ∈时,证明:12()()e f x f x -≤.(Ⅰ)解:'()(2)e xf x ax a =+-, …………2分由已知得)1('=f ,解得1=a . …………4分当1a =时,()(2)e xf x x =-,在1x =处取得极小值.所以1a =. …………5分 (Ⅱ)证明:由(Ⅰ)知,()(2)e xf x x =-,'()(1)e xf x x =-.当[]1,0∈x 时,0)1()('≤-=x e x x f ,)(x f 在区间[]0,1单调递减;当(]1,2x ∈时,'()(1)0xf x x e =->,)(x f 在区间(]1,2单调递增. …………8分所以在区间[]0,2上,()f x 的最小值为(1)e f =-, 又(0)2f =-,(2)0f =, 所以在区间[]0,2上,()f x 的最大值为(2)0f =. …………12分对于[]12,0,2x x ∈,有12max min ()()()()f x f x f x f x -≤-.所以12()()0(e)e f x f x -≤--=. …………13分18.(本小题共14分)已知函数2()(1)2ln ,f x a x x =-+()2g x ax =,其中1a > (Ⅰ)求曲线()y f x =在(1,(1))f 处的切线方程; (Ⅱ)设函数()()()h x f x g x =-,求()h x 的单调区间. 18.(本小题共14分)解:(Ⅰ)当1x =时,(1)1f a =-,'2()2(1)f x a x x=-+∴'(1)2f a =,∴(1)2(1)y a a x --=-所求切线方程为210ax y a ---=__________5分 (Ⅱ)2()()()(1)22ln h x f x g x a x ax x =-=--+∴[]'2(1)(1)12()2(1)2x a x h x a x a x x---=--+=,__________6分 根1211,1x x a ==-,(1a >)__________8分 当111a >-,即12a <<时, 在()10,1,(,)1a +∞-上'()0f x >,在1(1,)1a -上'()0f x < ∴()f x 在()10,1,(,)1a +∞-上单调递增,在1(1,)1a -上单调递减;__________10分当111a ≤-,即2a ≥时, 在1(0,),(1,)1a +∞-上'()0f x >,在1(,1)1a -上'()0f x <∴()f x 在()10,1,(,)1a +∞-上单调递增,在1(1,)1a -上单调递减. __________14分18.(本小题满分14分)设函数22()ln (0)a f x a x a x=+≠. (Ⅰ)已知曲线()y f x =在点(1,(1))f 处的切线l 的斜率为23a -,求实数a 的值; (Ⅱ)讨论函数()f x 的单调性;(Ⅲ)在(Ⅰ)的条件下,求证:对于定义域内的任意一个x ,都有()3f x x ≥-. (18)(本小题满分14分)解:(Ⅰ)()f x 的定义域为{|0}x x >, . ………1分222()a a f x x x'=-. ………2分根据题意,(1)23f a '=-, 所以2223a a a -=-,即2210a a -+=,解得1a =. .………4分(Ⅱ)2222(2)()a a a x a f x x x x -'=-=.(1)当0a <时,因为0x >,所以20x a ->,(2)0a x a -<,所以()0f x '<,函数()f x 在(0,)+∞上单调递减. ………6分 (2)当0a >时,若02x a <<,则(2)0a x a -<,()0f x '<,函数()f x 在(0,2)a 上单调递减; 若2x a >,则(2)0a x a ->,()0f x '>,函数()f x 在(2,)a +∞上单调递增. …8分 综上所述,当0a <时,函数()f x 在(0,)+∞上单调递减;当0a >时,函数()f x 在(0,2)a 上单调递减,在(2,)a +∞上单调递增. ………9分(Ⅲ)由(Ⅰ)可知2()ln f x x x=+. 设()()(3)g x f x x =--,即2()ln 3g x x x x=++-. 2222122(1)(2)()1(0)x x x x g x x x x x x+--+'=-+==>. ………10分 当x 变化时,()g x ',()g x 的变化情况如下表:1x =是()g x 在(0,)+∞上的唯一极值点,且是极小值点,从而也是()g x 的最小值点.可见()(1)0g x g ==最小值, .………13分 所以()0g x ≥,即()(3)0f x x --≥,所以对于定义域内的每一个x ,都有()3f x x ≥-.18. (本题满分14分)已知函数()2()1e x f x ax =-⋅,a ∈R .(Ⅰ)若函数()f x 在1x =时取得极值,求a 的值; (Ⅱ)当0a ≤时,求函数()f x 的单调区间. (18)(本小题满分14分)解:(Ⅰ)()2()21e x f x ax ax '=+-⋅.x ∈R ……………………2分 依题意得(1)(31)e =0f a '=-⋅,解得13a =. 经检验符合题意. ………4分 (Ⅱ)()2()21e x f x ax ax '=+-⋅,设2()21g x ax ax =+-,(1)当0a =时,()e xf x =-,()f x 在(),-∞+∞上为单调减函数. ……5分(2)当0a <时,方程2()21g x ax ax =+-=0的判别式为244a a ∆=+,令0∆=, 解得0a =(舍去)或1a =-.1°当1a =-时,22()21(1)0g x x x x =---=-+≤, 即()2()21e 0xf x ax ax '=+-⋅≤,且()f x '在1x =-两侧同号,仅在1x =-时等于0,则()f x 在(),-∞+∞上为单调减函数. ……………………7分 2°当10a -<<时,0∆<,则2()210g x ax ax =+-<恒成立,即()0f x '<恒成立,则()f x 在(),-∞+∞上为单调减函数. ……………9分 3°1a <-时,2440a a ∆=+>,令()0g x =, 方程2210ax ax +-=有两个不相等的实数根11x a =-+,21x a =--,作差可知11-->-+则当1x <-+时,()0g x <,()0f x '<,()f x 在(,1-∞-上为单调减函数;当11x a a -+<<--时,()0g x >,()0f x '>,()f x 在(11-+-上为单调增函数;当1x >-时,()0g x <,()0f x '<,()f x 在(1)--+∞上为单调减函数. ……………………………………………………………………13分综上所述,当10a -≤≤时,函数()f x 的单调减区间为(),-∞+∞;当1a <-时,函数()f x的单调减区间为(,1a -∞-+,(1)a --+∞,函数()f x 的单调增区间为(1,1a a-+--18.已知函数,)1()(23bx x b x x f ++-=R b ∈.(Ⅰ)若函数)(x f 在点())1,1(f 处的切线与直线03=-+y x 平行,求b 的值; (Ⅱ)在(Ⅰ)的条件下,求)(x f 在区间]3,0[上的最值.18.解:(Ⅰ)b x b x x f ++-=')1(23)(2∵函数)(x f 在点())1,1(f 处的切线与直线03=-+y x 平行 ∴()()11231-=++-='b b f ,解得2=b ………………4分(Ⅱ)由(Ⅰ)知x x x x f 23)(23+-=,263)(2+-='x x x f ,令0263)(2=+-='x x x f ,解得331,33121+=-=x x . ………………7分 在区间]3,0[上,x ,)(x f ',)(x f 的变化情况如下:………………11分 所以当=x 3时,6)(max =x f ;当331+=x 时,=min )(x f 932-. ………………13分(18)(本小题满分13分)已知函数211()ln (0)22f x a x x a a =-+∈≠且R . (Ⅰ)求()f x 的单调区间;(Ⅱ)是否存在实数a ,使得对任意的[)1,x ∈+∞,都有()0f x ≤?若存在,求a 的取值范围;若不存在,请说明理由.(18)(本小题满分13分)解:(Ⅰ)()f x 的定义域为(0,)+∞.2'()a x af x x x x-+=-=. ………………………………………2分当0a <时,在区间(0,)+∞上,'()0f x <.所以 ()f x 的单调递减区间是(0,)+∞. ………………………………………3分当0a >时,令'()0f x =得x =x =.函数()f x ,'()f x 随x 的变化如下:所以 ()f x 的单调递增区间是,单调递减区间是)+∞.………………………………………6分综上所述,当0a <时, ()f x 的单调递减区间是(0,)+∞;当0a >时,()f x 的单调递增区间是,单调递减区间是)+∞. (Ⅱ)由(Ⅰ)可知:当0a <时, ()f x 在[1,)+∞上单调递减.所以()f x 在[1,)+∞上的最大值为(1)0f =,即对任意的[1,)x ∈+∞,都有()0f x ≤. ………………………………………7分当0a >时,① 1≤,即01a <≤时,()f x 在[1,)+∞上单调递减.所以()f x 在[1,)+∞上的最大值为(1)0f =,即对任意的[1,)x ∈+∞,都有()0f x ≤. ………………………………………10分② 1>,即1a >时,()f x 在上单调递增,所以 (1)f f >.又 (1)0f =,所以 0f >,与对于任意的[1,)x ∈+∞,都有()0f x ≤矛盾.………………………………………12分综上所述,存在实数a 满足题意,此时a 的取值范围是(,0)(0,1]-∞.………………………………………13分18.(本小题满分13分)设a ∈R ,函数233)(x ax x f -=.(Ⅰ)若2=x 是函数)(x f y =的极值点,求实数a 的值;(Ⅱ)若函数()()xg x e f x =在]2,0[上是单调减函数,求实数a 的取值范围.18.(本小题满分13分)解:(Ⅰ)2()363(2)f x ax x x ax '=-=-.因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,所以1a =.经检验,当1a =时,2x =是函数()y f x =的极值点. 即1a =.---------------6分(Ⅱ)由题设,'322()(336)xg x e ax x ax x =-+-,又0xe >,所以,(0,2]x ∀∈,3223360ax x ax x -+-≤,这等价于,不等式2322363633x x x a x x x x ++≤=++对(0,2]x ∈恒成立. 令236()3x h x x x+=+((0,2]x ∈),则22'22223(46)3[(2)2]()0(3)(3)x x x h x x x x x ++++=-=-<++,---------------------------10分 所以()h x 在区间0,2](上是减函数,所以()h x 的最小值为6(2)5h =. ---------------12分 所以65a ≤.即实数a 的取值范围为6(,]5-∞.-----------------------------------13分18.(本小题共13分)已知函数321()13f x x ax =-+ ()a R ∈. (Ⅰ)若曲线y =f (x )在(1,f (1))处的切线与直线x +y +1=0平行,求a 的值; (Ⅱ)若a >0,函数y =f (x )在区间(a ,a 2-3)上存在极值,求a 的取值范围; (Ⅲ)若a >2,求证:函数y =f (x )在(0,2)上恰有一个零点. 18.解:(Ⅰ)2()2f x x ax '=-, ……………………1分(1)12f a '=-, ……………………2分因为曲线y =f (x )在(1,f (1))处的切线与直线x +y +1=0平行 所以121a -=-, ……………………3分所以1a =. ……………………4分(Ⅱ)令()0f x '=, ……………………5分即()(2)0f x x x a '=-=,所以x =或2x a =. ……………………6分因为a >0,所以0x =不在区间(a ,a 2-3)内,要使函数在区间(a ,a2-3)上存在极值,只需223a a a <<-. ……………………7分所以3a >. ……………………9分(Ⅲ)证明:令()0f x '=,所以 0x =或2x a =.因为a >2,所以2a >4, ……………………10分所以()0f x '<在(0,2)上恒成立,函数f (x )在(0,2)内单调递减. 又因为(0)10f =>,1112(2)03af -=<, ……………………11分 所以f (x )在(0,2)上恰有一个零点. ……………………13分18.(本题13分)已知函数f (x )=ln x -x 2. (I )求函数f (x )的单调递增区间;(II )求函数f (x )在(]0,a (a >0)上的最大值. 18. (Ⅰ)因为函数()2ln f x x x =-,0>x所以()12.f x x x'=- 令()0f x '>,所以211220.x x x x--=>所以02x <<所以函数()f x 的单调递增区间是⎪⎪⎭⎫⎝⎛22,0. ………………………… 5分 (Ⅱ) 由(Ⅰ)知函数在⎪⎪⎭⎫⎝⎛22,0为增函数, 同理可得函数()x f 在⎪⎪⎭⎫⎝⎛+∞,22为减函数. ………………………… 6分所以当02a <<时,函数()x f 在(]0,a 上单调递增, 所以函数()x f 的最大值为()2ln f a a a =-; ………………………… 9分当2a ≥时,函数()x f在0,2⎛ ⎝⎭上单调递增,在,2a ⎛⎫ ⎪ ⎪⎝⎭上单调递减, 所以函数()x f最大值为1.2f =-⎝⎭………………………… 12分综上所述,当0a <<时,函数()x f 的最大值为()2ln f a a a =-;当2a ≥时,函数()x f最大值为1ln .222f ⎛⎫=- ⎪ ⎪⎝⎭………………………… 13分18.(本小题满分13分)已知函数2221()1ax a f x x +-=+,其中a ∈R . (Ⅰ)当1a =时,求曲线()y f x =在原点处的切线方程; (Ⅱ)求)(x f 的单调区间.18.(本小题满分13分) (Ⅰ)解:当1a =时,22()1xf x x =+,22(1)(1)()2(1)x x f x x +-'=-+. ………………2分 由 (0)2f '=, 得曲线()y f x =在原点处的切线方程是20x y -=.…………4分 (Ⅱ)解:2()(1)()21x a ax f x x +-'=-+. ………………6分① 当0a =时,22()1xf x x '=+.所以()f x 在(0,)+∞单调递增,在(,0)-∞单调递减. ………………7分当0a ≠,21()()()21x a x a f x a x +-'=-+.② 当0a >时,令()0f x '=,得1x a =-,21x a =,()f x 与()f x '的情况如下:故)(x f 的单调减区间是(,)a -∞-,1(,)a +∞;单调增区间是1(,)a a-.………10分 ③ 当0a <时,()f x 与()f x '的情况如下:所以()f x 的单调增区间是1(,)a -∞;单调减区间是1(,)a a--,(,)a -+∞. ………………13分 综上,0a >时,()f x 在(,)a -∞-,1(,)a+∞单调递减;在1(,)a a-单调递增.0a =时,()f x 在(0,)+∞单调递增,在(,0)-∞单调递减;0a <时,()f x 在1(,)a-∞,(,)a -+∞单调递增;在1(,)a a-单调递减.19.(本小题满分14分)已知函数axx x x f -+=1ln )(,其中a 为常数,且+∈R a . (Ⅰ)若函数)(x f 在区间),1[+∞内调递增,求a 的取值范围; (Ⅱ)当0>a 时,求函数)(x f 在区间],1[e 上的最小值. 解: 19.(本小题满分13分)解:(Ⅰ))0(1)(2>-='x axax x f . ……………………………2分 令0)(='x f ,得ax 1=. ………………………………………………3分∴在]1,0(a 上0)(≤'x f ,在),1[+∞a上0)(≥'x f .∴)(x f 在]1,0(a 上单调递减,在),1[+∞a上单调递增. ……………………5分∵ 函数)(x f 在区间),1[+∞内调递增,∴11≤a.∵0>a ,∴1≥a . ∴所求实数a 的取值范围为),1[+∞……………………………………………7分 (Ⅱ)当1≥a 时,∵在),1(e 上0)(>'x f ,)(x f 在],1[e 上为增函数,∴0)1()(min ==f x f . ……………………………………………9分当11<<a e 时,在]1,0(a 上0)(≤'x f ,在),1[+∞a上0)(≥'x f )(x f 在]1,0(a上为减函数,在),1[+∞a 上为增函数.∴a a a f x f 111ln )1()(min -+==. ……………………………………11分当ea 10≤<,在),1(e 上0)(<'x f ,)(x f 在],1[e 上为减函数.∴aeee f x f -+==11)()(min . …………………………………………13分18.(本小题共13分) 设函数3221()23()3f x x ax a x a a R =-+-+∈. (Ⅰ)当1=a 时,求曲线)(x f y =在点())3(,3f 处的切线方程; (Ⅱ)求函数)(x f 的单调区间和极值;(Ⅲ)若对于任意的∈x (3,)a a ,都有()1f x a <+,求a 的取值范围. 18.(本小题共13分)解:(I )∵当1=a 时,13231)(23+-+-=x x x x f ,………………………1分 34)(2-+-='x x x f …………………………………2分当3=x 时,1)3(=f ,=')3(f 0 …………………………………3分 ∴曲线)(x f y =在点())3(,3f 处的切线方程为01=-y ………………………4分(II )22()4-3()(3)f x x ax a x a x a '=-+=--- ……………………………5分 0a =时,()0f x '≤,(,)-∞∞是函数的单调减区间;无极值;……………6分 0a >时,在区间(,),(3,)a a -∞∞上,()0f x '<; 在区间(,3)a a 上,()0f x '>, 因此(,),(3,)a a -∞∞是函数的单调减区间,(,3)a a 是函数的单调增区间,函数的极大值是(3)f a a =;函数的极小值是34()3f a a a =-;………………8分 0a <时,在区间(,3),(,)a a -∞∞上,()0f x '<; 在区间(3,)a a 上,()0f x '>,因此(,3),(,)a a -∞∞是函数的单调减区间,(3,)a a 是函数的单调增区间函数的极大值是34()3f a a a =-,函数的极小值是(3)f a a = ………………10分 (III) 根据(II )问的结论,(3,)x a a ∈时,34()()3f x f a a a <=-………………11分因此,不等式()1f x a <+在区间(3,)a a 上恒成立必须且只需:⎪⎩⎪⎨⎧<+≤-01343a a a a ,解之,得a ⎡⎫∈⎪⎢⎪⎣⎭ ……………………13分18.(本小题满分13分)已知函数ax xx x f ++=1ln )((a 为实数). (I )当0=a 时, 求)(x f 的最小值;(II )若)(x f 在),2[+∞上是单调函数,求a 的取值范围.18.(本小题满分13分)解:(Ⅰ) 由题意可知:0>x ……1分 当0=a 时21)(xx x f -=' …….2分 当10<<x 时,0)(<'x f 当1>x 时,0)(>'x f ……..4分 故1)1()(min ==f x f . …….5分(Ⅱ) 由222111)(x x ax a x x x f -+=+-='① 由题意可知0=a 时,21)(xx x f -=',在),2[+∞时,0)(>'x f 符合要求 …….7分 ② 当0<a 时,令1)(2-+=x ax x g 故此时)(x f 在),2[+∞上只能是单调递减0)2(≤'f 即04124≤-+a 解得41-≤a …….9分 当0>a 时,)(x f 在),2[+∞上只能是单调递增 0)2(≥'f 即,04124≥-+a 得41-≥a故0>a …….11分综上),0[]41,(+∞⋃--∞∈a …….13分18.(本小题满分14分)设函数3221()231,0 1.3f x x ax a x a =-+-+<< (I )求函数)(x f 的极大值;(II )若[]1,1x a a ∈-+时,恒有()a f x a '-≤≤成立(其中()f x '是函数()f x 的导函数),试确定实数a 的取值范围. 18.(本小题满分14分)解:(I )∵2234)(a ax x x f -+-=',且01a <<,…………………………………1分当0)(>'x f 时,得a x a 3<<;当0)(<'x f 时,得a x a x 3><或; ∴)(x f 的单调递增区间为(,3)a a ;)(x f 的单调递减区间为),(a -∞和),3(+∞a .…………………………………3分故当3x a =时,)(x f 有极大值,其极大值为()31f a =. …………………4分 (II )∵()()2222432f x x ax a x a a '=-+-=--+,当103a <<时,12a a ->, ∴()f x '在区间[]1,1a a -+内是单调递减.…………………………………………6分 ∴[]()[]()2max min 861,21f x f a a a f x f a a ''''==-+-==-()1-()1+.∵()a f x a '-≤≤,∴2861,21.a a a a a ⎧-+-≤⎨-≥-⎩此时,a ∈∅.…………………………………………………………………………9分 当113a ≤<时,[]()2max 2f x f a a ''==(). ∵()a f x a '-≤≤,∴22,21,861.a a a a a a a ⎧≤⎪-≥-⎨⎪-+-≥-⎩即01,1,3a a a ⎧⎪≤≤⎪⎪≥⎨≤≤ ……11分此时,17316a ≤≤.……………………………………………………………13分 综上可知,实数a的取值范围为13⎡⎢⎣⎦.…………………………………14分18.(本小题满分14分) 已知函数2()2ln f x x a x =+.(Ⅰ)若函数()f x 的图象在(2,(2))f 处的切线斜率为1,求实数a 的值;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若函数2()()g x f x x=+在[1,2]上是减函数,求实数a 的取值范围.16. (本小题满分13分)已知函数1)(23-++=bx ax x x f 在1=x 处有极值1-.(I )求实数b a ,的值;(II )求函数x ax x g ln )(+=的单调区间. 16. (本小题满分13分) 已知函数1)(23-++=bx ax x x f 在1=x 处有极值-1. (I )求实数b a ,的值;(II )求函数x ax x g ln )(+=的单调区间.解(I )求导,得 b ax x x f ++='23)(2 ……2分 由题意⎩⎨⎧='-=0)1(1)1(f f ,解得12=-=b a ,……6分 (II )函数x ax x g ln )(+=的定义域是}0|{>x x ,……9分 xx g 12)(+-='……11分解012>+-x 且}0|{>x x , 得210<<x , 所以函数)(x g 在区间)21,0(上单调递增;……12分解012<+-x 得21>x , 所以函数)(x g 在区间),21(+∞上单调递减。

初中数学导数题型汇编(含答案)--

初中数学导数题型汇编(含答案)--

重难点突破 | 导数题型汇编角度一:导数的概念及运算【例题1】知函数f (x +1)=2x +1x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为【解析】由f (x +1)=2x +1x +1,知f (x )=2x -1x =2-1x∴f ′(x )=1x 2,∴f ′(1)=1,由导数的几何意义知,所求切线的斜率k =1【变式1】已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)= .【解析】由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1,∴g ′(3)=1+3×⎝⎛⎭⎫-13=0. 【变式2】函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )图象可能是( )【解析】设导函数y =f ′(x )与x 轴交点的横坐标从左往右依次为x 1,x 2,x 3, 由导函数y =f ′(x )的图象易得当x ∈(-∞,x 1)∪(x 2,x 3)时,f ′(x )<0; 当x ∈(x 1,x 2)∪(x 3,+∞)时,f ′(x )>0(其中x 1<0<x 2<x 3),函数f (x )在(-∞,x 1),(x 2,x 3)上递减,在(x 1,x 2),(x 3,+∞)上递增,选D角度二:求不含参数函数的单调性【例题2】定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )单调递增区间是____【分析】确定函数单调区间的步骤:(1)确定函数f (x )的定义域.(2)求f ′(x ).(3)解不等式 f ′(x )>0,得到单调递增区间.(4)解不等式f ′(x )<0,得到单调递减区间. 【解析】f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2, 即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2.【变式3】已知函数f (x )=(-x 2+2x )e x (x ∈R ,e 为自然对数的底数),则函数f (x )的单调递增区间为________.【解析】因为f (x )=(-x 2+2x )e x ,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x . 令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0,所以-x 2+2>0,解得-2<x <2, 所以函数f (x )的单调递增区间为(-2,2). 【变式4】已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间. 【解析】(1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32(x >0).则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,且x >0,∴x =5(x =-1舍去).当x ∈(0,5)时,f ′(x )<0;当x >5时,f ′(x )>0. 所以函数f (x )的增区间为(5,+∞),减区间为(0,5).角度三:讨论含参数函数的单调性【例题3】已知函数f (x )=x 2e-ax-1(a 是常数),求函数y =f (x )的单调区间【分析】(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点. 【解析】当a =0时,f (x )=x 2-1,函数在(0,+∞)上单调递增,在(-∞,0)上单调递减. 当a ≠0时,f ′(x )=2x e-ax+x 2(-a )e-ax=e-ax(-ax 2+2x ).因为e-ax>0,所以令g (x )=-ax 2+2x =0,解得x =0或x =2a.①当a >0时,函数g (x )=-ax 2+2x 在(-∞,0)和⎝⎛⎭⎫2a ,+∞上有g (x )<0,即f ′(x )<0,函数y =f (x )单调递减;函数g (x )=-ax 2+2x 在⎣⎡⎦⎤0,2a 上有g (x )≥0, 即f ′(x )≥0,函数y =f (x )单调递增.②当a <0时,函数g (x )=-ax 2+2x 在⎝⎛⎭⎫-∞,2a 和(0,+∞)上有g (x )>0,即f ′(x )>0,函数y =f (x )递增;函数g (x )=-ax 2+2x 在⎣⎡⎦⎤2a ,0上有g (x )≤0,即f ′(x )≤0,函数y =f (x )递减. 综上所述,当a =0时,函数y =f (x )单调递增区间为(0,+∞),单调递减区间为(-∞,0); 当a >0时,函数y =f (x )的单调递减区间为(-∞,0),⎝⎛⎭⎫2a ,+∞,单调递增区间为⎣⎡⎦⎤0,2a ; 当a <0时,函数y =f (x )的单调递增区间为⎝⎛⎭⎫-∞,2a ,(0,+∞),单调递减区间为⎣⎡⎦⎤2a ,0.【变式5】若函数f (x )=-13x 3+12x 2+2ax 在⎣⎡⎭⎫23,+∞上存在单调递增区间,则a 的取值 范围是________.【解析】对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝⎛⎭⎫x -122+14+2a . 当x ∈⎣⎡⎭⎫23,+∞时,f ′(x )的最大值为f ′⎝⎛⎭⎫23=29+2a .令29+2a >0,解得a >-19. 所以a 的取值范围是⎝⎛⎭⎫-19,+∞.【变式6】函数f (x )=bex -1(b ∈R )在点(0,f (0))处切线经过点(2,-2).讨论函数F (x )=f (x )+ax (a ∈R )的单调性.【解析】f (0)=b -1,过点(0,b -1),(2,-2)直线斜率k =b -1-(-2)0-2=-b +12,而f ′(x )=-b e x ,,f ′(0)=-b =-b +12,所以b =1,f (x )=1e x -1.则F (x )=ax +1e x -1,F ′(x )=a -1ex ,当a ≤0时,F ′(x )<0恒成立;当a >0时,由F ′(x )<0,得x <-ln a ,由F ′(x )>0,得x >-ln a .故当a ≤0时,函数F (x )在R 上单调递减;当a >0时,函数F (x )在(-∞,-ln a )上单调递减,在(-ln a ,+∞)上单调递增. 【变式7】已知函数f (x )=12ax 2-(a +1)x +ln x (a >0),讨论函数f (x )的单调性.【解析】f ′(x )=ax -(a +1)+1x =(ax -1)(x -1)x(x >0),①当0<a <1时,1a >1,由f ′(x )>0,解得x >1a 或0<x <1,由f ′(x )<0,解得1<x <1a .②当a =1时,f ′(x )≥0在(0,+∞)上恒成立.③当a >1时,0<1a <1,由f ′(x )>0,解得x >1或0<x <1a ,由f ′(x )<0,解得1a<x <1.综上,当0<a <1时,f (x )在⎝⎛⎭⎫1a ,+∞和(0,1)上单调递增,在⎝⎛⎭⎫1,1a 上单调递减; 当a =1时,f (x )在(0,+∞)上单调递增,当a >1时,f (x )在(1,+∞)和⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,1上单调递减.角度四:利用单调性求参数的取值范围【例题4】已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 【解析】(1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2,由于h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1x -ax -2<0有解,即a >1x 2-2x有解.设G (x )=1x 2-2x ,所以只要a >G (x )min 即可.而G (x )=⎝⎛⎭⎫1x -12-1,所以G (x )min =-1. 所以a >-1.又因为a ≠0,所以a 的取值范围为(-1,0)∪(0,+∞).(2)因为h (x )在[1,4]上单调递减,所以当x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x 恒成立.由(1)知G (x )=1x 2-2x ,所以a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1, 因为x ∈[1,4],所以1x ∈⎣⎡⎦⎤14,1,所以G (x )max =-716(此时x =4), 所以a ≥-716,又因为a ≠0,所以a 的取值范围是⎣⎡⎭⎫-716,0∪(0,+∞). 【变式8】函数f (x )=x ln x -ax 2在(0,+∞)上单调递减,则实数a 的取值范围是________【解析】f ′(x )=ln x -2ax +1,若f (x )在(0,+∞)上单调递减,则ln x -2ax +1≤0在(0,+∞)上恒成立,即a ≥ln x +12x 在(0,+∞)上恒成立.令g (x )=ln x +12x ,x ∈(0,+∞),则g ′(x )=-ln x2x 2,令g ′(x )>0,解得0<x <1,令g ′(x )<0,解得x >1, 故g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 故g (x )max =g (1)=12,故a ≥12.【变式9】若函数f (x )=-13x 3+12x 2+2ax 在⎣⎡⎭⎫23,+∞上存在单调递增区间,则a 的取值 范围是________.【解析】对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝⎛⎭⎫x -122+14+2a . 由题意知,f ′(x )>0在⎣⎡⎭⎫23,+∞上有解,当x ∈⎣⎡⎭⎫23,+∞时,f ′(x )最大值为f ′⎝⎛⎭⎫23=29+2a . 令29+2a >0,解得a >-19,所以a 的取值范围是⎝⎛⎭⎫-19,+∞.【变式10】 若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.【解析】f ′(x )=1-23cos 2x +a cos x ==-43cos 2 x +a cos x +53,f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立.令cos x =t ,t ∈[-1,1],则-43t 2+at +53≥0在[-1,1]上恒成立,即4t 2-3at -5≤0在t ∈[-1,1]上恒成立.令g (t )=4t 2-3at -5,则⎩⎪⎨⎪⎧g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a ≤13.【变式11】 若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 范围是____ 【解析】易知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )=0有2个不同的实根. 需满足a ≠0,且Δ=36+12a >0,解得a >-3, 所以实数a 的取值范围是(-3,0)∪(0,+∞).角度五:根据图象定性判定极值问题【例题5】设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2) 【解析】由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. 由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.【变式12】 函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点【解析】设f ′(x )的图象与x 轴的4个交点的横坐标从左至右依次为x 1,x 2,x 3,x 4. 当x <x 1时,f ′(x )>0,f (x )为增函数,当x 1<x <x 2时,f ′(x )<0,f (x )为减函数, 则x =x 1为极大值点,同理,x =x 3为极大值点,x =x 2,x =x 4为极小值点,故选C.角度六:处理含参(不含参)函数的极值(最值)【例题6】函数f (x )=a ln x -bx 2(x >0),若函数f (x )在x =1处与直线y =-12相切.(1)求实数a ,b 的值;(2)求函数f (x )在⎣⎡⎦⎤1e ,e 上的最大值. 【解析】(1)由f (x )=a ln x -bx 2(x >0),得f ′(x )=ax-2bx ,∵函数f (x )在x =1处与直线y =-12相切,∴⎩⎪⎨⎪⎧f ′(1)=a -2b =0,f (1)=-b =-12,解得⎩⎪⎨⎪⎧a =1,b =12. (2)由(1)知,f (x )=ln x -12x 2,则f ′(x )=1x -x =1-x 2x ,当1e ≤x ≤e 时,令f ′(x )>0,得1e≤x <1, 令f ′(x )<0,得1<x ≤e ,∴f (x )在⎣⎡⎭⎫1e ,1上单调递增;在(1,e]上单调递减, ∴f (x )max =f (1)=-12.【变式13】 函数f (x )=ln x -ax (a ∈R ).讨论函数f (x )在定义域内极值点的个数.【分析】运用导数求可导函数y =f (x )的极值的一般步骤:(1)先求函数y =f (x )的定义域,再求其导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查导数f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.特别注意:导数为零的点不一定是极值点.【解析】函数的定义域为(0,+∞),f ′(x )=1x -a =1-ax x (x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点;当a >0时,当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0,当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0, 故函数在x =1a 处有极大值.综上可知,当a ≤0时,函数f (x )无极值点,当a >0时,函数y =f (x )有一个极大值点,且为x =1a .【变式14】 已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值.【分析】求最值一般步骤:第一步:(求导数)求函数f (x )的导数f ′(x );第二步:(求极值)求 f (x )在给定区间上的单调性和极值;第三步:(求端点值)求f (x )在给定区间上的端点值; 第四步:(求最值)将f (x )的各极值与f (x )的端点值进比较,确定f (x )的最大值与最小值; 【解析】(1)f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调递增区间为(0,+∞)②当a >0时,令f ′(x )=1x -a =0,可得x =1a,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x <0,故函数f (x )的单调递增区间为⎝⎛⎭⎫0,1a ,单调递减区间为⎝⎛⎭⎫1a ,+∞ 综上可知,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为⎝⎛⎭⎫0,1a ,单调递减区间为⎝⎛⎭⎫1a ,+∞ (2)①当1a ≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在[1,2]上是增函数,所以f (x )的最小值是f (1)=-a③当1<1a <2,即12<a <1时,函数f (x )在⎣⎡⎦⎤1,1a 上是增函数,在⎣⎡⎦⎤1a ,2上是减函数. 又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a当ln 2≤a <1时,最小值为f (2)=ln 2-2a .[11分]综上可知,当0<a <ln 2时,函数f (x )的最小值是f (1)=-a当a ≥ln 2时,函数f (x )的最小值是f (2)=ln 2-2a角度七:利用极值或最值求参数的取值或范围【例题7】函数f (x )=ax +ln x ,a 为常数,若f (x )在区间(0,e]上最大值为-3,求a 值.【分析】求函数在无穷区间(或开区间)上最值,不仅要研究极值情况,还要研究单调性,通过单调性和极值情况,画出函数的大致图象,借助图象得到最值. 【解析】f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎡⎭⎫1e,+∞. ①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数,∴f (x )max =f (e)=a e +1≥0,舍去.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a ;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a<x ≤e.从而f (x )在⎝⎛⎭⎫0,-1a 上为增函数,在⎝⎛⎦⎤-1a ,e 上为减函数,∴f (x )max =f ⎝⎛⎭⎫-1a =-1+ln ⎝⎛⎭⎫-1a . 令-1+ln ⎝⎛⎭⎫-1a =-3,得ln ⎝⎛⎭⎫-1a =-2,即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求.【变式15】 若函数f (x )=x 33-a 2x 2+x +1在区间⎝⎛⎭⎫12,3上有极值点,则实数a 的 取值范围是________.【解析】函数f (x )在区间⎝⎛⎭⎫12,3上有极值点等价于f ′(x )=0有2个不相等的实根且在⎝⎛⎭⎫12,3内有根, 由f ′(x )=0有2个不相等的实根,得a <-2或a >2. 由f ′(x )=0在⎝⎛⎭⎫12,3内有根,得a =x +1x 在⎝⎛⎭⎫12,3内有解, 又x +1x ∈⎣⎡⎭⎫2,103,所以2≤a <103.综上,a 的取值范围是⎝⎛⎭⎫2,103.【变式16】 已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ∈[-1,1],则f (m )的 最小值是________.【解析】f ′(x )=-3x 2+2ax ,由f (x )在x =2处取得极值知f ′(2)=0,即-3×4+2a ×2=0,故a =3.由此可得f (x )=-x 3+3x 2-4. f ′(x )=-3x 2+6x ,由此可得f (x )在(-1,0)上单调递减,在(0,1)上单调递增, ∴当m ∈[-1,1]时,f (m )min =f (0)=-4.【变式17】 设f (x )=x ln x -ax 2+(2a -1)x (常数a >0). (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围.【解析】(1)由f ′(x )=ln x -2ax +2a ,可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2ax x.又a >0,当x ∈⎝⎛⎭⎫0,12a 时,g ′(x )>0,函数g (x )递增,当x ∈⎝⎛⎭⎫12a ,+∞时,g ′(x )<0,函数g (x )递减. ∴函数y =g (x )的单调递增区间为⎝⎛⎭⎫0,12a ,单调递减区间为⎝⎛⎭⎫12a ,+∞. (2)由(1)知,f ′(1)=0.①当0<a <12时,12a >1,由(1)知f ′(x )在⎝⎛⎭⎫0,12a 内单调递增,可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝⎛⎭⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝⎛⎭⎫1,12a 内单调递增. 所以f (x )在x =1处取得极小值,不合题意.②当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.③当a >12时,0<12a <1,当x ∈⎝⎛⎭⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意.综上可知,实数a 的取值范围为⎝⎛⎭⎫12,+∞.角度八:证明或判定不等式大小【例题8】已知函数f (x )=x sin x ,x ∈R ,则f ⎝⎛⎭⎫π5,f (1),f ⎝⎛⎭⎫-π3的大小关系为( ) A .f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5 B .f (1)>f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5 C .f ⎝⎛⎭⎫π5>f (1)>f ⎝⎛⎭⎫-π3 D .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5>f (1) 【解析】因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数, 所以f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3.又当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=sin x +x cos x >0,所以函数f (x )在⎝⎛⎭⎫0,π2上是增函数,所以f ⎝⎛⎭⎫π5<f (1)<f ⎝⎛⎭⎫π3,即f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5,故选A.【变式18】 已知定义在(0,+∞)上的函数f (x )满足xf ′(x )-f (x )<0,其中f ′(x )是函数f (x )的导函数.若2f (m -2 019)>(m -2 019)f (2),则实数m 的取值范围为 【解析】令h (x )=f (x )x ,x ∈(0,+∞),则h ′(x )=xf ′(x )-f (x )x 2.∵xf ′(x )-f (x )<0,∴h ′(x )<0,∴函数h (x )在(0,+∞)上单调递减, ∵2f (m -2 019)>(m -2 019)f (2),m -2 019>0, ∴f (m -2 019)m -2 019>f (2)2,即h (m -2 019)>h (2).∴m -2 019<2且m -2 019>0,得2 019<m <2 021.∴实数m 的取值范围为(2 019,2 021).【变式19】 设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集是__________________. 【解析】∵当x >0时,⎣⎡⎦⎤f (x )x ′=x ·f ′(x )-f (x )x 2<0,∴φ(x )=f (x )x 在(0,+∞)减函数,φ(2)=0,∴在(0,+∞)上,当且仅当0<x <2时,φ(x )>0,此时x 2f (x )>0.又f (x )为奇函数,∴h (x )=x 2f (x )也为奇函数.故x 2f (x )>0的解集为(-∞,-2)∪(0,2).角度九:不等式恒成立求参数的取值范围【例题9】已知函数f (x )=x ln x (x >0).(1)求f (x )的单调区间和极值;(2)若对任意x ∈(0,+∞),f (x )≥-x 2+mx -32恒成立,求实数m 的最大值.【解析】(1)由f (x )=x ln x (x >0),得f ′(x )=1+ln x , 令f ′(x )>0,得x >1e ;令f ′(x )<0,得0<x <1e.∴f (x )的单调增区间是⎝⎛⎭⎫1e ,+∞,单调减区间是⎝⎛⎭⎫0,1e . 故f (x )在x =1e 处有极小值f ⎝⎛⎭⎫1e =-1e,无极大值. (2)由f (x )≥-x 2+mx -32及f (x )=x ln x ,得m ≤2x ln x +x 2+3x恒成立,问题转化为m ≤⎝⎛⎭⎫2x ln x +x 2+3x min .令g (x )=2x ln x +x 2+3x (x >0),则g ′(x )=2x +x 2-3x 2,由g ′(x )>0⇒x >1,由g ′(x )<0⇒0<x <1.所以g (x )在(0,1)上是减函数,在(1,+∞)上是增函数,所以g (x )min =g (1)=4,因此m ≤4,所以m 的最大值是4.【变式20】 已知函数f (x )=e x -1-x -ax 2.(1)当a =0时,求证:f (x )≥0;(2)当x ≥0时,若不等式f (x )≥0恒成立,求实数a 范围. 【证明】(1) 当a =0时,f (x )=e x -1-x ,f ′(x )=e x -1. 当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,f (x )min =f (0)=0,∴f (x )≥0. 【解析】(2) f ′(x )=e x -1-2ax ,令h (x )=e x -1-2ax ,则h ′(x )=e x -2a .①当2a ≤1,a ≤12时,在[0,+∞)上,h ′(x )≥0,h (x )递增,h (x )≥h (0),f ′(x )≥f ′(0)=0,∴f (x )在[0,+∞)上为增函数,∴f (x )≥f (0)=0,∴当a ≤12时满足条件.②当2a >1,即a >12时,令h ′(x )=0,解得x =ln(2a ),在[0,ln(2a ))上,h ′(x )<0,h (x )递减,∴当x ∈(0,ln(2a ))时,有h (x )<h (0)=0,即f ′(x )<f ′(0)=0,∴f (x )在(0,ln(2a ))上为减函数, ∴f (x )<f (0)=0,不合题意.综上,实数a 的取值范围为⎝⎛⎦⎤-∞,12. 【变式21】 已知函数f (x )=sin xx (x ≠0).(1)判断函数f (x )在区间⎝⎛⎭⎫0,π2上的单调性; (2)若f (x )<a 在区间⎝⎛⎭⎫0,π2上恒成立,求实数a 的最小值.【分析】利用导数研究含参数的不等式问题,若能够分离参数,则常将问题转化为形如 a ≥f (x )(或a ≤f (x ))的形式,通过求函数y =f (x )的最值求得参数范围. 【解析】(1)f ′(x )=x cos x -sin xx 2,令g (x )=x cos x -sin x ,x ∈⎝⎛⎭⎫0,π2,则g ′(x )=-x sin x , 当x ∈⎝⎛⎭⎫0,π2时,g ′(x )=-x sin x <0,即函数g (x )在区间⎝⎛⎭⎫0,π2上单调递减,且g (0)=0. g (x )在区间⎝⎛⎭⎫0,π2恒小于零,f ′(x )在区间⎝⎛⎭⎫0,π2上恒小于零,函数f (x )在区间⎝⎛⎭⎫0,π2上递减. (2)不等式f (x )<a ,x ∈⎝⎛⎭⎫0,π2恒成立,即sin x -ax <0恒成立. 令φ(x )=sin x -ax ,x ∈⎝⎛⎭⎫0,π2,则φ′(x )=cos x -a ,且φ(0)=0. 当a ≥1时,在区间⎝⎛⎭⎫0,π2上φ′(x )<0,即函数φ(x )单调递减, 所以φ(x )<φ(0)=0,故sin x -ax <0恒成立.当0<a <1时,φ′(x )=cos x -a =0在区间⎝⎛⎭⎫0,π2上存在唯一解x 0, 当x ∈(0,x 0)时,φ′(x )>0,故φ(x )在区间(0,x 0)上单调递增,且φ(0)=0, 从而φ(x )在区间(0,x 0)上大于零,这与sin x -ax <0恒成立相矛盾.当a ≤0时,在区间⎝⎛⎭⎫0,π2上φ′(x )>0,即函数φ(x )单调递增,且φ(0)=0,得sin x -ax >0恒成立,这与sin x -ax <0恒成立相矛盾.故实数a 的最小值为1.角度十:不等式能成立求参数的取值范围【例题10】 函数f (x )=m ⎝⎛⎭⎫x -1x -2ln x (m ∈R ),g (x )=-mx ,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,求实数m 的取值范围.【解析】依题意,不等式f (x )<g (x )在[1,e]上有解, ∴mx <2ln x 在区间[1,e]上有解,即m 2<ln xx能成立.令h (x )=ln xx ,x ∈[1,e],则h ′(x )=1-ln x x 2.当x ∈[1,e]时,h ′(x )≥0,h (x )在[1,e]上是增函数,∴h (x )的最大值为h (e)=1e .由题意m 2<1e ,即m <2e 时,f (x )<g (x )在[1,e]上有解.∴实数m 的取值范围是⎝⎛⎭⎫-∞,2e .【变式22】 已知函数f (x )=ln x -ax +1-a x -1(a ∈R ).设g (x )=x 2-2bx +4,当a =14时,若∀x 1∈(0,2),总存在x 2∈[1,2],使f (x 1)≥g (x 2),求实数b 的取值范围.【解析】依题意知f (x )在(0,2)上的最小值不小于g (x )在[1,2]上的最小值,即f (x )min ≥g (x )min . 当a =14时,f (x )=ln x -14x +34x -1,所以f ′(x )=1x -14-34x 2=-(x -1)(x -3)4x 2,则当0<x <1时,f ′(x )<0,当1<x <2时,f ′(x )>0,所以当x ∈(0,2)时,f (x )min =f (1)=-12.又g (x )=x 2-2bx +4,①当b <1时,可求得g (x )min =g (1)=5-2b ,则5-2b ≤-12,解得b ≥114,这与b <1矛盾;②当1≤b ≤2时,可求得g (x )min =g (b )=4-b 2,则4-b 2≤-12,得b 2≥92,与1≤b ≤2矛盾;③当b >2时,可求得g (x )min =g (2)=8-4b ,由8-4b ≤-12,得b ≥178.综合①②③得实数b 的取值范围是⎣⎡⎭⎫178,+∞.【变式23】 已知函数f (x )=x 3-ax 2+10.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)在区间[1,2]内至少存在一个实数x ,使得f (x )<0成立,求实数a 的取值范围. 【解析】(1)当a =1时,f (x )=x 3-x 2+10,所以f ′(x )=3x 2-2x ,所以k =f ′(2)=8.又f (2)=14,所以切线方程为y =8x -2. (2)由已知得:a >x 3+10x 2=x +10x 2至少有一个实数x 使之成立,即a >⎝⎛⎭⎫x +10x 2min . 设g (x )=x +10x 2(1≤x ≤2),则g ′(x )=1-20x3,因为1≤x ≤2,所以g ′(x )<0.所以g (x )在[1,2]上是减函数,所以g (x )min =g (2)=92,a >92,即a 的取值范围是⎝⎛⎭⎫92,+∞.角度十一:判定零点个数问题【例题11】 已知函数f (x )=a +x ·ln x (a ∈R ),试求f (x )的零点个数. 【解析】f ′(x )=(x )′ln x +x ·1x =x (ln x +2)2x ,令f ′(x )>0,解得x >e -2,令f ′(x )<0,解得0<x <e -2,所以f (x )在(0,e -2)上单调递减,在(e -2,+∞)上单调递增.f (x )min =f (e -2)=a -2e ,显然当a >2e 时,f (x )min >0,f (x )无零点,当a =2e 时,f (x )min =0,f (x )有1个零点,当a <2e 时,f (x )min <0,f (x )有2个零点.【变式24】 设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3的零点的个数.【解析】(1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -ex2(x >0),由f ′(x )=0,得x =e.∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee=2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.角度十二:根据零点个数求参数的取值范围【例题12】 已知函数f (x )=ax 2(a ∈R ),g (x )=2ln x ,且方程f (x )=g (x )在区间[2,e]上有两个不相等的解,求a 的取值范围.【解析】由已知可得方程a =2ln xx2在区间[2,e]上有两个不等解,令φ(x )=2ln xx 2,由φ′(x )=2(1-2ln x )x 3易知φ(x )在(2,e)为增函数,在(e ,e)为减函数,则φ(x )max =φ(e)=1e ,由于φ(e)=2e 2,φ(2)=ln 22,φ(e)-φ(2)=2e 2-ln 22=4-e 2ln 22e 2=ln e 4-ln 22e 2e 2<ln 81-ln 272e 2<0,所以φ(e)<φ(2).所以φ(x )min =φ(e),如图可知φ(x )=a 有两个不相等的解时,需ln 22≤a <1e.即f (x )=g (x )在[2,e]上有两个不相等的解时,a 的取值范围为⎣⎡⎭⎫ln 22,1e .【变式25】 已知函数f (x )=a 6x 3-a4x 2-ax -2的图象过点A ⎝⎛⎭⎫4,103. (1)求函数f (x )的单调递增区间;(2)若函数g (x )=f (x )-2m +3有3个零点,求m 的取值范围. 【解析】(1)因为函数f (x )=a 6x 3-a4x 2-ax -2的图象过点A ⎝⎛⎭⎫4,103, 所以32a 3-4a -4a -2=103,解得a =2,即f (x )=13x 3-12x 2-2x -2,所以f ′(x )=x 2-x -2.由f ′(x )>0,得x <-1或x >2.所以函数f (x )的单调递增区间是(-∞,-1),(2,+∞). (2)由(1)知f (x )极大值=f (-1)=-13-12+2-2=-56,f (x )极小值=f (2)=83-2-4-2=-163,由数形结合,可知要使函数g (x )=f (x )-2m +3有三个零点,则-163<2m -3<-56,解得-76<m <1312.所以m 的取值范围为⎝⎛⎭⎫-76,1312.【变式26】 已知函数f (x )=x ln x ,g (x )=-x 2+ax -3(a 为实数),若方程g (x )= 2f (x )在区间⎣⎡⎦⎤1e ,e 上有两个不等实根,求实数a 的取值范围. 【解析】由g (x )=2f (x ),可得2x ln x =-x 2+ax -3,a =x +2ln x +3x ,设h (x )=x +2ln x +3x (x >0),所以h ′(x )=1+2x -3x 2=(x +3)(x -1)x 2.所以x 在⎣⎡⎦⎤1e ,e 上变化时,h ′(x ),h (x )的变化情况如下:又h ⎝⎛⎭⎫1e =1e +3e -2,h (1)=4,h (e)=3e +e +2.且h (e)-h ⎝⎛⎭⎫1e =4-2e +2e<0. 所以h (x )min =h (1)=4,h (x )max =h ⎝⎛⎭⎫1e =1e +3e -2,所以实数a 的取值范围为4<a ≤e +2+3e , 即a 的取值范围为⎝⎛⎦⎤4,e +2+3e . 、【变式27】 函数f (x )=(3-a )x -2ln x +a -3在⎝⎛⎭⎫0,14上无零点,求实数a 的取值范围. 【解析】当x 从0的右侧趋近于0时,f (x )→+∞,所以f (x )<0在⎝⎛⎭⎫0,14上恒成立不可能.故要使f (x )在⎝⎛⎭⎫0,14上无零点,只需对任意的x ∈⎝⎛⎭⎫0,14,f (x )>0恒成立,需x ∈⎝⎛⎭⎫0,14时,a >3-2ln x x -1恒成立.令h (x )=3-2ln x x -1,x ∈⎝⎛⎭⎫0,14, 则h ′(x )=2ln x +2x -2(x -1)2,再令m (x )=2ln x +2x -2,x ∈⎝⎛⎭⎫0,14,则m ′(x )=-2(1-x )x 2<0, 于是在⎝⎛⎭⎫0,14上m (x )为减函数,故m (x )>m ⎝⎛⎭⎫14=6-4ln 2>0,所以h ′(x )>0在⎝⎛⎭⎫0,14恒成立, 所以h (x )在⎝⎛⎭⎫0,14上为增函数,所以h (x )<h ⎝⎛⎭⎫14在⎝⎛⎭⎫0,14上恒成立. 又h ⎝⎛⎭⎫14=3-163ln 2,所以a ≥3-163ln 2,故实数a 的取值范围是⎣⎡⎭⎫3-163ln 2,+∞.角度十三:零点综合问题【例题13】 若函数f (x )=2x 3-ax 2+1(a ∈R )在区间(0,+∞)内有且只有一个零点,求f (x )在[-1,1]上的最大值与最小值的和.【解析】f ′(x )=6x 2-2ax =2x (3x -a )(a ∈R ),当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,则f (x )在(0,+∞)上单调递增,又f (0)=1, 所以此时f (x )在(0,+∞)内无零点,不满足题意. 当a >0时,由f ′(x )>0得x >a 3,由f ′(x )<0得0<x <a3,则f (x )在⎝⎛⎭⎫0,a 3上递减,在⎝⎛⎭⎫a3,+∞上递增,又f (x )在(0,+∞)内有且只有一个零点, 所以f ⎝⎛⎭⎫a 3=-a 327+1=0,得a =3,所以f (x )=2x 3-3x 2+1,则f ′(x )=6x (x -1), 当x ∈(-1,0)时,f ′(x )>0,f (x )单调递增,当x ∈(0,1)时,f ′(x )<0,f (x )单调递减.则f (x )max =f (0)=1,f (-1)=-4,f (1)=0,则f (x )min =-4,所以f (x )在[-1,1]上的最大值与最小值的和为-3.【变式28】 已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的单调递增区间;(2)当0<-1a <e 时,若f (x )在区间(0,e)上的最大值为-3,求a 的值;(3)当a =-1时,试推断方程|f (x )|=ln x x +12是否有实数根. 【解析】(1)由已知可知函数f (x )的定义域为{x |x >0}, 当a =-1时,f (x )=-x +ln x (x >0),f ′(x )=1-xx(x >0); 当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0。

(自主招生培训)第五讲:导数与积分

(自主招生培训)第五讲:导数与积分

第五讲 导数与积分第一部分 相关知识一.函数导数1.1.函数导数的意义:①几何意义:函数()f x 在点0x x =处的导数0()f x '为曲线()y f x =在点00(,())x f x 处的切线斜率;②物理意义:()s t 在0t t =处的导数0()s t '为质点在时刻0t t =处的瞬时速度,即00()()v t s t '=;()v t 在0t t =处的导数0()v t '为质点在时刻0t t =处的瞬时加速度,即00()()a t v t '=.1.2.导数与函数的性质已知函数()f x ,x D ∈,(1)()0f x '>→()f x 在D 上单调递增,()0f x '<→()f x 在D 上单调递减,()0f x '=→()f x 是常数函数.(2)()f x 在D 上单调递增→()0f x '≥,()f x 在D 上单调递减→()0f x '≤. 1.3.导数与极值(1)极值的必要..条件:函数()f x 在0x 处可导,且()f x 在0x 处取得极值,则0()0f x '=,反之不一定成立.(2)极值的第一充.分.条件:函数()f x 在0x 的领域00(,)x x δδ-+内可导,①当00(,)x x x δ∈-时()0f x '<,当00(,)x x x δ∈+时()0f x '>,则()f x 在0x 处取得极小值;②当00(,)x x x δ∈-时()0f x '>,当00(,)x x x δ∈+时()0f x '<,则()f x 在0x 处取得极大值.极值的第二充分..条件:函数()f x 在0x 的领域00(,)x x δδ-+内一阶可导,在0x 处二阶可导,且0()0f x '=,0()0f x ''≠,则()f x 在0x 处取得极值;①若0()0f x ''>,则()f x 在0x 处取得极小值;②若0()0f x ''<,则()f x 在0x 处取得极大值. 1.4.曲线的凸性的充分条件(1)函数凸性的定义:()f x 在D 上有意义,对任意的i x D ∈(1,2,i =…,n ),都存在i R α+∈(1,2,i =…,n )且11n i i α==∑,使:①11()()n ni i i i i i f x f x αα==<∑∑成立,则称()f x 在D 上是严格上凸的;②11()()nni i ii i i f x f x αα==>∑∑成立,则称()f x 在D 上是严格下凸的;(2)()f x 在开区间D 上二阶可导,若()0f x ''>,则曲线()y f x =在D 上时下凸的;若()0f x ''<,则曲线()y f x =在D 上时上凸的;通常称上凸函数为凸函数,下凸函数为凹函数.(3)三次函数()f x 满足0()0f x ''=,则点00(,())x f x 是其对称点(这个结论解答题中不能直接使用). 1.5.Roll 定理函数()f x 在区间[,]a b 上连续,在(,)a b 上可导,若()()f a f b =,则必存在0(,)x a b ∈,使0()0f x '=成立.1.6.Lagrange 中值定理函数()f x 在区间[,]a b 上连续,在(,)a b 上可导,则必存在0(,)x a b ∈,使0()()()f a f b f x a b-'=-成立.二.定积分第二部分 相关习题1.(2011复旦)设a 为正数,若函数322()2f x x ax a =-+在区间(0,)a 上大于0,则a 的取值范围是( )A.(0,1]B.(0,1)C.(1,)+∞D.[1,)+∞ 2.(2006武大)若定义在R 上的函数32()f x ax bx cx =++(0a ≠)的单调递增区间为(1,1)-,则实数a 、b 、c 的大小关系为( )A.a b c >>B.b c a >>C.a c b >>D.c b a >>3.(2001上海交大)已知()f x 在0x 处可导,则22000(3)()limh f x h f x h h→+--= ; 0000()()limx x xf x x x x x →-=- .4.(2011卓越联盟)(1)已知函数()ln f x x x =,求()f x ';(2)设0a b <<,求常数c 使得1ln ba x cdxb a--⎰的最小值; (3)设(2)中的最小值为,a b m ,证明:,ln 2a b m <.5.(2012清华保送)已知1()ln x e f x x-=,11a =,1()n n a f a +=.(1)求证:10x xxe e -+≥恒成立; (2)求()f x 的单调区间;(3)证明:数列{}n a 为递减数列,且0n a >.6.(2011华约)已知3221y x x x =--+,过点(1,1)-的直线与该函数的图像相切,且点(1,1)-不是切点,求该直线的方程.7.(2010武大)已知()f x 是定义在区间(0,)+∞上的可导函数,满足()0f x >,且()()0f x f x '+<.(1)讨论函数()()x F x e f x =的单调性; (2)设01x <<,比较函数()xf x 与11()f x x的大小.8.(2010五校联考)已知函数()axf x e =,过点(,0)A a 作与y 轴平行的直线与函数()f x 的图像交于点P ,过P 作()f x 的切线交x 轴于点B ,求ABP ∆的面积的最小值.9.(2007武大)已知函数()xf x e x =-.(1)若函数2()()1F x f x ax =--的导函数()F x '在[0,)+∞上时增函数,求实数a 的最大值; (2)求证:111()()()234f f f +++…1()14(2)n f n n n +>+++,*n N ∈.10.已知函数()ln(1)1(0)xf x e x x =-+-≥.(1)求函数()f x 的最小值; (2)若0y x ≤<,求证:1ln(1)ln(1)x ye x y -->+-+.11.已知函数()2ln bf x ax x x=--,(1)0f =. (1)若函数()f x 在其定义域内为单调函数,求a 的取值范围; (2)若函数()f x 的图像在1x =处的切线斜率为0,且211()11n n a f n a n +'=-+-+,已知14a =,求证:22n a n ≥+; (3)在(2)的条件下,试比较111ni ia =+∑与25的大小,并说明理由.12.已知二次函数2()f x ax bx c =++,直线1l :28(02,y t t t t =-+≤≤为常数),2l :2x =,若直线1l 、2l 与函数()f x 的图像以及1l 、y 轴与函数()f x 的图像所围成的封闭图形如阴影所示.(1)求a 、b 、c 的值;(2)求阴影部分面积S 关于t 的函数()S t 的解析式;(3)若()6ln g x x m =+,问是否存在实数m ,使得()y f x =的图像与()y g x =的图像有且只有两个不同的交点?若存在,求出m 的值;若不存在,请说明理由.13.设三次函数32()()f x ax bx cx d a b c =+++<<在1x =处取得极值,且图像在x m =处的切线斜率为3a -.(1)求证:01ba≤<; (2)若函数()y f x =在区间[,]s t 上单调递增,求t s -的取值范围;(3)是否存在实数k (k 是与a 、b 、c 、d 无关的常数),当x k ≥时,恒有()30f x a '+<恒成立?若存在,求出k 的值;若不存在,请说明理由.14. (1m 取值范围; (2(*n N ∈).15.已知函数32()f x x x =+,正项数列{}n x 的第一项11x =,以后各项按如下方式取定:曲线()y f x =在点11(,())n n x f x ++处的切线与经过点(0,0)和点(,())n n x f x 两点的直线平行.求证:当*n N ∈时,(1)221132n n n n x x x x +++=+;(2)121122n n n x --⎛⎫⎛⎫≤≤ ⎪ ⎪⎝⎭⎝⎭.16. (1)若曲线()x f 在点()()2,2f 处的切线与直线0132=++y x 垂直,求a 的值; (2)若()x f 在区间()+∞,0单调递增,求a 的取值范围;(3)若13a -<<,证明:对任意()12,0,x x ∈+∞,12x x ≠.17. 已知函数3214()333f x x x x =--+,9()2x cg x +=-. (1)若对任意的[2,2]x ∈-,都有()()f x g x <成立,求实数c 的取值范围; (2)若对任意的1x 、2[2,2]x ∈-,都有12()()f x g x <成立,求实数c 的取值范围;(3)若对任意的1[2,2]x ∈-,存在2[2,2]x ∈-,使12()()f x g x <成立,求实数c 的取值范围; (4)若对任意的1[2,2]x ∈-,存在2[2,2]x ∈-,使12()()f x g x =成立,求实数c 的取值范围.。

高中数学自主招生考试分类 专题十四 导数

高中数学自主招生考试分类  专题十四  导数

历年自主招生试题分类汇编——导数1、设()f x 在x R ∈上可导,且对任意的0x R ∈有000()()4(0)f x x f x x x <+-<> (1)证明:000()()()(0)f x x f x f x x x+-'<>;(2)若|()|1f x ≤,则|()|4f x '≤.【解】(1)由题知()f x '单调递增,利用拉格朗日中值定理可知:存在00(,)x x x ε∈+, 使得0000()()()()f x x f x f x x x ε+-'=+-,于是00000()()()()()f x x f x f x f x x x ε+-''<=+-(2)若存在()4()f u u R '>∈,则在[,)u +∞上()4f x '>,于是有|()()||()()|4(),(,),f x f u f x u x u u x x uεε'-=->-∈∈+∞ 取1x u =+,则|(1)()|4f u f u +->.但是由于|()|1f x <,所以|(1)()|2f u f u +-<,矛盾. 同理在()4f u '<-时也可得矛盾. 结论成立.2、 设函数()f x 在R 上存在导数()f x ',对任意的x ∈R 有()()2f x f x x -+=,且在()0+∞,上()f x x '>.若()()222f a f a a ---≥,则实数a 的取值范围为( ) A .[)1+∞,B .(]1-∞,C .(]2-∞,D .[)2+∞,答案: B . 3、设0x >, ⑴ 证明21e 12x x x >++; ⑵ 若21e 1e 2x yx x =++,证明:0y x <<. 答案:⑴(本小问6分)设()21e 12x f x x x ⎛⎫=-++ ⎪⎝⎭,[)0x ∈+∞,,则()()e 1x f x x '=-+. 令()()e 1x g x x =-+,[)0x ∈+∞,,则()e 1x g x '=-. 当0x >时,由于e 1x >,所以()0g x '>,因此()g x 在[)0+∞,上单调递增. 于是有()()()00f x g x g '=>=,()0x ∈+∞,.从而可知()f x 在[)0+∞,上单调递增,又()00f =,所以()0f x >,()0x ∈+∞,,即21e 12x x x >++,()0x ∈+∞,. ⑵(本小问9分)设()21e 1e 2x x h x x x ⎛⎫=-++ ⎪⎝⎭,[)0x ∈+∞,,则()21e 1e e 2x x x h x x x ⎛⎫'=-++ ⎪⎝⎭.令()21e 1e e 2x x x p x x x ⎛⎫=-++ ⎪⎝⎭,[)0x ∈+∞,,则()212e e 02x x p x x x '=--<,()0x ∈+∞,. 所以()p x 在[)0+∞,上单调递减,从而()()()00h x p x p '=<=,因此()h x 在[)0+∞,上单调递减,于是()()00h x h <=,即()22e 1e x x x x--<,()0x ∈+∞,.结合⑴有()022e 1e 1e x yx x c x --=<=<,得0y x <<.4、已知*,,n N x n ∈≤求证:2(1)n x x n n e x n--≤.【证明】原不等式等价于2((1))xn nx n x n e n-≤-⋅.当2x n ≥,上述不等式左边非正,不等式成立;当2x n <时,由1(0)y e y y ≥+≥及贝努力不等式(1)1(1,1)n y ny n y +≥+≥>-,从而22222((1))((1)(1))(1)(1)xnn n n x x x x x n e n n n n n x n n n n n-⋅≥-⋅+=-≥-⋅=-,即证.5、已知()(1)1x f x x e =-- 求证:(1)当0x >,()0f x <;(2)数列{}n x 满足111,1n n x x n x e e x +=-=,求证:数列{}n x 单调递减且12n n x >. 【解】(1)当0x >时,()0xf x xe '=-<,所以()f x 在(0,)+∞上递减,所以()(0)0f x f <=.(2)由11n nx x n x ee +=-得11n n x x ne ex +-=,结合11x =,及对任意0,1x x e x >>+,利用数学归纳法易得0n x >对任意正整数n 成立,由(1)知()0n f x <,即1n n xxn e x e -<, 即1n n x x n n x ex e +<,因为0n x >,所以1n n x x e e +<,即1n n x x +>,所以数列{}n x 递减,下面证明12n n x >,用数学归纳法证,设1()x e g x x-=,则221()()x x xe e f x g x x x -+'==-,由(1)知当0x >时,()0f x <,即()0g x '>,故()g x 在(0,)+∞递增,由归纳假设12n nx >得1()()2n n g x g >,要证明1112n n x ++>只需证明1112n n xe e ++>,即112()n n g x e +>,故只需证明1121()2n n g e +>,考虑函数2()()xh x xg x xe =-,因为当0x >时212x x e >+,所以222()(1)[(1)]022x x xxx x h x e e e e =-+=-+>,故()h x 在(0,)+∞上递增,又102n >,所以1()02n h >,即121()2n g e >,由归纳法知,12n n x >对任意正整数n 成立.注:此题的函数模型与2012年清华大学保送生考试试题的函数模型相似.6、记函数2()1,1,22!!nn x x f x x n n =+++⋅⋅⋅+=⋅⋅⋅证明:当n 是偶数时,方程()0n f x =没有实根;当n 是奇数时,方程()0n f x =有唯一的实根nθ,且2n n θθ+>。

完整版)导数的综合大题及其分类

完整版)导数的综合大题及其分类

完整版)导数的综合大题及其分类.导数在高考中是一个经常出现的热点,考题难度比较大,多数情况下作为压轴题出现。

命题的主要热点包括利用导数研究函数的单调性、极值、最值,不等式,方程的根以及恒成立问题等。

这些题目体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用。

题型一:利用导数研究函数的单调性、极值与最值这类题目的难点在于分类讨论,包括函数单调性和极值、最值综合问题。

1.单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,将函数定义域分段,在各段上讨论导数的符号。

如果不能确定导数等于零的点的相对位置,还需要对导数等于零的点的位置关系进行讨论。

2.极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点。

3.最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的。

在极值和区间端点函数值中最大的为最大值,最小的为最小值。

例题:已知函数f(x)=x-,g(x)=alnx(a∈R)。

x1.当a≥-2时,求F(x)=f(x)-g(x)的单调区间;2.设h(x)=f(x)+g(x),且h(x)有两个极值点为x1,x2,其中h(x1)=h(x2),求a的值。

审题程序]1.在定义域内,依据F′(x)=0的情况对F′(x)的符号进行讨论;2.整合讨论结果,确定单调区间;3.建立x1、x2及a间的关系及取值范围;4.通过代换转化为关于x1(或x2)的函数,求出最小值。

规范解答]1.由题意得F(x)=x-x/(x2-ax+1)-alnx,其定义域为(0,+∞)。

则F′(x)=(x2-ax+1)-x(2ax-2)/(x2-ax+1)2.令m(x)=x2-ax+1,则Δ=a2-4.①当-2≤a≤2时,Δ≤0,从而F′(x)≥0,所以F(x)的单调递增区间为(0,+∞);②当a>2时,Δ>0,设F′(x)=0的两根为x1=(a+√(a2-4))/2,x2=(a-√(a2-4))/2,求h(x1)-h(x2)的最小值。

高中自招试题数学答案及解析

高中自招试题数学答案及解析

高中自招试题数学答案及解析试题一:已知函数\( f(x) = 3x^2 - 2x + 1 \),求其导数\( f'(x) \)。

答案:首先,根据导数的定义,我们对函数\( f(x) \)进行求导。

对于\( f(x) = 3x^2 - 2x + 1 \),其导数\( f'(x) \)为:\[ f'(x) = 6x - 2 \]解析:求导的过程涉及到幂函数的导数规则,即\( (x^n)' = n \cdot x^{n-1} \)。

对于常数项1,其导数为0。

将各项的导数相加,得到最终的导数表达式。

试题二:设集合A={1, 2, 3},集合B={2, 3, 4},求集合A和集合B 的交集A∩B。

答案:集合A和集合B的交集A∩B为{2, 3}。

解析:交集是指两个集合中共有的元素。

在这个例子中,我们可以看到元素2和3同时出现在集合A和集合B中,因此它们构成了这两个集合的交集。

试题三:若\( \sin(2x) = 2\sin(x) \),求\( x \)的值。

答案:根据二倍角公式,我们知道\( \sin(2x) = 2\sin(x)\cos(x) \)。

将题目中的等式代入,得到:\[ 2\sin(x)\cos(x) = 2\sin(x) \]由于\( \sin(x) \neq 0 \),我们可以除以\( 2\sin(x) \)得到:\[ \cos(x) = 1 \]这意味着\( x \)的值是\( 2k\pi \),其中\( k \)是整数。

解析:这个问题的关键在于识别并应用二倍角公式。

通过将等式转换为已知的三角恒等式,我们可以简化问题并找到\( x \)的解。

试题四:解不等式\( |x - 3| < 2 \)。

答案:不等式\( |x - 3| < 2 \)可以分解为两个不等式:\[ -2 < x - 3 < 2 \]解得:\[ 1 < x < 5 \]解析:绝对值不等式可以通过将其分解为两个不等式来解决。

北大清华北清自主招生博雅领军强基计划笔试真题数学试题分类-导数与微积分初步

北大清华北清自主招生博雅领军强基计划笔试真题数学试题分类-导数与微积分初步

清华领军2015.5.如图,已知直线y kx n =+与曲线()y f x =相切于两点,则()()F x f x kx =-有( )A.2个极大值点B.3个极大值点C.2个极小值点D.3个极小值点 同时分入了函数图像与性质类清华领军2015.25.设函数()f x 的定义域是(-1,1),若(0)(0)1f f ='=,则存在实数(0,1)δ∈,使得( ) A.()0,(,)f x x δδ>∈- B.()f x 在(,)δδ-上单调递增 C.()1,(0,)f x x δ>∈ D.()1,(,0)f x x δ>∈-北大博雅2016.1.直线2y x =-+与曲线x a y e +=-相切,则a 的值为( ) A.-3 B.-2 C.-1 D.前三个答案都不对 1.【解答】A由于()x a x a e e ++'-=-,于是切点横坐标为x =-a ,进而有-(-a )+2=a a e -+-解得a =-3. 【评析】非常基础的问题,注意计算速度和准确度。

清华领军2016.17. ∫(x −π)2π−1(1+sin 2πx)dx =2π? 17.【解答】0()()()()()()()()()()()()()()()212121222220021221220021212201sin 1sin 1sin 1sin 21sin 221sin 1sin 0n n n nnnn n nnn n nnx x dx x x dx x x dxx x dx x x d x x x dx x x dx πππππππππππππππππππ--------+=-++-+⎡⎤=-++--+--⎡⎤⎣⎦⎣⎦=-++-+=⎰⎰⎰⎰⎰⎰⎰【评析】考察大学的微积分知识,运用到换元积分法,清华的考试中常出现这类问题。

清华领军2016.22.2()()x f x x a e =+有最小值,则220x x a ++=的解的个数为______22.【解答】2()()()2222x x x f x x a e xe x x a e '=++=++,当220x x a ++=无解或者只有一解时,220x x a ++≥恒成立,从而()0f x '≥,此时()f x 无最小值,故()f x 有最小值时220x x a ++=有两个解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年自主招生试题分类汇编——不等式5. (2014年北约)已知1x y +=-且,x y 都是负数,求1xy xy+的最值. 【解】由0,0x y <<可知,1||1||||1x y x y x y +=-⇒+=⇒+=,所以2(||||)1||||||44x y xy x y +=⨯≤=,即1(0,]4xy ∈,令1(0,]4t xy =∈,则易知函数1y t t =+在(0,1]上递减,所以其在1(0,]4上递减,于是1xy xy +有最小值117444+=,无最大值.解答二:1()()x y =-+-≥104xy <≤,而函数1()f t t t=+在(0,1)上单调递减,在(1,)+∞单调递增,故1()()4f xy f ≥,即1174xy xy +≥,当且仅当12x y ==-时取等号.10. (2014年北约)已知12,,,n x x x R +∈,且121n x x x =,求证:12)(2)1)n n x x x +≥.【证】(一法:数学归纳法)①当1n =时,111x =≥=右边,不等式成立;②假设*(1,)n k k k N =≥∈时,不等式12)(2)1)k k x x x +≥成立.那么当1n k =+时,则1211k k x x x x +=,由于这1k +个正数不能同时都大于1,也不能同时都小于1,因此存在两个数,其中一个不大于1,另一个不小于1,不妨设11,01k k x x +≥<≤, 从而111(1)(1)01k k k k k k x x x x x x +++--≤⇒+≥+,所以121)(2)k k x x x x ++1211)[22()]k k k k x x x x x x ++=+++1121)(21)1)1)1)k k k k x x x x ++≥+≥=其中推导上式时利用了1211()1k k k x x x x x -+=及n k =时的假设,故1n k =+时不等式也成立.综上①②知,不等式对任意正整数n 都成立.(二法)左边展开得12)(2)n x x x +12121212111()(2)()k k nn n n n k i i j i i i n i i j ni i i nx x x x x x x x x ---=≤<≤≤<<<≤=+++++∑∑∑由平均值不等式得1112121212111211()(())k k knnnk k k k C C C k k k i i i ni i i n n n i i i ni i i nx x xC x x x Cx x x C--≤<<<≤≤<<<≤≥==∑∏故12)(2)n x x x +1122(2)(21)n n n n k k n n nn n n C C C C ---≥++++++=+,即证.(三法)由平均值不等式有111()n nnk k n ==≥……①;111(n nn kk n ==≥……② ①+②得11211()()nn n nk k x x x n n x =≥⋅,即12)(2)1)n n x x x +≥成立.(四法)由AM GM-不等式得:11(n i n=≥,11(ni n =≥,两式相加得:1≥,故1)1)nn i i x =≥∏.1.(2011年北约文)02απ<<,求证:sin tan ααα<<. 【解析】 不妨设()sin f x x x =-,则(0)0f =,且当02x π<<时,()1cos 0f x x '=->.于是()f x 在02x π<<上单调增.∴()(0)0f x f >=.即有sin x x >.同理可证()tan 0g x x x =->. (0)0g =,当02x π<<时,21()10cos g x x '=->.于是()g x 在02x π<<上单调增。

∴在02x π<<上有()(0)0g x g >=。

即tan x x >。

注记:也可用三角函数线的方法求解. 7. (2014年华约)已知*,,n N x n ∈≤求证:2(1)n x x n n e x n--≤.【证明】原不等式等价于2((1))xn nx n x n e n-≤-⋅.当2x n ≥,上述不等式左边非正,不等式成立;当2x n <时,由1(0)y e y y ≥+≥及贝努力不等式(1)1(1,1)n y ny n y +≥+≥>-,从而22222((1))((1)(1))(1)(1)xnn n n x x x x x n e n n n n n x n n n n n-⋅≥-⋅+=-≥-⋅=-,即证.1. (2014年卓越联盟)32||210x x -+<,求x 范围.【解】由3232||210||2||10(||1)(|||0x x x x x x x -+<⇔-+<⇔-<所以由数轴标根法得15||((1,2x +∈-∞,又因为||0x >,所以15(1)(1,2x +∈-.1、 (2013年卓越联盟)设函数()sin f x x x =.若1x 、2ππ22x ⎡⎤∈-⎢⎥⎣⎦,,且()()12f x f x >,则A .12x x >B .120x x +>C .12x x <D .2212x x >答案:(文科)D .历年自主招生试题分类汇编——初等数论7.(2013年北约)最多有多少个两两不等的正整数,满足其中任意三数之和都为素数. 解析 设满足条件的正整数为n 个.考虑模3的同余类,共三类,记为0,1,2. 则这n 个正整数需同时满足①不能三类都有;②同一类中不能有3个和超过3个.否则都会出现三数之和为3的倍数.故4≤n .当4=n 时,取1,3,7,9,其任意三数之和为11,13,17,19均为素数,满足题意, 所以满足要求的正整数最多有4个.题6(2012年北约)在1,2,…,2012中取一组数,使得任意两数之和不能被其差整除,问最多能取多少个数?解: 将1,2,…,2012分成(1,2,3),(4,5,6,)…,(2008,2009,2010),(2011,2012)这671组,如果所取数672n ≥,则由抽屉原理必然有两个数属于同一组,不妨设为a b >,则1a b -=或2。

当1a b -=时,此时a b -整除a b +,不合要求。

当2a b -=时,此时,a 与b 同奇偶,所以a b +为偶数,从而a b -也能整除a b +,也不合要求。

∴671n ≤,考察1,4,7,…,2011这671个数中的任两数a b >,则32,a b k k N *+=+∈,而3,a b l l N *-=∈,∴a b -不整除a b +,从而可知,最多能取671个数,满足要求。

评析: 本题考查整除问题,而解答主要用到竞赛数学中的抽屉原则和剩余类,整除等简单的数论知识,体现出自主招生试题要求考生有一定的竞赛数学知识,并掌握数学竞赛的一些常用方法和技巧。

6. (2013年华约)已知,,x y z 是互不相等的正整数,|(1)(1)(1)xyz xy xz yz ---,求,,x y z . 【解】本题等价于求使(1)(1)(1)1()xy xz yz xy yz zx xyz x y z xyz xyz---++-=-+++为整数的正整数,,x y z ,由于,,x y z 是互不相等的正整数,因此|1xyz xy yz zx ++-,不失一般性不妨设x y z >>,则13xyz xy yz zx yx ≤++-<,于是3z <,结合z 为正整数,故1,2z =, 当1z =时,|1xy xy y x ++-,即|1xy y x +-,于是12xy xy y x x ≤++-<,所以2y <, 但另一方面y z >,且为正整数,所以2y ≥矛盾,不合题意.所以2z =,此时2|221xy xy y x ++-,于是2221xy xy y x ≤++-,即221xy y x ≤+-, 也所以224xy y x x <+<,所以4y <,又因为2y z >=,所以3y =; 于是6|55x x +,所以655x x ≤+,即5x ≤,又因为3x y >=,所以4,5x =, 经检验5x =符合题意,于是符合题意的正整数,,x y z 有(,,)x y z =(2,3,5)、(2,5,3)、(3,2,5)、(3,5,2)、(5,2,3)、(5,3,2)注:该题与2011年福建省高一数学竞赛试题雷同.历年自主招生试题分类汇编——导数7. (2014年华约)已知*,,n N x n ∈≤求证:2(1)n x x n n e x n--≤.【证明】原不等式等价于2((1))xn nx n x n e n-≤-⋅.当2x n ≥,上述不等式左边非正,不等式成立;当2x n <时,由1(0)y e y y ≥+≥及贝努力不等式(1)1(1,1)n y ny n y +≥+≥>-,从而22222((1))((1)(1))(1)(1)xnn n n x x x x x n e n n n n n x n n n n n-⋅≥-⋅+=-≥-⋅=-,即证.7. (2013年华约)已知()(1)1x f x x e =-- 求证:(1)当0x >,()0f x <;(2)数列{}n x 满足111,1n n x x n x e e x +=-=,求证:数列{}n x 单调递减且12n n x >. 【解】(1)当0x >时,()0xf x xe '=-<,所以()f x 在(0,)+∞上递减,所以()(0)0f x f <=. (2)由11n nx x n x ee +=-得11n n x x ne ex +-=,结合11x =,及对任意0,1xx e x >>+,利用数学归纳法易得0n x >对任意正整数n 成立,由(1)知()0n f x <,即1n n xxn e x e -<, 即1n n x x n n x ex e +<,因为0n x >,所以1n n x x e e +<,即1n n x x +>,所以数列{}n x 递减,下面证明12n n x >,用数学归纳法证,设1()x e g x x -=,则221()()x x xe e f x g x x x -+'==-, 由(1)知当0x >时,()0f x <,即()0g x '>,故()g x 在(0,)+∞递增,由归纳假设12n n x >得1()()2n n g x g >,要证明1112n n x ++>只需证明1112n n xe e ++>,即112()n n g x e +>,故只需证明1121()2n n g e +>,考虑函数2()()x h x xg x xe =-,因为当0x >时212x x e >+,所以222()(1)[(1)]022x x xxx x h x e e e e =-+=-+>,故()h x 在(0,)+∞上递增,又102n >,所以1()02n h >,即1121()2n n g e +>,由归纳法知,12n n x >对任意正整数n 成立.注:此题的函数模型与2012年清华大学保送生考试试题的函数模型相似.(14) (2012年华约)记函数2()1,1,22!!nn x x f x x n n =+++⋅⋅⋅+=⋅⋅⋅证明:当n 是偶数时,方程()0n f x =没有实根;当n 是奇数时,方程()0n f x =有唯一的实根nθ,且2n n θθ+>。

相关文档
最新文档