mlcc干法流延工艺、湿法印刷工艺和瓷胶移膜工艺
MLCC工艺简介
MLCC⼯艺简介MLCC⼯艺简介配流⼯序原则上讲,配⽅和⽣产⼯艺是影响和决定陶瓷材料质量和性能的两⼤⽅⾯。
配料和流延⼯序不但包含了配⽅的确定过程,⽽且是mlcc制备⼯艺中的起始⼯序,该环节的⼯序质量对后续⽣产有重要影响。
因此,从产品的⾓度讲,配流可以说是整个⽣产过程中最重要的环节。
1. 配料⼯序配料⼯序包括两个过程,备料和分散。
后续成型⼯艺的不同对原料的种类要求不同。
针对流延成型来讲,备料是指按照配⽅要求给定的配⽐准确称量瓷粉、粘合剂、溶剂和各种助剂,混和置⼊球磨罐中准备分散;分散是指以球磨机或者砂磨机为⼯具通过机械粉碎和混合的原理达到细化粉粒、均匀化浆料的⽬的。
1.1 关于原料1.1.1 瓷粉瓷粉是电容⾏为发⽣的主体,整个⼯艺是围绕瓷粉为核⼼进⽽展开的。
不同体系瓷粉其主要成分不同,⽐如⾼频陶瓷常采⽤BT系、BTL三价稀⼟氧化物系、ZST系材料,中⾼压陶瓷常采⽤BT系、SBT 系以及反铁电体材料。
我公司所采⽤瓷粉全部为外购瓷粉,因此对瓷粉材料的成分本⾝不⽤太为苛刻,⼀般只按照使⽤的产品类型和牌号来进⾏标识。
⽬前,公司使⽤的瓷粉按照端电极材料可以分为BME(based metal electrode)及NME(noble metal electrode)两⼤系列,按照其容温特性⼜可具体细分如下:(NP0) ⾼频热稳定材料:CG-32BME (X7R) 低频中介材料:AN342N、X7R252N、AD352N等(Y5V) 低频⾼介材料:AD143N、YF123B等(NP0)⾼频热稳定材料:CG800LC、C0G150L、CGL300、VLF220B NME(X7R)低频中介材料:AD302J、X7R262L等对于粉体材料,控制其物理性能的稳定性对最终产品的⼀致性有重要意义。
常⽤的性能参数有:振实密度、⽐表⾯积、颗粒度以及微观形貌。
特别是对于有烧结⾏为的陶瓷电容器粉体材料,为了得到⽣长适度的晶粒,控制颗粒的初始粒径以及⼀致性是⾮常必要的。
MLCC基础知识解读
5、 材料如下:
BME 类:( 1) NPO( COG) -------------CG---33C (CG---32)
(2)X7R---------------AD342N
AD352N X7R-NI
(3)Y5V------------AD143N
YF123B AD173B AD163N
NME 类:(1)NPO( COG)--------------CG800LC VLF-220B
配料术语
配料将陶瓷粉和粘合剂及溶剂等按一定比例经过球磨一定时间,形成陶瓷浆料。
配料所用的陶瓷材料
1、 按材料特性分类可分为: NPO(COG)、 X7R、Y5V 三种
2、 按材料类型可分为: BME 、 NME 两种类型同
3、 时均包括 NPO(COG)、X7R、 Y5V 特性材料 4、 我公司目前所用的陶瓷材料,
MLCC 的生产工艺过程
第 1 节 MLCC 前道工序生产工艺过程
配料
配料是 MLCC 生产工艺的第一道工序,故语云: “万事开头难 ”从事种厚材料的来料
到瓷浆的形成都需经过科学的试验反复验证并通过摘优先取的下面我们介绍配料工
序的生产工艺。
厚材料来料 ------------ 按工艺配方配制 ------------ 球磨 -------------- 成浆
制造独石结构的瓷介电容器。
在 80 年代随着 SMT 与 MLC 技术的发展, MLC 的高比容介质薄层化趋势突破专统
厚度范围,二种干法流延方式被世界大多类 MLC 生产厂家普通使用, 80 年代以来
我国引进了干法流延和湿法印刷成膜及相关生产技术,有效地改善了Leabharlann MLC 制造工艺水平。
随后 92---96 年日本引入了 SLOT-DIE 流延头的新技术实现厚度为 2— 25MM 代表了 流延技术的最高水平(先后有康井、平野、横山生产的流延机) 。
MLCC工艺流程介绍
Ag or Cu Ni Sn
Table 1-1. MLCC 一般的 Specification
項目 Size Capacitance 溫度特性 Type 0201, 0402, 0603, 0805, 1206 1210, 1812, 2220, Array Type 0.5pF ~ 100uF Class I (COG, TC series) Class II (X5R, X7R, X6S, Y5V)
Scientific Mind
MLCC工艺流程介绍
BATCH工程
成型干燥
成型工程 成型工程 印刷工程 积层/压着工程
调整线速、温度、泵流量将Slurry中溶 剂完全挥发,使Sheet收缩、致密化, 具有一定厚度、膜密度的过程
Counter flow zone
切断工程 假烧工程 烧成工程 研磨工程 外电工程 电烧工程 镀金工程 测定选别工程 作成: 张宏亮
凹版印刷
Screen印刷
Squeegee
印刷完成品
Impression Cylinder
外电工程 电烧工程 镀金工程 测定选别工程 作成: 张宏亮
Gravure Cylinder Ink Pan
Sheet
Paste Viscosity
Squeegee
Doctor Blade
Shear rate
Printing
假烧工程就是去除chip中bender等有机物的工程
一次假烧 为了防止因Binder的急剧挥发导致的Crack或Delam等不良发 生,在低温中缓慢挥发Binder的工程
二次假烧 又名氛围气假烧,在较高的温度下去除1次假烧后残留Binder 的过程
MLCC工艺流程介绍
mlcc印刷工序
mlcc印刷工序
MLCC是多层陶瓷电容器(Multilayer Ceramic Capacitors)的缩写,是一种常见的电子元件。
MLCC的印刷工序主要包括以下几个步骤:
1. 印刷胶料:在印刷机上,将陶瓷粉末和有机胶料混合,形成印刷用的胶料。
2. 制作薄片:将印刷胶料涂覆在薄片上,通过压片机将胶料均匀压平。
3. 切割薄片:将压平的薄片切割成所需的尺寸,形成多个电容单元。
4. 堆叠薄片:将切割好的薄片叠放在一起,形成多层结构。
每一层薄片之间都有涂有电极膏的细层。
5. 压合:将叠放好的薄片进行压合,使其紧密结合在一起。
6. 烧结:将压合后的薄片放入高温炉中进行烧结,使胶料中的有机物质燃尽,并使陶瓷薄片固结成坚硬的陶瓷。
7. 电极镀银:将烧结后的多层陶瓷块表面涂覆银浆,形成电极。
8. 镀镍:为了提高焊接性能,有些情况下还需要对电极进行镀镍处理。
9. 印刷标识:在元件上印刷标识码、规格信息等。
10. 高温烧结:将带有电极的陶瓷块再次放入高温炉中进行高温烧结,使电极与陶瓷块更好地结合。
11. 测试和包装:对MLCC进行电性能测试、外观检查等,合格后进行包装。
以上是MLCC的常见印刷工序,不同厂家和不同型号的MLCC可能会有些差异。
MLCC基础知识
MLCC行业介绍多层陶瓷电容器的起源可追逆到二战期间玻璃釉电容器的诞生,由于性能优异的高频发射电容器对云母介质的需求巨大,而云母矿产资源缺以及战争的影响,美国陆军通信部门资助陶瓷实验开展了喷涂下班釉介质和丝网刷银电极经叠层层共烧,再烧附端电极的独石化工艺研究在战后得到进一步推广。
并逐渐变为今天的二种型湿法工艺,干法工艺要追到二战期间诞生的流延工艺技术,在1943---1945后美国开始流延工艺技术的研究并组装一台流延机为钢带流延机,并在1952年获得专利。
二战后苏联与美国电容器技术似入我国并形成一定的生产规模,为了改进性能,扩大生产规模,60年代我国产业界开始尝试用陶瓷介质进行轧膜成型,印刷叠层工艺制造独石结构的瓷介电容器。
在80年代随着SMT与MLC技术的发展,MLC的高比容介质薄层化趋势突破专统厚度范围,二种干法流延方式被世界大多类MLC生产厂家普通使用,80年代以来我国引进了干法流延和湿法印刷成膜及相关生产技术,有效地改善了MLC制造工艺水平。
随后92---96年日本引入了SLOT-DIE流延头的新技术实现厚度为2—25MM代表了流延技术的最高水平(先后有康井、平野、横山生产的流延机)。
独石电容器是由涂有电极的陶瓷膜素坯,以一定的方式叠全起来最后经过一次焙烧成一整体,故称为“独石”也称多层陶瓷电容器(MLCC)独石电容器的特点是具有体积小、比容大、内电感小、耐湿、寿命长、可靠性高的优点;独石电容器的发展取决于材料(包括介质材料、电极浆料、粘合剂)和工艺技术的发展,其中陶瓷介质有差决定性作用。
独石瓷介电容器有两种类型:一种为温度补偿型(是MGTTD3、CATIO3和TIO2或以这些为基础再加入稀土氧化物、氧化铋、粘土等配制成的瓷料;而加一种是高介电系数型,以BATTO3主要成分高温烧成。
料,电导率大、焊接方便、价格不高、工艺性好,但银电极在高温、高湿、强直流电场作用下银离子易迁移,造成电容器失效的主要原因,故目前沿用低温烧结用银钯结合(950---1100度)材料的用途是由其性能所决定的,而材料的性能异不是一成不变的,可以通过改变厚材料的纯度,粒度或各种添加剂和各工艺因素等进行改性。
mlcc工艺流程
mlcc工艺流程MLCC(多层陶瓷电容器)是一种常见的电子元件,广泛应用于电子产品中。
MLCC工艺流程是指制造MLCC的一系列工艺步骤和流程。
本文将介绍MLCC工艺流程的主要步骤和相关内容。
1. 原材料准备:制造MLCC的主要原材料包括陶瓷粉末、导电粉末和电极材料。
这些原材料需要经过筛选、称量和混合等步骤,以确保原材料的质量和配比的准确性。
2. 陶瓷材料成型:将混合好的陶瓷粉末通过成型工艺,如注射成型、挤出成型或压坯成型,制成具有一定形状和尺寸的陶瓷基片。
这些陶瓷基片通常是长方形或圆形的。
3. 电极材料制备:将导电粉末与有机胶粘剂混合,形成电极浆料。
然后,将电极浆料涂覆在陶瓷基片的表面,形成电极层。
通常,陶瓷基片的两侧都涂覆有电极层。
4. 层叠和压合:将涂有电极层的陶瓷基片进行层叠,形成多层结构。
在层叠过程中,需要注意电极层的对称性和对准度。
然后,将层叠好的多层结构进行压合,使其形成坚固的整体。
5. 烧结:将压合好的多层结构放入高温炉中,进行烧结处理。
在烧结过程中,通过控制温度和时间等参数,使陶瓷基片和电极层之间的材料相互融合,形成致密的陶瓷电容体。
6. 电极粘结:在烧结后的陶瓷电容体上涂覆金属粘结剂,并将金属电极材料(如银浆)涂覆在金属粘结剂上。
这一步骤是为了连接外部电路和MLCC的电极,以便电荷的传递和电流的流动。
7. 电极成型:通过切割、研磨和抛光等工艺,将涂有电极的陶瓷电容体切割成具有一定尺寸和形状的单个电容器。
这些单个电容器即为成品MLCC。
8. 电性能测试:对成品MLCC进行电性能测试,包括容量、电阻、电压等参数的测试。
这些测试是为了确保MLCC的质量和性能达到要求。
9. 包装和贮存:将测试合格的MLCC进行包装,并进行标识和分类。
然后,将其存放在干燥、无尘的环境中,以确保其质量和稳定性。
MLCC工艺流程包括原材料准备、陶瓷材料成型、电极材料制备、层叠和压合、烧结、电极粘结、电极成型、电性能测试以及包装和贮存等步骤。
mlcc电容的生产工艺
mlcc电容的生产工艺
MLCC(多层陶瓷电容器)的生产工艺主要有三种:干式流延工艺、湿式印刷工艺和瓷胶移膜工艺。
以下是具体流程:
干式流延工艺:在基带上流延出连续、厚度均匀的浆料层。
在表面张力的作用下浆料层形成光滑的自然表面,干燥后形成柔软如皮革状的膜带,再经印刷电极、层压、冲片、排粘、烧结后形成电容器芯片。
湿式印刷工艺:将陶瓷介质浆料通过丝网印刷制成陶瓷薄膜作为多层陶瓷电容器的介质,金属电极和上下保护片都采用丝网印刷形成,达到设计的层数后进行烘干,再按片式电容器的尺寸要求切割成芯片。
瓷胶移膜工艺:以卷式胶膜为载体,通过特殊浆料挤出设备,将陶瓷浆料均匀挤在载体上,以获得陶瓷介质层连续性卷材,膜厚精准,可做到2μm以下,实现介质层的超薄制作。
制作电容器时,以陶瓷介质卷材为基础,在上面印刷金属电极后再套印瓷浆层。
中国MLCC (片式多层陶瓷电容器)的发展史
多层陶瓷电容器(MLC)的起源可以追溯到二战期间玻璃釉电容器的诞生。由于性能优异的高频电容器与大功率发射电容器对云母介质的需求巨大,而云母矿产资源稀缺以及战争的影响,美国陆军通信部门资助DupONt公司陶瓷实验室开展了喷涂玻璃釉介质和丝网印刷银电极经叠层后共烧,再烧附端电极的独石化(Monolithic)工艺研究,并获得多项技术专利。经介质配方改进提高介电常数和降低损耗,玻璃釉电容器已完全可以取代云母电容器。
2.MLCC多次洗牌
经历了多次洗牌,日系企业仍然占据市场领先地位。
20世纪90年代中后期,日系大型MLCC制造企业全面抢滩中国市场,先后建立北京村田、无锡村田、上海京瓷、东莞太阳诱电、东莞TDK等合资或独资企业。在这期间,克服了困扰十余年的可靠性缺陷,以贱金属电极(BME)核心技术为基础的低成本MLCC开始进入商业实用化。以天津三星电机为代表的韩资企业也开始成为一支新兴力量。
新旧世纪之交,飞利浦在产业顶峰放弃并出让被动元件事业部,拉开了中国台湾岛内MLCC业界全面普及BME技术的序幕。国巨、华新、达方、天扬等台系企业的全面崛起,彻底打破了日系企业在BME制造技术的垄断,高性价比MLCC为IT与A&V产业的技术升级和低成本化作出了重大贡献。同时,台系企业开始将从后至前的各道工序制程不断向大陆工厂转移。
3.中国大陆MLCC技术获突破
大陆电容器产业现已基本实现了MLCC主流产品本地化供应局面。
在MLCC发展进程中,需特别强调的是我国大陆科技工作者的历史贡献。在二战后,前苏联研制出的与美国类似的玻璃釉电容器技术传入我国大陆,形成了一定的生产规模。为进一步改进性能,扩大产能,20世纪60年代中国大陆产业界开始尝试用陶瓷介质进行轧膜成型、印刷叠压工艺制造独石结构的瓷介电容器。为适应多层共烧工艺要求,采用传统陶瓷电容器介质材料于1300℃以上高温烧结需采用Au-Pd-Pt三元贵金属电极系统,因成本太高,仅能维持极少量军品需求。以原电子工业部7所、715厂、华南工学院等单位为龙头的若干单位,先后于1967年和1969年完成了900℃左右低温烧结的2类和1类独石瓷介电容器的研制。前者以Smolenskii首先提出的Pb(Mg1/3Nb2/3)O3为主晶相。后者包括MgO-Bi2O3-Nb2O5和ZnO-Bi2O3-Nb2O5系,以及高介大温度系数Pb(Mg1/2W1/2)O3系统。上述系统在我国大陆实现工业化生产达20年。
mlcc陶瓷电容的生产工艺
MLCC陶瓷电容的生产工艺
4. 层叠:将多个涂有电极的陶瓷片叠放在一起,形成多层结构。每一层都有电极与相邻层 的电极形成连接。
5. 压制和成型:将层叠好的陶瓷片组进行压制,使其形成坚固的结构。压制可以采用机械 压制或注射成型等方式。
9. 包装和成品检验:对合格的MLCC进行包装,通常采用盘装或卷装的方式。进行成品检 验,包括外观检查、尺寸测量、标记和包装检查等。
MLCC陶瓷电容的生产工艺
多层陶瓷电容(Multilayer Ceramic Capacitor,简称MLCC)是一种常见的电子元件, 用于电路中的电容器。下面是MLCC陶瓷电容的典型生产工艺步骤:
1. 材料准备:准备陶瓷粉末、金属电极材料(如银、铜)、有机溶剂和添加剂等。பைடு நூலகம்
2. 陶瓷制备:将陶瓷粉末与有机溶剂混合,形成陶瓷浆料。浆料经过搅拌、过滤和干燥等 工艺处理,得到均匀的陶瓷片。
6. 烧结:将压制好的陶瓷片组放入高温炉中进行烧结。在高温下,陶瓷粉末颗粒会熔融并 形成致密的陶瓷结构。
MLCC陶瓷电容的生产工艺
7. 电极连接:通过金属线或焊料等将电极与外部引线连接起来。连接方式可以采用焊接、 焊锡等方式。
8. 测试和分选:对生产好的MLCC进行测试,包括电容值、电压容忍度、漏电流等参数的 测试。根据测试结果,将电容器分为不同的等级和规格。
MLCC基础知识解读
行业介绍MLCC 多层陶瓷电容器的起源可追逆到二战期间玻璃釉电容器的诞生,由于性能优异的高频发射电容器对云母介质的需求巨大,而云母矿产资源缺以及战争的影响,美国陆军通信部门资助陶瓷实验开展了喷涂下班釉介质和丝网刷银电极经叠层层共烧,再烧附端电极的独石化工艺研究在战后得到进一步推广。
并逐渐变为今天的二后美1943---1945 种型湿法工艺,干法工艺要追到二战期间诞生的流延工艺技术,在年获得专1952 国开始流延工艺技术的研究并组装一台流延机为钢带流延机,并在利。
二战后苏联与美国电容器技术似入我国并形成一定的生产规模,为了改进性能,扩年代我国产业界开始尝试用陶瓷介质进行轧膜成型,印刷叠层工艺60 大生产规模,制造独石结构的瓷介电容器。
的高比容介质薄层化趋势突破专统MLC 与技术的发展,MLC 在80 年代随着SMT 年代以来MLC 生产厂家普通使用,80 厚度范围,二种干法流延方式被世界大多类制造工我国引进了干法流延和湿法印刷成膜及相关生产技术,有效地改善了MLC 艺水平。
代表了—25MM 年日本引入了随后92---96SLOT-DIE 流延头的新技术实现厚度为2 流延技术的最高水平(先后有康井、平野、横山生产的流延机)。
独石电容器是由涂有电极的陶瓷膜素坯,以一定的方式叠全起来最后经过一次焙烧)MLCC “独石”也称多层陶瓷电容器(成一整体,故称为独石电容器的特点是具有体积小、比容大、内电感小、耐湿、寿命长、可靠性高的优点;独石电容器的发展取决于材料(包括介质材料、电极浆料、粘合剂)和工艺技术的发展,其中陶瓷介质有差决定性作用。
独石瓷介电容器有两种类型:一种为TIO2 和或以这些为基础再加入稀土氧化物、温度补偿型(是MGTTD3 、CATIO3 氧化铋、粘土等配制成的瓷料;而加一种是高介电系数型,以BATTO3 主要成分高温烧成。
料,电导率大、焊接方便、价格不高、工艺性好,但银电极在高温、高湿、强直流电场作用下银离子易迁移,造成电容器失效的主要原因,故目前沿用低温烧结用银钯结合(950---1100 度)材料的用途是由其性能所决定的,而材料的性能异不是一成不变的,可以通过改变厚材料的纯度,粒度或各种添加剂和各工艺因素等进行改性。
MLCC生产流程
MLCC生产流程一、MLCC生产工艺流程简介:1.配料:将陶瓷粉和粘合剂及溶剂等按一定比例经过球磨一定时间,形成陶瓷浆料。
2.流延:将陶瓷浆料通过流延机的浇注口,使其涂布在绕行的PET膜上,从而形成一层均匀的浆料薄层,再通过热风区(将浆料中绝大部分溶剂挥发),经干燥后可得到陶瓷膜片,一般膜片的厚度在10um-30um之间。
3.印刷:按照工艺要求,通过丝网印版将内电极浆料印刷到陶瓷膜片上。
4.叠层:把印刷有内电极的陶瓷膜片按设计的错位要求,叠压在一起,使之形成MLCC的巴块(Bar)。
5.制盖:制作电容器的上下保护片。
叠层时,底和顶面加上陶瓷保护片,以增加机械强度和提高绝缘性能。
6.层压:叠层好的巴块(Bar),用层压袋将巴块(Bar)装好,抽真空包封后,用等静压方式加压使巴块(Bar)中的层与层之间结合更加紧密,严实。
7.切割:层压好的巴块(Bar)切割成独立的电容器生坯。
高温烘烤,去除芯片中的粘合剂等有机物质。
排胶作用:1)排除芯片中的粘合剂有机物质,以避免烧成时有机物质的快速挥发造成产品分层与开裂,以保证烧出具有所需形状的完好的瓷件。
2)消除粘合剂在烧成时的还原作用。
9.烧结:排胶完成的芯片进行高温处理,一般烧结温度在1140℃~1340℃之间,使其成为具有高机械强度,优良的电气性能的陶瓷体的工艺过程。
10.倒角:烧结成瓷的电容器与水和磨介装在倒角罐,通过球磨、行星磨等方式运动,使之形成光洁的表面,以保证产品的内电极充分暴露,保证内外电极的连接。
11.端接:将端浆涂覆在经倒角处理的芯片外露内部电极的两端上,将同侧内部电极连接起来,形成外部电极。
12.烧端:端接后产品经过低温烧结后才能确保内外电极的连接。
并使端头与瓷体具有一定的结合强度。
13.端头处理:表面处理过程是一种电沉积过程,它是指电解液中的金属离子(或络合离子)在直流电作用下,在阴极表面还原成金属(或合金)的过程。
电容一般是在端头(Ag端头或 Cu端头)上镀一层镍后,再镀层锡。
村田mlcc制程工艺
村田mlcc制程工艺村田MLCC(多层陶瓷电容器)是一种常见的电子元件,被广泛应用于电子产品中。
它的制程工艺是指制造这种电容器的过程和方法,包括材料准备、印刷、烧结等多个环节。
下面我将以人类的视角,生动地描述村田MLCC制程工艺的过程。
第一步,材料准备。
在制造村田MLCC之前,首先需要准备好所需的材料,主要包括陶瓷粉末、电极浆料等。
这些材料需要经过精细的筛选和混合,确保其质量和性能符合要求。
第二步,印刷。
印刷是制造村田MLCC的关键步骤之一。
通过使用印刷机,将电极浆料均匀地印刷在陶瓷片上。
这个过程需要高度的精确度和技术,以确保电极的位置和尺寸符合设计要求。
第三步,层叠。
印刷完成后,多个陶瓷片将被层叠在一起,形成多层结构。
这个过程需要精确的对位和定位,以确保每一层的电极之间没有短路或断路。
第四步,烧结。
层叠完成后,将村田MLCC送入高温烧结炉中进行烧结。
在高温下,陶瓷粉末会发生化学反应,形成致密的结构,并与电极浆料相互融合。
烧结过程中,还需要控制温度和时间,以确保村田MLCC的性能和质量。
第五步,电极处理。
烧结后,需要对村田MLCC进行电极处理。
这包括削平电极表面、涂覆保护层等步骤,以提高电容器的性能和稳定性。
测试和包装。
制程工艺的最后一步是对村田MLCC进行测试和包装。
通过严格的测试,确保电容器的电性能符合规定的标准。
之后,将电容器进行包装,以便于存储和运输。
通过以上的描述,我们可以清楚地了解村田MLCC制程工艺的整个过程。
从材料准备到印刷、层叠、烧结、电极处理,再到测试和包装,每个步骤都需要精确的操作和严格的控制,以确保村田MLCC 的质量和性能。
这些工艺步骤的顺序和细节都是为了生产出高质量的电子元件,以满足人们对电子产品的需求。
片式多层陶瓷电容器(MLCC)项目可行性研究报告-5G 推动下游需求持续增加, MLCC 迎来新一轮成长
片式多层陶瓷电容器(MLCC)项目可行性研究报告-5G推动下游需求持续增加,MLCC迎来新一轮成长编制单位:北京智博睿投资咨询有限公司规格分高端和普通规格,面向不同应用领域。
MLCC 由内部电极、涂层、端电极和陶瓷介质构成,因材料、工艺、性能的不同,可分为高端规格和普通规格。
高端规格的堆叠层数一般大于 500,与普通规格相比具有高容值、高耐压、高温稳定及体积更小等特质,主要应用于手机等超小型领域(常见尺寸有 0201、01005 和 008004)或者材料要求较高的汽车、航空航天等高压高容领域;普通规格常见尺寸有0402、0603 等,主要应用在消费类电子及一般工业领域中。
MLCC 结构MLCC 高低端规格对比MLCC 未来将向“五高一小”方向发展。
目前 MLCC 主要朝着小型化、高容量化、高频化、耐高温、耐高电压、高可靠性的方向发展。
1)小型化:电子产品朝着小型化的方向发展,促使 0402M(01005)等小尺寸 MLCC 产品占比逐年升高。
2)高容量化:MLCC具备稳定的电性能、无极性、高可靠性等优点,其材料和加工技术朝着高容量化的方向发展,有助于推动 MLCC 替代钽电解电容。
3)高频化、耐高温:MLCC 的工作频率已进入到毫米波频段范围。
常用 MLCC 的最高工作温度是 125℃,满足特种电子设备极限工作环境的 MLCC 工作温度也逐步提高至 260℃。
4)耐高电压、高可靠性:军民用电源系统以及汽车电子系统,都需要高可靠的耐高电压、耐大电流的多层陶瓷电容器。
MLCC 性能优异,市场份额一骑绝尘。
与单层陶瓷电容器相比,多层陶瓷电容器采用多层堆叠工艺,在元件个数与体积基本保持不变的条件下,能满足电子产品的更高容量要求。
此外,陶瓷高温烧结等工艺使得 MLCC 结构更为致密,耐电性能更加出色。
随着材料更新换代,MLCC 的低等效串联电阻(ESR)能够加速实现,减少元件由于自身发热而产生的热能浪费,将更多的能量集中到电子设备中,从而提高运行效率,使得 MLCC 高频性能逐渐凸显。
mlcc流延洁净度要求
mlcc流延洁净度要求
MLCC流延洁净度要求
MLCC,即多层陶瓷电容器,是现代电子工业中不可或缺的关键元件。
由于其具有体积小、容量大、耐高温、耐潮湿等特性,被广泛应用于各种电子设备中。
而流延工艺作为MLCC生产过程中的重要环节,其洁净度要求极为严格。
流延工艺是指将陶瓷浆料通过特定的流延设备,在控制温度和湿度的条件下,均匀涂布在载体上,形成所需厚度的陶瓷生带。
在这个过程中,任何微小的尘埃或杂质都可能对MLCC的性能产生严重影响,如降低绝缘性能、增加漏电流、缩短使用寿命等。
因此,对流延工艺环境的洁净度要求极高。
为了确保流延工艺的洁净度,生产企业需要采取一系列措施。
首先,车间内应设置空气净化系统,确保空气中的尘埃粒子数量在规定的范围内。
同时,工作人员在进入车间前必须经过严格的洁净处理,包括穿戴特定的洁净服和洁净鞋,佩戴洁净手套等。
此外,车间内的设备、工具等也需要定期清洁和维护,以确保其表面无尘埃和杂质。
除了硬件设施的投入,企业还应建立完善的质量管理体系和操作规程。
通过对流延工艺过程的严格控制,确保每一步操作都符合洁净度要求。
同时,定期对流延产品进行质量检测和评估,以及时发现和解决问题。
总之,MLCC流延工艺的洁净度要求对于保证产品质量和生产效率至关重要。
企业
应充分认识到洁净度的重要性,并采取切实有效的措施来确保流延工艺的洁净度。
只有这样,才能生产出高性能、高质量的MLCC产品,满足市场和客户的需求。
mlcc印刷工序
任务名称:MLCC印刷工序一、什么是MLCC印刷工序MLCC(Multilayer Ceramic Capacitor)是一种多层陶瓷电容器,在电子产品中广泛应用。
MLCC印刷工序是指将多层陶瓷片、电极材料和导电浆料通过印刷、干燥和烧结等工艺流程制造成电容器的过程。
二、MLCC印刷工序的主要过程MLCC印刷工序包括以下几个主要过程:2.1 陶瓷片制备陶瓷片是MLCC的基础材料,它由氧化铝、二氧化锆等陶瓷粉末经过混合、压制和烧结等工艺制备而成。
陶瓷片的质量和物理性能直接影响到MLCC的性能。
2.2 电极材料制备电极是MLCC的重要组成部分,它用于连接陶瓷片中的正负极。
常用的电极材料有铜、银和铂等。
电极材料需要经过混合、涂布和干燥等工艺制备,以获得所需的导电性能。
2.3 导电浆料制备导电浆料是MLCC印刷过程中的关键材料,它由导电粉末、有机溶剂和增稠剂等组成。
导电浆料通过喷涂或滚涂等方式施加在陶瓷片的一面,形成电极层。
2.4 印刷印刷是MLCC印刷工序的核心步骤。
在印刷过程中,通过丝网印刷技术,将导电浆料均匀地覆盖在陶瓷片的一面,并形成所需的电极形状和尺寸。
2.5 干燥印刷完毕后,需要对陶瓷片进行干燥,以去除导电浆料中的有机溶剂和水分。
干燥过程通常使用烘箱或者烘干室进行,温度和时间需要控制得当,以避免对陶瓷片和电极的损坏。
2.6 烧结烧结是制造MLCC的最后一步。
经过干燥的陶瓷片需要进行高温加热处理,使其达到烧结温度,以使陶瓷片和电极之间形成致密的结合,并释放出内部的残余应力。
烧结完成后,MLCC进一步经过金属化、外片切割、测试和包装等工序,最终成为可用的电子元器件。
三、MLCC印刷工序中的关键技术与挑战MLCC印刷工序中存在一些关键技术和挑战,包括:3.1 丝网印刷技术丝网印刷技术是MLCC印刷过程中使用最为广泛的技术。
关键是确保导电浆料均匀地分布在丝网孔洞中,并控制印刷厚度和形状,以保证电极的质量和性能。
mlcc制造工艺
mlcc制造工艺MLCC(多层陶瓷电容器)是一种常见的电子元件,广泛应用于电子设备中。
MLCC制造工艺是指生产MLCC的过程和方法。
本文将介绍MLCC制造工艺的基本步骤以及相关技术。
MLCC的制造工艺包括:原料准备、浆料制备、电极涂布、压制成型、烧结、内电极切割、外部电极涂布和包装等环节。
原料准备是制造MLCC的第一步。
原料主要包括陶瓷粉末、导电粉末、有机溶剂和增塑剂等。
这些原料需要经过筛选、研磨和混合等处理,以获得具备一定性能的浆料。
接下来是浆料制备环节。
通过将陶瓷粉末、导电粉末和有机溶剂等原料混合并研磨,制备成具有一定流动性的浆料。
浆料的制备过程需要控制好比例和质量,以确保最终产品的性能稳定。
电极涂布是MLCC制造的关键环节之一。
通过将浆料涂布在陶瓷基片上,形成电极层。
涂布过程需要控制好涂布速度和涂布厚度,以保证电极层的均匀性和稳定性。
压制成型是将涂布好的基片进行压制,使其形成规定尺寸的片状。
压制过程需要控制好压力和温度,以确保片状的成型质量。
烧结是将压制好的片状进行高温处理,使其形成致密的陶瓷基片。
烧结过程中,需要严格控制温度和时间,以确保陶瓷基片的致密性和稳定性。
内电极切割是将烧结好的陶瓷基片进行切割,形成多个独立的电容单元。
切割过程需要高精度的切割设备和精细的操作,以确保切割质量和一致性。
外部电极涂布是将切割好的陶瓷基片进行外部电极的涂布,形成最终的MLCC产品。
外部电极涂布过程需要控制好涂布厚度和均匀性,以确保产品性能的稳定。
最后是包装环节。
MLCC制造完成后,需要进行包装,以保护产品免受外界环境的影响。
常见的包装方式有盘装、带装和管装等。
除了基本的制造工艺外,MLCC的制造还涉及一些先进的技术。
例如,采用纳米材料可以提高MLCC的电容量和稳定性;采用新型的涂布技术可以提高电极层的均匀性和附着力;采用高精度的切割设备可以提高MLCC的一致性和尺寸精度等。
MLCC制造工艺是一项复杂而精细的过程,需要严格控制各个环节的参数和质量。
流延法制备多层陶瓷电容器工艺流程参考文献
流延法制备多层陶瓷电容器工艺流程参考文献下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!流延法制备多层陶瓷电容器的工艺流程及参考文献一、引言流延法是一种广泛应用于陶瓷材料制备,尤其是多层陶瓷电容器(Multilayer Ceramic Capacitors, MLCCs)制造的关键技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
mlcc干法流延工艺、湿法印刷工艺和瓷胶移膜工艺
MLCC干法流延工艺是一种用于制造多层陶瓷电容器(Multilayer Ceramic Capacitor,简称MLCC)的工艺。
该工
艺将陶瓷粉料与有机粘结剂混合,形成流动性较好的混合浆料。
然后,通过将混合浆料涂覆在陶瓷基片上,并逐层堆叠多个涂覆层,形成多层结构。
最后,利用烧结过程将混合浆料中的有机粘结剂烧掉,并使陶瓷颗粒结合成完整的陶瓷多层结构。
湿法印刷工艺是一种常用的陶瓷电容器制造工艺。
该工艺采用陶瓷粉料与有机粘结剂混合后,添加溶剂,形成粘稠的混合浆料。
然后,将混合浆料涂覆在导电片上,并经过局部干燥,使浆料粘附在导电片表面。
接着,通过重复涂覆、干燥和局部烧结的步骤,逐渐建立起多层结构。
最后,利用整体烧结工艺将多层结构中的有机粘结剂烧掉,并使陶瓷颗粒结合成完整的陶瓷电容器。
瓷胶移膜工艺是一种用于制造陶瓷电容器的工艺。
该工艺首先制备瓷胶,即将陶瓷粉料与有机粘结剂和溶剂混合而成的胶状物。
然后,将瓷胶涂覆在阻抗表面上,并进行局部干燥,使瓷胶附着在阻抗表面上。
接着,通过重复涂覆、干燥和局部烧结的步骤,逐渐建立起多层结构。
最后,利用整体烧结工艺将多层结构中的有机粘结剂烧掉,并使陶瓷颗粒结合成完整的陶瓷电容器。