2020届湖北省恩施州中考数学试卷(有答案)(Word版)
2020年湖北省恩施州中考数学试卷
2020年湖北省恩施州中考数学试卷一、选择题(本大题共有12个小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1(3分)(2020•恩施州)5的绝对值是()A5B﹣5C 15D−152(3分)(2020•恩施州)茶中精品“恩施绿”“利川红”享誉世界去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为()A12×104B12×105C12×106D012×1063(3分)(2020•恩施州)下列交通标识,既是中心对称图形,又是轴对称图形的是()A B C D4(3分)(2020•恩施州)下列计算正确的是()A a2•a3=a6B a(a+1)=a2+aC(a﹣b)2=a2﹣b2D2a+3b=5ab5(3分)(2020•恩施州)函数y=√x+1x的自变量的取值范围是()A x≥﹣1B x≥﹣1且x≠0C x>0D x>﹣1且x≠06(3分)(2020•恩施州)“彩缕碧筠粽,香粳白玉团”端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽小明任意选取一个,选到甜粽的概率是()A 211B411C511D6117(3分)(2020•恩施州)在实数范围内定义运算“☆”:a☆b=a+b﹣1,例如:2☆3=2+3﹣1=4如果2☆x=1,则x的值是()A﹣1B1C0D28(3分)(2020•恩施州)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x斛,1个小桶盛酒y 斛,下列方程组正确的是()A {5x +y =3x +5y =2B {5x +y =2x +5y =3C {5x +3y =1x +2y =5D {3x +y =52x +5y =19(3分)(2020•恩施州)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A B C D10(3分)(2020•恩施州)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A 甲车的平均速度为60km /hB 乙车的平均速度为100km /hC 乙车比甲车先到B 城D 乙车比甲车先出发1h11(3分)(2020•恩施州)如图,正方形ABCD 的边长为4,点E 在AB 上且BE =1,F 为对角线AC 上一动点,则△BFE 周长的最小值为( )A 5B 6C 7D 812(3分)(2020•恩施州)如图,已知二次函数y =ax 2+bx +c 的图象与x 轴相交于A (﹣2,0)、B(1,0)两点则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0其中正确的有()个A0B1C2D3二、填空题(本大题共有4小题,每小题3分,共12分不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13(3分)(2020•恩施州)9的算术平方根是14(3分)(2020•恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=15(3分)(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC若∠ABC=60°,则图中阴影部分的面积为(结果不取近似值16(3分)(2020•恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2)已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为三、解答题(本大题共有8个小题,共72分请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17(8分)(2020•恩施州)先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√218(8分)(2020•恩施州)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD求证:四边形ABCD是菱形19(8分)(2020•恩施州)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有名20(8分)(2020•恩施州)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1414,√3≈1732)21(8分)(2020•恩施州)如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=kx(x>0)的一个交点为C,且BC=12AC(1)求点A的坐标;(2)当S△AOC=3时,求a和k的值22(10分)(2020•恩施州)某校足球队需购买A、B两种品牌的足球已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元设购买A品牌足球m 个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?23(10分)(2020•恩施州)如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH若AB=6,AC=4,求tan∠BHE24(12分)(2020•恩施州)如图1,抛物线y=−14x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标(3)△MPC在(2)的旋转变换下,若PC=√2(如图2)①求证:EA=ED②当点E在(1)所求的抛物线上时,求线段CM的长2020年湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共有12个小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1(3分)(2020•恩施州)5的绝对值是()A5B﹣5C 15D−15【解答】解:在数轴上,数5所表示的点到原点0的距离是5;故选:A2(3分)(2020•恩施州)茶中精品“恩施绿”“利川红”享誉世界去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为()A12×104B12×105C12×106D012×106【解答】解:120000=12×105,故选:B3(3分)(2020•恩施州)下列交通标识,既是中心对称图形,又是轴对称图形的是()A B C D【解答】解:根据轴对称图形与中心对称图形的概念,知:A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,但不是中心对称图形;D、既是中心对称图形,又是轴对称图形故选:D4(3分)(2020•恩施州)下列计算正确的是()A a2•a3=a6B a(a+1)=a2+aC(a﹣b)2=a2﹣b2D2a+3b=5ab【解答】解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、a(a+1)=a2+a,原计算正确,故此选项符合题意;C、(a﹣b)2=a2﹣2ab+b2,原计算错误,故此选项不符合题意;D 、2a 与3b 不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B5(3分)(2020•恩施州)函数y =√x+1x 的自变量的取值范围是( ) A x ≥﹣1 B x ≥﹣1且x ≠0 C x >0 D x >﹣1且x ≠0 【解答】解:根据题意得,x +1≥0且x ≠0,解得x ≥﹣1且x ≠0故选:B6(3分)(2020•恩施州)“彩缕碧筠粽,香粳白玉团”端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽小明任意选取一个,选到甜粽的概率是( )A 211 B 411 C 511 D 611【解答】解:由题意可得:粽子总数为11个,其中6个为甜粽,所以选到甜粽的概率为:611,故选:D7(3分)(2020•恩施州)在实数范围内定义运算“☆”:a ☆b =a +b ﹣1,例如:2☆3=2+3﹣1=4如果2☆x =1,则x 的值是( )A ﹣1B 1C 0D 2 【解答】解:由题意知:2☆x =2+x ﹣1=1+x ,又2☆x =1,∴1+x =1,∴x =0故选:C8(3分)(2020•恩施州)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A {5x +y =3x +5y =2B {5x +y =2x +5y =3C {5x +3y =1x +2y =5D {3x +y =52x +5y =1【解答】解:依题意,得:{5x +y =3x +5y =2故选:A 9(3分)(2020•恩施州)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A B C D【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形故选:A10(3分)(2020•恩施州)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A 甲车的平均速度为60km /hB 乙车的平均速度为100km /hC 乙车比甲车先到B 城D 乙车比甲车先出发1h【解答】解:由图象知:A 甲车的平均速度为30010−5=60km /h ,故A 选项不合题意;B 乙车的平均速度为3009−6=100km /h ,故B 选项不合题意;C 甲10时到达B 城,乙9时到达B 城,所以乙比甲先到B 城,故C 选项不合题意;D甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D11(3分)(2020•恩施州)如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A5B6C7D8【解答】解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=√AD2+AE2=5,∴△BFE的周长=5+1=6,故选:B12(3分)(2020•恩施州)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣2,0)、B(1,0)两点则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0其中正确的有()个A0B1C2D3【解答】解:对于①:二次函数开口向下,故a<0,与y轴的交点在y的正半轴,故c >0,故ac<0,因此①错误;对于②:二次函数的图象与x轴相交于A(﹣2,0)、B(1,0),由对称性可知,其对称轴为:x=−2+12=−12,因此②错误;对于③:设二次函数y=ax2+bx+c的交点式为y=a(x+2)(x﹣1)=ax2+ax﹣2a,比较一般式与交点式的系数可知:b=a,c=﹣2a,故2a+c=0,因此③正确;对于④:当x=﹣1时对应的y=a﹣b+c,观察图象可知x=﹣1时对应的函数图象的y 值在x轴上方,故a﹣b+c>0,因此④正确∴只有③④是正确的故选:C二、填空题(本大题共有4小题,每小题3分,共12分不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13(3分)(2020•恩施州)9的算术平方根是3【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3故答案为:314(3分)(2020•恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=40°【解答】解:如图,延长CB交l2于点D,∵AB=BC,∠C=30°,∴∠C=∠4=30°,∵l1∥l2,∠1=80°,∴∠1=∠3=80°,∵∠C+∠3+∠2+∠4=180°,即30°+80°+∠2+30°=180°,∴∠2=40°故答案为:40°15(3分)(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC若∠ABC=60°,则图中阴影部分的面积为2√3−π(结果不取近似值【解答】解:∵AB是直径,∴∠ACB=90°,∵∠ABC=60°,∴∠CAB=30°,∴BC=12AB=2,AC=2√3,∴S△ABC=12⋅AC⋅BC=12⋅2√3⋅2=2√3,∵∠CAB=30°,∴扇形ACD的面积=30360π⋅AC2=112π⋅(2√3)2=π,∴阴影部分的面积为2√3−π故答案为:2√3−π16(3分)(2020•恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2)已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为(﹣1,8)【解答】解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8)故答案为:(﹣1,8)三、解答题(本大题共有8个小题,共72分请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17(8分)(2020•恩施州)先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√2【解答】解:(m2−9m2−6m+9−3m−3)÷m2m−3=[(m+3)(m−3)(m−3)2−3m−3]⋅m−3m2=(m+3m−3−3m−3)⋅m−3m2=m m−3⋅m−3 m2=1m;当m=√2时,原式=1√2=√2218(8分)(2020•恩施州)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD求证:四边形ABCD是菱形【解答】证明:∵AE∥BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE∥BF,即AD∥BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形19(8分)(2020•恩施州)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了50名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为36°;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有150名【解答】解:(1)本次共调查的学生数为:20÷40%=50(名)故答案为:50;(2)C类学生人数为:50﹣15﹣20﹣5=10(名),条形图如下:(3)D类所对应扇形的圆心角为:360°×550=36°故答案为:36°;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:500×1550=150(名)故答案为:15020(8分)(2020•恩施州)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1414,√3≈1732)【解答】解:如图,过P作PH⊥AB,设PH=x,由题意得:AB=30×2=60,∠PBH=90°﹣60°=30°,∠PAH=90°﹣45°=45°,则△PHA是等腰直角三角形,∴AH=PH,在Rt△PHA中,设AH=PH=x,在Rt△PBH中,PB=2PH=2x,BH=AB﹣AH=60﹣x,∴tan∠PBH=tan30°=PHBH=√33,∴√33=x 60−x, 解得:x =30(√3−1),∴PB =2x =60(√3−1)≈44(海里),答:此时船与小岛P 的距离约为44海里21(8分)(2020•恩施州)如图,在平面直角坐标系中,直线y =ax ﹣3a (a ≠0)与x 轴、y 轴分别相交于A 、B 两点,与双曲线y =k x (x >0)的一个交点为C ,且BC =12AC(1)求点A 的坐标;(2)当S △AOC =3时,求a 和k 的值【解答】解:(1)由题意得:令y =ax ﹣3a (a ≠0)中y =0,即ax ﹣3a =0,解得x =3,∴点A 的坐标为(3,0),故答案为(3,0)(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,如下图所示:显然,CM ∥OA ,∴∠BCM =∠BAO ,且∠ABO =∠CBO ,∴△BCM ∽△BAO ,∴BC BA =CM AO ,即:13=CM 3,∴CM =1,又S △AOC =12OA ⋅CN =3即:12×3×CN =3, ∴CN =2,∴C 点的坐标为(1,2),故反比例函数的k =1×2=2,再将点C (1,2)代入一次函数y =ax ﹣3a (a ≠0)中,即2=a ﹣3a ,解得a =﹣1,故答案为:a =﹣1,k =222(10分)(2020•恩施州)某校足球队需购买A 、B 两种品牌的足球已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等(1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【解答】解:(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(x ﹣20)元,根据题意,得900x =720x−20,解得:x =100,经检验x =100是原方程的解,x ﹣20=80,答:购买A 品牌足球的单价为100元,则购买B 品牌足球的单价为80元;(2)设购买m 个A 品牌足球,则购买(90﹣m )个B 品牌足球,则W =100m +80(90﹣m )=20m +7200,∵A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴{100m +80(90−m)≤8500m ≥2(90−m), 解不等式组得:60≤m ≤65,所以,m 的值为:60,61,62,63,64,65,即该队共有6种购买方案,当m =60时,W 最小,m =60时,W =20×60+7200=8400(元),答:该队共有6种购买方案,购买60个A 品牌30个B 品牌的总费用最低,最低费用是8400元23(10分)(2020•恩施州)如图1,AB 是⊙O 的直径,直线AM 与⊙O 相切于点A ,直线BN 与⊙O 相切于点B ,点C (异于点A )在AM 上,点D 在⊙O 上,且CD =CA ,延长CD 与BN 相交于点E ,连接AD 并延长交BN 于点F(1)求证:CE 是⊙O 的切线;(2)求证:BE =EF ;(3)如图2,连接EO 并延长与⊙O 分别相交于点G 、H ,连接BH 若AB =6,AC =4,求tan ∠BHE【解答】解:(1)如图1中,连接OD ,∵CD =CA ,∴∠CAD =∠CDA ,∵OA =OD∴∠OAD =∠ODA ,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90°,∴∠ODC=∠CDA+∠ODA=90°,∴CE是⊙O的切线(2)如图2中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBD=∠ODE=90°,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM∥BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF(3)如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4﹣x,CE=4+x,∴(4+x)2=(4﹣x)2+62,解得:x =94,∴tan ∠BOE =BE OB =943=34, ∵∠BOE =2∠BHE ,∴tan ∠BOE =2tan∠BHE 1−tan 2∠BHE =34, 解得:tan ∠BHE =13或﹣3(﹣3不合题意舍去),∴tan ∠BHE =13 补充方法:如图2中,作HJ ⊥EB 交EB 的延长线于J∵tab ∠BOE =BE OB =34, ∴可以假设BE =3k ,OB =4k ,则OE =5k ,∵OB ∥HJ ,∴OB HJ =OE EH =EB EJ , ∴4kHJ =5k9k =3kEJ ,∴HJ =365k ,EJ =275k , ∴BJ =EJ ﹣BE =275k ﹣3k =125k∴tan ∠BHJ =BJ HJ =13, ∵∠BHE =∠OBE =∠BHJ ,∴tan ∠BHE =1324(12分)(2020•恩施州)如图1,抛物线y =−14x 2+bx +c 经过点C (6,0),顶点为B ,对称轴x =2与x 轴相交于点A ,D 为线段BC 的中点(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标(3)△MPC在(2)的旋转变换下,若PC=√2(如图2)①求证:EA=ED②当点E在(1)所求的抛物线上时,求线段CM的长【解答】解:(1)∵点C(6,0)在抛物线上,∴0=−14×36+6b+c,得到6b+c=9,又∵对称轴x=2,∴x=−b2a=−b2×(−14)=2,解得b=1,∴c=3,∴二次函数的解析式为y=−14x2+x+3;(2)当点M在点C的左侧时,如图2﹣1中:∵抛物线的解析式为y =−14x 2+x +3,对称轴为x =2,C (6,0)∴点A (2,0),顶点B (2,4),∴AB =AC =4,∴△ABC 是等腰直角三角形,∴∠1=45°;∵将△MPC 逆时针旋转90°得到△MEF ,∴FM =CM ,∠2=∠1=45°,设点M 的坐标为(m ,0),∴点F (m ,6﹣m ),又∵∠2=45°,∴直线EF 与x 轴的夹角为45°,∴设直线EF 的解析式为y =x +b ,把点F (m ,6﹣m )代入得:6﹣m =m +b ,解得:b =6﹣2m ,直线EF 的解析式为y =x +6﹣2m ,∵直线EF 与抛物线y =−14x 2+x +3只有一个交点,∴{y =x +6−2my =−14x 2+x +3, 整理得:14x 2+3−2m =0,∴△=b 2﹣4ac =0,解得m =32,点M 的坐标为(32,0)当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45°,因此直线EF 与抛物线y =−14x 2+x +3不可能只有一个交点综上,点M 的坐标为(32,0) (3)①当点M 在点C 的左侧时,如下图,过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,∵PC =√2,由(2)知∠BCA =45°,∴PG =GC =1,∴点G (5,0),设点M 的坐标为(m ,0),∵将△MPC 逆时针旋转90°得到△MEF ,∴EM =PM ,∵∠HEM +∠EMH =∠GMP +∠EMH =90°,∴∠HEM =∠GMP ,在△EHM 和△MGP 中,{∠EHM =∠MGP∠HEM =∠GMP EM =MP,∴△EHM ≌△MGP (AAS ),∴EH =MG =5﹣m ,HM =PG =1,∴点H (m ﹣1,0),∴点E 的坐标为(m ﹣1,5﹣m );∴EA =√(m −1−2)2+(5−m −0)2=√2m 2−16m +34, 又∵D 为线段BC 的中点,B (2,4),C (6,0), ∴点D (4,2),∴ED =√(m 2+(5−m −2)2=√2m 2−16m +34, ∴EA =ED当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(m ﹣1,5﹣m ),因此EA =ED ②当点E 在(1)所求的抛物线y =−14x 2+x +3上时, 把E (m ﹣1,5﹣m )代入,整理得:m 2﹣10m +13=0, 解得:m =5+2√3或m =5−2√3,∴CM =2√3−1或CM =1+2√3。
2020届湖北省恩施州中考数学模拟试卷(有答案)(Word版)(已审阅)
湖北省恩施州中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.7的绝对值是()A.﹣7 B.7 C.D.答案:B.2.大美山水“硒都•恩施”是一张亮丽的名片,八方游客慕名而来,今年“五•一”期间,恩施州共接待游客1450000人,将1450000用科学记数法表示为()A.0.145×106B.14.5×105 C.1.45×105 D.1.45×106答案:D.3.下列计算正确的是()A.a(a﹣1)=a2﹣a B.(a4)3=a7C.a4+a3=a7D.2a5÷a3=a2答案:A4.下列图标是轴对称图形的是()A.B.C.D.答案:C.5.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是()A.B.C.D.答案:D.6.如图,若∠A+∠ABC=180°,则下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠3 D.∠2=∠4答案:D.7.函数y=+的自变量x的取值范围是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤3答案:B.8.关于x的不等式组无解,那么m的取值范围为()A.m≤﹣1 B.m<﹣1 C.﹣1<m≤0 D.﹣1≤m<0答案:A9.中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”相对的是()A.羊B.马C.鸡D.狗答案:C.10.某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为()A.5 B.6 C.7 D.8答案:B.11.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为()A.6 B.8 C.10 D.12答案:C.12.如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c 过E、B、C三点,下列判断中:①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S四边形ABCD=5,其中正确的个数有()A.5 B.4 C.3 D.2答案:C.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.16的平方根是.答案:±4.14.分解因式:3ax2﹣6axy+3ay2=.答案:3a(x﹣y)2.15.如图,在Rt△ABC中,∠BAC=30°,以直角边AB为直径作半圆交AC于点D,以AD为边作等边△ADE,延长ED交BC于点F,BC=2,则图中阴影部分的面积为.(结果不取近似值)答案:3﹣π.16.如图,在6×6的网格内填入1至6的数字后,使每行、每列、每个小粗线宫中的数字不重复,则a×c=.答案:2.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.先化简,再求值:÷﹣,其中x=.答案:18.如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P.求证:∠AOB=60°.解:∵△ABC和△ECD都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴∠CAD=∠CBE,∵∠APO=∠BPC,∴∠AOP=∠BCP=60°,即∠AOB=60°.19.某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取10%进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数(人数)羽毛球30篮球 a乒乓球36排球 b足球12请根据以上图表信息解答下列问题:(1)频数分布表中的a=,b=;(2)在扇形统计图中,“排球”所在的扇形的圆心角为度;(3)全校有多少名学生选择参加乒乓球运动?解:(1)抽取的人数是36÷30%=120(人),则a=120×20%=24,b=120﹣30﹣24﹣36﹣12=48.故答案是:24,48;(2)“排球”所在的扇形的圆心角为360°×=72°,故答案是:72;(3)全校总人数是120÷10%=1200(人),则选择参加乒乓球运动的人数是1200×30%=360(人).20.如图,小明家在学校O的北偏东60°方向,距离学校80米的A处,小华家在学校O的南偏东45°方向的B处,小华家在小明家的正南方向,求小华家到学校的距离.(结果精确到1米,参考数据:≈1.41,≈1.73,≈2.45)解:由题意可知:作OC⊥AB于C,∠ACO=∠BCO=90°,∠AOC=30°,∠BOC=45°.在Rt△ACO中,∵∠ACO=90°,∠AOC=30°,∴AC=AO=40m,OC=AC=40m.在Rt△BOC中,∵∠BCO=90°,∠BOC=45°,∴BC=OC=40m.∴OB==40≈40×2.45≈82(米).答:小华家到学校的距离大约为82米.21.如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点,求△OBC的面积.解:(1)∵反比例函数y=﹣(x<0)的图象过点A(﹣1,a),∴a=﹣=2,∴A(﹣1,2),过A作AE⊥x轴于E,BF⊥⊥x轴于F,∴AE=2,OE=1,∵AB∥x轴,∴BF=2,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF,∴△AEO∽△OFB,∴,∴OF=4,∴B(4,2),∴k=4×2=8;(2)∵直线OA过A(﹣1,2),∴直线AO的解析式为y=﹣2x,∵MN∥OA,∴设直线MN的解析式为y=﹣2x+b,∴2=﹣2×4+b,∴b=10,∴直线MN的解析式为y=﹣2x+10,∵直线MN交x轴于点M,交y轴于点N,∴M(5,0),N(0,10),解得,或,∴C(1,8),∴△OBC的面积=S△OMN﹣S△OCN﹣S△OBM=5×10﹣×10×1﹣×5×2=15.22.为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?解:(1)设男式单车x元/辆,女式单车y元/辆,根据题意,得:,解得:,答:男式单车2000元/辆,女式单车1500元/辆;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意,得:,解得:9≤m≤12,∵m为整数,∴m的值可以是9、10、11、12,即该社区有四种购置方案;设购置总费用为W,则W=2000(m+4)+1500m=3500m+8000,∵W随m的增大而增大,∴当m=9时,W取得最小值,最小值为39500,答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.23.如图,AB、CD是⊙O的直径,BE是⊙O的弦,且BE∥CD,过点C的切线与EB的延长线交于点P,连接BC.(1)求证:BC平分∠ABP;//(2)求证:PC2=PB•PE;(3)若BE﹣BP=PC=4,求⊙O的半径.解:(1)∵BE∥CD,∴∠1=∠3,又∵OB=OC,∴∠2=∠3,∴∠1=∠2,即BC平分∠ABP;(2)如图,连接EC、AC,∵PC是⊙O的切线,∴∠PCD=90°,又∵BE∥DC,∴∠P=90°,∴∠1+∠4=90°,∵AB为⊙O直径,∴∠A+∠2=90°,又∠A=∠5,∴∠5+∠2=90°,∵∠1=∠2,∴∠5=∠4,∵∠P=∠P,∴△PBC∽△PCE,∴PC2=PB•PE;(3)∵BE﹣BP=PC=4,∴BE=4+BP,∵PC2=PB•PE=PB•(PB+BE),∴42=PB•(PB+4+PB),即PB2+2PB﹣8=0,解得:PB=2,则BE=4+PB=6,∴PE=PB+BE=8,作EF⊥CD于点F,∵∠P=∠PCF=90°,∴四边形PCFE为矩形,∴PC=FE=4,FC=PE=8,∠EFD=∠P=90°,∵BE∥CD,∴DE=BC,在Rt△DEF和Rt△BCP中,//∵,∴Rt△DEF≌Rt△BCP(HL),∴DF=BP=2,则CD=DF+CF=10,∴⊙O的半径为5.24.如图,已知抛物线y=ax2+c过点(﹣2,2),(4,5),过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B在点A的右侧,过点B作x轴的垂线,垂足为C.(1)求抛物线的解析式;(2)当点B在抛物线上运动时,判断线段BF与BC的数量关系(>、<、=),并证明你的判断;(3)P为y轴上一点,以B、C、F、P为顶点的四边形是菱形,设点P(0,m),求自然数m的值;(4)若k=1,在直线l下方的抛物线上是否存在点Q,使得△QBF的面积最大?若存在,求出点Q的坐标及△QBF的最大面积;若不存在,请说明理由.解:(1)把点(﹣2,2),(4,5)代入y=ax2+c得,解得,所以抛物线解析式为y=x2+1;(2)BF=BC.理由如下:设B(x,x2+1),而F(0,2),∴BF2=x2+(x2+1﹣2)2=x2+(x2﹣1)2=(x2+1)2,∴BF=x2+1,∵BC⊥x轴,∴BC=x2+1,∴BF=BC;(3)如图1,m为自然数,则点P在F点上方,∵以B、C、F、P为顶点的四边形是菱形,∴CB=CF=PF,而CB=FB,∴BC=CF=BF,∴△BCF为等边三角形,∴∠BCF=60°,∴∠OCF=30°,// // 在Rt △OCF 中,CF=2OF=4,∴PF=CF=4,∴P (0,6), 即自然数m 的值为6;(4)作QE ∥y 轴交AB 于E ,如图2,当k=1时,一次函数解析式为y=x +2, 解方程组得或,则B (1+,3+), 设Q (t , t 2+1),则E (t ,t +2),∴EQ=t +2﹣(t 2+1)=﹣t 2+t +1,∴S △QBF =S △EQF +S △EQB =•(1+)•EQ=•(1+))(﹣t 2+t +1)=﹣(t ﹣2)2++1, 当t=2时,S △QBF 有最大值,最大值为+1,此时Q 点坐标为(2,2).。
2020年湖北省恩施州中考数学试卷
2020年湖北省恩施州中考数学试卷一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)5的绝对值是( )A .5B .5-C .15D .15- 2.(3分)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A .41210⨯B .51.210⨯C .61.210⨯D .60.1210⨯3.(3分)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .4.(3分)下列计算正确的是( )A .236a a a =B .2(1)a a a a +=+C .222()a b a b -=-D .235a b ab += 5.(3分)函数1x y +=的自变量的取值范围是( ) A .1x - B .1x -且0x ≠ C .0x > D .1x >-且0x ≠6.(3分)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A .211B .411C .511D .6117.(3分)在实数范围内定义运算“☆”:a ☆1b a b =+-,例如:2☆32314=+-=.如果2☆1x =,则x 的值是( )A .1-B .1C .0D .28.(3分)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A .5352x y x y +=⎧⎨+=⎩B .5253x y x y +=⎧⎨+=⎩C .53125x y x y +=⎧⎨+=⎩D .35251x y x y +=⎧⎨+=⎩9.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .10.(3分)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60/km hB .乙车的平均速度为100/km hC .乙车比甲车先到B 城D .乙车比甲车先出发1h11.(3分)如图,正方形ABCD 的边长为4,点E 在AB 上且1BE =,F 为对角线AC 上一动点,则BFE ∆周长的最小值为( )A .5B .6C .7D .812.(3分)如图,已知二次函数2y ax bx c =++的图象与x 轴相交于(2,0)A -、(1,0)B 两点.则以下结论:①0ac >;②二次函数2y ax bx c =++的图象的对称轴为1x =-;③20a c +=;④0a b c -+>.其中正确的有( )个.A .0B .1C .2D .3二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)9的算术平方根是 .14.(3分)如图,直线12//l l ,点A 在直线1l 上,点B 在直线2l 上,AB BC =,30C ∠=︒,180∠=︒,则2∠= .15.(3分)如图,已知半圆的直径4AB =,点C 在半圆上,以点A 为圆心,AC 为半径画弧交AB 于点D ,连接BC .若60ABC ∠=︒,则图中阴影部分的面积为 .(结果不取近似值16.(3分)如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为:(2,0)A -,(1,2)B ,(1,2)C -.已知(1,0)N -,作点N 关于点A 的对称点1N ,点1N 关于点B 的对称点2N ,点2N 关于点C 的对称点3N ,点3N 关于点A 的对称点4N ,点4N 关于点B 的对称点5N ,⋯,依此类推,则点2020N的坐标为.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)先化简,再求值:22293()6933m mm m m m--÷-+--,其中2m=.18.(8分)如图,//AE BF,BD平分ABC∠交AE于点D,点C在BF上且BC AB=,连接CD.求证:四边形ABCD是菱形.19.(8分)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解;B类--比较了解;C类--般了解;D类--不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有 名.20.(8分)如图,一艘轮船以每小时30海里的速度自东向西航行,在A 处测得小岛P 位于其西北方向(北偏西45︒方向),2小时后轮船到达B 处,在B 处测得小岛P 位于其北偏东60︒方向.求此时船与小岛P 的距离(结果保留整数,参考数据:2 1.414≈,3 1.732)≈.21.(8分)如图,在平面直角坐标系中,直线3(0)y ax a a =-≠与x 轴、y 轴分别相交于A 、B 两点,与双曲线(0)k y x x =>的一个交点为C ,且12BC AC =. (1)求点A 的坐标;(2)当3AOC S ∆=时,求a 和k 的值.22.(10分)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?23.(10分)如图1,AB 是O 的直径,直线AM 与O 相切于点A ,直线BN 与O 相切于点B ,点C (异于点)A 在AM 上,点D 在O 上,且CD CA =,延长CD 与BN 相交于点E ,连接AD 并延长交BN 于点F .(1)求证:CE 是O 的切线;(2)求证:BE EF =;(3)如图2,连接EO 并延长与O 分别相交于点G 、H ,连接BH .若6AB =,4AC =,求tan BHE ∠.24.(12分)如图1,抛物线214y x bx c =-++经过点(6,0)C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC ∆逆时针旋转90︒,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M 的坐标. (3)MPC ∆在(2)的旋转变换下,若2PC =(如图2).①求证:EA ED =.②当点E 在(1)所求的抛物线上时,求线段CM 的长.2020年湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)5的绝对值是( )A .5B .5-C .15D .15- 【分析】根据绝对值的意义:数轴上一个数所对应的点与原点(O 点)的距离叫做该数的绝对值,绝对值只能为非负数; 即可得解.【解答】解:在数轴上,数5所表示的点到原点0的距离是5;故选:A .2.(3分)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A .41210⨯B .51.210⨯C .61.210⨯D .60.1210⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:5120000 1.210=⨯,故选:B .3.(3分)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:根据轴对称图形与中心对称图形的概念,知:A 、不是轴对称图形,也不是中心对称图形;B 、不是轴对称图形,也不是中心对称图形;C 、是轴对称图形,但不是中心对称图形;D 、既是中心对称图形,又是轴对称图形.故选:D .4.(3分)下列计算正确的是( )A .236a a a =B .2(1)a a a a +=+C .222()a b a b -=-D .235a b ab +=【分析】利用同底数幂的乘法运算法则、单项式乘多项式的运算法则、完全平方公式、合并同类项法则计算求出答案即可判断.【解答】解:A 、235a a a =,原计算错误,故此选项不符合题意;B 、2(1)a a a a +=+,原计算正确,故此选项符合题意;C 、222()2a b a ab b -=-+,原计算错误,故此选项不符合题意;D 、2a 与3b 不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B .5.(3分)函数y =的自变量的取值范围是( ) A .1x - B .1x -且0x ≠ C .0x > D .1x >-且0x ≠【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,10x +且0x ≠,解得1x -且0x ≠.故选:B .6.(3分)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A .211B .411C .511D .611【分析】粽子总共有11个,其中甜粽有6个,根据概率公式即可求出答案.【解答】解:由题意可得:粽子总数为11个,其中6个为甜粽, 所以选到甜粽的概率为:611, 故选:D .7.(3分)在实数范围内定义运算“☆”:a ☆1b a b =+-,例如:2☆32314=+-=.如果2☆1x =,则x 的值是( )A .1-B .1C .0D .2 【分析】已知等式利用题中的新定义化简,计算即可求出x 的值.【解答】解:由题意知:2☆211x x x=+-=+,又2☆1x=,11x∴+=,x∴=.故选:C.8.(3分)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x斛,1个小桶盛酒y斛,下列方程组正确的是( )A.5352x yx y+=⎧⎨+=⎩B.5253x yx y+=⎧⎨+=⎩C.53125x yx y+=⎧⎨+=⎩D.35251x yx y+=⎧⎨+=⎩【分析】根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:依题意,得:5352x yx y+=⎧⎨+=⎩.故选:A.9.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A.10.(3分)甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t 的对应关系如图所示,则下列结论错误的是()A.甲车的平均速度为60/km h B.乙车的平均速度为100/km h C.乙车比甲车先到B城D.乙车比甲车先出发1h【分析】根据图象逐项分析判断即可.【解答】解:由图象知:A.甲车的平均速度为30060/105km h=-,故A选项不合题意;B.乙车的平均速度为300100/96km h=-,故B选项不合题意;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故C选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.11.(3分)如图,正方形ABCD的边长为4,点E在AB上且1BE=,F为对角线AC上一动点,则BFE∆周长的最小值为()A.5B.6C.7D.8【分析】连接ED交AC于一点F,连接BF,根据正方形的对称性得到此时BFE∆的周长最小,利用勾股定理求出DE即可得到答案.【解答】解:如图,连接ED交AC于一点F,连接BF,四边形ABCD是正方形,∴点B与点D关于AC对称,BF DF ∴=,BFE ∴∆的周长BF EF BE DE BE =++=+,此时BEF ∆的周长最小,正方形ABCD 的边长为4,4AD AB ∴==,90DAB ∠=︒,点E 在AB 上且1BE =, 3AE ∴=,225DE AD AE ∴=+=,BFE ∴∆的周长516=+=,故选:B .12.(3分)如图,已知二次函数2y ax bx c =++的图象与x 轴相交于(2,0)A -、(1,0)B 两点.则以下结论:①0ac >;②二次函数2y ax bx c =++的图象的对称轴为1x =-;③20a c +=;④0a b c -+>.其中正确的有( )个.A .0B .1C .2D .3【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性以及过特殊点时系数a 、b 、c 满足的关系综合判断即可.【解答】解:对于①:二次函数开口向下,故0a <,与y 轴的交点在y 的正半轴,故0c >,故0ac <,因此①错误;对于②:二次函数的图象与x 轴相交于(2,0)A -、(1,0)B ,由对称性可知,其对称轴为:21122x -+==-,因此②错误; 对于③:设二次函数2y ax bx c =++的交点式为2(2)(1)2y a x x ax ax a =+-=+-,比较一般式与交点式的系数可知:b a =,2c a =-,故20a c +=,因此③正确;对于④:当1x =-时对应的y a b c =-+,观察图象可知1x =-时对应的函数图象的y 值在x 轴上方,故0a b c -+>,因此④正确.∴只有③④是正确的.故选:C .二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上) 13.(3分)9的算术平方根是 3 .【分析】9的平方根为3±,算术平方根为非负,从而得出结论. 【解答】解:2(3)9±=, 9∴的算术平方根是|3|3±=.故答案为:3.14.(3分)如图,直线12//l l ,点A 在直线1l 上,点B 在直线2l 上,AB BC =,30C ∠=︒,180∠=︒,则2∠= 40︒ .【分析】利用等腰三角形的性质得到430C ∠=∠=︒,利用平行线的性质得到1380∠=∠=︒,再根据三角形内角和定理即可求解. 【解答】解:如图,延长CB 交2l 于点D , AB BC =,30C ∠=︒, 430C ∴∠=∠=︒, 12//l l ,180∠=︒,1380∴∠=∠=︒,324180C ∠+∠+∠+∠=︒,即3080230180︒+︒+∠+︒=︒, 240∴∠=︒.故答案为:40︒.15.(3分)如图,已知半圆的直径4AB =,点C 在半圆上,以点A 为圆心,AC 为半径画弧交AB 于点D ,连接BC .若60ABC ∠=︒,则图中阴影部分的面积为 23π- .(结果不取近似值【分析】根据60︒特殊角求出AC 和BC ,再算出ABC ∆的面积,根据扇形面积公式求出扇形CAD 的面积,再用三角形的面积减去扇形面积即可. 【解答】解:AB 是直径,90ACB ∴∠=︒, 60ABC ∠=︒, 30CAB ∴∠=︒, 122BC AB ∴==,23AC = ∴112322322ABC S AC BC ∆===, 30CAB ∠=︒,∴扇形ACD 的面积22301(23)36012AC πππ===, ∴阴影部分的面积为23π.故答案为:23π.16.(3分)如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为:(2,0)A -,(1,2)B ,(1,2)C -.已知(1,0)N -,作点N 关于点A 的对称点1N ,点1N 关于点B 的对称点2N ,点2N 关于点C 的对称点3N ,点3N 关于点A 的对称点4N ,点4N 关于点B 的对称点5N ,⋯,依此类推,则点2020N 的坐标为 (1,8)- .【分析】先求出1N 至6N 点的坐标,找出其循环的规律为每6个点循环一次即可求解. 【解答】解:由题意得,作出如下图形:N 点坐标为(1,0)-,N 点关于A 点对称的1N 点的坐标为(3,0)-, 1N 点关于B 点对称的2N 点的坐标为(5,4), 2N 点关于C 点对称的3N 点的坐标为(3,8)-, 3N 点关于A 点对称的4N 点的坐标为(1,8)-,4N 点关于B 点对称的5N 点的坐标为(3,4)-,5N 点关于C 点对称的6N 点的坐标为(1,0)-,此时刚好回到最开始的点N 处,∴其每6个点循环一次,202063364∴÷=⋯⋯,即循环了336次后余下4,故2020N 的坐标与4N 点的坐标相同,其坐标为(1,8)-. 故答案为:(1,8)-.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)先化简,再求值:22293()6933m m m m m m --÷-+--,其中2m =. 【分析】根据分式的混合运算法则,先化简括号内的,将除法运算转化为乘法运算,再化简成最简分式,代入m 值求解即可.【解答】解:22293()6933m m m m m m --÷-+-- 22(3)(3)33[](3)3m m m m m m +--=--- 2333()33m m m m m +-=--- 233m m m m -=-1m=; 当2m =时, 原式1222==. 18.(8分)如图,//AE BF ,BD 平分ABC ∠交AE 于点D ,点C 在BF 上且BC AB =,连接CD .求证:四边形ABCD 是菱形.【分析】由//AE BF ,BD 平分ABC ∠得到ABD ADB ∠=∠,得到AB AD =,再由BC AB =,得到对边AD BC =,进而得到四边形ABCD 为平行四边形,再由邻边相等即可证明四边形ABCD 为菱形.【解答】证明://AE BF ,ADB DBC ∴∠=∠,BD 平分ABC ∠,DBC ABD ∴∠=∠,ADB ABD ∴∠=∠, AB AD ∴=,又AB BC =,AD BC ∴=,//AE BF ,即//AD BC ,∴四边形ABCD 为平行四边形,又AB AD =,∴四边形ABCD 为菱形.19.(8分)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A 类--非常了解;B 类--比较了解;C 类--般了解;D 类--不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了 50 名学生; (2)补全条形统计图;(3)D 类所对应扇形的圆心角的大小为 ;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有 名.【分析】(1)根据条形图和扇形图得出B类人数为20名,占40%,即可得出总数;(2)根据总人数减去A,B,D的人数即可得出C的人数;(3)用360︒乘以D类部分所占百分比即可得出圆心角的度数;(4)用500乘以非常了解的部分所占百分比即可得出答案.【解答】解:(1)本次共调查的学生数为:2040%50÷=(名).故答案为:50;(2)C类学生人数为:501520510---=(名),条形图如下:(3)D类所对应扇形的圆心角为:53603650︒⨯=︒.故答案为:36︒;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:1550015050⨯=(名).故答案为:150.20.(8分)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45︒方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60︒方向.求此时船与小岛P的距离(结果保留整数,参考数据:2 1.414≈,3 1.732)≈.【分析】过P作PH AB⊥,设PH x=,由已知分别求PB、BH、AH,然后根据锐角三角函数求出x 值即可求解.【解答】解:如图,过P 作PH AB ⊥,设PH x =,由题意得:30260AB =⨯=,906030PBH ∠=︒-︒=︒,904545PAH ∠=︒-︒=︒, 则PHA ∆是等腰直角三角形,AH PH ∴=,在Rt PHA ∆中,设AH PH x ==,在Rt PBH ∆中,22PB PH x ==,60BH AB AH x =-=-, 3tan tan303PH PBH BH ∴∠=︒==, ∴3360xx=-, 解得:30(31)x =-,260(31)44PB x ∴==-≈(海里),答:此时船与小岛P 的距离约为44海里.21.(8分)如图,在平面直角坐标系中,直线3(0)y ax a a =-≠与x 轴、y 轴分别相交于A 、B 两点,与双曲线(0)k y x x =>的一个交点为C ,且12BC AC =.(1)求点A 的坐标;(2)当3AOC S ∆=时,求a 和k 的值.【分析】(1)令3(0)y ax a a =-≠中0y =即可求出点A 的坐标;(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,证明BCM BAO ∆∆∽,利用12BC AC =和3OA =进而求出CM 的长,再由3AOC S ∆=求出CN 的长,进而求出点C 坐标即可求解.【解答】解:(1)由题意得:令3(0)y ax a a =-≠中0y =, 即30ax a -=,解得3x =,∴点A 的坐标为(3,0),故答案为(3,0).(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,如下图所示:显然,//CM OA ,BCM BAO ∴∠=∠,且ABO CBO ∠=∠, BCM BAO ∴∆∆∽,∴BC CM BA AO =,即:133CM=, 1CM ∴=,又132AOC S OA CN ∆==即:1332CN ⨯⨯=,2CN ∴=,C ∴点的坐标为(1,2),故反比例函数的122k =⨯=,再将点(1,2)C 代入一次函数3(0)y ax a a =-≠中, 即23a a =-,解得1a =-, 故答案为:1a =-,2k =.22.(10分)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【分析】(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(20)x-元,根据用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买m个A品牌足球,则购买(90)m-个B品牌足球,根据总价=单价⨯数量,结合总价不超过8500元,以及A品牌足球的数量不小于B品牌足球数量的2倍,即可得出关于m的一元一次不等式组,解之取其中的最小整数值即可得出结论.【解答】解:(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(20)x-元,根据题意,得90072020x x=-,解得:100x=,经检验100x=是原方程的解,2080x-=,答:购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;(2)设购买m个A品牌足球,则购买(90)m-个B品牌足球,则10080(90)207200W m m m=+-=+,A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴10080(90)85002(90)m mm m+-⎧⎨-⎩,解不等式组得:6065m,所以,m的值为:60,61,62,63,64,65,即该队共有6种购买方案,当60m=时,W最小,60m=时,206072008400W=⨯+=(元),答:该队共有6种购买方案,购买60个A品牌30个B品牌的总费用最低,最低费用是8400元.23.(10分)如图1,AB是O的直径,直线AM与O相切于点A,直线BN与O相切于点B,点C(异于点)A在AM上,点D在O上,且CD CA=,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是O的切线;(2)求证:BE EF=;(3)如图2,连接EO并延长与O分别相交于点G、H,连接BH.若6AC=,AB=,4求tan BHE∠.【分析】(1)连接OD,根据等边对等角可知:CAD CDA∠=∠,再根据∠=∠,OAD ODA切线的性质可知90∠=∠+∠=∠+∠=︒=∠,由切线的判定定CAO CAD OAD CDA ODA ODC理可得结论;(2)连接BD,根据等边对等角可知ODB OBD∠=∠,再根据切线的性质可知∠=∠,再根据等角对等边得到∠=∠=︒,由等量减等量差相等得EDB EBDODE OBE90∠=∠,推出DE EF=,由=,然后根据平行线的性质及对顶角相等可得EDF EFDED EB此得出结论;(3)过E点作EL AM⊥于L,根据勾股定理可求出BE的长,即可求出tan BOE∠的值,再利用倍角公式即可求出tan BHE∠的值.【解答】解:(1)如图1中,连接OD,CD CA=,∴∠=∠,CAD CDA=OA OD∴∠=∠,OAD ODA直线AM与O相切于点A,∴∠=∠+∠=︒,CAO CAD OAD9090ODC CDA ODA∴∠=∠+∠=︒,CE∴是O的切线.(2)如图2中,连接BD,OD OB=,ODB OBD∴∠=∠,CE是O的切线,BF是O的切线,90OBD ODE∴∠=∠=︒,EDB EBD∴∠=∠,ED EB∴=,AM AB⊥,BN AB⊥,//AM BN∴,CAD BFD∴∠=∠,CAD CDA EDF∠=∠=∠,BFD EDF∴∠=∠,EF ED∴=,BE EF∴=.(3)如图2中,过E点作EL AM⊥于L,则四边形ABEL是矩形,设BE x=,则4CL x=-,4CE x=+,222(4)(4)6x x∴+=-+,解得:94x=,∴934tan 34BE BOE OB ∠===, 2BOE BHE ∠=∠,∴22tan 3tan 1tan 4BHE BOE BHE ∠∠==-∠, 解得:1tan 3BHE ∠=或3(3--不合题意舍去), 1tan 3BHE ∴∠=. 补充方法:如图2中,作HJ EB ⊥交EB 的延长线于J .34BE tab BOE OB ∠==, ∴可以假设3BE k =,4OB k =,则5OE k =,//OB HJ ,∴OB OE EB HJ EH EJ ==, ∴4539k k k HJ k EJ==, 365HJ k ∴=,275EJ k =, 2712355BJ EJ BE k k k ∴=-=-= 1tan 3BJ BHJ HJ ∴∠==, BHE OBE BHJ ∠=∠=∠,1tan 3BHE ∴∠=.24.(12分)如图1,抛物线214y x bx c =-++经过点(6,0)C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC ∆逆时针旋转90︒,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M 的坐标. (3)MPC ∆在(2)的旋转变换下,若2PC =(如图2). ①求证:EA ED =.②当点E 在(1)所求的抛物线上时,求线段CM 的长.【分析】(1)根据点C 在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B 及已知点C 的坐标,证明ABC ∆是等腰直角三角形,根据旋转的性质推出直线EF 与x 轴的夹角为45︒,因此设直线EF 的解析式为y x b =+,设点M 的坐标为(,0)m ,推出点(,6)F m m -,直线EF 与抛物线2134y x x =-++只有一个交点,联立两个解析式,得到关于x 的一元二次方程,根据根的判别式为0得到关于m 的方程,解方程得点M 的坐标.注意有两种情况,均需讨论.(3)①过点P 作PG x ⊥轴于点G ,过点E 作EH x ⊥轴于点H ,设点M 的坐标为(,0)m ,由2PC =EHM MGP ∆≅∆,得到点E 的坐标为(1,5)m m --,再根据两点距离公式证明EA ED =,注意分两种情况,均需讨论;②把(1,5)E m m --代入抛物线解析式,解出m 的值,进而求出CM 的长.【解答】解:(1)点(6,0)C 在抛物线上, ∴103664b c =-⨯++, 得到69b c +=,又对称轴2x =, ∴2122()4b b x a =-=-=⨯-, 解得1b =,3c ∴=,∴二次函数的解析式为2134y x x =-++; (2)当点M 在点C 的左侧时,如图21-中:抛物线的解析式为2134y x x =-++,对称轴为2x =,(6,0)C ∴点(2,0)A ,顶点(2,4)B ,4AB AC ∴==,ABC ∴∆是等腰直角三角形,145∴∠=︒;将MPC ∆逆时针旋转90︒得到MEF ∆,FM CM ∴=,2145∠=∠=︒,设点M 的坐标为(,0)m ,∴点(,6)F m m -,又245∠=︒,∴直线EF 与x 轴的夹角为45︒,∴设直线EF 的解析式为y x b =+,把点(,6)F m m -代入得:6m m b -=+,解得:62b m =-, 直线EF 的解析式为62y x m =+-,直线EF 与抛物线2134y x x =-++只有一个交点, ∴262134y x m y x x =+-⎧⎪⎨=-++⎪⎩, 整理得:213204x m +-=, ∴△240b ac =-=,解得32m =, 点M 的坐标为3(2,0). 当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45︒,因此直线EF 与抛物线2134y x x =-++不可能只有一个交点.综上,点M 的坐标为3(2,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG x ⊥轴于点G ,过点E 作EH x ⊥轴于点H ,2PC=,由(2)知45BCA∠=︒,1PG GC∴==,∴点(5,0)G,设点M的坐标为(,0)m,将MPC∆逆时针旋转90︒得到MEF∆,EM PM∴=,90HEM EMH GMP EMH∠+∠=∠+∠=︒,HEM GMP∴∠=∠,在EHM∆和MGP∆中,EHM MGPHEM GMPEM MP∠=∠⎧⎪∠=∠⎨⎪=⎩,()EHM MGP AAS∴∆≅∆,5EH MG m∴==-,1HM PG==,∴点(1,0)H m-,∴点E的坐标为(1,5)m m--;222(12)(50)21634 EA m m m m∴=--+--=-+,又D为线段BC的中点,(2,4)B,(6,0)C,∴点(4,2)D,222(14)(52)21634 ED m m m m∴=--+--=-+,EA ED∴=.当点M在点C的右侧时,如下图:同理,点E 的坐标仍为(1,5)m m --,因此EA ED =.②当点E 在(1)所求的抛物线2134y x x =-++上时, 把(1,5)E m m --代入,整理得:210130m m -+=,解得:5m =+5m =-,1CM ∴=或1CM =+.。
2020年中考数学试卷 湖北恩施-word解析
A. 0
B. 1
C. 2
D. 3
【答案】C
【解析】
【分析】
根据二次函数的图像性质逐个分析即可.
【详解】解:对于①:二次函数开口向下,故 a<0,与 y 轴的交点在 y 的正半轴,故 c>0,故 ac<0,故①
错误;
对于②:二次函数的图像与 x 轴相交于 A2, 0 、 B 1, 0 ,由对称性可知,其对称轴为:
长的最小值为( ).
A. 5
B. 6
C. 7
D. 8
【答案】B
【解析】
【分析】
连接 ED 交 AC 于一点 F,连接 BF,根据正方形的对称性得到此时 △BFE 的周长最小,利用勾股定理求
出 DE 即可得到答案.
【详解】连接 ED 交 AC 于一点 F,连接 BF,
∵四边形 ABCD 是正方形,
∴点 B 与点 D 关于 AC 对称,
C. 乙车比甲车先到 B 城 【答案】D 【解析】 【分析】 根据图象逐项分析判断即可. 【详解】由图象知:
B. 乙车的平均速度为100 km h D. 乙车比甲车先出发1h
A.甲车的平均速度为 300 = 60 (km h) ,故此选项正确; 10 5
B.乙车的平均速度为 300 100(km h) ,故此选项正确; 96
主视图为:
,
左视图为:
,
俯视图为:
,
故答案为:A. 【点睛】此题考查小正方体组成的几何体的三视图,解题的关键是掌握三视图的视图角度及三视图的画法.
10.甲乙两车从 A 城出发前往 B 城,在整个行程中,汽车离开 A 城的距离 y 与时刻 t 的对应关系如图所示,
则下列结论错误的是( ).
2020湖北省恩施州中考数学试卷
2020年湖北省恩施州中考数学试卷一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)(2020•恩施州)5的绝对值是( )A .5B .﹣5C .15D .−152.(3分)(2020•恩施州)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A .12×104B .1.2×105C .1.2×106D .0.12×1063.(3分)(2020•恩施州)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .4.(3分)(2020•恩施州)下列计算正确的是( )A .a 2•a 3=a 6B .a (a +1)=a 2+aC .(a ﹣b )2=a 2﹣b 2D .2a +3b =5ab 5.(3分)(2020•恩施州)函数y =√x+1x 的自变量的取值范围是( ) A .x ≥﹣1 B .x ≥﹣1且x ≠0C .x >0D .x >﹣1且x ≠0 6.(3分)(2020•恩施州)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A .211B .411C .511D .6117.(3分)(2020•恩施州)在实数范围内定义运算“☆”:a ☆b =a +b ﹣1,例如:2☆3=2+3﹣1=4.如果2☆x =1,则x 的值是( )A .﹣1B .1C .0D .28.(3分)(2020•恩施州)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A .{5x +y =3x +5y =2B .{5x +y =2x +5y =3C .{5x +3y =1x +2y =5D .{3x +y =52x +5y =19.(3分)(2020•恩施州)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .10.(3分)(2020•恩施州)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60km /hB .乙车的平均速度为100km /hC .乙车比甲车先到B 城D .乙车比甲车先出发1h11.(3分)(2020•恩施州)如图,正方形ABCD 的边长为4,点E 在AB 上且BE =1,F 为对角线AC 上一动点,则△BFE 周长的最小值为( )A .5B .6C .7D .812.(3分)(2020•恩施州)如图,已知二次函数y =ax 2+bx +c 的图象与x 轴相交于A (﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有()个.A.0B.1C.2D.3二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)(2020•恩施州)9的算术平方根是.14.(3分)(2020•恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=.15.(3分)(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为.(结果不取近似值16.(3分)(2020•恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)(2020•恩施州)先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√2.18.(8分)(2020•恩施州)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.19.(8分)(2020•恩施州)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有名.20.(8分)(2020•恩施州)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1.414,√3≈1.732).21.(8分)(2020•恩施州)如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=kx(x>0)的一个交点为C,且BC=12AC.(1)求点A的坐标;(2)当S△AOC=3时,求a和k的值.22.(10分)(2020•恩施州)某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m 个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?23.(10分)(2020•恩施州)如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.24.(12分)(2020•恩施州)如图1,抛物线y=−14x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=√2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.2020年湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)(2020•恩施州)5的绝对值是( )A .5B .﹣5C .15D .−15 【解答】解:在数轴上,数5所表示的点到原点0的距离是5;故选:A .2.(3分)(2020•恩施州)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A .12×104B .1.2×105C .1.2×106D .0.12×106【解答】解:120000=1.2×105,故选:B .3.(3分)(2020•恩施州)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【解答】解:根据轴对称图形与中心对称图形的概念,知:A 、不是轴对称图形,也不是中心对称图形;B 、不是轴对称图形,也不是中心对称图形;C 、是轴对称图形,但不是中心对称图形;D 、既是中心对称图形,又是轴对称图形.故选:D .4.(3分)(2020•恩施州)下列计算正确的是( )A .a 2•a 3=a 6B .a (a +1)=a 2+aC .(a ﹣b )2=a 2﹣b 2D .2a +3b =5ab【解答】解:A 、a 2•a 3=a 5,原计算错误,故此选项不符合题意;B 、a (a +1)=a 2+a ,原计算正确,故此选项符合题意;C 、(a ﹣b )2=a 2﹣2ab +b 2,原计算错误,故此选项不符合题意;D 、2a 与3b 不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B .5.(3分)(2020•恩施州)函数y =√x+1x 的自变量的取值范围是( ) A .x ≥﹣1 B .x ≥﹣1且x ≠0C .x >0D .x >﹣1且x ≠0 【解答】解:根据题意得,x +1≥0且x ≠0,解得x ≥﹣1且x ≠0.故选:B .6.(3分)(2020•恩施州)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A .211B .411C .511D .611【解答】解:由题意可得:粽子总数为11个,其中6个为甜粽,所以选到甜粽的概率为:611,故选:D .7.(3分)(2020•恩施州)在实数范围内定义运算“☆”:a ☆b =a +b ﹣1,例如:2☆3=2+3﹣1=4.如果2☆x =1,则x 的值是( )A .﹣1B .1C .0D .2 【解答】解:由题意知:2☆x =2+x ﹣1=1+x ,又2☆x =1,∴1+x =1,∴x =0.故选:C .8.(3分)(2020•恩施州)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A .{5x +y =3x +5y =2B .{5x +y =2x +5y =3C .{5x +3y =1x +2y =5D .{3x +y =52x +5y =1【解答】解:依题意,得:{5x +y =3x +5y =2. 故选:A . 9.(3分)(2020•恩施州)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A .10.(3分)(2020•恩施州)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60km /hB .乙车的平均速度为100km /hC .乙车比甲车先到B 城D .乙车比甲车先出发1h【解答】解:由图象知:A .甲车的平均速度为30010−5=60km /h ,故A 选项不合题意; B .乙车的平均速度为3009−6=100km /h ,故B 选项不合题意;C .甲10时到达B 城,乙9时到达B 城,所以乙比甲先到B 城,故C 选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.11.(3分)(2020•恩施州)如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.8【解答】解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=√AD2+AE2=5,∴△BFE的周长=5+1=6,故选:B.12.(3分)(2020•恩施州)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有()个.A.0B.1C.2D.3【解答】解:对于①:二次函数开口向下,故a<0,与y轴的交点在y的正半轴,故c >0,故ac<0,因此①错误;对于②:二次函数的图象与x轴相交于A(﹣2,0)、B(1,0),由对称性可知,其对称轴为:x=−2+12=−12,因此②错误;对于③:设二次函数y=ax2+bx+c的交点式为y=a(x+2)(x﹣1)=ax2+ax﹣2a,比较一般式与交点式的系数可知:b=a,c=﹣2a,故2a+c=0,因此③正确;对于④:当x=﹣1时对应的y=a﹣b+c,观察图象可知x=﹣1时对应的函数图象的y 值在x轴上方,故a﹣b+c>0,因此④正确.∴只有③④是正确的.故选:C.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)(2020•恩施州)9的算术平方根是3.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.14.(3分)(2020•恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=40°.【解答】解:如图,延长CB交l2于点D,∵AB=BC,∠C=30°,∴∠C=∠4=30°,∵l1∥l2,∠1=80°,∴∠1=∠3=80°,∵∠C+∠3+∠2+∠4=180°,即30°+80°+∠2+30°=180°,∴∠2=40°.故答案为:40°.15.(3分)(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为2√3−π.(结果不取近似值【解答】解:∵AB是直径,∴∠ACB=90°,∵∠ABC=60°,∴∠CAB=30°,∴BC=12AB=2,AC=2√3,∴S△ABC=12⋅AC⋅BC=12⋅2√3⋅2=2√3,∵∠CAB=30°,∴扇形ACD的面积=30360π⋅AC2=112π⋅(2√3)2=π,∴阴影部分的面积为2√3−π.故答案为:2√3−π.16.(3分)(2020•恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为(﹣1,8).【解答】解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)(2020•恩施州)先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√2.【解答】解:(m2−9m2−6m+9−3m−3)÷m2m−3=[(m+3)(m−3)(m−3)2−3m−3]⋅m−3m2=(m+3m−3−3m−3)⋅m−3m2=m m−3⋅m−3 m2=1m;当m=√2时,原式=2=√22.18.(8分)(2020•恩施州)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.【解答】证明:∵AE∥BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE∥BF,即AD∥BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形.19.(8分)(2020•恩施州)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了50名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为36°;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有150名.【解答】解:(1)本次共调查的学生数为:20÷40%=50(名).故答案为:50;(2)C类学生人数为:50﹣15﹣20﹣5=10(名),条形图如下:(3)D类所对应扇形的圆心角为:360°×550=36°.故答案为:36°;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:500×1550=150(名).故答案为:150.20.(8分)(2020•恩施州)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1.414,√3≈1.732).【解答】解:如图,过P作PH⊥AB,设PH=x,由题意得:AB=30×2=60,∠PBH=90°﹣60°=30°,∠PAH=90°﹣45°=45°,则△PHA是等腰直角三角形,∴AH=PH,在Rt△PHA中,设AH=PH=x,在Rt△PBH中,PB=2PH=2x,BH=AB﹣AH=60﹣x,∴tan∠PBH=tan30°=PHBH=√33,∴√33=x 60−x, 解得:x =30(√3−1),∴PB =2x =60(√3−1)≈44(海里),答:此时船与小岛P 的距离约为44海里.21.(8分)(2020•恩施州)如图,在平面直角坐标系中,直线y =ax ﹣3a (a ≠0)与x 轴、y 轴分别相交于A 、B 两点,与双曲线y =k x (x >0)的一个交点为C ,且BC =12AC .(1)求点A 的坐标;(2)当S △AOC =3时,求a 和k 的值.【解答】解:(1)由题意得:令y =ax ﹣3a (a ≠0)中y =0,即ax ﹣3a =0,解得x =3,∴点A 的坐标为(3,0),故答案为(3,0).(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,如下图所示:显然,CM ∥OA ,∴∠BCM =∠BAO ,且∠ABO =∠CBO ,∴△BCM ∽△BAO ,∴BC BA =CM AO ,即:13=CM 3,∴CM =1,又S △AOC =12OA ⋅CN =3即:12×3×CN =3, ∴CN =2,∴C 点的坐标为(1,2),故反比例函数的k =1×2=2,再将点C (1,2)代入一次函数y =ax ﹣3a (a ≠0)中,即2=a ﹣3a ,解得a =﹣1,故答案为:a =﹣1,k =2.22.(10分)(2020•恩施州)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【解答】解:(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(x ﹣20)元,根据题意,得900x =720x−20,解得:x =100,经检验x =100是原方程的解,x ﹣20=80,答:购买A 品牌足球的单价为100元,则购买B 品牌足球的单价为80元;(2)设购买m 个A 品牌足球,则购买(90﹣m )个B 品牌足球,则W =100m +80(90﹣m )=20m +7200,∵A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴{100m +80(90−m)≤8500m ≥2(90−m), 解不等式组得:60≤m ≤65,所以,m 的值为:60,61,62,63,64,65,即该队共有6种购买方案,当m =60时,W 最小,m =60时,W =20×60+7200=8400(元),答:该队共有6种购买方案,购买60个A 品牌30个B 品牌的总费用最低,最低费用是8400元.23.(10分)(2020•恩施州)如图1,AB 是⊙O 的直径,直线AM 与⊙O 相切于点A ,直线BN 与⊙O 相切于点B ,点C (异于点A )在AM 上,点D 在⊙O 上,且CD =CA ,延长CD 与BN 相交于点E ,连接AD 并延长交BN 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:BE =EF ;(3)如图2,连接EO 并延长与⊙O 分别相交于点G 、H ,连接BH .若AB =6,AC =4,求tan ∠BHE .【解答】解:(1)如图1中,连接OD ,∵CD =CA ,∴∠CAD =∠CDA ,∵OA =OD∴∠OAD =∠ODA ,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90°,∴∠ODC=∠CDA+∠ODA=90°,∴CE是⊙O的切线.(2)如图2中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBD=∠ODE=90°,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM∥BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF.(3)如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4﹣x,CE=4+x,∴(4+x)2=(4﹣x)2+62,解得:x =94,∴tan ∠BOE =BE OB =943=34, ∵∠BOE =2∠BHE ,∴tan ∠BOE =2tan∠BHE 1−tan 2∠BHE =34, 解得:tan ∠BHE =13或﹣3(﹣3不合题意舍去),∴tan ∠BHE =13.补充方法:如图2中,作HJ ⊥EB 交EB 的延长线于J .∵tab ∠BOE =BE OB =34, ∴可以假设BE =3k ,OB =4k ,则OE =5k ,∵OB ∥HJ ,∴OB HJ =OE EH =EB EJ , ∴4k HJ =5k 9k =3k EJ ,∴HJ =365k ,EJ =275k , ∴BJ =EJ ﹣BE =275k ﹣3k =125k∴tan ∠BHJ =BJ HJ =13, ∵∠BHE =∠OBE =∠BHJ ,∴tan ∠BHE =13.24.(12分)(2020•恩施州)如图1,抛物线y =−14x 2+bx +c 经过点C (6,0),顶点为B ,对称轴x =2与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=√2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.【解答】解:(1)∵点C(6,0)在抛物线上,∴0=−14×36+6b+c,得到6b+c=9,又∵对称轴x=2,∴x=−b2a=−b2×(−14)=2,解得b=1,∴c=3,∴二次函数的解析式为y=−14x2+x+3;(2)当点M在点C的左侧时,如图2﹣1中:∵抛物线的解析式为y =−14x 2+x +3,对称轴为x =2,C (6,0)∴点A (2,0),顶点B (2,4),∴AB =AC =4,∴△ABC 是等腰直角三角形,∴∠1=45°;∵将△MPC 逆时针旋转90°得到△MEF ,∴FM =CM ,∠2=∠1=45°,设点M 的坐标为(m ,0),∴点F (m ,6﹣m ),又∵∠2=45°,∴直线EF 与x 轴的夹角为45°,∴设直线EF 的解析式为y =x +b ,把点F (m ,6﹣m )代入得:6﹣m =m +b ,解得:b =6﹣2m ,直线EF 的解析式为y =x +6﹣2m ,∵直线EF 与抛物线y =−14x 2+x +3只有一个交点,∴{y =x +6−2my =−14x 2+x +3, 整理得:14x 2+3−2m =0,∴△=b 2﹣4ac =0,解得m =32,点M 的坐标为(32,0).当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45°,因此直线EF 与抛物线y =−14x 2+x +3不可能只有一个交点.综上,点M 的坐标为(32,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,∵PC =√2,由(2)知∠BCA =45°,∴PG =GC =1,∴点G (5,0),设点M 的坐标为(m ,0),∵将△MPC 逆时针旋转90°得到△MEF ,∴EM =PM ,∵∠HEM +∠EMH =∠GMP +∠EMH =90°,∴∠HEM =∠GMP ,在△EHM 和△MGP 中,{∠EHM =∠MGP∠HEM =∠GMP EM =MP,∴△EHM ≌△MGP (AAS ),∴EH =MG =5﹣m ,HM =PG =1,∴点H (m ﹣1,0),∴点E 的坐标为(m ﹣1,5﹣m );∴EA =√(m −1−2)2+(5−m −0)2=√2m 2−16m +34, 又∵D 为线段BC 的中点,B (2,4),C (6,0), ∴点D (4,2),∴ED =√(m 2+(5−m −2)2=√2m 2−16m +34, ∴EA =ED .当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(m ﹣1,5﹣m ),因此EA =ED . ②当点E 在(1)所求的抛物线y =−14x 2+x +3上时, 把E (m ﹣1,5﹣m )代入,整理得:m 2﹣10m +13=0, 解得:m =5+2√3或m =5−2√3,∴CM =2√3−1或CM =1+2√3.。
湖北省恩施州2020年中考数学试卷(解析版)
湖北省恩施州2020年中考数学试卷(解析版)一、选择题(本大题共有12个小题,每小题3分,共36分)1.9的相反数是()A.﹣9 B.9 C.D.2.恩施州2013年建筑业生产总值为36900万元,将数36900用科学记数法表示为()A.3.69×105B.36.9×104C.3.69×104D.0.369×1053.下列图标中是轴对称图形的是()A.B.C.D.4.下列计算正确的是()A.2a3+3a3=5a6B.(x5)3=x8C.﹣2m(m﹣3)=﹣2m2﹣6m D.(﹣3a﹣2)(﹣3a+2)=9a2﹣45.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为()A.28°B.112°C.28°或112°D.68°6.函数y=的自变量x的取值范围是()A.x≥﹣1 B.x≥﹣1且x≠2 C.x≠±2 D.x>﹣1且x≠27.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取一张后,放回并混在一起,再随机抽取一张,两次抽取的数字的积为奇数的概率是()A.B.C.D.8.在广场的电子屏幕上有一个旋转的正方体,正方体的六个面上分别标有“恩施六城同创”六个字.如图是小明在三个不同时刻所观察到的图形,请你帮小明确定与“创”相对的面上的字是()A.恩B.施C.城D.同9.关于x的不等式组恰有四个整数解,那么m的取值范围为()A.m≥﹣1 B.m<0 C.﹣1≤m<0 D.﹣1<m<010.某商品的售价为100元,连续两次降价x%后售价降低了36元,则x为()A.8 B.20 C.36 D.1811.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19cm,△ABD 的周长为13cm,则AE的长为()A.3cm B.6cm C.12cm D.16cm12.抛物线y1=ax2+bx+c与直线y2=mx+n的图象如图所示,下列判断中:①abc <0;②a+b+c>0;③5a﹣c=0;④当x<或x>6时,y1>y2,其中正确的个数有()A.1 B.2 C.3 D.4二、填空题(本题共有4个小题,每小题3分,共12分)13.因式分解:a2b﹣10ab+25b=.14.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=.15.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为.16.观察下列等式:1+2+3+4+…+n=n(n+1);1+3+6+10+…+n(n+1)=n(n+1)(n+2);1+4+10+20+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3);则有:1+5+15+35+…n(n+1)(n+2)(n+3)=.三、解答题(本大题共有8个小题,共72分)17.(8分)先化简,再求值:÷(a+2),其中a=﹣3.18.(8分)如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.19.(8分)在恩施州2016年“书香校园,经典诵读”比赛活动中,有32万名学生参加比赛活动,其中有8万名学生分别获得一、二、三等奖,从获奖学生中随机抽取部分,绘制成如下不完整的统计图表,请根据图表解答下列问题.获奖等级频数一等奖100二等奖a三等奖275(1)表格中a的值为.(2)扇形统计图中表示获得一等奖的扇形的圆心角为度.(3)估计全州有多少名学生获得三等奖?20.(8分)如图,在办公楼AB和实验楼CD之间有一旗杆EF,从办公楼AB顶部A点处经过旗杆顶部E点恰好看到实验楼CD的底部D点,且俯角为45°,从实验楼CD顶部C点处经过旗杆顶部E点恰好看到办公楼AB的G点,BG=1米,且俯角为30°,已知旗杆EF=9米,求办公楼AB的高度.(结果精确到1米,参考数据:≈1.41,≈1.73)21.(8分)如图,直角三角板ABC放在平面直角坐标系中,直角边AB垂直x 轴,垂足为Q,已知∠ACB=60°,点A,C,P均在反比例函数y=的图象上,分别作PF⊥x轴于F,AD⊥y轴于D,延长DA,FP交于点E,且点P为EF的中点.(1)求点B的坐标;(2)求四边形AOPE的面积.22.(10分)在清江河污水网管改造建设中,需要确保在汛期来临前将建设过程中产生的渣土清运完毕,每天至少需要清运渣土12720m3,施工方准备每天租用大、小两种运输车共80辆.已知每辆大车每天运送渣土200m3,每辆小车每天运送渣土120m3,大、小车每天每辆租车费用分别为1200元,900元,且要求每天租车的总费用不超过85300元.(1)施工方共有多少种租车方案?(2)哪种租车方案费用最低,最低费用是多少?23.(10分)如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O 于点G,连接EG,已知DE=4,AE=8.(1)求证:DF是⊙O的切线;(2)求证:OC2=OE•OP;(3)求线段EG的长.24.(12分)如图,在矩形OABC纸片中,OA=7,OC=5,D为BC边上动点,将△OCD沿OD折叠,当点C的对应点落在直线l:y=﹣x+7上时,记为点E,F,当点C的对应点落在边OA上时,记为点G.(1)求点E,F的坐标;(2)求经过E,F,G三点的抛物线的解析式;(3)当点C的对应点落在直线l上时,求CD的长;(4)在(2)中的抛物线上是否存在点P,使以E,F,P为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.2020年湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共有12个小题,每小题3分,共36分)1.9的相反数是()A.﹣9 B.9 C.D.【考点】相反数.【分析】根据相反数的定义即可求解.【解答】解:9的相反数是﹣9,故选A.【点评】此题主要考查相反数的定义,比较简单.2.恩施州2013年建筑业生产总值为36900万元,将数36900用科学记数法表示为()A.3.69×105B.36.9×104C.3.69×104D.0.369×105【考点】科学记数法—表示较大的数.【分析】数据绝对值大于10或小于1时科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:36900=3.69×104;故选C.【点评】本题考查的是科学记数法.任意一个绝对值大于10或绝对值小于1的数都可写成a×10n的形式,其中1≤|a|<10.对于绝对值大于10的数,指数n 等于原数的整数位数减去1.3.下列图标中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确;故选D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.下列计算正确的是()A.2a3+3a3=5a6B.(x5)3=x8C.﹣2m(m﹣3)=﹣2m2﹣6m D.(﹣3a﹣2)(﹣3a+2)=9a2﹣4【考点】整式的混合运算.【分析】A、原式合并得到结果,即可作出判断;B、原式利用幂的乘方运算法则计算得到结果,即可作出判断;C、原式利用单项式乘多项式法则计算得到结果,即可作出判断;D、原式利用平方差公式计算得到结果,即可作出判断.【解答】解:A、原式=5a3,错误;B、原式=x15,错误;C、原式=﹣2m2+6m,错误;D、原式=9a2﹣4,正确,故选D【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为()A.28°B.112°C.28°或112°D.68°【考点】角的计算.【分析】根据题意画出图形,利用数形结合求解即可.【解答】解:如图,当点C与点C1重合时,∠BOC=∠AOB﹣∠AOC=70°﹣42°=28°;当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+42°=112°.故选C.【点评】本题考查的是角的计算,在解答此题时要注意进行分类讨论,不要漏解.6.函数y=的自变量x的取值范围是()A.x≥﹣1 B.x≥﹣1且x≠2 C.x≠±2 D.x>﹣1且x≠2【考点】函数自变量的取值范围.【分析】根据二次根式有意义的条件是:被开方数是非负数,以及分母不等于0,据此即可求解.【解答】解:根据题意得:,解得x≥﹣1且x≠2.故选:B.【点评】本题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取一张后,放回并混在一起,再随机抽取一张,两次抽取的数字的积为奇数的概率是A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展示所有36种等可能的结果数,再找出两次抽取的数字的积为奇数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中两次抽取的数字的积为奇数的结果数为9,所以随机抽取一张,两次抽取的数字的积为奇数的概率==.故选B.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.8.在广场的电子屏幕上有一个旋转的正方体,正方体的六个面上分别标有“恩施六城同创”六个字.如图是小明在三个不同时刻所观察到的图形,请你帮小明确定与“创”相对的面上的字是()A.恩B.施C.城D.同【考点】专题:正方体相对两个面上的文字.【分析】根据图象思想确定和六相邻的是施、城、同、创,和创相邻的是恩、施、六、城由此即可解决问题.【解答】解:由题意可知和六相邻的是施、城、同、创,所以和六相对的是恩.因为和创相邻的是恩、施、六、城,所以和创相对的是同.【点评】本题考查正方体相对面上的文字,解题的关键是先确定或某一个字相邻的字是什么,得出相对的面的字,属于中考常考题型.9.关于x的不等式组恰有四个整数解,那么m的取值范围为()A.m≥﹣1 B.m<0 C.﹣1≤m<0 D.﹣1<m<0【考点】一元一次不等式组的整数解.【分析】可先用m表示出不等式组的解集,再根据恰有四个整数解可得到关于m的不等组,可求得m的取值范围.【解答】解:在中,解不等式①可得x>m,解不等式②可得x≤3,由题意可知原不等式组有解,∴原不等式组的解集为m<x≤3,∵该不等式组恰好有四个整数解,∴整数解为0,1,2,3,∴﹣1≤m<0,故选C.【点评】本题主要考查解不等式组,求得不等式组的解集是解题的关键,注意恰有四个整数解的应用.10.某商品的售价为100元,连续两次降价x%后售价降低了36元,则x为()A.8 B.20 C.36 D.18【考点】一元二次方程的应用.【分析】第一次降价后的单价是原来的(1﹣x),那么第二次降价后的单价是原来的(1﹣x)2,根据题意列方程解答即可.【解答】解:根据题意列方程得100×(1﹣x%)2=100﹣36解得x1=20,x2=180(不符合题意,舍去).故选:B.【点评】本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.11.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19cm,△ABD 的周长为13cm,则AE的长为()A.3cm B.6cm C.12cm D.16cm【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AD=DC,AE=CE=AC,求出AB+BC+AC=19cm,AB+BD+AD=AB+BC=13cm,即可求出AC,即可得出答案.【解答】解:∵DE是AC的垂直平分线,∴AD=DC,AE=CE=AC,∵△ABC的周长为19cm,△ABD的周长为13cm,∴AB+BC+AC=19cm,AB+BD+AD=AB+BD+DC=AB+BC=13cm,∴AC=6cm,∴AE=3cm,故选A.【点评】本题考查了线段垂直平分线性质的应用,能熟记线段垂直平分线性质定理的内容是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.12.抛物线y1=ax2+bx+c与直线y2=mx+n的图象如图所示,下列判断中:①abc <0;②a+b+c>0;③5a﹣c=0;④当x<或x>6时,y1>y2,其中正确的个数有()A.1 B.2 C.3 D.4【考点】二次函数与不等式(组);二次函数图象与系数的关系.【分析】①直接根据二次函数的性质来判定;②观察图象:当x=1时,对应的y的值;③当x=1时与对称轴为x=3列方程组可得结论;④直接看图象得出结论.【解答】解:①∵二次函数开口向上,∴a>0,∵二次函数与y轴交于正半轴,∴c>0,∵二次函数对称轴在y轴右侧,∴b<0,∴abc<0,所以此选项正确;②由图象可知:二次函数与x轴交于两点分别是(1,0)、(5,0),当x=1时,y=0,则a+b+c=0,所以此选项错误;③∵二次函数对称轴为:x=3,则﹣=3,b=﹣6a,代入a+b+c=0中得:a﹣6a+c=0,5a﹣c=0,所以此选项正确;④由图象得:当x<或x>6时,y1>y2;所以此选项正确.【点评】本题综合考查了二次函数和一次函数的图象及性质,熟练掌握二次函数的性质是关键:①二次项系数a决定抛物线的开口方向和大小;当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a 共同决定对称轴的位置;当a与b同号时(即ab>0),对称轴在y轴左;当a 与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异),反之也成立;③常数项c由抛物线与y轴交点的位置确定;④利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围.二、填空题(本题共有4个小题,每小题3分,共12分)13.因式分解:a2b﹣10ab+25b=b(a﹣5)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=b(a2﹣10a+25)=b(a﹣5)2,故答案为:b(a﹣5)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=.【考点】根与系数的关系.【分析】先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.【解答】解:由根与系数的关系得:m+n=,mn=,∴m2+n2=(m+n)2﹣2mn=﹣2×=,故答案为:.【点评】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.15.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为.【考点】相似三角形的判定与性质;三角形的面积.【分析】可运用相似三角形的性质求出GF、MN,从而求出OF、OM,进而可求出阴影部分的面积.【解答】解:如图,∵GF∥HC,∴△AGF∽△AHC,∴==,∴GF=HC=,∴OF=OG﹣GF=2﹣=.同理MN=,则有OM=.=××=,∴S△OFM=.∴S阴影=1﹣故答案为:.【点评】本题主要考查了相似三角形的判定与性质、三角形的面积公式,求得△OFM的面积是解决本题的关键.16.观察下列等式:1+2+3+4+…+n=n(n+1);1+3+6+10+…+n(n+1)=n(n+1)(n+2);1+4+10+20+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3);则有:1+5+15+35+…n(n+1)(n+2)(n+3)=n(n+1)(n+2)(n+3)(n+4).【考点】整式的混合运算.【分析】根据已知等式发现分母依次乘以2、乘以3、乘以4,据此作答即可.【解答】解:∵1+2+3+4+…+n=n(n+1)=n(n+1);1+3+6+10+…+n(n+1)=n(n+1)(n+2)=n(n+1)(n+2);1+4+10+20+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3)=n(n+1)(n+2)(n+3),∴1+5+15+35+…n(n+1)(n+2)(n+3)=n(n+1)(n+2)(n+3)(n+4)=n(n+1)(n+2)(n+3)(n+4),故答案为:n(n+1)(n+2)(n+3)(n+4).【点评】本题主要考查数字的变化规律,由已知等式发现变化部分的变化规律及不变的部分是解题的关键.三、解答题(本大题共有8个小题,共72分)17.先化简,再求值:÷(a+2),其中a=﹣3.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后把a的值代入进行计算即可.【解答】解:原式=÷=•=,当a=﹣3时,原式==.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.18.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.【考点】全等三角形的判定与性质.【分析】通过全等三角形(Rt△CBE≌Rt△BCD)的对应角相等得到∠ECB=∠DBC,则AB=AC.【解答】证明:∵BE⊥AC,CD⊥AB,∴∠CEB=∠BDC=90°.∵在Rt△CBE与Rt△BCD中,,∴Rt△CBE≌Rt△BCD(HL),∴∠ECB=∠DBC,∴AB=AC.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.19.在恩施州2016年“书香校园,经典诵读”比赛活动中,有32万名学生参加比赛活动,其中有8万名学生分别获得一、二、三等奖,从获奖学生中随机抽取部分,绘制成如下不完整的统计图表,请根据图表解答下列问题.获奖等级频数一等奖100二等奖a三等奖275(1)表格中a的值为125.(2)扇形统计图中表示获得一等奖的扇形的圆心角为72度.(3)估计全州有多少名学生获得三等奖?【考点】频数(率)分布表;用样本估计总体;扇形统计图.【分析】(1)由一等奖学生数及其所占百分比求得被调查学生总数,根据各组频数之和等于总数即可得a;(2)用360°乘以获得一等奖所对应百分比即可得;(3)用全州获奖学生总数乘以样本中获三等奖所占比例.【解答】解:(1)∵抽取的获奖学生有100÷20%=500(人),∴a=500﹣100﹣275=125,故答案为:125;(2)扇形统计图中表示获得一等奖的扇形的圆心角为360°×20%=72°,故答案为:72;(3)8×=4.4(万人),答:估计全州有4.4万名学生获得三等奖.【点评】本题主要考查频数分布表与扇形统计图及用样本估计总体,从统计图表中获取解题所需信息是解题的关键.20.如图,在办公楼AB和实验楼CD之间有一旗杆EF,从办公楼AB顶部A点处经过旗杆顶部E点恰好看到实验楼CD的底部D点,且俯角为45°,从实验楼CD顶部C点处经过旗杆顶部E点恰好看到办公楼AB的G点,BG=1米,且俯角为30°,已知旗杆EF=9米,求办公楼AB的高度.(结果精确到1米,参考数据:≈1.41,≈1.73)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意求出∠BAD=∠ADB=45°,进而根据等腰直角三角形的性质求得FD,在Rt△GEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在Rt△AGP中,继而可求出AB的长度.【解答】解:由题意可知∠BAD=∠ADB=45°,∴FD=EF=9米,AB=BD在Rt△GEH中,∵tan∠EGH==,即,∴BF=8,∴PG=BD=BF+FD=8+9,AB=(8+9)米≈23米,答:办公楼AB的高度约为23米.【点评】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.21.如图,直角三角板ABC放在平面直角坐标系中,直角边AB垂直x轴,垂足为Q,已知∠ACB=60°,点A,C,P均在反比例函数y=的图象上,分别作PF ⊥x轴于F,AD⊥y轴于D,延长DA,FP交于点E,且点P为EF的中点.(1)求点B的坐标;(2)求四边形AOPE的面积.【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【分析】(1)根据∠ACB=60°,求出tan60°==,设点A(a,b),根据点A,C,P均在反比例函数y=的图象上,求出A点的坐标,从而得出C点的坐标,然后即可得出点B的坐标;(2)先求出AQ、PF的长,设点P的坐标是(m,n),则n=,根据点P在反比例函数y=的图象上,求出m和S△OPF ,再求出S长方形DEFO,最后根据S四边形AOPE =S长方形DEFO﹣S△AOD﹣S△OPF,代入计算即可.【解答】解:(1)∵∠ACB=60°,∴∠AOQ=60°,∴tan60°==,设点A(a,b),则,解得:或(不合题意,舍去)∴点A的坐标是(2,2),∴点C的坐标是(﹣2,﹣2),∴点B的坐标是(2,﹣2),(2)∵点A的坐标是(2,2),∴AQ=2,∴EF=AQ=2,∵点P为EF的中点,∴PF=,设点P的坐标是(m,n),则n=∵点P在反比例函数y=的图象上,∴=,S△OPF=|4|=2,∴m=4,∴OF=4,∴S长方形DEFO=OF•OD=4×2=8,∵点A在反比例函数y=的图象上,∴S△AOD=|4|=2,∴S四边形AOPE =S长方形DEFO﹣S△AOD﹣S△OPF=8﹣2﹣2=4.【点评】此题主要考查了反比例函数中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.22.(10分)(2016•恩施州)在清江河污水网管改造建设中,需要确保在汛期来临前将建设过程中产生的渣土清运完毕,每天至少需要清运渣土12720m3,施工方准备每天租用大、小两种运输车共80辆.已知每辆大车每天运送渣土200m3,每辆小车每天运送渣土120m3,大、小车每天每辆租车费用分别为1200元,900元,且要求每天租车的总费用不超过85300元.(1)施工方共有多少种租车方案?(2)哪种租车方案费用最低,最低费用是多少?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设大车租x辆,则小车租(80﹣x)辆.列出不等式组,求整数解即可解决问题.(2)设租车费用为w元,则w=1200x+900(80﹣x)=300x+7200,利用一次函数的增减性,即可解决问题.【解答】解:(1)设大车租x辆,则小车租(80﹣x)辆.由题意,解得39≤x≤44.5,∵x为整数,∴x=39或40或41或42或43或44.∴施工方共有6种租车方案.(2)设租车费用为w元,则w=1200x+900(80﹣x)=300x+7200,∵300>0,∴w随x增大而增大,∴x=39时,w最小,最小值为18900元.【点评】本题考查一元一次不等式组的应用,一次函数的性质等整数,解题的关键是学会构建不等式组解决实际问题,学会构建一次函数,利用一次函数的性质解决问题,属于中考常考题型.23.(10分)(2016•恩施州)如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG,已知DE=4,AE=8.(1)求证:DF是⊙O的切线;(2)求证:OC2=OE•OP;(3)求线段EG的长.【考点】圆的综合题.【分析】(1)连接OD,由等腰三角形的性质得出∠DAB=∠ADO,再由已知条件得出∠ADO=∠DAF,证出OD∥AF,由已知DF⊥AF,得出DF⊥OD,即可得出结论;(2)由射影定理得出OD2=OE•OP,由OC=OD,即可得出OC2=OE•OP;(3)由垂径定理得出DE=CE=4,∠OEC=90°,由相交弦定理得出DE2=AE×BE,求出BE=2,得出直径CG=AB=AE+BE=10,半径OC=CG=5,由三角函数的定义得出cosC==,在△CEG中,由余弦定理求出EG2,即可得出EG的长.【解答】(1)证明:连接OD,如图所示:∵OA=OD,∴∠DAB=∠ADO,∵∠DAF=∠DAB,∴∠ADO=∠DAF,∴OD∥AF,又∵DF⊥AF,∴DF⊥OD,∴DF是⊙O的切线;(2)证明:由(1)得:DF⊥OD,∴∠ODF=90°,∵AB⊥CD,∴由射影定理得:OD2=OE•OP,∵OC=OD,∴OC2=OE•OP;(3)解:∵AB⊥CD,∴DE=CE=4,∠OEC=90°,由相交弦定理得:DE2=AE×BE,即42=8×BE,解得:BE=2,∴CG=AB=AE+BE=8+2=10,∴OC=CG=5,∴cosC==,在△CEG中,由余弦定理得:EG2=CG2+CE2﹣2×CG×CE×cosC=102+42﹣2×10×4×=52,∴EG==2.【点评】本题是圆的综合题目,考查了切线的判定、等腰三角形的性质、平行线的判定、射影定理、相交弦定理、余弦定理、三角函数等知识;本题综合性强,有一定难度,特别是(3)中,需要运用相交弦定理、三角函数和余弦定理采才能得出结果.24.(12分)(2016•恩施州)如图,在矩形OABC纸片中,OA=7,OC=5,D为BC边上动点,将△OCD沿OD折叠,当点C的对应点落在直线l:y=﹣x+7上时,记为点E,F,当点C的对应点落在边OA上时,记为点G.(1)求点E,F的坐标;(2)求经过E,F,G三点的抛物线的解析式;(3)当点C的对应点落在直线l上时,求CD的长;(4)在(2)中的抛物线上是否存在点P,使以E,F,P为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由点E在直线l上,设出点E的坐标,由翻折的特性可知OE=OC,利用两点间的距离公式即可得出关于x的无理方程,解方程即可求出x值,在代入点E的坐标中即可得出点E、F的坐标;(2)由OG=OC即可得出点G的坐标,根据点E、F、G的坐标利用待定系数法即可求出抛物线的解析式;(3)设点D的坐标为(m,5)(m>0),则CD=m,利用ED=CD,FD=CD即可得出关于m的无理方程,解方程即可求出m的值,从而得出CD的长度;(4)假设存在,设点P的坐标为(n,﹣n2+6n﹣5),由两点间的距离公式找出PE、PF、EF的长,根据三个角分别为直角,利用勾股定理即可得出关于n的方程,解方程即可求出n的值,再代入点P坐标即可得出结论.【解答】解:(1)∵点E在直线l:y=﹣x+7上,∴设点E的坐标为(x,﹣x+7),∵OE=OC=5,∴=5,解得:x1=3,x2=4,∴点E的坐标为(3,4),点F的坐标为(4,3).(2)∵OG=OC=5,且点G在x正半轴上,∴G(5,0).设经过E,F,G三点的抛物线的解析式为y=ax2+bx+c,将E(3,4)、F(4,3)、G(5,0)代入y=ax2+bx+c中,得:,解得:,∴经过E,F,G三点的抛物线的解析式为y=﹣x2+6x﹣5.(3)∵BC∥x轴,且OC=5,∴设点D的坐标为(m,5)(m>0),则CD=m.∵ED=CD或FD=CD,∴=m或=m,解得:m=或m=.∴当点C的对应点落在直线l上时,CD的长为或.(4)假设存在,设点P的坐标为(n,﹣n2+6n﹣5),∵E(3,4),F(4,3),∴EF==,PE=,PF=.以E,F,P为顶点的直角三角形有三种情况:①当∠EFP为直角时,有PE2=PF2+EF2,即(n﹣3)2+(﹣n2+6n﹣9)2=2+(n﹣4)2+(﹣n2+6n﹣8)2,解得:n1=1,n2=4(舍去),此时点P的坐标为(1,0);②当∠FEP为直角时,有PF2=PE2+EF2,即(n﹣4)2+(﹣n2+6n﹣8)2=2+(n﹣3)2+(﹣n2+6n﹣9)2,解得:n3=2,n4=3(舍去),此时点P的坐标为(2,3);③当∠EPF为直角时,有EF2=PE2+PF2,即2=(n﹣3)2+(﹣n2+6n﹣9)2+(n﹣4)2+(﹣n2+6n﹣8)2,整理得:(n﹣4)(n﹣3)(n2﹣5n+7)=0,∵在n2﹣5n+7中△=(﹣5)2﹣4×7=﹣3<0,∴n2﹣5n+7≠0.解得:n5=3(舍去),n6=4(舍去).综上可知:在(2)中的抛物线上存在点P,使以E,F,P为顶点的三角形是直角三角形,点P的坐标为(1,0)或(2,3).【点评】本题考查了两点间的距离公式、待定系数法求函数解析式以及勾股定理,解题的关键是:(1)根据OE=OC得出关于x的无理方程;(2)利用待定系数法求出抛物线解析式;(3)根据ED=CD(FD=CD)找出关于m的方程;(4)分三个角分别为直角三种情况考虑.本题属于中档题,难度不大,但解题过程稍显繁琐,解决该题型题目时,解决该题型题目时,利用翻折的性质以及两点间的距离公式找出方程是关键.。
2020年湖北省恩施州中考数学试卷(后附答案及详尽解析)
2020年湖北省恩施州中考数学试卷一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)(2020•恩施州)5的绝对值是( )A .5B .﹣5C .15D .−152.(3分)(2020•恩施州)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A .12×104B .1.2×105C .1.2×106D .0.12×1063.(3分)(2020•恩施州)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .4.(3分)(2020•恩施州)下列计算正确的是( )A .a 2•a 3=a 6B .a (a +1)=a 2+aC .(a ﹣b )2=a 2﹣b 2D .2a +3b =5ab 5.(3分)(2020•恩施州)函数y =√x+1x 的自变量的取值范围是( ) A .x ≥﹣1 B .x ≥﹣1且x ≠0C .x >0D .x >﹣1且x ≠0 6.(3分)(2020•恩施州)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A .211B .411C .511D .6117.(3分)(2020•恩施州)在实数范围内定义运算“☆”:a ☆b =a +b ﹣1,例如:2☆3=2+3﹣1=4.如果2☆x =1,则x 的值是( )A .﹣1B .1C .0D .28.(3分)(2020•恩施州)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A .{5x +y =3x +5y =2B .{5x +y =2x +5y =3C .{5x +3y =1x +2y =5D .{3x +y =52x +5y =19.(3分)(2020•恩施州)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .10.(3分)(2020•恩施州)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60km /hB .乙车的平均速度为100km /hC .乙车比甲车先到B 城D .乙车比甲车先出发1h11.(3分)(2020•恩施州)如图,正方形ABCD 的边长为4,点E 在AB 上且BE =1,F 为对角线AC 上一动点,则△BFE 周长的最小值为( )A .5B .6C .7D .812.(3分)(2020•恩施州)如图,已知二次函数y =ax 2+bx +c 的图象与x 轴相交于A (﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有()个.A.0B.1C.2D.3二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)(2020•恩施州)9的算术平方根是.14.(3分)(2020•恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=.15.(3分)(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为.(结果不取近似值16.(3分)(2020•恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)(2020•恩施州)先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√2.18.(8分)(2020•恩施州)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.19.(8分)(2020•恩施州)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有名.20.(8分)(2020•恩施州)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1.414,√3≈1.732).21.(8分)(2020•恩施州)如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=kx(x>0)的一个交点为C,且BC=12AC.(1)求点A的坐标;(2)当S△AOC=3时,求a和k的值.22.(10分)(2020•恩施州)某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m 个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?23.(10分)(2020•恩施州)如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.24.(12分)(2020•恩施州)如图1,抛物线y=−14x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=√2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.2020年湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)(2020•恩施州)5的绝对值是( )A .5B .﹣5C .15D .−15 【解答】解:在数轴上,数5所表示的点到原点0的距离是5;故选:A .2.(3分)(2020•恩施州)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A .12×104B .1.2×105C .1.2×106D .0.12×106【解答】解:120000=1.2×105,故选:B .3.(3分)(2020•恩施州)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【解答】解:根据轴对称图形与中心对称图形的概念,知:A 、不是轴对称图形,也不是中心对称图形;B 、不是轴对称图形,也不是中心对称图形;C 、是轴对称图形,但不是中心对称图形;D 、既是中心对称图形,又是轴对称图形.故选:D .4.(3分)(2020•恩施州)下列计算正确的是( )A .a 2•a 3=a 6B .a (a +1)=a 2+aC .(a ﹣b )2=a 2﹣b 2D .2a +3b =5ab【解答】解:A 、a 2•a 3=a 5,原计算错误,故此选项不符合题意;B 、a (a +1)=a 2+a ,原计算正确,故此选项符合题意;C 、(a ﹣b )2=a 2﹣2ab +b 2,原计算错误,故此选项不符合题意;D 、2a 与3b 不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B .5.(3分)(2020•恩施州)函数y =√x+1x 的自变量的取值范围是( ) A .x ≥﹣1 B .x ≥﹣1且x ≠0C .x >0D .x >﹣1且x ≠0 【解答】解:根据题意得,x +1≥0且x ≠0,解得x ≥﹣1且x ≠0.故选:B .6.(3分)(2020•恩施州)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A .211B .411C .511D .611【解答】解:由题意可得:粽子总数为11个,其中6个为甜粽,所以选到甜粽的概率为:611,故选:D .7.(3分)(2020•恩施州)在实数范围内定义运算“☆”:a ☆b =a +b ﹣1,例如:2☆3=2+3﹣1=4.如果2☆x =1,则x 的值是( )A .﹣1B .1C .0D .2 【解答】解:由题意知:2☆x =2+x ﹣1=1+x ,又2☆x =1,∴1+x =1,∴x =0.故选:C .8.(3分)(2020•恩施州)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A .{5x +y =3x +5y =2B .{5x +y =2x +5y =3C .{5x +3y =1x +2y =5D .{3x +y =52x +5y =1【解答】解:依题意,得:{5x +y =3x +5y =2. 故选:A . 9.(3分)(2020•恩施州)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A .10.(3分)(2020•恩施州)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60km /hB .乙车的平均速度为100km /hC .乙车比甲车先到B 城D .乙车比甲车先出发1h【解答】解:由图象知:A .甲车的平均速度为30010−5=60km /h ,故A 选项不合题意; B .乙车的平均速度为3009−6=100km /h ,故B 选项不合题意;C .甲10时到达B 城,乙9时到达B 城,所以乙比甲先到B 城,故C 选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.11.(3分)(2020•恩施州)如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.8【解答】解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=√AD2+AE2=5,∴△BFE的周长=5+1=6,故选:B.12.(3分)(2020•恩施州)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有()个.A.0B.1C.2D.3【解答】解:对于①:二次函数开口向下,故a<0,与y轴的交点在y的正半轴,故c >0,故ac<0,因此①错误;对于②:二次函数的图象与x轴相交于A(﹣2,0)、B(1,0),由对称性可知,其对称轴为:x=−2+12=−12,因此②错误;对于③:设二次函数y=ax2+bx+c的交点式为y=a(x+2)(x﹣1)=ax2+ax﹣2a,比较一般式与交点式的系数可知:b=a,c=﹣2a,故2a+c=0,因此③正确;对于④:当x=﹣1时对应的y=a﹣b+c,观察图象可知x=﹣1时对应的函数图象的y 值在x轴上方,故a﹣b+c>0,因此④正确.∴只有③④是正确的.故选:C.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)(2020•恩施州)9的算术平方根是3.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.14.(3分)(2020•恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=40°.【解答】解:如图,延长CB交l2于点D,∵AB=BC,∠C=30°,∴∠C=∠4=30°,∵l1∥l2,∠1=80°,∴∠1=∠3=80°,∵∠C+∠3+∠2+∠4=180°,即30°+80°+∠2+30°=180°,∴∠2=40°.故答案为:40°.15.(3分)(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为2√3−π.(结果不取近似值【解答】解:∵AB是直径,∴∠ACB=90°,∵∠ABC=60°,∴∠CAB=30°,∴BC=12AB=2,AC=2√3,∴S△ABC=12⋅AC⋅BC=12⋅2√3⋅2=2√3,∵∠CAB=30°,∴扇形ACD的面积=30360π⋅AC2=112π⋅(2√3)2=π,∴阴影部分的面积为2√3−π.故答案为:2√3−π.16.(3分)(2020•恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为(﹣1,8).【解答】解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)(2020•恩施州)先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√2.【解答】解:(m2−9m2−6m+9−3m−3)÷m2m−3=[(m+3)(m−3)(m−3)2−3m−3]⋅m−3m2=(m+3m−3−3m−3)⋅m−3m2=m m−3⋅m−3 m2=1m;当m=√2时,原式=2=√22.18.(8分)(2020•恩施州)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.【解答】证明:∵AE∥BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE∥BF,即AD∥BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形.19.(8分)(2020•恩施州)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了50名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为36°;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有150名.【解答】解:(1)本次共调查的学生数为:20÷40%=50(名).故答案为:50;(2)C类学生人数为:50﹣15﹣20﹣5=10(名),条形图如下:(3)D类所对应扇形的圆心角为:360°×550=36°.故答案为:36°;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:500×1550=150(名).故答案为:150.20.(8分)(2020•恩施州)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1.414,√3≈1.732).【解答】解:如图,过P作PH⊥AB,设PH=x,由题意得:AB=30×2=60,∠PBH=90°﹣60°=30°,∠PAH=90°﹣45°=45°,则△PHA是等腰直角三角形,∴AH=PH,在Rt△PHA中,设AH=PH=x,在Rt△PBH中,PB=2PH=2x,BH=AB﹣AH=60﹣x,∴tan∠PBH=tan30°=PHBH=√33,∴√33=x 60−x, 解得:x =30(√3−1),∴PB =2x =60(√3−1)≈44(海里),答:此时船与小岛P 的距离约为44海里.21.(8分)(2020•恩施州)如图,在平面直角坐标系中,直线y =ax ﹣3a (a ≠0)与x 轴、y 轴分别相交于A 、B 两点,与双曲线y =k x (x >0)的一个交点为C ,且BC =12AC .(1)求点A 的坐标;(2)当S △AOC =3时,求a 和k 的值.【解答】解:(1)由题意得:令y =ax ﹣3a (a ≠0)中y =0,即ax ﹣3a =0,解得x =3,∴点A 的坐标为(3,0),故答案为(3,0).(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,如下图所示:显然,CM ∥OA ,∴∠BCM =∠BAO ,且∠ABO =∠CBO ,∴△BCM ∽△BAO ,∴BC BA =CM AO ,即:13=CM 3,∴CM =1,又S △AOC =12OA ⋅CN =3即:12×3×CN =3, ∴CN =2,∴C 点的坐标为(1,2),故反比例函数的k =1×2=2,再将点C (1,2)代入一次函数y =ax ﹣3a (a ≠0)中,即2=a ﹣3a ,解得a =﹣1,故答案为:a =﹣1,k =2.22.(10分)(2020•恩施州)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【解答】解:(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(x ﹣20)元,根据题意,得900x =720x−20,解得:x =100,经检验x =100是原方程的解,x ﹣20=80,答:购买A 品牌足球的单价为100元,则购买B 品牌足球的单价为80元;(2)设购买m 个A 品牌足球,则购买(90﹣m )个B 品牌足球,则W =100m +80(90﹣m )=20m +7200,∵A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴{100m +80(90−m)≤8500m ≥2(90−m), 解不等式组得:60≤m ≤65,所以,m 的值为:60,61,62,63,64,65,即该队共有6种购买方案,当m =60时,W 最小,m =60时,W =20×60+7200=8400(元),答:该队共有6种购买方案,购买60个A 品牌30个B 品牌的总费用最低,最低费用是8400元.23.(10分)(2020•恩施州)如图1,AB 是⊙O 的直径,直线AM 与⊙O 相切于点A ,直线BN 与⊙O 相切于点B ,点C (异于点A )在AM 上,点D 在⊙O 上,且CD =CA ,延长CD 与BN 相交于点E ,连接AD 并延长交BN 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:BE =EF ;(3)如图2,连接EO 并延长与⊙O 分别相交于点G 、H ,连接BH .若AB =6,AC =4,求tan ∠BHE .【解答】解:(1)如图1中,连接OD ,∵CD =CA ,∴∠CAD =∠CDA ,∵OA =OD∴∠OAD =∠ODA ,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90°,∴∠ODC=∠CDA+∠ODA=90°,∴CE是⊙O的切线.(2)如图2中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBD=∠ODE=90°,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM∥BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF.(3)如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4﹣x,CE=4+x,∴(4+x)2=(4﹣x)2+62,解得:x =94,∴tan ∠BOE =BE OB =943=34, ∵∠BOE =2∠BHE ,∴tan ∠BOE =2tan∠BHE 1−tan 2∠BHE =34, 解得:tan ∠BHE =13或﹣3(﹣3不合题意舍去),∴tan ∠BHE =13.补充方法:如图2中,作HJ ⊥EB 交EB 的延长线于J .∵tab ∠BOE =BE OB =34, ∴可以假设BE =3k ,OB =4k ,则OE =5k ,∵OB ∥HJ ,∴OB HJ =OE EH =EB EJ , ∴4k HJ =5k 9k =3k EJ ,∴HJ =365k ,EJ =275k , ∴BJ =EJ ﹣BE =275k ﹣3k =125k∴tan ∠BHJ =BJ HJ =13, ∵∠BHE =∠OBE =∠BHJ ,∴tan ∠BHE =13.24.(12分)(2020•恩施州)如图1,抛物线y =−14x 2+bx +c 经过点C (6,0),顶点为B ,对称轴x =2与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=√2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.【解答】解:(1)∵点C(6,0)在抛物线上,∴0=−14×36+6b+c,得到6b+c=9,又∵对称轴x=2,∴x=−b2a=−b2×(−14)=2,解得b=1,∴c=3,∴二次函数的解析式为y=−14x2+x+3;(2)当点M在点C的左侧时,如图2﹣1中:∵抛物线的解析式为y =−14x 2+x +3,对称轴为x =2,C (6,0)∴点A (2,0),顶点B (2,4),∴AB =AC =4,∴△ABC 是等腰直角三角形,∴∠1=45°;∵将△MPC 逆时针旋转90°得到△MEF ,∴FM =CM ,∠2=∠1=45°,设点M 的坐标为(m ,0),∴点F (m ,6﹣m ),又∵∠2=45°,∴直线EF 与x 轴的夹角为45°,∴设直线EF 的解析式为y =x +b ,把点F (m ,6﹣m )代入得:6﹣m =m +b ,解得:b =6﹣2m ,直线EF 的解析式为y =x +6﹣2m ,∵直线EF 与抛物线y =−14x 2+x +3只有一个交点,∴{y =x +6−2my =−14x 2+x +3, 整理得:14x 2+3−2m =0,∴△=b 2﹣4ac =0,解得m =32,点M 的坐标为(32,0).当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45°,因此直线EF 与抛物线y =−14x 2+x +3不可能只有一个交点.综上,点M 的坐标为(32,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,∵PC =√2,由(2)知∠BCA =45°,∴PG =GC =1,∴点G (5,0),设点M 的坐标为(m ,0),∵将△MPC 逆时针旋转90°得到△MEF ,∴EM =PM ,∵∠HEM +∠EMH =∠GMP +∠EMH =90°,∴∠HEM =∠GMP ,在△EHM 和△MGP 中,{∠EHM =∠MGP∠HEM =∠GMP EM =MP,∴△EHM ≌△MGP (AAS ),∴EH =MG =5﹣m ,HM =PG =1,∴点H (m ﹣1,0),∴点E 的坐标为(m ﹣1,5﹣m );∴EA =√(m −1−2)2+(5−m −0)2=√2m 2−16m +34, 又∵D 为线段BC 的中点,B (2,4),C (6,0), ∴点D (4,2),∴ED =√(m 2+(5−m −2)2=√2m 2−16m +34, ∴EA =ED .当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(m ﹣1,5﹣m ),因此EA =ED . ②当点E 在(1)所求的抛物线y =−14x 2+x +3上时, 把E (m ﹣1,5﹣m )代入,整理得:m 2﹣10m +13=0, 解得:m =5+2√3或m =5−2√3,∴CM =2√3−1或CM =1+2√3.。
2020年湖北省恩施州中考数学试卷(含详细解析)
本题考查了绝对值,解决本题的关键是一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.
2.B
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
(1)求 、 两种品牌足球的单价;
(2)若足球队计划购买 、 两种品牌的足球共90个,且 品牌足球的数量不小于 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买 品牌足球 个,总费用为 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?
23.如图, 是 的直径,直线 与 相切于点 ,直线 与 相切于点 ,点 (异于点 )在 上,点 在 上,且 ,延长 与 相交于点E,连接 并延长交 于点 .
21.如图,在平面直角坐标系中,直线 与 轴、 轴分别相交于 、 两点,与双曲线 的一个交点为 ,且 .
(1)求点 的坐标;
(2)当 时,求 和 的值.
22.某校足球队需购买 、 两种品牌的足球.已知 品牌足球的单价比 品牌足球的单价高20元,且用900元购买 品牌足球的数量用720元购买 品牌足球的数量相等.
(3) 在(2)的旋转变换下,若 (如图).
①求证: .
②当点 在(1)所求的抛物线上时,求线段 的长.
参考答案1.A【解 Nhomakorabea】【分析】
根据绝对值的意义:数轴上一个数所对应的点与原点(O点)的距离叫做该数的绝对值,绝对值只能为非负数;即可得解.
【详解】
解:在数轴上,数5所表示的点到原点0的距离是5;
2020年湖北省恩施州中考数学试卷
2020年湖北省恩施州中考数学试卷一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1. 5的绝对值是()A.5B.−5C.15D.−15【答案】A【考点】绝对值【解析】根据绝对值的意义:数轴上一个数所对应的点与原点(O点)的距离叫做该数的绝对值,绝对值只能为非负数;即可得解.【解答】在数轴上,数5所表示的点到原点0的距离是5;2. 茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为()A.12×104B.1.2×105C.1.2×106D.0.12×106【答案】B【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】120000=1.2×105,3. 下列交通标识,既是中心对称图形,又是轴对称图形的是()A. B. C. D.【答案】D【考点】中心对称图形轴对称图形【解析】根据轴对称图形与中心对称图形的概念求解.【解答】根据轴对称图形与中心对称图形的概念,知:A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,但不是中心对称图形;D、既是中心对称图形,又是轴对称图形.4. 下列计算正确的是()A.a2⋅a3=a6B.a(a+1)=a2+aC.(a−b)2=a2−b2D.2a+3b=5ab【答案】B【考点】合并同类项同底数幂的乘法完全平方公式单项式乘多项式【解析】利用同底数幂的乘法运算法则、单项式乘多项式的运算法则、完全平方公式、合并同类项法则计算求出答案即可判断.【解答】A、a2⋅a3=a5,原计算错误,故此选项不符合题意;B、a(a+1)=a2+a,原计算正确,故此选项符合题意;C、(a−b)2=a2−2ab+b2,原计算错误,故此选项不符合题意;D、2a与3b不是同类项,不能合并,原计算错误,故此选项不符合题意;5. 函数y=√x+1x的自变量的取值范围是()A.x≥−1B.x≥−1且x≠0C.x>0D.x>−1且x≠0【答案】B【考点】函数自变量的取值范围【解析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】根据题意得,x+1≥0且x≠0,解得x≥−1且x≠0.6. “彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是()A.2 11B.411C.511D.611【答案】D【考点】概率公式【解析】粽子总共有11个,其中甜粽有6个,根据概率公式即可求出答案.【解答】由题意可得:粽子总数为11个,其中6个为甜粽,所以选到甜粽的概率为:611,7. 在实数范围内定义运算“☆”:a ☆b =a +b −1,例如:2☆3=2+3−1=4.如果2☆x =1,则x 的值是( )A.−1B.1C.0D.2 【答案】C【考点】解一元一次方程实数的运算【解析】已知等式利用题中的新定义化简,计算即可求出x 的值.【解答】由题意知:2☆x =2+x −1=1+x ,又2☆x =1,∴ 1+x =1,∴ x =0.8. 我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A.{5x +y =3x +5y =2B.{5x +y =2x +5y =3C.{5x +3y =1x +2y =5D.{3x +y =52x +5y =1【答案】A【考点】数学常识由实际问题抽象出二元一次方程组【解析】根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”,即可得出关于x ,y 的二元一次方程组,此题得解.【解答】依题意,得:{5x +y =3x +5y =2.9. 如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A. B. C. D.【答案】A【考点】简单组合体的三视图【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】从正面看易得第一列有2个正方形,第二列底层有1个正方形.10. 甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A.甲车的平均速度为60km/ℎB.乙车的平均速度为100km/ℎC.乙车比甲车先到B 城D.乙车比甲车先出发1ℎ【答案】D【考点】一次函数的应用【解析】根据图象逐项分析判断即可.【解答】由图象知:=60km/ℎ,故A选项不合题意;A.甲车的平均速度为30010−5=100km/ℎ,故B选项不合题意;B.乙车的平均速度为3009−6C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故C选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1ℎ,故此选项错误,11. 如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.8【答案】B【考点】勾股定理正方形的性质轴对称——最短路线问题【解析】连接ED交AC于一点F,连接BF,根据正方形的对称性得到此时△BFE的周长最小,利用勾股定理求出DE即可得到答案.【解答】如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90∘,∵点E在AB上且BE=1,∴AE=3,∴DE=√AD2+AE2=5,∴△BFE的周长=5+1=6,12. 如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(−2, 0)、B(1, 0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=−1;③2a+c=0;④a−b+c>0.其中正确的有()个.A.0B.1C.2D.3【答案】C【考点】二次函数图象与系数的关系抛物线与x轴的交点【解析】根据抛物线的开口方向、对称轴、顶点坐标、增减性以及过特殊点时系数a、b、c满足的关系综合判断即可.【解答】对于①:二次函数开口向下,故a<0,与y轴的交点在y的正半轴,故c>0,故ac< 0,因此①错误;对于②:二次函数的图象与x轴相交于A(−2, 0)、B(1, 0),由对称性可知,其对称轴为:x=−2+12=−12,因此②错误;对于③:设二次函数y=ax2+bx+c的交点式为y=a(x+2)(x−1)=ax2+ax−2a,比较一般式与交点式的系数可知:b=a,c=−2a,故2a+c=0,因此③正确;对于④:当x=−1时对应的y=a−b+c,观察图象可知x=−1时对应的函数图象的y值在x轴上方,故a−b+c>0,因此④正确.∴只有③④是正确的.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)9的算术平方根是________.【答案】3【考点】算术平方根【解析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.如图,直线l1 // l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30∘,∠1=80∘,则∠2=________.【答案】40∘【考点】平行线的性质等腰三角形的性质【解析】利用等腰三角形的性质得到∠C=∠4=30∘,利用平行线的性质得到∠1=∠3=80∘,再根据三角形内角和定理即可求解.【解答】如图,延长CB交l2于点D,∵AB=BC,∠C=30∘,∴∠C=∠4=30∘,∵l1 // l2,∠1=80∘,∴∠1=∠3=80∘,∵∠C+∠3+∠2+∠4=180∘,即30∘+80∘+∠2+30∘=180∘,∴∠2=40∘.如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60∘,则图中阴影部分的面积为________.(结果不取近似值【答案】2√3−π【考点】扇形面积的计算近似数和有效数字【解析】根据60∘特殊角求出AC和BC,再算出△ABC的面积,根据扇形面积公式求出扇形CAD 的面积,再用三角形的面积减去扇形面积即可.【解答】∵AB是直径,∴∠ACB=90∘,∵∠ABC=60∘,∴∠CAB=30∘,∴BC=12AB=2,AC=2√3,∴S△ABC=12⋅AC⋅BC=12⋅2√3⋅2=2√3,∵∠CAB=30∘,∴扇形ACD的面积=30360π⋅AC2=112π⋅(2√3)2=π,∴阴影部分的面积为2√3−π.如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(−2, 0),B(1, 2),C(1, −2).已知N(−1, 0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为________.【答案】(−1, 8)【考点】坐标与图形变化-旋转关于x轴、y轴对称的点的坐标规律型:点的坐标规律型:图形的变化类规律型:数字的变化类【解析】先求出N1至N6点的坐标,找出其循环的规律为每6个点循环一次即可求解.【解答】由题意得,作出如下图形:N点坐标为(−1, 0),N点关于A点对称的N1点的坐标为(−3, 0),N1点关于B点对称的N2点的坐标为(5, 4),N2点关于C点对称的N3点的坐标为(−3, 8),N3点关于A点对称的N4点的坐标为(−1, 8),N4点关于B点对称的N5点的坐标为(3, −4),N5点关于C点对称的N6点的坐标为(−1, 0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(−1, 8).三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√2.【答案】(m2−9m2−6m+9−3m−3)÷m2m−3=[(m+3)(m−3)(m−3)2−3m−3]⋅m−3m2=(m+3m−3−3m−3)⋅m−3m2=mm−3⋅m−3m2=1m;当m=√2时,原式=√2=√22.【考点】分式的化简求值【解析】根据分式的混合运算法则,先化简括号内的,将除法运算转化为乘法运算,再化简成最简分式,代入m值求解即可.【解答】(m2−92−3)÷m2=[(m+3)(m−3)(m−3)2−3m−3]⋅m−3m2=(m+3m−3−3m−3)⋅m−3m2=mm−3⋅m−3m2=1m;当m=√2时,原式=√2=√22.如图,AE // BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.【答案】证明:∵AE // BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE // BF,即AD // BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形.【考点】菱形的判定全等三角形的性质与判定【解析】由AE // BF,BD平分∠ABC得到∠ABD=∠ADB,得到AB=AD,再由BC=AB,得到对边AD=BC,进而得到四边形ABCD为平行四边形,再由邻边相等即可证明四边形ABCD为菱形.【解答】证明:∵AE // BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE // BF,即AD // BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形.某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解;B类--比较了解;C类--般了解;D类--不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了________名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为________;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有________名.【答案】50C类学生人数为:50−15−20−5=10(名),条形图如下:36∘150【考点】条形统计图扇形统计图用样本估计总体【解析】(1)根据条形图和扇形图得出B类人数为20名,占40%,即可得出总数;(2)根据总人数减去A,B,D的人数即可得出C的人数;(3)用360∘乘以D类部分所占百分比即可得出圆心角的度数;(4)用500乘以非常了解的部分所占百分比即可得出答案.【解答】本次共调查的学生数为:20÷40%=50(名).故答案为:50;C类学生人数为:50−15−20−5=10(名),条形图如下:D类所对应扇形的圆心角为:360×5=36.50故答案为:36∘;=150(名).该校九年级学生对新冠肺炎防控知识非常了解的人数为:500×1550故答案为:150.如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45∘方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60∘方向.求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1.414,√3≈1.732).【答案】此时船与小岛P的距离约为44海里.【考点】解直角三角形的应用-方向角问题【解析】过P作PH⊥AB,设PH=x,由已知分别求PB、BH、AH,然后根据锐角三角函数求出x值即可求解.【解答】如图,过P作PH⊥AB,设PH=x,由题意得:AB=30×2=60,∠PBH=90∘−60∘=30∘,∠PAH=90∘−45∘=45∘,则△PHA是等腰直角三角形,∴AH=PH,在Rt△PHA中,设AH=PH=x,在Rt△PBH中,PB=2PH=2x,BH=AB−AH=60−x,∴tan∠PBH=tan30∘=PHBH =√33,∴√33=x60−x,解得:x=30(√3−1),∴PB=2x=60(√3−1)≈44(海里),如图,在平面直角坐标系中,直线y=ax−3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=kx (x>0)的一个交点为C,且BC=12AC.(1)求点A的坐标;(2)当S△AOC=3时,求a和k的值.【答案】(3, 0)a=−1,k=2【考点】反比例函数与一次函数的综合【解析】(1)令y=ax−3a(a≠0)中y=0即可求出点A的坐标;(2)过C点作y轴的垂线交y轴于M点,作x轴的垂线交x轴于N点,证明△BCM∽△BAO,利用BC=12AC和OA=3进而求出CM的长,再由S△AOC=3求出CN的长,进而求出点C坐标即可求解.【解答】由题意得:令y=ax−3a(a≠0)中y=0,即ax−3a=0,解得x=3,∴点A的坐标为(3, 0),故答案为(3, 0).过C点作y轴的垂线交y轴于M点,作x轴的垂线交x轴于N点,如下图所示:显然,CM // OA,∴∠BCM=∠BAO,且∠ABO=∠CBO,∴△BCM∽△BAO,∴BCBA =CMAO,即:13=CM3,∴CM=1,又S△AOC=12OA⋅CN=3即:12×3×CN=3,∴CN=2,∴C点的坐标为(1, 2),故反比例函数的k=1×2=2,再将点C(1, 2)代入一次函数y=ax−3a(a≠0)中,即2=a−3a,解得a=−1,故答案为:a=−1,k=2.某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【答案】购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;该队共有6种购买方案,购买60个A品牌30个B品牌的总费用最低,最低费用是8400元【考点】分式方程的应用一元一次不等式组的应用一次函数的应用【解析】(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(x−20)元,根据用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买m个A品牌足球,则购买(90−m)个B品牌足球,根据总价=单价×数量,结合总价不超过8500元,以及A品牌足球的数量不小于B品牌足球数量的2倍,即可得出关于m的一元一次不等式组,解之取其中的最小整数值即可得出结论.【解答】设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(x−20)元,根据题意,得900x =720x−20,解得:x=100,经检验x=100是原方程的解,x−20=80,答:购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;设购买m个A品牌足球,则购买(90−m)个B品牌足球,则W=100m+80(90−m)=20m+7200,∵A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴{100m+80(90−m)≤8500m≥2(90−m),解不等式组得:60≤m≤65,所以,m的值为:60,61,62,63,64,65,即该队共有6种购买方案,当m=60时,W最小,m=60时,W=20×60+7200=8400(元),答:该队共有6种购买方案,购买60个A品牌30个B品牌的总费用最低,最低费用是8400元.如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.【答案】如图1中,连接OD,∵CD=CA,∴∠CAD=∠CDA,∵OA=OD∴∠OAD=∠ODA,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90∘,∴∠ODC=∠CDA+∠ODA=90∘,∴CE是⊙O的切线.如图2中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBD=∠ODE=90∘,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM // BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF.如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4−x,CE=4+x,∴(4+x)2=(4−x)2+62,解得:x=94,∴tan∠BOE=BEOB =943=34,∵∠BOE=2∠BHE,∴tan∠BOE=2tan∠BHE1−tan2∠BHE =34,解得:tan∠BHE=13或−3(−3不合题意舍去),∴tan∠BHE=13.补充方法:如图2中,作HJ⊥EB交EB的延长线于J.∵tab∠BOE=BEOB =34,∴可以假设BE=3k,OB=4k,则OE=5k,∵OB // HJ,∴OBHJ =OEEH=EBEJ,∴4kHJ =5k9k=3kEJ,∴HJ=365k,EJ=275k,∴BJ=EJ−BE=275k−3k=125k∴tan∠BHJ=BJHJ =13,∵∠BHE=∠OBE=∠BHJ,∴tan∠BHE=13.【考点】圆的综合题【解析】(1)连接OD,根据等边对等角可知:∠CAD=∠CDA,∠OAD=∠ODA,再根据切线的性质可知∠CAO=∠CAD+∠OAD=∠CDA+∠ODA=90∘=∠ODC,由切线的判定定理可得结论;(2)连接BD,根据等边对等角可知∠ODB=∠OBD,再根据切线的性质可知∠ODE=∠OBE=90∘,由等量减等量差相等得∠EDB=∠EBD,再根据等角对等边得到ED=EB,然后根据平行线的性质及对顶角相等可得∠EDF=∠EFD,推出DE=EF,由此得出结论;(3)过E点作EL⊥AM于L,根据勾股定理可求出BE的长,即可求出tan∠BOE的值,再利用倍角公式即可求出tan∠BHE的值.【解答】如图1中,连接OD,∵CD=CA,∴∠CAD=∠CDA,∵OA=OD∴∠OAD=∠ODA,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90∘,∴∠ODC=∠CDA+∠ODA=90∘,∴CE是⊙O的切线.如图2中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBD=∠ODE=90∘,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM // BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF.如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4−x,CE=4+x,∴(4+x)2=(4−x)2+62,解得:x=94,∴tan∠BOE=BEOB =943=34,∵∠BOE=2∠BHE,∴tan∠BOE=2tan∠BHE1−tan2∠BHE =34,解得:tan∠BHE=13或−3(−3不合题意舍去),∴tan∠BHE=13.补充方法:如图2中,作HJ⊥EB交EB的延长线于J.∵tab∠BOE=BEOB =34,∴可以假设BE=3k,OB=4k,则OE=5k,∵OB // HJ,∴OBHJ =OEEH=EBEJ,∴4kHJ =5k9k=3kEJ,∴HJ=365k,EJ=275k,∴BJ=EJ−BE=275k−3k=125k∴tan∠BHJ=BJHJ =13,∵∠BHE=∠OBE=∠BHJ,∴tan∠BHE=13.如图1,抛物线y=−14x2+bx+c经过点C(6, 0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90∘,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=√2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.【答案】∵点C(6, 0)在抛物线上,∴0=−14×36+6b+c,得到6b+c=9,又∵对称轴x=2,∴x=−b2a =−b2×(−14)=2,解得b=1,∴c=3,∴二次函数的解析式为y=−14x2+x+3;当点M在点C的左侧时,如图2−1中:∵抛物线的解析式为y=−14x2+x+3,对称轴为x=2,C(6, 0)∴点A(2, 0),顶点B(2, 4),∴AB=AC=4,∴△ABC是等腰直角三角形,∴∠1=45∘;∵将△MPC逆时针旋转90∘得到△MEF,∴FM=CM,∠2=∠1=45∘,设点M的坐标为(m, 0),∴点F(m, 6−m),又∵∠2=45∘,∴直线EF与x轴的夹角为45∘,∴设直线EF的解析式为y=x+b,把点F(m, 6−m)代入得:6−m=m+b,解得:b=6−2m,直线EF的解析式为y=x+6−2m,∵直线EF与抛物线y=−14x2+x+3只有一个交点,∴{y=x+6−2my=−14x2+x+3,整理得:14x2+3−2m=0,∴△=b2−4ac=0,解得m=32,点M的坐标为(32, 0).当点M在点C的右侧时,如下图:由图可知,直线EF与x轴的夹角仍是45∘,因此直线EF与抛物线y=−14x2+x+3不可能只有一个交点.综上,点M的坐标为(32, 0).①当点M在点C的左侧时,如下图,过点P作PG⊥x轴于点G,过点E作EH⊥x轴于点H,∵PC=√2,由(2)知∠BCA=45∘,∴PG=GC=1,∴点G(5, 0),设点M的坐标为(m, 0),∵将△MPC逆时针旋转90∘得到△MEF,∴EM=PM,∵∠HEM+∠EMH=∠GMP+∠EMH=90∘,∴∠HEM=∠GMP,在△EHM和△MGP中,{∠EHM=∠MGP ∠HEM=∠GMPEM=MP,∴△EHM≅△MGP(AAS),∴EH=MG=5−m,HM=PG=1,∴点H(m−1, 0),∴点E的坐标为(m−1, 5−m);∴EA=√(m−1−2)2+(5−m−0)2=√2m2−16m+34,又∵D为线段BC的中点,B(2, 4),C(6, 0),∴点D(4, 2),∴ED=√(m−1−4)2+(5−m−2)2=√2m2−16m+34,∴EA=ED.当点M在点C的右侧时,如下图:同理,点E的坐标仍为(m−1, 5−m),因此EA=ED.②当点E在(1)所求的抛物线y=−14x2+x+3上时,把E(m−1, 5−m)代入,整理得:m2−10m+13=0,解得:m=5+2√3或m=5−2√3,∴CM=2√3−1或CM=1+2√3.【考点】二次函数综合题【解析】(1)根据点C在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B及已知点C的坐标,证明△ABC是等腰直角三角形,根据旋转的性质推出直线EF与x轴的夹角为45∘,因此设直线EF的解析式为y=x+b,设点M的坐标为(m, 0),推出点F(m, 6−m),直线EF与抛物线y=−14x2+x+3只有一个交点,联立两个解析式,得到关于x的一元二次方程,根据根的判别式为0得到关于m的方程,解方程得点M的坐标.注意有两种情况,均需讨论.(3)①过点P作PG⊥x轴于点G,过点E作EH⊥x轴于点H,设点M的坐标为(m, 0),由PC=√2及旋转的性质,证明△EHM≅△MGP,得到点E的坐标为(m−1, 5−m),再根据两点距离公式证明EA=ED,注意分两种情况,均需讨论;②把E(m−1, 5−m)代入抛物线解析式,解出m的值,进而求出CM的长.【解答】∵点C(6, 0)在抛物线上,∴0=−14×36+6b+c,得到6b+c=9,又∵对称轴x=2,∴x=−b2a =−b2×(−14)=2,解得b=1,∴c=3,∴二次函数的解析式为y=−14x2+x+3;当点M在点C的左侧时,如图2−1中:∵抛物线的解析式为y=−14x2+x+3,对称轴为x=2,C(6, 0)∴点A(2, 0),顶点B(2, 4),∴AB=AC=4,∴△ABC是等腰直角三角形,∴∠1=45∘;∵将△MPC逆时针旋转90∘得到△MEF,∴FM=CM,∠2=∠1=45∘,设点M的坐标为(m, 0),∴点F(m, 6−m),又∵∠2=45∘,∴直线EF与x轴的夹角为45∘,∴设直线EF的解析式为y=x+b,把点F(m, 6−m)代入得:6−m=m+b,解得:b=6−2m,直线EF的解析式为y=x+6−2m,∵直线EF与抛物线y=−14x2+x+3只有一个交点,∴{y=x+6−2my=−14x2+x+3,整理得:14x2+3−2m=0,∴△=b2−4ac=0,解得m=32,点M的坐标为(32, 0).当点M在点C的右侧时,如下图:由图可知,直线EF与x轴的夹角仍是45∘,因此直线EF与抛物线y=−14x2+x+3不可能只有一个交点.综上,点M的坐标为(32, 0).①当点M在点C的左侧时,如下图,过点P作PG⊥x轴于点G,过点E作EH⊥x轴于点H,∵PC=√2,由(2)知∠BCA=45∘,∴PG=GC=1,∴点G(5, 0),设点M的坐标为(m, 0),∵将△MPC逆时针旋转90∘得到△MEF,∴EM=PM,∵∠HEM+∠EMH=∠GMP+∠EMH=90∘,∴∠HEM=∠GMP,在△EHM和△MGP中,{∠EHM=∠MGP ∠HEM=∠GMPEM=MP,∴△EHM≅△MGP(AAS),∴EH=MG=5−m,HM=PG=1,∴点H(m−1, 0),∴点E的坐标为(m−1, 5−m);∴EA=√(m−1−2)2+(5−m−0)2=√2m2−16m+34,又∵D为线段BC的中点,B(2, 4),C(6, 0),∴点D(4, 2),∴ED=√(m−1−4)2+(5−m−2)2=√2m2−16m+34,∴EA=ED.当点M在点C的右侧时,如下图:同理,点E的坐标仍为(m−1, 5−m),因此EA=ED.x2+x+3上时,②当点E在(1)所求的抛物线y=−14把E(m−1, 5−m)代入,整理得:m2−10m+13=0,解得:m=5+2√3或m=5−2√3,∴CM=2√3−1或CM=1+2√3.。
2020学年湖北省恩施州中考数学试题(含答案)
湖北省恩施州2020年中考数学试题一、选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,恰有一项是符合要求的。
)1.(3分)(2013•恩施州)的相反数是()A.B.﹣C.3D.﹣3解答:解:﹣的相反数是.故选A.2.(3分)(2013•恩施州)今年参加恩施州初中毕业学业考试的考试约有39360人,请将数39360用科学记数法表示为(保留三位有效数字)()A.3.93×104B.3.94×104C.0.39×105D.394×102解答:解:39360=3.936×104≈3.94×104.故选:B.3.(3分)(2013•恩施州)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()A.70°B.80°C.90°D.100°解答:解:∵∠1+∠5=180°,∠1+∠2=180°,∴∠2=∠5,∴a∥b,∴∠3=∠6=100°,∴∠4=100°.故选:D.4.(3分)(2013•恩施州)把x2y﹣2y2x+y3分解因式正确的是()A.y(x2﹣2xy+y2)B.x2y﹣y2(2x﹣y)C.y(x﹣y)2D.y(x+y)2解答:解:x2y﹣2y2x+y3=y(x2﹣2yx+y2)=y(x﹣y)2.故选:C.5.(3分)(2013•恩施州)下列运算正确的是()A.x3•x2=x6B.3a2+2a2=5a2C.a(a﹣1)=a2﹣1 D.(a3)4=a7解答:解:A、x3•x2=x5,故本选项错误;B、3a2+2a2=5a2,故本选项正确;C、a(a﹣1)=a2﹣a,故本选项错误;D、(a3)4=a12,故本选项错误;故选B.6.(3分)(2013•恩施州)如图所示,下列四个选项中,不是正方体表面展开图的是()A.B.C.D.解答:解:选项A,B,D折叠后都可以围成正方体;而C折叠后折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体.故选C.7.(3分)(2013•恩施州)下列命题正确的是()A.若a>b,b<c,则a>c B.若a>b,则ac>bc C.若a>b,则ac2>bc2D.若ac2>bc2,则a>b解答:解:A、可设a=4,b=3,c=4,则a=c.故本选项错误;B、当c=0或c<0时,不等式ac>bc不成立.故本选项错误;C、当c=0时,不等式ac2>bc2不成立.故本选项错误;D、由题意知,c2>0,则在不等式ac2>bc2的两边同时除以c2,不等式仍成立,即ac2>bc2,故本选项正确.故选D.8.(3分)(2013•恩施州)如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为()A.B.C.D.解答:解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S四边形,∴针头扎在阴影区域内的概率为,故选:B.9.(3分)(2013•恩施州)把抛物线先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为()A.B.C.D.解答:解:抛物线y=x2﹣1的顶点坐标为(0,﹣1),∵向右平移一个单位,再向下平移2个单位,∴平移后的抛物线的顶点坐标为(1,﹣3),∴得到的抛物线的解析式为y=(x﹣1)2﹣3.故选B.10.(3分)(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2解答:解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴=,∵O为对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE=DB,则DE:EB=1:3,∴DF:AB=1:3,∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.11.(3分)(2013•恩施州)如甲、乙两图所示,恩施州统计局对2009年恩施州各县市的固定资产投资情况进行了统计,并绘成了以下图表,请根据相关信息解答下列问题:2009年恩施州各县市的固定资产投资情况表:(单位:亿元)单位恩施市利川县建始县巴东县宜恩县咸丰县来凤县鹤峰县州直投资额60 28 24 23 14 16 15 5下列结论不正确的是()A.2009年恩施州固定资产投资总额为200亿元B.2009年恩施州各单位固定资产投资额的中位数是16亿元C.2009年来凤县固定资产投资额为15亿元D.2009年固定资产投资扇形统计图中表示恩施市的扇形的圆心角为110°解答:解:A、24÷12%=200(亿元),故此选项不合题意;B、来凤投资额:200﹣60﹣28﹣25﹣23﹣14﹣16﹣15﹣5=15(亿元),把所有的数据从小到大排列:60,28,24,23,16,15,15,14,5,位置处于中间的数是16,故此选项不合题意;C、来凤投资额:200﹣60﹣28﹣25﹣23﹣14﹣16﹣15﹣5=15(亿元),故此选项不合题意;D、360°×=108°,故此选项符合题意;故选:D.12.(3分)(2013•恩施州)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD 沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x 轴围成的面积为()A.B.C.π+1 D.解答:解:如图所示:点A运动的路径线与x轴围成的面积=S1+S2+S3+2a=+++2×(×1×1)=π+1.故选C.二、填空题(本大题共有4小题,每小题3分,共12分。
2020年湖北省恩施州中考数学试卷和答案解析
2020年湖北省恩施州中考数学试卷和答案解析一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)5的绝对值是()A.5B.﹣5C.D.﹣解析:根据绝对值的意义:数轴上一个数所对应的点与原点(O点)的距离叫做该数的绝对值,绝对值只能为非负数;即可得解.参考答案:解:在数轴上,数5所表示的点到原点0的距离是5,所以5的绝对值是5,故选:A.点拨:本题考查了绝对值,解决本题的关键是一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.(3分)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为()A.12×104B.1.2×105C.1.2×106D.0.12×106解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.参考答案:解:120000=1.2×105,故选:B.点拨:本题考查科学记数法,注意n的值的确定方法,当原数大于10时,n等于原数的整数数位减1,按此方法即可正确求解.3.(3分)下列交通标识,既是中心对称图形,又是轴对称图形的是()A.B.C.D.解析:根据轴对称图形与中心对称图形的概念求解.参考答案:解:根据轴对称图形与中心对称图形的概念,知:A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,但不是中心对称图形;D、既是中心对称图形,又是轴对称图形.故选:D.点拨:本题考查中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,折叠后对称轴两旁的部分可重合;中心对称图形是要寻找对称中心,旋转180°后会与原图重合.4.(3分)下列计算正确的是()A.a2•a3=a6B.a(a+1)=a2+aC.(a﹣b)2=a2﹣b2D.2a+3b=5ab解析:利用同底数幂的乘法运算法则、单项式乘多项式的运算法则、完全平方公式、合并同类项法则计算求出答案即可判断.参考答案:解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、a(a+1)=a2+a,原计算正确,故此选项符合题意;C、(a﹣b)2=a2﹣2ab+b2,原计算错误,故此选项不符合题意;D、2a与3b不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B.点拨:本题考查了同底数幂的乘法,单项式乘多项式,完全平方公式以及合并同类项,解此题的关键在于熟练掌握其知识点.5.(3分)函数y=的自变量的取值范围是()A.x≥﹣1B.x≥﹣1且x≠0C.x>0D.x >﹣1且x≠0解析:根据被开方数大于等于0,分母不等于0列式计算即可得解.参考答案:解:根据题意得,x+1≥0且x≠0,解得x≥﹣1且x≠0.故选:B.点拨:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6.(3分)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是()A.B.C.D.解析:粽子总共有11个,其中甜粽有6个,根据概率公式即可求出答案.参考答案:解:由题意可得:粽子总数为11个,其中6个为甜粽,所以选到甜粽的概率为:,故选:D.点拨:本题考查了概率的基本运算,熟练掌握概率公式是解题的关键.7.(3分)在实数范围内定义运算“☆”:a☆b=a+b﹣1,例如:2☆3=2+3﹣1=4.如果2☆x=1,则x的值是()A.﹣1B.1C.0D.2解析:已知等式利用题中的新定义化简,计算即可求出x的值.参考答案:解:由题意知:2☆x=2+x﹣1=1+x,又2☆x=1,∴1+x=1,∴x=0.故选:C.点拨:本题考查了实数的计算,一元一次方程的解法,本题的关键是能看明白题目意思,根据新定义的运算规则求解.8.(3分)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x斛,1个小桶盛酒y斛,下列方程组正确的是()A.B.C.D.解析:根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”,即可得出关于x,y的二元一次方程组,此题得解.参考答案:解:依题意,得:.故选:A.点拨:本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.9.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.解析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.参考答案:解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A.点拨:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.10.(3分)甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A.甲车的平均速度为60km/hB.乙车的平均速度为100km/hC.乙车比甲车先到B城D.乙车比甲车先出发1h解析:根据图象逐项分析判断即可.参考答案:解:由图象知:A.甲车的平均速度为=60km/h,故A选项不合题意;B.乙车的平均速度为=100km/h,故B选项不合题意;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故C选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,点拨:本题考查了一次函数的应用,函数的图象,正确识别图象并能提取相关信息是解答的关键.11.(3分)如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.8解析:连接ED交AC于一点F,连接BF,根据正方形的对称性得到此时△BFE的周长最小,利用勾股定理求出DE即可得到答案.参考答案:解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=,∴△BFE的周长=5+1=6,点拨:此题考查正方形的性质:四条边都相等,四个角都是直角以及正方形的对称性质,还考查了勾股定理的计算.依据正方形的对称性,连接DE交AC于点F时△BFE的周长有最小值,这是解题的关键.12.(3分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A (﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c >0.其中正确的有()个.A.0B.1C.2D.3解析:根据抛物线的开口方向、对称轴、顶点坐标、增减性以及过特殊点时系数a、b、c满足的关系综合判断即可.参考答案:解:对于①:二次函数开口向下,故a<0,与y轴的交点在y的正半轴,故c>0,故ac<0,因此①错误;对于②:二次函数的图象与x轴相交于A(﹣2,0)、B(1,0),由对称性可知,其对称轴为:,因此②错误;对于③:设二次函数y=ax2+bx+c的交点式为y=a(x+2)(x﹣1)=ax2+ax﹣2a,比较一般式与交点式的系数可知:b=a,c=﹣2a,故2a+c=0,因此③正确;对于④:当x=﹣1时对应的y=a﹣b+c,观察图象可知x=﹣1时对应的函数图象的y值在x轴上方,故a﹣b+c>0,因此④正确.∴只有③④是正确的.故选:C.点拨:本题考查了二次函数的图象与其系数的关系及二次函数的对称性,熟练掌握二次函数的图象性质是解决此类题的关键.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)9的算术平方根是3.解析:9的平方根为±3,算术平方根为非负,从而得出结论.参考答案:解:∵(±3)2=9,∴9的算术平方根是3.故答案为:3.点拨:本题考查了数的算术平方根,解题的关键是牢记算术平方根为非负.14.(3分)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=40°.解析:利用等腰三角形的性质得到∠C=∠4=30°,利用平行线的性质得到∠1=∠3=80°,再根据三角形内角和定理即可求解.参考答案:解:如图,延长CB交l2于点D,∵AB=BC,∠C=30°,∴∠C=∠4=30°,∵l1∥l2,∠1=80°,∴∠1=∠3=80°,∵∠C+∠3+∠2+∠4=180°,即30°+80°+∠2+30°=180°,∴∠2=40°.故答案为:40°.点拨:本题考查了等腰三角形的性质,平行线的性质以及三角形内角和定理的应用,解决问题的关键是辅助线的作法,注意运用两直线平行,同位角相等.15.(3分)如图,已知半圆的直径AB=4,点C在半圆上,以点A 为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为2﹣π.(结果不取近似值)解析:根据60°特殊角求出AC和BC,再算出△ABC的面积,根据扇形面积公式求出扇形CAD的面积,再用三角形的面积减去扇形面积即可.参考答案:解:∵AB是直径,∴∠ACB=90°,∵∠ABC=60°,∴∠CAB=30°,∴BC=,AC=,∴,∵∠CAB=30°,∴扇形ACD的面积=,∴阴影部分的面积为.故答案为:.点拨:本题考查了圆周角定理,解直角三角形,扇形面积的计算,关键在于利用圆周角的性质找到直角三角形并结合扇形面积公式解出.16.(3分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B 的对称点N5,…,依此类推,则点N2020的坐标为(﹣1,8).解析:先求出N1至N6点的坐标,找出其循环的规律为每6个点循环一次即可求解.参考答案:解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).点拨:本题考查了平面直角坐标系内点的对称规律问题,本题需要先去验算前面一部分点的坐标,进而找到其循环的规律后即可求解.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)先化简,再求值:(﹣)÷,其中m=.解析:根据分式的混合运算法则,先化简括号内的,将除法运算转化为乘法运算,再化简成最简分式,代入m值求解即可.参考答案:解:====;当时,原式=.点拨:本题主要考查了分式的化简求值以及二次根式的化简,熟练掌握分式的混合运算法则是解答的关键.18.(8分)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.解析:由AE∥BF,BD平分∠ABC得到∠ABD=∠ADB,得到AB =AD,再由BC=AB,得到对边AD=BC,进而得到四边形ABCD 为平行四边形,再由邻边相等即可证明四边形ABCD为菱形.参考答案:证明:∵AE∥BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE∥BF,即AD∥BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形.点拨:本题考了菱形的判定、平行四边形的判定与性质、等腰三角形的判定、角平分线性质、平行线的性质等知识;熟练掌握平行四边形判定及性质和等腰三角形的判定是解决此题的关键.19.(8分)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了50名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为36°;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有150名.解析:(1)根据条形图和扇形图得出B类人数为20名,占40%,即可得出总数;(2)根据总人数减去A,B,D的人数即可得出C的人数;(3)用360°乘以D类部分所占百分比即可得出圆心角的度数;(4)用500乘以非常了解的部分所占百分比即可得出答案.参考答案:解:(1)本次共调查的学生数为:20÷40%=50(名).故答案为:50;(2)C类学生人数为:50﹣15﹣20﹣5=10(名),条形图如下:(3)D类所对应扇形的圆心角为:.故答案为:36°;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:(名).故答案为:150.点拨:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.20.(8分)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:≈1.414,≈1.732).解析:过P作PH⊥AB,设PH=x,由已知分别求PB、BH、AH,然后根据锐角三角函数求出x值即可求解.参考答案:解:如图,过点P作PH⊥AB,设PH=x,由题意得:AB=30×2=60,∠PBH=90°﹣60°=30°,∠PAH=90°﹣45°=45°,则△PHA是等腰直角三角形,∴AH=PH,在Rt△PHA中,设AH=PH=x,在Rt△PBH中,PB=2PH=2x,BH=AB﹣AH=60﹣x,∴tan∠PBH=tan30°==,∴,解得:,∴PB=2x=≈44(海里),答:此时船与小岛P的距离约为44海里.点拨:本题考查了直角三角形的应用﹣方向角问题,掌握方向角的概念和解直角三角形的知识是解答本题的关键.21.(8分)如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)的一个交点为C,且BC=AC.(1)求点A的坐标;(2)当S△AOC=3时,求a和k的值.解析:(1)令y=ax﹣3a(a≠0)中y=0即可求出点A的坐标;(2)过C点作y轴的垂线交y轴于M点,作x轴的垂线交x轴于N点,证明△BCM∽△BAO,利用和OA=3进而求出CM的长,再由S△AOC=3求出CN的长,进而求出点C坐标即可求解.参考答案:解:(1)由题意得:令y=ax﹣3a(a≠0)中y=0,即ax﹣3a=0,解得x=3,∴点A的坐标为(3,0),故答案为(3,0).(2)过C点作y轴的垂线交y轴于M点,作x轴的垂线交x轴于N点,如下图所示:显然,CM∥OA,∴∠BCM=∠BAO,且∠ABO=∠CBO,∴△BCM∽△BAO,∴,即:,∴CM=1,又即:,∴CN=2,∴C点的坐标为(1,2),故反比例函数的k=1×2=2,再将点C(1,2)代入一次函数y=ax﹣3a(a≠0)中,即2=a﹣3a,解得a=﹣1,∴当S△AOC=3时,a=﹣1,k=2.点拨:本题考查了反比例函数与一次函数的图象及性质,相似三角形的判定和性质等,熟练掌握其图象性质是解决此题的关键.22.(10分)某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?解析:(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(x﹣20)元,根据用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买m个A品牌足球,则购买(90﹣m)个B品牌足球,根据总价=单价×数量,结合总价不超过8500元,以及A品牌足球的数量不小于B品牌足球数量的2倍,即可得出关于m的一元一次不等式组,解之取其中的最小整数值即可得出结论.参考答案:解:(1)设购买A品牌足球的单价为x元,则购买B 品牌足球的单价为(x﹣20)元,根据题意,得,解得:x=100,经检验x=100是原方程的解,x﹣20=80,答:购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;(2)设购买m个A品牌足球,则购买(90﹣m)个B品牌足球,则W=100m+80(90﹣m)=20m+7200,∵A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴,解不等式组得:60≤m≤65,所以,m的值为:60,61,62,63,64,65,即该队共有6种购买方案,当m=60时,W最小,m=60时,W=20×60+7200=8400(元),答:该队共有6种购买方案,购买60个A品牌30个B品牌的总费用最低,最低费用是8400元.点拨:本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.23.(10分)如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D 在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.解析:(1)连接OD,根据等边对等角可知:∠CAD=∠CDA,∠OAD=∠ODA,再根据切线的性质可知∠CAO=∠CAD+∠OAD=∠CDA+∠ODA=90°=∠ODC,由切线的判定定理可得结论;(2)连接BD,根据等边对等角可知∠ODB=∠OBD,再根据切线的性质可知∠ODE=∠OBE=90°,由等量减等量差相等得∠EDB=∠EBD,再根据等角对等边得到ED=EB,然后根据平行线的性质及对顶角相等可得∠EDF=∠EFD,推出DE=EF,由此得出结论;(3)过E点作EL⊥AM于L,根据勾股定理可求出BE的长,即可求出tan∠BOE的值,再利用倍角公式即可求出tan∠BHE的值.参考答案:解:(1)如图1中,连接OD,∵CD=CA,∴∠CAD=∠CDA,∵OA=OD∴∠OAD=∠ODA,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90°,∴∠ODC=∠CDA+∠ODA=90°,∴CE是⊙O的切线.(2)如图2中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBD=∠ODE=90°,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM∥BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF.(3)如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4﹣x,CE=4+x,∴(4+x)2=(4﹣x)2+62,解得:x=,∴,∵∠BOE=2∠BHE,∴,解得:tan∠BHE=或﹣3(﹣3不合题意舍去),∴tan∠BHE=.补充方法:如图2中,作HJ⊥EB交EB的延长线于J.∵tab∠BOE==,∴可以假设BE=3k,OB=4k,则OE=5k,∵OB∥HJ,∴==,∴==,∴HJ=k,EJ=k,∴BJ=EJ﹣BE=k﹣3k=k∴tan∠BHJ==,∵∠BHE=∠OBE=∠BHJ,∴tan∠BHE=.点拨:本题主要考查了切线的判定和性质,等腰三角形的判定和性质,平行线的判定和性质,三角函数/,勾股定理等知识,熟练掌握这些知识点并能熟练应用是解题的关键.24.(12分)如图1,抛物线y=﹣x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=﹣x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.解析:(1)根据点C在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B及已知点C的坐标,证明△ABC 是等腰直角三角形,根据旋转的性质推出直线EF与x轴的夹角为45°,因此设直线EF的解析式为y=x+b,设点M的坐标为(m,0),推出点F(m,6﹣m),直线EF与抛物线只有一个交点,联立两个解析式,得到关于x的一元二次方程,根据根的判别式为0得到关于m的方程,解方程得点M的坐标.注意有两种情况,均需讨论.(3)①过点P作PG⊥x轴于点G,过点E作EH⊥x轴于点H,设点M的坐标为(m,0),由及旋转的性质,证明△EHM≌△MGP,得到点E的坐标为(m﹣1,5﹣m),再根据两点距离公式证明EA=ED,注意分两种情况,均需讨论;②把E(m﹣1,5﹣m)代入抛物线解析式,解出m的值,进而求出CM的长.参考答案:解:(1)∵点C(6,0)在抛物线上,∴,得到6b+c=9,又∵对称轴为x=2,∴,解得b=1,∴c=3,∴二次函数的解析式为;(2)当点M在点C的左侧时,如图2﹣1中:∵抛物线的解析式为,对称轴为x=2,C(6,0)∴点A(2,0),顶点B(2,4),∴AB=AC=4,∴△ABC是等腰直角三角形,∴∠1=45°;∵将△MPC逆时针旋转90°得到△MEF,∴FM=CM,∠2=∠1=45°,设点M的坐标为(m,0),∴点F(m,6﹣m),又∵∠2=45°,∴直线EF与x轴的夹角为45°,∴设直线EF的解析式为y=x+b,把点F(m,6﹣m)代入得:6﹣m=m+b,解得:b=6﹣2m,直线EF的解析式为y=x+6﹣2m,∵直线EF与抛物线只有一个交点,∴,整理得:,∴△=b2﹣4ac=0,解得m=,点M的坐标为(,0).当点M在点C的右侧时,如下图:由图可知,直线EF与x轴的夹角仍是45°,因此直线EF与抛物线不可能只有一个交点.综上,点M的坐标为(,0).(3)①当点M在点C的左侧时,如下图,过点P作PG⊥x轴于点G,过点E作EH⊥x轴于点H,∵,由(2)知∠BCA=45°,∴PG=GC=1,∴点G(5,0),设点M的坐标为(m,0),∵将△MPC逆时针旋转90°得到△MEF,∴EM=PM,∵∠HEM+∠EMH=∠GMP+∠EMH=90°,∴∠HEM=∠GMP,在△EHM和△MGP中,,∴△EHM≌△MGP(AAS),∴EH=MG=5﹣m,HM=PG=1,∴点H(m﹣1,0),∴点E的坐标为(m﹣1,5﹣m);∴EA==,又∵D为线段BC的中点,B(2,4),C(6,0),∴点D(4,2),∴ED==,∴EA=ED.当点M在点C的右侧时,如下图:同理,点E的坐标仍为(m﹣1,5﹣m),因此EA=ED.②当点E在(1)所求的抛物线上时,把E(m﹣1,5﹣m)代入,整理得:m2﹣10m+13=0,解得:m =或m =,∴CM =或CM =.点拨:本题属于二次函数综合题,考查了二次函数的图象和性质,旋转的性质,一次函数的性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题.第31页(共31页)。
【最新人教版初中数学精选】2020年湖北省恩施州中考数学试卷.doc
2020年湖北省恩施州中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)7的绝对值是()A.﹣7 B.7 C.D.2.(3分)大美山水“硒都•恩施”是一张亮丽的名片,八方游客慕名而来,今年“五•一”期间,恩施州共接待游客1450000人,将1450000用科学记数法表示为()A.0.145×106B.14.5×105C.1.45×105D.1.45×1063.(3分)下列计算正确的是()A.a(a﹣1)=a2﹣a B.(a4)3=a7C.a4+a3=a7 D.2a5÷a3=a24.(3分)下列图标是轴对称图形的是()A.B.C.D.5.(3分)小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是()A.B.C.D.6.(3分)如图,若∠A+∠ABC=180°,则下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠3 D.∠2=∠47.(3分)函数y=+的自变量x的取值范围是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤38.(3分)关于x的不等式组无解,那么m的取值范围为()A.m≤﹣1 B.m<﹣1 C.﹣1<m≤0 D.﹣1≤m<09.(3分)中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”相对的是()A.羊B.马C.鸡D.狗10.(3分)某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为()A.5 B.6 C.7 D.811.(3分)如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为()A.6 B.8 C.10 D.1212.(3分)如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c过E、B、C三点,下列判断中:①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S=5,四边形ABCD其中正确的个数有()A.5 B.4 C.3 D.2二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3分)16的平方根是.14.(3分)分解因式:3ax2﹣6axy+3ay2=.15.(3分)如图,在Rt△ABC中,∠BAC=30°,以直角边AB为直径作半圆交AC 于点D,以AD为边作等边△ADE,延长ED交BC于点F,BC=2,则图中阴影部分的面积为.(结果不取近似值)16.(3分)如图,在6×6的网格内填入1至6的数字后,使每行、每列、每个小粗线宫中的数字不重复,则a×c=.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(8分)先化简,再求值:÷﹣,其中x=.18.(8分)如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC 与AE交于点P.求证:∠AOB=60°.19.(8分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取10%进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:请根据以上图表信息解答下列问题:(1)频数分布表中的a=,b=;(2)在扇形统计图中,“排球”所在的扇形的圆心角为度;(3)全校有多少名学生选择参加乒乓球运动?20.(8分)如图,小明家在学校O的北偏东60°方向,距离学校80米的A处,小华家在学校O的南偏东45°方向的B处,小华家在小明家的正南方向,求小华家到学校的距离.(结果精确到1米,参考数据:≈1.41,≈1.73,≈2.45)21.(8分)如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点,求△OBC的面积.22.(10分)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?23.(10分)如图,AB、CD是⊙O的直径,BE是⊙O的弦,且BE∥CD,过点C 的切线与EB的延长线交于点P,连接BC.(1)求证:BC平分∠ABP;(2)求证:PC2=PB•PE;(3)若BE﹣BP=PC=4,求⊙O的半径.24.(12分)如图,已知抛物线y=ax2+c过点(﹣2,2),(4,5),过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B在点A的右侧,过点B作x 轴的垂线,垂足为C.(1)求抛物线的解析式;(2)当点B在抛物线上运动时,判断线段BF与BC的数量关系(>、<、=),并证明你的判断;(3)P为y轴上一点,以B、C、F、P为顶点的四边形是菱形,设点P(0,m),求自然数m的值;(4)若k=1,在直线l下方的抛物线上是否存在点Q,使得△QBF的面积最大?若存在,求出点Q的坐标及△QBF的最大面积;若不存在,请说明理由.2020年湖北省恩施州中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2020•恩施州)7的绝对值是()A.﹣7 B.7 C.D.【分析】根据绝对值的定义即可解题.【解答】解:∵正数的绝对值是其本身,∴|7|=7,故选B.【点评】本题考查了绝对值的定义,熟练掌握是解题的关键.2.(3分)(2020•恩施州)大美山水“硒都•恩施”是一张亮丽的名片,八方游客慕名而来,今年“五•一”期间,恩施州共接待游客1450000人,将1450000用科学记数法表示为()A.0.145×106B.14.5×105C.1.45×105D.1.45×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将1450000用科学记数法表示为1.45×106.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2020•恩施州)下列计算正确的是()A.a(a﹣1)=a2﹣a B.(a4)3=a7C.a4+a3=a7 D.2a5÷a3=a2【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=a2﹣a,符合题意;B、原式=a12,不符合题意;C、原式不能合并,不符合题意;D、原式=2a2,不符合题意,故选A【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.4.(3分)(2020•恩施州)下列图标是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意.故选:C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(3分)(2020•恩施州)小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是()A.B.C.D.【分析】根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸妈妈相邻的概率是:,故选D.【点评】本题考查列表法与树状图法,解答本题的关键是明确题意,写出所有的可能性.6.(3分)(2020•恩施州)如图,若∠A+∠ABC=180°,则下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠3 D.∠2=∠4【分析】先根据题意得出AD∥BC,再由平行线的性质即可得出结论.【解答】解:∵∠A+∠ABC=180°,∴AD∥BC,∴∠2=∠4.故选D.【点评】本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.7.(3分)(2020•恩施州)函数y=+的自变量x的取值范围是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤3【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由题意,得x﹣1≥0且x﹣3≠0,解得x≥1且x≠3,故选:B.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数,分母不能为零是解题关键.8.(3分)(2020•恩施州)关于x的不等式组无解,那么m的取值范围为()A.m≤﹣1 B.m<﹣1 C.﹣1<m≤0 D.﹣1≤m<0【分析】分别求出每一个不等式的解集,根据不等式组无解,依据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了可得答案.【解答】解:解不等式x﹣m<0,得:x<m,解不等式3x﹣1>2(x﹣1),得:x>﹣1,∵不等式组无解,∴m≤﹣1,故选:A【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键9.(3分)(2020•恩施州)中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”相对的是()A.羊B.马C.鸡D.狗【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“猪”相对的字是“羊”;“马”相对的字是“狗”;“牛”相对的字是“鸡”.故选:C.【点评】本题主要考查了正方体的平面展开图,解题的关键是掌握立方体的11种展开图的特征.10.(3分)(2020•恩施州)某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为()A.5 B.6 C.7 D.8【分析】根据利润=售价﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:根据题意得:200×﹣80=80×50%,解得:x=6.故选B.【点评】本题考查了一元一次方程的应用,根据利润=售价﹣进价,列出关于x 的一元一次方程是解题的关键.11.(3分)(2020•恩施州)如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为()A.6 B.8 C.10 D.12【分析】由DE∥BC可得出∠ADE=∠B,结合∠ADE=∠EFC可得出∠B=∠EFC,进而可得出BD∥EF,结合DE∥BC可证出四边形BDEF为平行四边形,根据平行四边形的性质可得出DE=BF,由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质可得出BC=DE,再根据CF=BC﹣BF=DE=6,即可求出DE的长度.【解答】解:∵DE∥BC,∴∠ADE=∠B.∵∠ADE=∠EFC,∴∠B=∠EFC,∴BD∥EF,∵DE∥BF,∴四边形BDEF为平行四边形,∴DE=BF.∵DE∥BC,∴△ADE∽△ABC,∴===,∴BC=DE,∴CF=BC﹣BF=DE=6,∴DE=10.故选C.【点评】本题考查了相似三角形的判定与性质、平行线的性质以及平行四边形的判定与性质,根据相似三角形的性质找出BC=DE是解题的关键.12.(3分)(2020•恩施州)如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c过E、B、C三点,下列判断中:①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);=5,⑤S四边形ABCD其中正确的个数有()A.5 B.4 C.3 D.2【分析】根据直线l1的解析式求出A(1,0),B(0,3),根据关于y轴对称的两点坐标特征求出E(﹣1,0).根据平行于x轴的直线上任意两点纵坐标相同得出C点纵坐标与B点纵坐标相同都是3,再根据二次函数图象上点的坐标特征求出C(2,3).利用待定系数法求出抛物线的解析式为y=﹣x2+2x+3,进而判断各选项即可.【解答】解:∵直线l1:y=﹣3x+3交x轴于点A,交y轴于点B,∴A(1,0),B(0,3),∵点A、E关于y轴对称,∴E(﹣1,0).∵直线l2:y=﹣3x+9交x轴于点D,过点B作x轴的平行线交l2于点C,∴D(3,0),C点纵坐标与B点纵坐标相同都是3,把y=3代入y=﹣3x+9,得3=﹣3x+9,解得x=2,∴C(2,3).∵抛物线y=ax2+bx+c过E、B、C三点,∴,解得,∴y=﹣x2+2x+3.①∵抛物线y=ax2+bx+c过E(﹣1,0),∴a﹣b+c=0,故①正确;②∵a=﹣1,b=2,c=3,∴2a+b+c=﹣2+2+3=3≠5,故②错误;③∵抛物线过B(0,3),C(2,3)两点,∴对称轴是直线x=1,∴抛物线关于直线x=1对称,故③正确;④∵b=2,c=3,抛物线过C(2,3)点,∴抛物线过点(b,c),故④正确;⑤∵直线l1∥l2,即AB∥CD,又BC∥AD,∴四边形ABCD是平行四边形,=BC•OB=2×3=6≠5,故⑤错误.∴S四边形ABCD综上可知,正确的结论有3个.故选C.【点评】本题考查了抛物线与x轴的交点,一次函数、二次函数图象上点的坐标特征,关于y轴对称的两点坐标特征,平行于x轴的直线上任意两点坐标特征,待定系数法求抛物线的解析式,平行四边形的判定及面积公式,综合性较强,求出抛物线的解析式是解题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3分)(2020•恩施州)16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.(3分)(2020•恩施州)分解因式:3ax2﹣6axy+3ay2=3a(x﹣y)2.【分析】先提取公因式3a,再对余下的多项式利用完全平方公式继续分解.【解答】解:3ax2﹣6axy+3ay2,=3a(x2﹣2xy+y2),=3a(x﹣y)2,故答案为:3a(x﹣y)2.【点评】此题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.(3分)(2020•恩施州)如图,在Rt△ABC中,∠BAC=30°,以直角边AB为直径作半圆交AC于点D,以AD为边作等边△ADE,延长ED交BC于点F,BC=2,则图中阴影部分的面积为3﹣π.(结果不取近似值)【分析】根据题意结合等边三角形的性质分别得出AB,AC,AD,DC的长,进而利用S阴影=S△ABC﹣S△AOD﹣S扇形DOB﹣S△DCF求出答案.【解答】解:如图所示:设半圆的圆心为O,连接DO,过D作DG⊥AB于点G,过D作DN⊥CB于点N,∵在Rt△ABC中,∠BAC=30°,∴∠ACB=60°,∠ABC=90°,∵以AD为边作等边△ADE,∴∠EAD=60°,∴∠EAB=60°+30°=90°,可得:AE∥BC,则△ADE∽△CDF,∴△CDF是等边三角形,∵在Rt△ABC中,∠BAC=30°,BC=2,∴AC=4,AB=6,∠DOG=60°,则AO=BO=3,故DG=DO•sin60°=,则AD=3,DC=AC﹣AD=,故DN=DC•sin60°=×=,则S阴影=S△ABC﹣S△AOD﹣S扇形DOB﹣S△DCF=×2×6﹣×3×﹣﹣××=3﹣π.故答案为:3﹣π.【点评】此题主要考查了扇形面积求法以及等边三角形的性质和锐角三角函数关系等知识,正确分割图形是解题关键.16.(3分)(2020•恩施州)如图,在6×6的网格内填入1至6的数字后,使每行、每列、每个小粗线宫中的数字不重复,则a×c=2.【分析】粗线把这个数独分成了6块,为了便于解答,对各部分进行编号:甲、乙、丙、丁、戊、己,先从各部分中数字最多的己出发,找出其各个小方格里面的数,再根据每行、每列、每小宫格都不出现重复的数字进行推算.【解答】解:对各个小宫格编号如下:先看己:已经有了数字3、5、6,缺少1、2、4;观察发现:4不能在第四列,2不能在第五列,而2不能在第六列;所以2只能在第六行第四列,即a=2;则b 和c有一个是1,有一个是4,不确定,如下:观察上图发现:第四列已经有数字2、3、4、6,缺少1和5,由于5不能在第二行,所以5在第四行,那么1在第二行;如下:再看乙部分:已经有了数字1、2、3,缺少数字4、5、6,观察上图发现:5不能在第六列,所以5在第五列的第一行;4和6在第六列的第一行和第二行,不确定,分两种情况:①当4在第一行时,6在第二行;那么第二行第二列就是4,如下:再看甲部分:已经有了数字1、3、4、5,缺少数字2、6,观察上图发现:2不能在第三列,所以2在第二列,则6在第三列的第一行,如下:观察上图可知:第三列少1和4,4不能在第三行,所以4在第五行,则1在第三行,如下:观察上图可知:第五行缺少1和2,1不能在第1列,所以1在第五列,则2在第一列,即c=1,所以b=4,如下:观察上图可知:第六列缺少1和2,1不能在第三行,则在第四行,所以2在第三行,如下:再看戊部分:已经有了数字2、3、4、5,缺少数字1、6,观察上图发现:1不能在第一列,所以1在第二列,则6在第一列,如下:观察上图可知:第一列缺少3和4,4不能在第三行,所以4在第四行,则3在第三行,如下:观察上图可知:第二列缺少5和6,5不能在第四行,所以5在第三行,则6在第四行,如下:观察上图可知:第三行第五列少6,第四行第五列少3,如下:所以,a=2,c=1,ac=2;②当6在第一行,4在第二行时,那么第二行第二列就是6,如下:再看甲部分:已经有了数字1、3、5、6,缺少数字2、4,观察上图发现:2不能在第三列,所以2在第2列,4在第三列,如下:观察上图可知:第三列缺少数字1和6,6不能在第五行,所以6在第三行,则1在第五行,所以c=4,b=1,如下:观察上图可知:第五列缺少数字3和6,6不能在第三行,所以6在第四行,则3在第三行,如下:观察上图可知:第六列缺少数字1和2,2不能在第四行,所以2在第三行,则1在第四行,如下:观察上图可知:第三行缺少数字1和5,1和5都不能在第一列,所以此种情况不成立;综上所述:a=2,c=1,a×c=2;故答案为:2.【点评】本题是六阶数独,比较复杂,关键是找出突破口,先推算出一个区域或者一行、一列,再逐步的进行推算.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(8分)(2020•恩施州)先化简,再求值:÷﹣,其中x=.【分析】先化简分式,然后将x的值代入即可求出答案.【解答】解:当x=时,∴原式=÷﹣=×﹣=﹣==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.(8分)(2020•恩施州)如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P.求证:∠AOB=60°.【分析】利用“边角边”证明△ACD和△BCE全等,可得∠CAD=∠CBE,然后求出∠OAB+∠OBA=120°,再根据“八字型”证明∠AOP=∠PCB=60°即可.【解答】证明:∵△ABC和△ECD都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCE=∠DCE+∠BCE即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵∠APC=∠BPO,∴∠BOP=∠ACP=60°,即∠AOB=60°.【点评】本题考查等边三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.(8分)(2020•恩施州)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取10%进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:请根据以上图表信息解答下列问题:(1)频数分布表中的a=24,b=48;(2)在扇形统计图中,“排球”所在的扇形的圆心角为72度;(3)全校有多少名学生选择参加乒乓球运动?【分析】(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b;(2)利用360°乘以对应的百分比即可求得;(3)求得全校总人数,然后利用总人数乘以对应的百分比求解.【解答】解:(1)抽取的人数是36÷30%=120(人),则a=120×20%=24,b=120﹣30﹣24﹣36﹣12=48.故答案是:24,48;(2)“排球”所在的扇形的圆心角为360°×=72°,故答案是:72;(3)全校总人数是120÷10%=1200(人),则选择参加乒乓球运动的人数是1200×30%=360(人).【点评】本题考查读扇形统计图获取信息的能力,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.20.(8分)(2020•恩施州)如图,小明家在学校O的北偏东60°方向,距离学校80米的A处,小华家在学校O的南偏东45°方向的B处,小华家在小明家的正南方向,求小华家到学校的距离.(结果精确到1米,参考数据:≈1.41,≈1.73,≈2.45)【分析】作OC⊥AB于C,由已知可得△ABO中∠A=60°,∠B=45°且OA=80m,要求OB的长,可以先求出OC和BC的长.【解答】解:由题意可知:作OC⊥AB于C,∠ACO=∠BCO=90°,∠AOC=30°,∠BOC=45°.在Rt△ACO中,∵∠ACO=90°,∠AOC=30°,∴AC=AO=40m,OC=AC=40m.在Rt△BOC中,∵∠BCO=90°,∠BOC=45°,∴BC=OC=40m.∴OB==40≈40×2.45≈82(米).答:小华家到学校的距离大约为82米.【点评】本题考查了解直角三角形的应用,对于解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.21.(8分)(2020•恩施州)如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点,求△OBC的面积.【分析】(1)把A(﹣1,a)代入反比例函数y=﹣得到A(﹣1,2),过A作AE⊥x轴于E,BF⊥⊥x轴于F,根据相似三角形的性质得到B(4,2),于是得到k=4×2=8;(2)求的直线AO的解析式为y=﹣2x,设直线MN的解析式为y=﹣2x+b,得到直线MN的解析式为y=﹣2x+10,解方程组得到C(1,8),于是得到结论.【解答】解:(1)∵反比例函数y=﹣(x<0)的图象过点A(﹣1,a),∴a=﹣=2,∴A(﹣1,2),过A作AE⊥x轴于E,BF⊥⊥x轴于F,∴AE=2,OE=1,∵AB∥x轴,∴BF=2,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF,∴△AEO∽△OFB,∴,∴OF=4,∴B(4,2),∴k=4×2=8;(2)∵直线OA过A(﹣1,2),∴直线AO的解析式为y=﹣2x,∵MN∥OA,∴设直线MN的解析式为y=﹣2x+b,∴2=﹣2×4+b,∴b=10,∴直线MN的解析式为y=﹣2x+10,∵直线MN交x轴于点M,交y轴于点N,∴M(5,0),N(0,10),解得,或,∴C(1,8),∴△OBC的面积=S△OMN ﹣S△OCN﹣S△OBM=5×10﹣×10×1﹣×5×2=15.【点评】本题考查了一次函数图象上点的坐标特征,相似三角形的判定和性质,求函数的解析式,三角形的面积的计算,正确的作出辅助线是解题的关键.22.(10分)(2020•恩施州)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?【分析】(1)设男式单车x元/辆,女式单车y元/辆,根据“购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元”列方程组求解可得;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据“两种单车至少需要22辆、购置两种单车的费用不超过50000元”列不等式组求解,得出m的范围,即可确定购置方案;再列出购置总费用关于m的函数解析式,利用一次函数性质结合m的范围可得其最值情况.【解答】解:(1)设男式单车x元/辆,女式单车y元/辆,根据题意,得:,解得:,答:男式单车2000元/辆,女式单车1500元/辆;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意,得:,解得:9≤m≤12,∵m为整数,∴m的值可以是9、10、11、12,即该社区有四种购置方案;设购置总费用为W,则W=2000(m+4)+1500m=3500m+8000,∵W随m的增大而增大,∴当m=9时,W取得最小值,最小值为39500,答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.【点评】本题主要考查二元一次方程组、一元一次不等式组及一次函数的应用,理解题意找到题目蕴含的相等关系或不等关系列出方程组或不等式组是解题的关键.23.(10分)(2020•恩施州)如图,AB、CD是⊙O的直径,BE是⊙O的弦,且BE∥CD,过点C的切线与EB的延长线交于点P,连接BC.(1)求证:BC平分∠ABP;(2)求证:PC2=PB•PE;(3)若BE﹣BP=PC=4,求⊙O的半径.【分析】(1)由BE∥CD知∠1=∠3,根据∠2=∠3即可得∠1=∠2;(2)连接EC、AC,由PC是⊙O的切线且BE∥DC,得∠1+∠4=90°,由∠A+∠2=90°且∠A=∠5知∠5+∠2=90°,根据∠1=∠2得∠4=∠5,从而证得△PBC∽△PCE即可;(3)由PC2=PB•PE、BE﹣BP=PC=4求得BP=2、BE=6,作EF⊥CD可得PC=FE=4、FC=PE=8,再Rt△DEF≌Rt△BCP得DF=BP=2,据此得出CD的长即可.【解答】解:(1)∵BE∥CD,∴∠1=∠3,又∵OB=OC,∴∠2=∠3,∴∠1=∠2,即BC平分∠ABP;(2)如图,连接EC、AC,∵PC是⊙O的切线,∴∠PCD=90°,又∵BE∥DC,∴∠P=90°,∴∠1+∠4=90°,∵AB为⊙O直径,∴∠A+∠2=90°,又∠A=∠5,∴∠5+∠2=90°,∵∠1=∠2,∴∠5=∠4,∵∠P=∠P,∴△PBC∽△PCE,∴=,即PC2=PB•PE;(3)∵BE﹣BP=PC=4,∴BE=4+BP,∵PC2=PB•PE=PB•(PB+BE),∴42=PB•(PB+4+PB),即PB2+2PB﹣8=0,解得:PB=2,则BE=4+PB=6,∴PE=PB+BE=8,作EF⊥CD于点F,∵∠P=∠PCF=90°,∴四边形PCFE为矩形,∴PC=FE=4,FC=PE=8,∠EFD=∠P=90°,∵BE∥CD,∴=,∴DE=BC,在Rt△DEF和Rt△BCP中,∵,∴Rt△DEF≌Rt△BCP(HL),∴DF=BP=2,则CD=DF+CF=10,∴⊙O的半径为5.【点评】本题主要考查切线的性质、相似三角形的判定与性质、全等三角形的判定与性质,熟练掌握平行线的性质、切线的性质、圆周角定理、相似三角形的判定与性质及全等三角形的判定与性质等知识点是解题的关键.24.(12分)(2020•恩施州)如图,已知抛物线y=ax2+c过点(﹣2,2),(4,5),过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B在点A的右侧,过点B作x轴的垂线,垂足为C.(1)求抛物线的解析式;(2)当点B在抛物线上运动时,判断线段BF与BC的数量关系(>、<、=),并证明你的判断;(3)P为y轴上一点,以B、C、F、P为顶点的四边形是菱形,设点P(0,m),求自然数m的值;(4)若k=1,在直线l下方的抛物线上是否存在点Q,使得△QBF的面积最大?若存在,求出点Q的坐标及△QBF的最大面积;若不存在,请说明理由.【分析】(1)利用待定系数法求抛物线解析式;(2)设B(x,x2+1),而F(0,2),利用两点间的距离公式得到BF2=x2+(x2+1﹣2)2=,再利用配方法可得到BF=x2+1,由于BC=x2+1,所以BF=BC;(3)如图1,利用菱形的性质得到CB=CF=PF,加上CB=FB,则可判断△BCF为等边三角形,所以∠BCF=60°,则∠OCF=30°,于是可计算出CF=4,所以PF=CF=4,从而得到自然数m的值为6;(4)作QE∥y轴交AB于E,如图2,先解方程组得B(1+,3+),=S△EQF+S△EQB=•(1+)设Q(t,t2+1),则E(t,t+2),则EQ=﹣t2+t+1,则S△QBF•EQ=•(1+)•)(﹣t2+t+1),然后根据二次函数的性质解决问题.【解答】解:(1)把点(﹣2,2),(4,5)代入y=ax2+c得,解得,所以抛物线解析式为y=x2+1;(2)BF=BC.理由如下:设B(x,x2+1),而F(0,2),∴BF2=x2+(x2+1﹣2)2=x2+(x2﹣1)2=(x2+1)2,∴BF=x2+1,∵BC⊥x轴,∴BC=x2+1,∴BF=BC;(3)如图1,m为自然数,则点P在F点上方,∵以B、C、F、P为顶点的四边形是菱形,∴CB=CF=PF,而CB=FB,∴BC=CF=BF,∴△BCF为等边三角形,∴∠BCF=60°,∴∠OCF=30°,在Rt△OCF中,CF=2OF=4,∴PF=CF=4,∴P(0,6),即自然数m的值为6;(4)作QE∥y轴交AB于E,如图2,当k=1时,一次函数解析式为y=x+2,解方程组得或,则B(1+,3+),设Q(t,t2+1),则E(t,t+2),∴EQ=t+2﹣(t2+1)=﹣t2+t+1,=S△EQF+S△EQB=•(1+)•EQ=•(1+))(﹣t2+t+1)=﹣(t﹣∴S△QBF2)2++1,当t=2时,S有最大值,最大值为+1,此时Q点坐标为(2,2).△QBF【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和菱形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式.。
2020届湖北省恩施州中考数学模拟试题(有答案)(word版)
湖北省恩施州中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卷相应位置上)1.(3分)﹣8的倒数是()A.﹣8 B.8 C.﹣D.2.(3分)下列计算正确的是()A.a4+a5=a9 B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b23.(3分)在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A.8.23×10﹣6B.8.23×10﹣7C.8.23×106D.8.23×1075.(3分)已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A.1 B.2 C.3 D.46.(3分)如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°7.(3分)64的立方根为()A.8 B.﹣8 C.4 D.﹣48.(3分)关于x的不等式的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3 D.a≤39.(3分)由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是()A.5 B.6 C.7 D.810.(3分)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元11.(3分)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.1212.(3分)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2 B.3 C.4 D.5二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)因式分解:8a3﹣2ab2= .14.(3分)函数y=的自变量x的取值范围是.15.(3分)在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为.(结果不取近似值)16.(3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为个.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答应写出文字说明、证明过程或演算步骤.)17.(8分)先化简,再求值:•(1+)÷,其中x=2﹣1.18.(8分)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.19.(8分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问(1)a= ,b= ,c= ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.20.(8分)如图所示,为测量旗台A与图书馆C之间的直线距离,小明在A处测得C在北偏东30°方向上,然后向正东方向前进100米至B处,测得此时C在北偏西15°方向上,求旗台与图书馆之间的距离.(结果精确到1米,参考数据≈1.41,≈1.73)21.(8分)如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=的图象有唯一的公共点C.(1)求k的值及C点坐标;(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=交于D、E两点,求△CDE的面积.22.(10分)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?23.(10分)如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD于F点.(1)求证:DE为⊙O切线;(2)若⊙O的半径为3,sin∠ADP=,求AD;(3)请猜想PF与FD的数量关系,并加以证明.24.(12分)如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卷相应位置上)1.(3分)﹣8的倒数是()A.﹣8 B.8 C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1,﹣8×(﹣)=1,即可解答.【解答】解:根据倒数的定义得:﹣8×(﹣)=1,因此﹣8的倒数是﹣.故选:C.【点评】此题主要考查倒数的概念及性质,属于基础题,注意掌握倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算正确的是()A.a4+a5=a9 B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b2【分析】根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.【解答】解:A、a4与a5不是同类项,不能合并,故本选项错误;B、(2a2b3)2=4a4b6,故本选项正确;C、﹣2a(a+3)=﹣2a2﹣6a,故本选项错误;D、(2a﹣b)2=4a2﹣4ab+b2,故本选项错误;故选:B.【点评】本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.3.(3分)在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(3分)已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A.8.23×10﹣6B.8.23×10﹣7C.8.23×106D.8.23×107【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000823=8.23×10﹣7.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.(3分)已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A.1 B.2 C.3 D.4【分析】先由平均数是3可得x的值,再结合方差公式计算.【解答】解:∵数据1、2、3、x、5的平均数是3,∴=3,解得:x=4,则数据为1、2、3、4、5,∴方差为×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2,故选:B.【点评】本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义.6.(3分)如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°【分析】如图求出∠5即可解决问题.【解答】解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°﹣∠5=125°,故选:A.【点评】本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.7.(3分)64的立方根为()A.8 B.﹣8 C.4 D.﹣4【分析】利用立方根定义计算即可得到结果.【解答】解:64的立方根是4.故选:C.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.8.(3分)关于x的不等式的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3 D.a≤3【分析】先解第一个不等式得到x>3,由于不等式组的解集为x>3,则利用同大取大可得到a的范围.【解答】解:解不等式2(x﹣1)>4,得:x>3,解不等式a﹣x<0,得:x>a,∵不等式组的解集为x>3,∴a≤3,故选:D.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.9.(3分)由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是()A.5 B.6 C.7 D.8【分析】直接利用左视图以及俯视图进而分析得出答案.【解答】解:由左视图可得,第2层上至少一个小立方体,第1层一共有5个小立方体,故小正方体的个数最少为:6个,故小正方体的个数不可能是5个.故选:A.【点评】此题主要考查了由三视图判断几何体,正确想象出最少时几何体的形状是解题关键.10.(3分)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元,根据利润=销售收入﹣进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.11.(3分)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.12【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB 的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【解答】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故选:D.【点评】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.12.(3分)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2 B.3 C.4 D.5【分析】根据二次函数的性质一一判断即可.【解答】解:∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a>0,∴b>0,c<0,∴abc<0,故①错误,∵抛物线与x轴有交点,∴b2﹣4ac>0,故②正确,∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确,∵点(﹣0.5,y1),(﹣2,y2)均在抛物线上,﹣1.5>﹣2,则y1<y2;故④错误,∵5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,故⑤正确,故选:B.【点评】本题考查二次函数与系数的关系,二次函数图象上上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)因式分解:8a3﹣2ab2= 2a(2a+b)(2a﹣b).【分析】首先提取公因式2a,再利用平方差公式分解因式得出答案.【解答】解:8a3﹣2ab2=2a(4a2﹣b2)=2a(2a+b)(2a﹣b).故答案为:2a(2a+b)(2a﹣b).【点评】此题主要考查了提取公因式法分解因式以及公式法分解因式,正确应用公式是解题关键.14.(3分)函数y=的自变量x的取值范围是x≥﹣且x≠3 .【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:根据题意得2x+1≥0,x﹣3≠0,解得x≥﹣且x≠3.故答案为:x≥﹣且x≠3.【点评】本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.15.(3分)在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为π.(结果不取近似值)【分析】先得到∠ACB=30°,BC=,利用旋转的性质可得到点B路径分部分:第一部分为以直角三角形30°的直角顶点为圆心,为半径,圆心角为150°的弧长;第二部分为以直角三角形60°的直角顶点为圆心,1为半径,圆心角为120°的弧长,然后根据扇形的面积公式计算点B 所经过的路径与直线l所围成的封闭图形的面积.【解答】解:∵Rt△ABC中,∠A=60°,∠ABC=90°,∴∠ACB=30°,BC=,将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,点B路径分部分:第一部分为以直角三角形30°的直角顶点为圆心,为半径,圆心角为150°的弧长;第二部分为以直角三角形60°的直角顶点为圆心,1为半径,圆心角为120°的弧长;∴点B所经过的路径与直线l所围成的封闭图形的面积=+=.故答案为π.【点评】本题考查了轨迹:利用特殊几何图形描述点运动的轨迹,然后利用几何性质计算相应的几何量.16.(3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为1946 个.【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别为2、0×6、3×6×6、2×6×6×6、1×6×6×6×6,然后把它们相加即可.【解答】解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1946,故答案为:1946.【点评】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答应写出文字说明、证明过程或演算步骤.)17.(8分)先化简,再求值:•(1+)÷,其中x=2﹣1.【分析】直接分解因式,再利用分式的混合运算法则计算得出答案.【解答】解:•(1+)÷=••=,把x=2﹣1代入得,原式===.【点评】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.18.(8分)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.【分析】连接BD,AE,判定△ABC≌△DEF(ASA),可得AB=DE,依据AB∥DE,即可得出四边形ABDE是平行四边形,进而得到AD与BE互相平分.【解答】证明:如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.【点评】本题主要考查了平行四边形的判定与性质,解决问题的关键是依据全等三角形的对应边相等得出结论.19.(8分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a= 2 ,b= 45 ,c= 20 ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为72 度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.【分析】(1)根据A等次人数及其百分比求得总人数,总人数乘以D等次百分比可得a的值,再用B、C等次人数除以总人数可得b、c的值;(2)用360°乘以C等次百分比可得;(3)画出树状图,由概率公式即可得出答案.【解答】解:(1)本次调查的总人数为12÷30%=40人,∴a=40×5%=2,b=×100=45,c=×100=20,故答案为:2、45、20;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,故答案为:72;(3)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,故P(选中的两名同学恰好是甲、乙)==.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.20.(8分)如图所示,为测量旗台A与图书馆C之间的直线距离,小明在A处测得C在北偏东30°方向上,然后向正东方向前进100米至B处,测得此时C在北偏西15°方向上,求旗台与图书馆之间的距离.(结果精确到1米,参考数据≈1.41,≈1.73)【分析】先根据题目给出的方向角.求出三角形各个内角的度数,过点B作BE⊥AC构造直角三角形.利用三角函数求出AE、BE,再求和即可.【解答】解:由题意知:∠WAC=30°,∠NBC=15°,∴∠BAC=60°,∠ABC=75°,∴∠C=45°过点B作BE⊥AC,垂足为E.在Rt△AEB中,∵∠BAC=60°,AB=100米∴AE=cos∠BAC×AB=×100=50(米)BE=sin∠BAC×AB=×100=50(米)在Rt△CEB中,∵∠C=45°,BE=50(米)∴CE=BE=50=86.5(米)∴AC=AE+CE=50+86.5=136.5(米)≈137米答:旗台与图书馆之间的距离约为137米.【点评】本题考查了方向角和解直角三角形.题目难度不大,过点B作AC的垂线构造直角三角形是解决本题的关键.21.(8分)如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=的图象有唯一的公共点C.(1)求k的值及C点坐标;(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=交于D、E两点,求△CDE的面积.【分析】(1)令﹣2x+4=,则2x2﹣4x+k=0,依据直线y=﹣2x+4与反比例函数y=的图象有唯一的公共点C,即可得到k的值,进而得出点C的坐标;(2)依据D(3,2),可得CD=2,依据直线l与直线y=﹣2x+4关于x轴对称,即可得到直线l为y=2x﹣4,再根据=2x﹣4,即可得到E(﹣1,﹣6),进而得出△CDE的面积=×2×(6+2)=8.【解答】解:(1)令﹣2x+4=,则2x2﹣4x+k=0,∵直线y=﹣2x+4与反比例函数y=的图象有唯一的公共点C,∴△=16﹣8k=0,解得k=2,∴2x2﹣4x+2=0,解得x=1,∴y=2,即C(1,2);(2)当y=2时,2=,即x=3,∴D(3,2),∴CD=3﹣1=2,∵直线l与直线y=﹣2x+4关于x轴对称,∴A(2,0),B'(0,﹣4),∴直线l为y=2x﹣4,令=2x﹣4,则x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴E(﹣1,﹣6),∴△CDE的面积=×2×(6+2)=8.【点评】此题属于反比例函数与一次函数的交点问题,主要考查了解一元二次方程,坐标与图形性质以及三角形面积公式的运用,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.22.(10分)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?【分析】(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.【解答】解:(1)设A型空调和B型空调每台各需x元、y元,,解得,,答:A型空调和B型空调每台各需9000元、6000元;(2)设购买A型空调a台,则购买B型空调(30﹣a)台,,..解得,10≤a≤12,∴a=10、11、12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;(3)设总费用为w元,w=9000a+6000(30﹣a)=3000a+180000,∴当a=10时,w取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.【点评】本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.23.(10分)如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD于F点.(1)求证:DE为⊙O切线;(2)若⊙O的半径为3,sin∠ADP=,求AD;(3)请猜想PF与FD的数量关系,并加以证明.【分析】(1)如图1,连接OD、BD,根据圆周角定理得:∠ADB=90°,则AD⊥BD,OE⊥BD,由垂径定理得:BM=DM,证明△BOE≌△DOE,则∠ODE=∠OBE=90°,可得结论;(2)设AP=a,根据三角函数得:AD=3a,由勾股定理得:PD=2a,在直角△OPD中,根据勾股定理列方程可得:32=(3﹣a)2+(2a)2,解出a的值可得AD的值;(3)先证明△APF∽△ABE,得,由△ADP∽△OEB,得,可得PD=2PF,可得结论.【解答】证明:(1)如图1,连接OD、BD,BD交OE于M,∵AB是⊙O的直径,.. ∴∠ADB=90°,AD⊥BD,∵OE∥AD,∴OE⊥BD,∴BM=DM,∵OB=OD,∴∠BOM=∠DOM,∵OE=OE,∴△BOE≌△DOE(SAS),∴∠ODE=∠OBE=90°,∴DE为⊙O切线;(2)设AP=a,∵sin∠ADP==,∴AD=3a,∴PD===2a,∵OP=3﹣a,∴OD2=OP2+PD2,∴32=(3﹣a)2+(2a)2,9=9﹣6a+a2+8a2,a1=,a2=0(舍),当a=时,AD=3a=2,∴AD=2;(3)PF=FD,理由是:∵∠APD=∠ABE=90°,∠PAD=∠BAE,∴△APF∽△ABE,∴,∴PF=,∵OE∥AD,∴∠BOE=∠PAD,∵∠OBE=∠APD=90°,∴△ADP∽△OEB,∴,∴PD=,∵AB=2OB,∴PD=2PF,∴PF=FD.【点评】本题考查了圆的综合问题,熟练掌握切线的判定,锐角三角函数,圆周角定理,垂径定理等知识点的应用,难度适中,连接BD构造直角三角形是解题的关键.24.(12分)如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.【分析】(1)由OC与OB的长,确定出B与C的坐标,再由A坐标,利用待定系数法确定出抛物线解析式即可;(2)分三种情况讨论:当四边形CBPD是平行四边形;当四边形BCPD是平行四边形;四边形BDCP是平行四边形时,利用平移规律确定出P坐标即可;(3)由B与C坐标确定出直线BC解析式,求出与直线BC平行且与抛物线只有一个交点时交点坐标,确定出交点与直线BC解析式,进而确定出另一条与直线BC平行且与BC距离相等的直线解析式,确定出所求M坐标,且求出定值S的值即可.【解答】解:(1)由OC=2,OB=3,得到B(3,0),C(0,2),设抛物线解析式为y=a(x+1)(x﹣3),把C(0,2)代入得:2=﹣3a,即a=﹣,则抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+x+2;(2)抛物线y=﹣(x+1)(x﹣3)=﹣x2+x+2=﹣(x﹣1)2+,∴D(1,),当四边形CBPD是平行四边形时,由B(3,0),C(0,2),得到P(4,);当四边形CDBP是平行四边形时,由B(3,0),C(0,2),得到P(2,﹣);当四边形BCPD是平行四边形时,由B(3,0),C(0,2),得到P(﹣2,);(3)设直线BC解析式为y=kx+b,把B(3,0),C(0,2)代入得:,解得:,∴y=﹣x+2,设与直线BC平行的解析式为y=﹣x+b,联立得:,消去y得:2x2﹣6x+3b﹣6=0,当直线与抛物线只有一个公共点时,△=36﹣8(3b﹣6)=0,解得:b=,即y=﹣x+,此时交点M坐标为(,);1可得出两平行线间的距离为,同理可得另一条与BC平行且平行线间的距离为的直线方程为y=﹣x+,联立解得:M2(,﹣),M3(,﹣﹣),此时S=1.【点评】此题属于二次函数综合题,涉及的知识有:待定系数法求函数解析式,一次函数的性质,利用了分类讨论的思想,熟练掌握待定系数法是解本题的关键.。
2020年湖北省恩施市中考数学试卷
(元).
答:该队共有 种购买方案,购买 个 品牌, 个 品牌的总费用最低,最低费用是
元.
23.( 1 )证明见解析. ( 2 )证明见解析. (3) .
解析: ( 1 )连接 ,
∵
,
∴
,
∵
,
∴
,
∵直线 与⊙ 相切于点 .
∴
,
∴
,
17
∴ 是⊙ 的切线. ( 2 )连接 , ,
∵
,
∴
,
∵ 是⊙ 的切线, 是⊙ 的切线,
C.
二、填空题
13. 的算术平方根是
.
14. 如图,直线 .
,点 在直线 上,点 在直线 上,
x
O
D.
,
,
,则
15. 如图,已知半圆的直径
,点 在半圆上,以点 为圆心, 为半径画弧交
接 .若
,则图中阴影部分的面积为
.(结果不取近似值)
于点 ,连
3
16. 如图,在平面直角坐标系中,
的顶点坐标分别为:
,与 轴的交点在 的正半轴,故
,故
,故①错误.
对于②:二次函数的图象与 轴相交于
、
,由对称性可知,其对称轴为:
,故②错误.
对于③:设二次函数
的交点式为
,比较一般式与交
点式的系数可知:
,
,故
,故③正确.
对于④:当
时对应的
,观察图象可知
时对应的函数图象的 值在 轴上方,故
,故④正确.
∴只有③④是正确的.
甲乙
B. 乙车的平均速度为 D. 乙车比甲车先出发
11. 如图,正方形
的边长为 ,点 在
[2020届湖北省恩施州中考数学试卷(有答案)(Word版)]中考数学必考点
[2020届湖北省恩施州中考数学试卷(有答案)(Word版)]中考数学必考点湖北省恩施州中考数学试卷(解析版)一、选择题(本大题共有12个小题,每小题3分,共36分)1.9的相反数是()A.﹣9 B.9 C.D.2.恩施州2013年建筑业生产总值为__万元,将数__用科学记数法表示为()A.3.69×105B.36.9×104C.3.69×104D.0.369×105 3.下列图标中是轴对称图形的是()A.B.C.D.4.下列计算正确的是()A.2a3+3a3=5a6B.(x5)3=x8C.﹣2m(m﹣3)=﹣2m2﹣6m D.(﹣3a﹣2)(﹣3a+2)=9a2﹣45.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为()A.28°B.112°C.28°或112°D.68°6.函数y=的自变量x的取值范围是()A.x≥﹣1 B.x≥﹣1且x≠2 C.x≠±2 D.x>﹣1且x≠27.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取一张后,放回并混在一起,再随机抽取一张,两次抽取的数字的积为奇数的概率是()A.B.C.D.8.在广场的电子屏幕上有一个旋转的正方体,正方体的六个面上分别标有“恩施六城同创”六个字.如图是小明在三个不同时刻所观察到的图形,请你帮小明确定与“创”相对的面上的字是()A.恩B.施C.城D.同9.关于x的不等式组恰有四个整数解,那么m的取值范围为()A.m≥﹣1 B.m<0 C.﹣1≤m<0 D.﹣1<m<010.某商品的售价为100元,连续两次降价x%后售价降低了36元,则x为()A.8 B.20 C.36 D.1811.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19cm,△ABD的周长为13cm,则AE的长为()A.3cm B.6cm C.12cm D.16cm12.抛物线y1=ax2+bx+c与直线y2=mx+n的图象如图所示,下列判断中:①abc<0;②a+b+c>0;③5a﹣c=0;④当x <或x>6时,y1>y2,其中正确的个数有()A.1 B.2 C.3 D.4二、填空题(本题共有4个小题,每小题3分,共12分)13.因式分解:a2b﹣10ab+25b=.14.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=.15.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为.16.观察下列等式:1+2+3+4+。
2020年湖北省恩施州中考数学试卷
2020年湖北省恩施州中考数学试卷一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)(2020•恩施州)5的绝对值是( )A .5B .﹣5C .15D .−152.(3分)(2020•恩施州)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A .12×104B .1.2×105C .1.2×106D .0.12×1063.(3分)(2020•恩施州)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .4.(3分)(2020•恩施州)下列计算正确的是( )A .a 2•a 3=a 6B .a (a +1)=a 2+aC .(a ﹣b )2=a 2﹣b 2D .2a +3b =5ab 5.(3分)(2020•恩施州)函数y =√x+1x 的自变量的取值范围是( ) A .x ≥﹣1 B .x ≥﹣1且x ≠0C .x >0D .x >﹣1且x ≠0 6.(3分)(2020•恩施州)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A .211B .411C .511D .6117.(3分)(2020•恩施州)在实数范围内定义运算“☆”:a ☆b =a +b ﹣1,例如:2☆3=2+3﹣1=4.如果2☆x =1,则x 的值是( )A .﹣1B .1C .0D .28.(3分)(2020•恩施州)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A .{5x +y =3x +5y =2B .{5x +y =2x +5y =3C .{5x +3y =1x +2y =5D .{3x +y =52x +5y =19.(3分)(2020•恩施州)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .10.(3分)(2020•恩施州)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60km /hB .乙车的平均速度为100km /hC .乙车比甲车先到B 城D .乙车比甲车先出发1h11.(3分)(2020•恩施州)如图,正方形ABCD 的边长为4,点E 在AB 上且BE =1,F 为对角线AC 上一动点,则△BFE 周长的最小值为( )A .5B .6C .7D .812.(3分)(2020•恩施州)如图,已知二次函数y =ax 2+bx +c 的图象与x 轴相交于A (﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有()个.A.0B.1C.2D.3二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)(2020•恩施州)9的算术平方根是.14.(3分)(2020•恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=.15.(3分)(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为.(结果不取近似值16.(3分)(2020•恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)(2020•恩施州)先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√2.18.(8分)(2020•恩施州)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.19.(8分)(2020•恩施州)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有名.20.(8分)(2020•恩施州)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1.414,√3≈1.732).21.(8分)(2020•恩施州)如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=kx(x>0)的一个交点为C,且BC=12AC.(1)求点A的坐标;(2)当S△AOC=3时,求a和k的值.22.(10分)(2020•恩施州)某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m 个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?23.(10分)(2020•恩施州)如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.24.(12分)(2020•恩施州)如图1,抛物线y=−14x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=√2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.2020年湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)(2020•恩施州)5的绝对值是( )A .5B .﹣5C .15D .−15 【解答】解:在数轴上,数5所表示的点到原点0的距离是5;故选:A .2.(3分)(2020•恩施州)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A .12×104B .1.2×105C .1.2×106D .0.12×106【解答】解:120000=1.2×105,故选:B .3.(3分)(2020•恩施州)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【解答】解:根据轴对称图形与中心对称图形的概念,知:A 、不是轴对称图形,也不是中心对称图形;B 、不是轴对称图形,也不是中心对称图形;C 、是轴对称图形,但不是中心对称图形;D 、既是中心对称图形,又是轴对称图形.故选:D .4.(3分)(2020•恩施州)下列计算正确的是( )A .a 2•a 3=a 6B .a (a +1)=a 2+aC .(a ﹣b )2=a 2﹣b 2D .2a +3b =5ab【解答】解:A 、a 2•a 3=a 5,原计算错误,故此选项不符合题意;B 、a (a +1)=a 2+a ,原计算正确,故此选项符合题意;C 、(a ﹣b )2=a 2﹣2ab +b 2,原计算错误,故此选项不符合题意;D 、2a 与3b 不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B .5.(3分)(2020•恩施州)函数y =√x+1x 的自变量的取值范围是( ) A .x ≥﹣1 B .x ≥﹣1且x ≠0C .x >0D .x >﹣1且x ≠0 【解答】解:根据题意得,x +1≥0且x ≠0,解得x ≥﹣1且x ≠0.故选:B .6.(3分)(2020•恩施州)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A .211B .411C .511D .611【解答】解:由题意可得:粽子总数为11个,其中6个为甜粽,所以选到甜粽的概率为:611,故选:D .7.(3分)(2020•恩施州)在实数范围内定义运算“☆”:a ☆b =a +b ﹣1,例如:2☆3=2+3﹣1=4.如果2☆x =1,则x 的值是( )A .﹣1B .1C .0D .2 【解答】解:由题意知:2☆x =2+x ﹣1=1+x ,又2☆x =1,∴1+x =1,∴x =0.故选:C .8.(3分)(2020•恩施州)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A .{5x +y =3x +5y =2B .{5x +y =2x +5y =3C .{5x +3y =1x +2y =5D .{3x +y =52x +5y =1【解答】解:依题意,得:{5x +y =3x +5y =2. 故选:A . 9.(3分)(2020•恩施州)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A .10.(3分)(2020•恩施州)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60km /hB .乙车的平均速度为100km /hC .乙车比甲车先到B 城D .乙车比甲车先出发1h【解答】解:由图象知:A .甲车的平均速度为30010−5=60km /h ,故A 选项不合题意; B .乙车的平均速度为3009−6=100km /h ,故B 选项不合题意;C .甲10时到达B 城,乙9时到达B 城,所以乙比甲先到B 城,故C 选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.11.(3分)(2020•恩施州)如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.8【解答】解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=√AD2+AE2=5,∴△BFE的周长=5+1=6,故选:B.12.(3分)(2020•恩施州)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有()个.A.0B.1C.2D.3【解答】解:对于①:二次函数开口向下,故a<0,与y轴的交点在y的正半轴,故c >0,故ac<0,因此①错误;对于②:二次函数的图象与x轴相交于A(﹣2,0)、B(1,0),由对称性可知,其对称轴为:x=−2+12=−12,因此②错误;对于③:设二次函数y=ax2+bx+c的交点式为y=a(x+2)(x﹣1)=ax2+ax﹣2a,比较一般式与交点式的系数可知:b=a,c=﹣2a,故2a+c=0,因此③正确;对于④:当x=﹣1时对应的y=a﹣b+c,观察图象可知x=﹣1时对应的函数图象的y 值在x轴上方,故a﹣b+c>0,因此④正确.∴只有③④是正确的.故选:C.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)(2020•恩施州)9的算术平方根是3.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.14.(3分)(2020•恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=40°.【解答】解:如图,延长CB交l2于点D,∵AB=BC,∠C=30°,∴∠C=∠4=30°,∵l1∥l2,∠1=80°,∴∠1=∠3=80°,∵∠C+∠3+∠2+∠4=180°,即30°+80°+∠2+30°=180°,∴∠2=40°.故答案为:40°.15.(3分)(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为2√3−π.(结果不取近似值【解答】解:∵AB是直径,∴∠ACB=90°,∵∠ABC=60°,∴∠CAB=30°,∴BC=12AB=2,AC=2√3,∴S△ABC=12⋅AC⋅BC=12⋅2√3⋅2=2√3,∵∠CAB=30°,∴扇形ACD的面积=30360π⋅AC2=112π⋅(2√3)2=π,∴阴影部分的面积为2√3−π.故答案为:2√3−π.16.(3分)(2020•恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为(﹣1,8).【解答】解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)(2020•恩施州)先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√2.【解答】解:(m2−9m2−6m+9−3m−3)÷m2m−3=[(m+3)(m−3)(m−3)2−3m−3]⋅m−3m2=(m+3m−3−3m−3)⋅m−3m2=m m−3⋅m−3 m2=1m;当m=√2时,原式=2=√22.18.(8分)(2020•恩施州)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.【解答】证明:∵AE∥BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE∥BF,即AD∥BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形.19.(8分)(2020•恩施州)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了50名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为36°;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有150名.【解答】解:(1)本次共调查的学生数为:20÷40%=50(名).故答案为:50;(2)C类学生人数为:50﹣15﹣20﹣5=10(名),条形图如下:(3)D类所对应扇形的圆心角为:360°×550=36°.故答案为:36°;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:500×1550=150(名).故答案为:150.20.(8分)(2020•恩施州)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1.414,√3≈1.732).【解答】解:如图,过P作PH⊥AB,设PH=x,由题意得:AB=30×2=60,∠PBH=90°﹣60°=30°,∠PAH=90°﹣45°=45°,则△PHA是等腰直角三角形,∴AH=PH,在Rt△PHA中,设AH=PH=x,在Rt△PBH中,PB=2PH=2x,BH=AB﹣AH=60﹣x,∴tan∠PBH=tan30°=PHBH=√33,∴√33=x 60−x, 解得:x =30(√3−1),∴PB =2x =60(√3−1)≈44(海里),答:此时船与小岛P 的距离约为44海里.21.(8分)(2020•恩施州)如图,在平面直角坐标系中,直线y =ax ﹣3a (a ≠0)与x 轴、y 轴分别相交于A 、B 两点,与双曲线y =k x (x >0)的一个交点为C ,且BC =12AC .(1)求点A 的坐标;(2)当S △AOC =3时,求a 和k 的值.【解答】解:(1)由题意得:令y =ax ﹣3a (a ≠0)中y =0,即ax ﹣3a =0,解得x =3,∴点A 的坐标为(3,0),故答案为(3,0).(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,如下图所示:显然,CM ∥OA ,∴∠BCM =∠BAO ,且∠ABO =∠CBO ,∴△BCM ∽△BAO ,∴BC BA =CM AO ,即:13=CM 3,∴CM =1,又S △AOC =12OA ⋅CN =3即:12×3×CN =3, ∴CN =2,∴C 点的坐标为(1,2),故反比例函数的k =1×2=2,再将点C (1,2)代入一次函数y =ax ﹣3a (a ≠0)中,即2=a ﹣3a ,解得a =﹣1,故答案为:a =﹣1,k =2.22.(10分)(2020•恩施州)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【解答】解:(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(x ﹣20)元,根据题意,得900x =720x−20,解得:x =100,经检验x =100是原方程的解,x ﹣20=80,答:购买A 品牌足球的单价为100元,则购买B 品牌足球的单价为80元;(2)设购买m 个A 品牌足球,则购买(90﹣m )个B 品牌足球,则W =100m +80(90﹣m )=20m +7200,∵A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴{100m +80(90−m)≤8500m ≥2(90−m), 解不等式组得:60≤m ≤65,所以,m 的值为:60,61,62,63,64,65,即该队共有6种购买方案,当m =60时,W 最小,m =60时,W =20×60+7200=8400(元),答:该队共有6种购买方案,购买60个A 品牌30个B 品牌的总费用最低,最低费用是8400元.23.(10分)(2020•恩施州)如图1,AB 是⊙O 的直径,直线AM 与⊙O 相切于点A ,直线BN 与⊙O 相切于点B ,点C (异于点A )在AM 上,点D 在⊙O 上,且CD =CA ,延长CD 与BN 相交于点E ,连接AD 并延长交BN 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:BE =EF ;(3)如图2,连接EO 并延长与⊙O 分别相交于点G 、H ,连接BH .若AB =6,AC =4,求tan ∠BHE .【解答】解:(1)如图1中,连接OD ,∵CD =CA ,∴∠CAD =∠CDA ,∵OA =OD∴∠OAD =∠ODA ,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90°,∴∠ODC=∠CDA+∠ODA=90°,∴CE是⊙O的切线.(2)如图2中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBD=∠ODE=90°,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM∥BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF.(3)如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4﹣x,CE=4+x,∴(4+x)2=(4﹣x)2+62,解得:x =94,∴tan ∠BOE =BE OB =943=34, ∵∠BOE =2∠BHE ,∴tan ∠BOE =2tan∠BHE 1−tan 2∠BHE =34, 解得:tan ∠BHE =13或﹣3(﹣3不合题意舍去),∴tan ∠BHE =13.补充方法:如图2中,作HJ ⊥EB 交EB 的延长线于J .∵tab ∠BOE =BE OB =34, ∴可以假设BE =3k ,OB =4k ,则OE =5k ,∵OB ∥HJ ,∴OB HJ =OE EH =EB EJ , ∴4k HJ =5k 9k =3k EJ ,∴HJ =365k ,EJ =275k , ∴BJ =EJ ﹣BE =275k ﹣3k =125k∴tan ∠BHJ =BJ HJ =13, ∵∠BHE =∠OBE =∠BHJ ,∴tan ∠BHE =13.24.(12分)(2020•恩施州)如图1,抛物线y =−14x 2+bx +c 经过点C (6,0),顶点为B ,对称轴x =2与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=√2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.【解答】解:(1)∵点C(6,0)在抛物线上,∴0=−14×36+6b+c,得到6b+c=9,又∵对称轴x=2,∴x=−b2a=−b2×(−14)=2,解得b=1,∴c=3,∴二次函数的解析式为y=−14x2+x+3;(2)当点M在点C的左侧时,如图2﹣1中:∵抛物线的解析式为y =−14x 2+x +3,对称轴为x =2,C (6,0)∴点A (2,0),顶点B (2,4),∴AB =AC =4,∴△ABC 是等腰直角三角形,∴∠1=45°;∵将△MPC 逆时针旋转90°得到△MEF ,∴FM =CM ,∠2=∠1=45°,设点M 的坐标为(m ,0),∴点F (m ,6﹣m ),又∵∠2=45°,∴直线EF 与x 轴的夹角为45°,∴设直线EF 的解析式为y =x +b ,把点F (m ,6﹣m )代入得:6﹣m =m +b ,解得:b =6﹣2m ,直线EF 的解析式为y =x +6﹣2m ,∵直线EF 与抛物线y =−14x 2+x +3只有一个交点,∴{y =x +6−2my =−14x 2+x +3, 整理得:14x 2+3−2m =0,∴△=b 2﹣4ac =0,解得m =32,点M 的坐标为(32,0).当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45°,因此直线EF 与抛物线y =−14x 2+x +3不可能只有一个交点.综上,点M 的坐标为(32,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,∵PC =√2,由(2)知∠BCA =45°,∴PG =GC =1,∴点G (5,0),设点M 的坐标为(m ,0),∵将△MPC 逆时针旋转90°得到△MEF ,∴EM =PM ,∵∠HEM +∠EMH =∠GMP +∠EMH =90°,∴∠HEM =∠GMP ,在△EHM 和△MGP 中,{∠EHM =∠MGP∠HEM =∠GMP EM =MP,∴△EHM ≌△MGP (AAS ),∴EH =MG =5﹣m ,HM =PG =1,∴点H (m ﹣1,0),∴点E 的坐标为(m ﹣1,5﹣m );∴EA =√(m −1−2)2+(5−m −0)2=√2m 2−16m +34, 又∵D 为线段BC 的中点,B (2,4),C (6,0), ∴点D (4,2),∴ED =√(m 2+(5−m −2)2=√2m 2−16m +34, ∴EA =ED .当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(m ﹣1,5﹣m ),因此EA =ED . ②当点E 在(1)所求的抛物线y =−14x 2+x +3上时, 把E (m ﹣1,5﹣m )代入,整理得:m 2﹣10m +13=0, 解得:m =5+2√3或m =5−2√3,∴CM =2√3−1或CM =1+2√3.。
最新2020年湖北省恩施州中考数学试卷及答案
C .53125x y x y +=⎧⎨+=⎩D .35251x y x y +=⎧⎨+=⎩9.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .10.(3分)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60/km hB .乙车的平均速度为100/km hC .乙车比甲车先到B 城D .乙车比甲车先出发1h11.(3分)如图,正方形ABCD 的边长为4,点E 在AB 上且1BE =,F 为对角线AC 上一动点,则BFE ∆周长的最小值为( )A .5B .6C .7D .812.(3分)如图,已知二次函数2y ax bx c =++的图象与x 轴相交于(2,0)A -、(1,0)B 两点.则以下结论:①0ac >;②二次函数2y ax bx c =++的图象的对称轴为1x =-;③20a c +=;④0a b c -+>.其中正确的有( )个.A .0B .1C .2D .3二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)9的算术平方根是 .14.(3分)如图,直线12//l l ,点A 在直线1l 上,点B 在直线2l 上,AB BC =,30C ∠=︒,180∠=︒,则2∠= .15.(3分)如图,已知半圆的直径4AB =,点C 在半圆上,以点A 为圆心,AC 为半径画弧交AB 于点D ,连接BC .若60ABC ∠=︒,则图中阴影部分的面积为 .(结果不取近似值16.(3分)如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为:(2,0)A -,(1,2)B ,(1,2)C -.已知(1,0)N -,作点N 关于点A 的对称点1N ,点1N 关于点B 的对称点2N ,点2N 关于点C 的对称点3N ,点3N 关于点A 的对称点4N ,点4N 关于点B 的对称点5N ,⋯,依此类推,则点2020N 的坐标为 .三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)先化简,再求值:22293()6933m mm m m m--÷-+--,其中2m=.18.(8分)如图,//AE BF,BD平分ABC∠交AE于点D,点C在BF上且BC AB=,连接CD.求证:四边形ABCD是菱形.19.(8分)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解;B类--比较了解;C类--般了解;D类--不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有名.20.(8分)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45︒方向),2小时后轮船到达B 处,在B 处测得小岛P 位于其北偏东60︒方向.求此时船与小岛P 的距离(结果保留整数,参考数据:2 1.414≈,3 1.732)≈.21.(8分)如图,在平面直角坐标系中,直线3(0)y ax a a =-≠与x 轴、y 轴分别相交于A 、B 两点,与双曲线(0)k y x x =>的一个交点为C ,且12BC AC =.(1)求点A 的坐标;(2)当3AOC S ∆=时,求a 和k 的值.22.(10分)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等. (1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?23.(10分)如图1,AB 是O 的直径,直线AM 与O 相切于点A ,直线BN 与O 相切于点B ,点C (异于点)A 在AM 上,点D 在O 上,且CD CA =,延长CD 与BN 相交于点E ,连接AD 并延长交BN 于点F .(1)求证:CE 是O 的切线; (2)求证:BE EF =;(3)如图2,连接EO 并延长与O 分别相交于点G 、H ,连接BH .若6AB =,4AC =,求tan BHE ∠. 24.(12分)如图1,抛物线214y x bx c =-++经过点(6,0)C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC ∆逆时针旋转90︒,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M的坐标.(3)MPC ∆在(2)的旋转变换下,若2PC =(如图2). ①求证:EA ED =.②当点E 在(1)所求的抛物线上时,求线段CM 的长.2020年湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上) 1.(3分)5的绝对值是( ) A .5B .5-C .15D .15-【分析】根据绝对值的意义:数轴上一个数所对应的点与原点(O 点)的距离叫做该数的绝对值,绝对值只能为非负数; 即可得解.【解答】解:在数轴上,数5所表示的点到原点0的距离是5; 故选:A .2.(3分)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( ) A .41210⨯B .51.210⨯C .61.210⨯D .60.1210⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正数;当原数的绝对值1<时,n 是负数. 【解答】解:5120000 1.210=⨯, 故选:B .3.(3分)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【分析】根据轴对称图形与中心对称图形的概念求解. 【解答】解:根据轴对称图形与中心对称图形的概念,知:A 、不是轴对称图形,也不是中心对称图形;B 、不是轴对称图形,也不是中心对称图形;C 、是轴对称图形,但不是中心对称图形;D 、既是中心对称图形,又是轴对称图形.4.(3分)下列计算正确的是( ) A .236a a a =B .2(1)a a a a +=+C .222()a b a b -=-D .235a b ab +=【分析】利用同底数幂的乘法运算法则、单项式乘多项式的运算法则、完全平方公式、合并同类项法则计算求出答案即可判断.【解答】解:A 、235a a a =,原计算错误,故此选项不符合题意;B 、2(1)a a a a +=+,原计算正确,故此选项符合题意;C 、222()2a b a ab b -=-+,原计算错误,故此选项不符合题意;D 、2a 与3b 不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B .5.(3分)函数y =的自变量的取值范围是( ) A .1x -B .1x -且0x ≠C .0x >D .1x >-且0x ≠【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解. 【解答】解:根据题意得,10x +且0x ≠, 解得1x -且0x ≠. 故选:B .6.(3分)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( ) A .211B .411C .511D .611【分析】粽子总共有11个,其中甜粽有6个,根据概率公式即可求出答案. 【解答】解:由题意可得:粽子总数为11个,其中6个为甜粽, 所以选到甜粽的概率为:611, 故选:D .7.(3分)在实数范围内定义运算“☆”:a ☆1b a b =+-,例如:2☆32314=+-=.如果2☆1x =,则x 的值是( ) A .1-B .1C .0D .2【分析】已知等式利用题中的新定义化简,计算即可求出x 的值. 【解答】解:由题意知:2☆211x x x =+-=+,11x∴+=,x∴=.故选:C.8.(3分)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x斛,1个小桶盛酒y斛,下列方程组正确的是()A.5352x yx y+=⎧⎨+=⎩B.5253x yx y+=⎧⎨+=⎩C.53125x yx y+=⎧⎨+=⎩D.35251x yx y+=⎧⎨+=⎩【分析】根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:依题意,得:5352x yx y+=⎧⎨+=⎩.故选:A.9.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A.10.(3分)甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A.甲车的平均速度为60/km h B.乙车的平均速度为100/km h C.乙车比甲车先到B城D.乙车比甲车先出发1h【分析】根据图象逐项分析判断即可.【解答】解:由图象知:A.甲车的平均速度为30060/105km h=-,故A选项不合题意;B.乙车的平均速度为300100/96km h=-,故B选项不合题意;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故C选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.11.(3分)如图,正方形ABCD的边长为4,点E在AB上且1BE=,F为对角线AC上一动点,则BFE∆周长的最小值为()A.5 B.6 C.7 D.8【分析】连接ED交AC于一点F,连接BF,根据正方形的对称性得到此时BFE∆的周长最小,利用勾股定理求出DE即可得到答案.【解答】解:如图,连接ED交AC于一点F,连接BF,四边形ABCD是正方形,∴点B与点D关于AC对称,BF DF∴=,BFE∴∆的周长BF EF BE DE BE=++=+,此时BEF∆的周长最小,正方形ABCD 的边长为4,4AD AB ∴==,90DAB ∠=︒,点E 在AB 上且1BE =,3AE ∴=, 225DE AD AE ∴=+=,BFE ∴∆的周长516=+=,故选:B .12.(3分)如图,已知二次函数2y ax bx c =++的图象与x 轴相交于(2,0)A -、(1,0)B 两点.则以下结论:①0ac >;②二次函数2y ax bx c =++的图象的对称轴为1x =-;③20a c +=;④0a b c -+>.其中正确的有( )个.A .0B .1C .2D .3【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性以及过特殊点时系数a 、b 、c 满足的关系综合判断即可.【解答】解:对于①:二次函数开口向下,故0a <,与y 轴的交点在y 的正半轴,故0c >,故0ac <,因此①错误;对于②:二次函数的图象与x 轴相交于(2,0)A -、(1,0)B ,由对称性可知,其对称轴为:21122x -+==-,因此②错误;对于③:设二次函数2y ax bx c =++的交点式为2(2)(1)2y a x x ax ax a =+-=+-,比较一般式与交点式的系数可知:b a =,2c a =-,故20a c +=,因此③正确;对于④:当1x =-时对应的y a b c =-+,观察图象可知1x =-时对应的函数图象的y 值在x 轴上方,故0a b c -+>,因此④正确.∴只有③④是正确的.故选:C .二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)9的算术平方根是 3 .【分析】9的平方根为3±,算术平方根为非负,从而得出结论.【解答】解:2(3)9±=,9∴的算术平方根是|3|3±=.故答案为:3.14.(3分)如图,直线12//l l ,点A 在直线1l 上,点B 在直线2l 上,AB BC =,30C ∠=︒,180∠=︒,则2∠=40︒ .【分析】利用等腰三角形的性质得到430C ∠=∠=︒,利用平行线的性质得到1380∠=∠=︒,再根据三角形内角和定理即可求解.【解答】解:如图,延长CB 交2l 于点D ,AB BC =,30C ∠=︒,430C ∴∠=∠=︒,12//l l ,180∠=︒,1380∴∠=∠=︒,324180C ∠+∠+∠+∠=︒,即3080230180︒+︒+∠+︒=︒,240∴∠=︒.故答案为:40︒.15.(3分)如图,已知半圆的直径4AB =,点C 在半圆上,以点A 为圆心,AC 为半径画弧交AB 于点D ,连接BC .若60ABC ∠=︒,则图中阴影部分的面积为 23π- .(结果不取近似值【分析】根据60︒特殊角求出AC 和BC ,再算出ABC ∆的面积,根据扇形面积公式求出扇形CAD 的面积,再用三角形的面积减去扇形面积即可. 【解答】解:AB 是直径,90ACB ∴∠=︒,60ABC ∠=︒,30CAB ∴∠=︒,122BC AB ∴==,23AC = ∴112322322ABC S AC BC ∆===, 30CAB ∠=︒,∴扇形ACD 的面积22301(23)36012AC πππ===, ∴阴影部分的面积为23π.故答案为:23π.16.(3分)如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为:(2,0)A -,(1,2)B ,(1,2)C -.已知(1,0)N -,作点N 关于点A 的对称点1N ,点1N 关于点B 的对称点2N ,点2N 关于点C 的对称点3N ,点3N 关于点A 的对称点4N ,点4N 关于点B 的对称点5N ,⋯,依此类推,则点2020N 的坐标为 (1,8)- .【分析】先求出1N 至6N 点的坐标,找出其循环的规律为每6个点循环一次即可求解.【解答】解:由题意得,作出如下图形:N 点坐标为(1,0)-,N 点关于A 点对称的1N 点的坐标为(3,0)-,1N 点关于B 点对称的2N 点的坐标为(5,4),2N 点关于C 点对称的3N 点的坐标为(3,8)-,3N 点关于A 点对称的4N 点的坐标为(1,8)-,4N 点关于B 点对称的5N 点的坐标为(3,4)-,5N 点关于C 点对称的6N 点的坐标为(1,0)-,此时刚好回到最开始的点N 处,∴其每6个点循环一次,202063364∴÷=⋯⋯,即循环了336次后余下4,故2020N 的坐标与4N 点的坐标相同,其坐标为(1,8)-.故答案为:(1,8)-.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)先化简,再求值:22293()6933m m m m m m --÷-+--,其中2m =. 【分析】根据分式的混合运算法则,先化简括号内的,将除法运算转化为乘法运算,再化简成最简分式,代入m 值求解即可.【解答】解:22293()6933m m m m m m --÷-+-- 22(3)(3)33[](3)3m m m m m m +--=--- 2333()33m m m m m +-=--- 233m m m m -=- 1m=; 当2m =时,原式22==. 18.(8分)如图,//AE BF ,BD 平分ABC ∠交AE 于点D ,点C 在BF 上且BC AB =,连接CD .求证:四边形ABCD 是菱形.【分析】由//AE BF ,BD 平分ABC ∠得到ABD ADB ∠=∠,得到AB AD =,再由BC AB =,得到对边AD BC =,进而得到四边形ABCD 为平行四边形,再由邻边相等即可证明四边形ABCD 为菱形.【解答】证明://AE BF ,ADB DBC ∴∠=∠,BD平分ABC∠,∴∠=∠,DBC ABD∴∠=∠,ADB ABD∴=,AB AD又AB BC=,∴=,AD BCAD BC,//AE BF,即//∴四边形ABCD为平行四边形,又AB AD=,∴四边形ABCD为菱形.19.(8分)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解;B类--比较了解;C类--般了解;D类--不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了50 名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有名.【分析】(1)根据条形图和扇形图得出B类人数为20名,占40%,即可得出总数;(2)根据总人数减去A,B,D的人数即可得出C的人数;(3)用360︒乘以D类部分所占百分比即可得出圆心角的度数;(4)用500乘以非常了解的部分所占百分比即可得出答案.【解答】解:(1)本次共调查的学生数为:2040%50÷=(名).故答案为:50;(2)C类学生人数为:501520510---=(名),条形图如下:(3)D类所对应扇形的圆心角为:53603650︒⨯=︒.故答案为:36︒;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:1550015050⨯=(名).故答案为:150.20.(8分)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45︒方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60︒方向.求此时船与小岛P的距离(结果保留整数,参考数据:2 1.414≈,3 1.732)≈.【分析】过P作PH AB⊥,设PH x=,由已知分别求PB、BH、AH,然后根据锐角三角函数求出x值即可求解.【解答】解:如图,过P作PH AB⊥,设PH x=,由题意得:30260AB=⨯=,906030PBH∠=︒-︒=︒,904545PAH∠=︒-︒=︒,则PHA∆是等腰直角三角形,AH PH∴=,在Rt PHA∆中,设AH PH x==,在Rt PBH ∆中,22PB PH x ==,60BH AB AH x =-=-, 3tan tan303PH PBH BH ∴∠=︒==, ∴3360x x=-, 解得:30(31)x =-,260(31)44PB x ∴==-≈(海里),答:此时船与小岛P 的距离约为44海里.21.(8分)如图,在平面直角坐标系中,直线3(0)y ax a a =-≠与x 轴、y 轴分别相交于A 、B 两点,与双曲线(0)k y x x =>的一个交点为C ,且12BC AC =. (1)求点A 的坐标;(2)当3AOC S ∆=时,求a 和k 的值.【分析】(1)令3(0)y ax a a =-≠中0y =即可求出点A 的坐标;(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,证明BCM BAO ∆∆∽,利用12BC AC =和3OA =进而求出CM 的长,再由3AOC S ∆=求出CN 的长,进而求出点C 坐标即可求解.【解答】解:(1)由题意得:令3(0)y ax a a =-≠中0y =,即30ax a -=,解得3x =,∴点A 的坐标为(3,0), 故答案为(3,0).(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,如下图所示:显然,//CM OA ,BCM BAO ∴∠=∠,且ABO CBO ∠=∠,BCM BAO ∴∆∆∽, ∴BC CM BA AO =,即:133CM =, 1CM ∴=, 又132AOC S OA CN ∆== 即:1332CN ⨯⨯=, 2CN ∴=,C ∴点的坐标为(1,2),故反比例函数的122k =⨯=,再将点(1,2)C 代入一次函数3(0)y ax a a =-≠中,即23a a =-,解得1a =-,故答案为:1a =-,2k =.22.(10分)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【分析】(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(20)x -元,根据用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买m个A品牌足球,则购买(90)m-个B品牌足球,根据总价=单价⨯数量,结合总价不超过8500元,以及A品牌足球的数量不小于B品牌足球数量的2倍,即可得出关于m的一元一次不等式组,解之取其中的最小整数值即可得出结论.【解答】解:(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(20)x-元,根据题意,得90072020x x=-,解得:100x=,经检验100x=是原方程的解,2080x-=,答:购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;(2)设购买m个A品牌足球,则购买(90)m-个B品牌足球,则10080(90)207200W m m m=+-=+,A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴10080(90)85002(90)m mm m+-⎧⎨-⎩,解不等式组得:6065m,所以,m的值为:60,61,62,63,64,65,即该队共有6种购买方案,当60m=时,W最小,60m=时,206072008400W=⨯+=(元),答:该队共有6种购买方案,购买60个A品牌30个B品牌的总费用最低,最低费用是8400元.23.(10分)如图1,AB是O的直径,直线AM与O相切于点A,直线BN与O相切于点B,点C(异于点)A在AM上,点D在O上,且CD CA=,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是O的切线;(2)求证:BE EF=;(3)如图2,连接EO并延长与O分别相交于点G、H,连接BH.若6∠.AC=,求tan BHEAB=,4【分析】(1)连接OD,根据等边对等角可知:CAD CDA∠=∠,OAD ODA∠=∠,再根据切线的性质可知∠=∠+∠=∠+∠=︒=∠,由切线的判定定理可得结论;CAO CAD OAD CDA ODA ODC90(2)连接BD,根据等边对等角可知ODB OBDODE OBE∠=∠=︒,由等∠=∠,再根据切线的性质可知90量减等量差相等得EDB EBD=,然后根据平行线的性质及对顶角相等∠=∠,再根据等角对等边得到ED EB可得EDF EFD=,由此得出结论;∠=∠,推出DE EF(3)过E点作EL AM⊥于L,根据勾股定理可求出BE的长,即可求出tan BOE∠的值,再利用倍角公式即可求出tan BHE∠的值.【解答】解:(1)如图1中,连接OD,CD CA=,∴∠=∠,CAD CDA=OA OD∴∠=∠,OAD ODA直线AM与O相切于点A,∴∠=∠+∠=︒,CAO CAD OAD90∴∠=∠+∠=︒,ODC CDA ODA90∴是O的切线.CE(2)如图2中,连接BD,OD OB=,∴∠=∠,ODB OBDCE是O的切线,BF是O的切线,90∴∠=∠=︒,OBD ODE∴∠=∠,EDB EBD∴=,ED EB⊥,BN ABAM AB⊥,AM BN∴,//∴∠=∠,CAD BFD∠=∠=∠,CAD CDA EDFBFD EDF ∴∠=∠,EF ED ∴=,BE EF ∴=.(3)如图2中,过E 点作EL AM ⊥于L ,则四边形ABEL 是矩形,设BE x =,则4CL x =-,4CE x =+,222(4)(4)6x x ∴+=-+, 解得:94x =, ∴934tan 34BE BOE OB ∠===, 2BOE BHE ∠=∠, ∴22tan 3tan 1tan 4BHE BOE BHE ∠∠==-∠, 解得:1tan 3BHE ∠=或3(3--不合题意舍去), 1tan 3BHE ∴∠=. 补充方法:如图2中,作HJ EB ⊥交EB 的延长线于J . 34BE tab BOE OB ∠==, ∴可以假设3BE k =,4OB k =,则5OE k =,//OB HJ , ∴OB OE EB HJ EH EJ ==, ∴4539k k k HJ k EJ==,365HJ k ∴=,275EJ k =, 2712355BJ EJ BE k k k ∴=-=-= 1tan 3BJ BHJ HJ ∴∠==, BHE OBE BHJ ∠=∠=∠,1tan 3BHE ∴∠=.24.(12分)如图1,抛物线214y x bx c =-++经过点(6,0)C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC ∆逆时针旋转90︒,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M 的坐标.(3)MPC ∆在(2)的旋转变换下,若2PC =(如图2). ①求证:EA ED =.②当点E 在(1)所求的抛物线上时,求线段CM 的长.【分析】(1)根据点C 在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B 及已知点C 的坐标,证明ABC ∆是等腰直角三角形,根据旋转的性质推出直线EF 与x 轴的夹角为45︒,因此设直线EF 的解析式为y x b =+,设点M 的坐标为(,0)m ,推出点(,6)F m m -,直线EF 与抛物线2134y x x =-++只有一个交点,联立两个解析式,得到关于x 的一元二次方程,根据根的判别式为0得到关于m 的方程,解方程得点M 的坐标.注意有两种情况,均需讨论.(3)①过点P 作PG x ⊥轴于点G ,过点E 作EH x ⊥轴于点H ,设点M 的坐标为(,0)m ,由2PC =及旋转的性质,证明EHM MGP ∆≅∆,得到点E 的坐标为(1,5)m m --,再根据两点距离公式证明EA ED =,注意分两种情况,均需讨论;②把(1,5)E m m --代入抛物线解析式,解出m 的值,进而求出CM 的长.【解答】解:(1)点(6,0)C 在抛物线上,∴103664b c =-⨯++, 得到69b c +=,又对称轴2x =,∴2122()4b b x a =-=-=⨯-, 解得1b =,3c ∴=,∴二次函数的解析式为2134y x x =-++; (2)当点M 在点C 的左侧时,如图21-中:抛物线的解析式为2134y x x =-++,对称轴为2x =,(6,0)C ∴点(2,0)A ,顶点(2,4)B ,4AB AC ∴==,ABC ∴∆是等腰直角三角形,145∴∠=︒;将MPC ∆逆时针旋转90︒得到MEF ∆,FM CM ∴=,2145∠=∠=︒,设点M 的坐标为(,0)m ,∴点(,6)F m m -,又245∠=︒,∴直线EF 与x 轴的夹角为45︒,∴设直线EF 的解析式为y x b =+,把点(,6)F m m -代入得:6m m b -=+,解得:62b m =-, 直线EF 的解析式为62y x m =+-,直线EF 与抛物线2134y xx =-++只有一个交点, ∴262134y x m y x x =+-⎧⎪⎨=-++⎪⎩, 整理得:213204x m +-=, ∴△240b ac =-=,解得32m =, 点M 的坐标为3(2,0). 当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45︒,因此直线EF 与抛物线2134y x x =-++不可能只有一个交点.综上,点M 的坐标为3(2,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG x ⊥轴于点G ,过点E 作EH x ⊥轴于点H ,2PC ,由(2)知45BCA ∠=︒,1PG GC ∴==,∴点(5,0)G ,设点M 的坐标为(,0)m , 将MPC ∆逆时针旋转90︒得到MEF ∆,EM PM ∴=,90HEM EMH GMP EMH ∠+∠=∠+∠=︒,HEM GMP ∴∠=∠,在EHM ∆和MGP ∆中,EHM MGP HEM GMP EM MP ∠=∠⎧⎪∠=∠⎨⎪=⎩,()EHM MGP AAS ∴∆≅∆,5EH MG m ∴==-,1HM PG ==,∴点(1,0)H m -,∴点E 的坐标为(1,5)m m --;222(12)(50)21634EA m m m m ∴--+---+,又D 为线段BC 的中点,(2,4)B ,(6,0)C ,∴点(4,2)D ,222(14)(52)21634ED m m m m ∴--+---+,EA ED ∴=.当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(1,5)m m --,因此EA ED =.②当点E 在(1)所求的抛物线2134y x x =-++上时, 把(1,5)E m m --代入,整理得:210130m m -+=, 解得:523m =+523m =-, 231CM ∴=或123CM =+.。
湖北恩施州2020年中考数学试题(图片版)
湖北恩施州数学--2020年初中毕业升学学业水平考试题(图片版)答案一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请将选项前的字母代号填涂在答题卷相应位置上.1.A .2.B .3.D .4.B .5.B .6.D .7.C .8.A.9.A. 10.D . 11.B . 12.C .二、填空题:不要求写出解答过程,请把答案直接写在答题卷相应位置上.13.3.14.40︒15.π-16.(-1,8)三、解答题:请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.17.1m 【详解】222936933m m m m m m ⎛⎫--÷ ⎪-+--⎝⎭ 22(3)(3)33(3)3m m m m m m ⎡⎤+--=-⋅⎢⎥--⎣⎦ 2333()33m m m m m+-=-⋅-- 233m m m m -=⋅- 1m=;当m =时,原式== 18.【详解】证明:∵//AE BF ,∴∠ADB=∠DBC ,又BD 平分∠ABC ,∴∠DBC=∠ABD ,∴∠ADB=∠ABD ,∴△ABD 为等腰三角形,∴AB=AD ,又已知AB=BC ,∴AD=BC ,又//AE BF ,即AD //BC ,∴四边形ABCD 为平行四边形,又AB=AD ,∴四边形ABCD 为菱形.【点睛】本题考了角平分线性质,平行线的性质,菱形的判定方法,平行四边形的判定方法等,熟练掌握其判定方法及性质是解决此类题的关键.19.(1)50名;(2)条形图见解析;(3)36︒;(4)150名.【详解】(1)本次共调查的学生数为:2040%50÷=名;(2)C 类学生人数为:50-15-20-5=10名,条形图如下:(3)D 类所对应扇形的圆心角为:53603650︒⨯=︒; (4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:15500=15050⨯名. 20.【答案】此时船与小岛P 的距离约为44海里【详解】如图,过P 作PH ⊥AB ,设PH=x ,由题意,AB=60,∠PBH=30º,∠PAH=45º,在Rt △PHA 中,AH=PH=x,在Rt △PBH 中,BH=AB-AH=60-x ,PB=2x ,∴tan30º=PH BH, 360x x=-, 解得:30(31)x =,∴PB=2x=60(31)≈44(海里),答:此时船与小岛P 的距离约为44海里.【点睛】本题考查了直角三角形的应用,掌握方向角的概念和解直角三角形的知识是解答本题的关键. 21.(1) (3,0);(2) 1a =-,2k =【详解】解:(1)由题意得:令()30y ax a a =-≠中0y =,即30-=ax a ,解得3x =,∴点A 的坐标为(3,0),故答案为(3,0) .(2) 过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,如下图所示:显然,CM //OA ,∴∠BCM=∠BAO ,且∠ABO=∠CBO ,∴△BCM ∽△BAO , ∴=BC CM BA AO,代入数据: 即:133=CM ,∴CM =1, 又132=⋅=AOC S OA CN 即:1332⨯⨯=CN ,∴=2CN , ∴C 点的坐标为(1,2),故反比例函数的122k =⨯=,再将点C(1,2)代入一次函数()30y ax a a =-≠中,即23=-a a ,解得1a =-,故答案为:1a =-,2k =.22.(1)购买A 品牌足球的单价为100元,则购买B 品牌足球的单价为80元;(2)该队共有6种购买方案,购买60个A 品牌30个B 品牌的总费用最低,最低费用是8400元.【详解】解:(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(x-20)元,根据题意,得 90072020x x =- 解得:x=100经检验x=100是原方程的解x-20=80答:购买A 品牌足球的单价为100元,则购买B 品牌足球的单价为80元.(2)设购买m 个A 品牌足球,则购买(90−m )个B 品牌足球,则W=100m+80(90-m)=20m+7200∵A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元. ∴()2072008500290m m m +≤⎧⎨≥-⎩解不等式组得:60≤m ≤65所以,m 的值为:60,61,62,63,64,65即该队共有6种购买方案,当m=60时,W 最小m=60时,W=20×60+7200=8400(元)答:该队共有6种购买方案,购买60个A 品牌30个B 品牌的总费用最低,最低费用是8400元. 23.【详解】(1)连接OD ,∵CD CA =,∴∠CAD=∠CDA ,∵OA=OD∴∠OAD =∠ODA ,∵直线AM 与O 相切于点A ,∴∠CAO=∠CAD+∠OAD=90°∴∠ODC=∠CDA+∠ODA=90°∴CE 是O 的切线;(2)连接BD∵OD=OB∴∠ODB=∠OBD ,∵CE 是O 的切线,BF 是O 的切线,∴∠OBD=∠ODE=90°∴∠EDB=∠EBD∴ED=EB∵AM ⊥AB ,BN ⊥AB∴AM ∥BN∴∠CAD=∠BFD∵∠CAD=∠CDA=∠EDF∴∠BFD=∠EDF∴EF=ED∴BE=EF(3)过E 点作EL ⊥AM 于L ,则四边形ABEL 是矩形,设BE=x ,则CL=4-x ,CE=4+X∴(4+x)2=(4-x)2+62解得:x=94 934tan 34BE BOE OB ∴∠=== ∵∠BOE=2∠BHE22tan 3tan 1tan 4BHE BOE BHE ∠∴∠==-∠ 解得:tan ∠BHE=13或-3(-3不和题意舍去) ∴tan ∠BHE=1324.(1)2134y x x =-++;(2)(32,0);(3)①见解析;②CM =231-或CM =123+ 【详解】(1)∵点()6,0C 在抛物线上,∴103664b c=-⨯++,得到6=9b c+,又∵对称轴2x=,∴2122()4b bxa=-=-=⨯-,解得1b=,∴3c=,∴二次函数的解析式为2134y x x=-++;(2)当点M在点C的左侧时,如下图:∵抛物线的解析式为2134y x x=-++,对称轴为2x=,()6,0C∴点A(2,0),顶点B(2,4),∴AB=AC=4,∴△ABC是等腰直角三角形,∴∠1=45°;∵将MPC逆时针旋转90︒得到△MEF,∴FM=CM,∠2=∠1=45°,设点M的坐标为(m,0),∴点F(m,6-m),又∵∠2=45°,∴直线EF与x轴的夹角为45°,∴设直线EF的解析式为y=x+b,把点F(m,6-m)代入得:6-m=m+b,解得:b=6-2m,直线EF的解析式为y=x+6-2m,∵直线EF与抛物线2134y x x=-++只有一个交点,∴262134y xm y x x =+-⎧⎪⎨=-++⎪⎩, 整理得:213204x m +-=, ∴Δ=b 2-4ac=0,解得m=32, 点M 的坐标为(32,0). 当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45°,因此直线EF 与抛物线2134y x x =-++不可能只有一个交点. 综上,点M 的坐标为(32,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,∵2PC =2)知∠BCA=45°,∴PG=GC=1,∴点G (5,0),设点M 的坐标为(m ,0),∵将MPC 逆时针旋转90︒得到△MEF ,∴EM=PM ,∵∠HEM+∠EMH=∠GMP+∠EMH =90°,∴∠HEM=∠GMP ,在△EHM 和△MGP 中,EHM MGP HEM GMP EM MP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EHM ≌△MGP (AAS ),∴EH=MG=5-m ,HM=PG=1,∴点H (m-1,0),∴点E 的坐标为(m-1,5-m );∴EA=22(12)(50)m m --+--=221634m m -+, 又∵D 为线段BC 的中点,B (2,4),C (6,0), ∴点D (4,2),∴ED=22(14)(52)m m --+--=221634m m -+, ∴EA= ED .当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(m-1,5-m ),因此EA= ED .②当点E 在(1)所求的抛物线2134y x x =-++上时, 把E (m-1,5-m )代入,整理得:m 2-10m+13=0, 解得:m=523+或m=523-∴CM =231或CM =123+.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省恩施州中考数学试卷(解析版)一、选择题(本大题共有12个小题,每小题3分,共36分)1.9的相反数是()A.﹣9 B.9 C.D.2.恩施州2013年建筑业生产总值为36900万元,将数36900用科学记数法表示为()A.3.69×105B.36.9×104C.3.69×104D.0.369×1053.下列图标中是轴对称图形的是()A.B.C.D.4.下列计算正确的是()A.2a3+3a3=5a6B.(x5)3=x8C.﹣2m(m﹣3)=﹣2m2﹣6m D.(﹣3a﹣2)(﹣3a+2)=9a2﹣45.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为()A.28°B.112°C.28°或112°D.68°6.函数y=的自变量x的取值范围是()A.x≥﹣1 B.x≥﹣1且x≠2 C.x≠±2 D.x>﹣1且x≠27.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取一张后,放回并混在一起,再随机抽取一张,两次抽取的数字的积为奇数的概率是()A.B.C.D.8.在广场的电子屏幕上有一个旋转的正方体,正方体的六个面上分别标有“恩施六城同创”六个字.如图是小明在三个不同时刻所观察到的图形,请你帮小明确定与“创”相对的面上的字是()A.恩B.施C.城D.同9.关于x的不等式组恰有四个整数解,那么m的取值范围为()A.m≥﹣1 B.m<0 C.﹣1≤m<0 D.﹣1<m<010.某商品的售价为100元,连续两次降价x%后售价降低了36元,则x为()A.8 B.20 C.36 D.1811.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19cm,△ABD的周长为13cm,则AE的长为()A.3cm B.6cm C.12cm D.16cm12.抛物线y1=ax2+bx+c与直线y2=mx+n的图象如图所示,下列判断中:①abc<0;②a+b+c>0;③5a﹣c=0;④当x<或x>6时,y1>y2,其中正确的个数有()A.1 B.2 C.3 D.4二、填空题(本题共有4个小题,每小题3分,共12分)13.因式分解:a2b﹣10ab+25b=.14.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=.15.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为.16.观察下列等式:1+2+3+4+…+n=n(n+1);1+3+6+10+…+n(n+1)=n(n+1)(n+2);1+4+10+20+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3);则有:1+5+15+35+…n(n+1)(n+2)(n+3)=.三、解答题(本大题共有8个小题,共72分)17.(8分)先化简,再求值:÷(a+2),其中a=﹣3.18.(8分)如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.19.(8分)在恩施州2016年“书香校园,经典诵读”比赛活动中,有32万名学生参加比赛活动,其中有8万名学生分别获得一、二、三等奖,从获奖学生中随机抽取部分,绘制成如下不完整的统计图表,请根据图表解答下列问题.获奖等级频数一等奖100二等奖a三等奖275(1)表格中a的值为.(2)扇形统计图中表示获得一等奖的扇形的圆心角为度.(3)估计全州有多少名学生获得三等奖?20.(8分)如图,在办公楼AB和实验楼CD之间有一旗杆EF,从办公楼AB顶部A点处经过旗杆顶部E点恰好看到实验楼CD的底部D点,且俯角为45°,从实验楼CD顶部C点处经过旗杆顶部E点恰好看到办公楼AB的G点,BG=1米,且俯角为30°,已知旗杆EF=9米,求办公楼AB的高度.(结果精确到1米,参考数据:≈1.41,≈1.73)21.(8分)如图,直角三角板ABC放在平面直角坐标系中,直角边AB垂直x轴,垂足为Q,已知∠ACB=60°,点A,C,P均在反比例函数y=的图象上,分别作PF⊥x轴于F,AD⊥y 轴于D,延长DA,FP交于点E,且点P为EF的中点.(1)求点B的坐标;(2)求四边形AOPE的面积.22.(10分)在清江河污水网管改造建设中,需要确保在汛期来临前将建设过程中产生的渣土清运完毕,每天至少需要清运渣土12720m3,施工方准备每天租用大、小两种运输车共80辆.已知每辆大车每天运送渣土200m3,每辆小车每天运送渣土120m3,大、小车每天每辆租车费用分别为1200元,900元,且要求每天租车的总费用不超过85300元.(1)施工方共有多少种租车方案?(2)哪种租车方案费用最低,最低费用是多少?23.(10分)如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG,已知DE=4,AE=8.(1)求证:DF是⊙O的切线;(2)求证:OC2=OE•OP;(3)求线段EG的长.24.(12分)如图,在矩形OABC纸片中,OA=7,OC=5,D为BC边上动点,将△OCD沿OD 折叠,当点C的对应点落在直线l:y=﹣x+7上时,记为点E,F,当点C的对应点落在边OA 上时,记为点G.(1)求点E,F的坐标;(2)求经过E,F,G三点的抛物线的解析式;(3)当点C的对应点落在直线l上时,求CD的长;(4)在(2)中的抛物线上是否存在点P,使以E,F,P为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共有12个小题,每小题3分,共36分)1.9的相反数是()A.﹣9 B.9 C.D.【考点】相反数.【分析】根据相反数的定义即可求解.【解答】解:9的相反数是﹣9,故选A.【点评】此题主要考查相反数的定义,比较简单.2.恩施州2013年建筑业生产总值为36900万元,将数36900用科学记数法表示为()A.3.69×105B.36.9×104C.3.69×104D.0.369×105【考点】科学记数法—表示较大的数.【分析】数据绝对值大于10或小于1时科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n 是负数.【解答】解:36900=3.69×104;故选C.【点评】本题考查的是科学记数法.任意一个绝对值大于10或绝对值小于1的数都可写成a ×10n的形式,其中1≤|a|<10.对于绝对值大于10的数,指数n等于原数的整数位数减去1.3.下列图标中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确;故选D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.下列计算正确的是()A.2a3+3a3=5a6B.(x5)3=x8C.﹣2m(m﹣3)=﹣2m2﹣6m D.(﹣3a﹣2)(﹣3a+2)=9a2﹣4【考点】整式的混合运算.【分析】A、原式合并得到结果,即可作出判断;B、原式利用幂的乘方运算法则计算得到结果,即可作出判断;C、原式利用单项式乘多项式法则计算得到结果,即可作出判断;D、原式利用平方差公式计算得到结果,即可作出判断.【解答】解:A、原式=5a3,错误;B、原式=x15,错误;C、原式=﹣2m2+6m,错误;D、原式=9a2﹣4,正确,故选D【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为()A.28°B.112°C.28°或112°D.68°【考点】角的计算.【分析】根据题意画出图形,利用数形结合求解即可.【解答】解:如图,当点C与点C1重合时,∠BOC=∠AOB﹣∠AOC=70°﹣42°=28°;当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+42°=112°.故选C.【点评】本题考查的是角的计算,在解答此题时要注意进行分类讨论,不要漏解.6.函数y=的自变量x的取值范围是()A.x≥﹣1 B.x≥﹣1且x≠2 C.x≠±2 D.x>﹣1且x≠2【考点】函数自变量的取值范围.【分析】根据二次根式有意义的条件是:被开方数是非负数,以及分母不等于0,据此即可求解.【解答】解:根据题意得:,解得x≥﹣1且x≠2.故选:B.【点评】本题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取一张后,放回并混在一起,再随机抽取一张,两次抽取的数字的积为奇数的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展示所有36种等可能的结果数,再找出两次抽取的数字的积为奇数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中两次抽取的数字的积为奇数的结果数为9,所以随机抽取一张,两次抽取的数字的积为奇数的概率==.故选B.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.8.在广场的电子屏幕上有一个旋转的正方体,正方体的六个面上分别标有“恩施六城同创”六个字.如图是小明在三个不同时刻所观察到的图形,请你帮小明确定与“创”相对的面上的字是()A.恩B.施C.城D.同【考点】专题:正方体相对两个面上的文字.【分析】根据图象思想确定和六相邻的是施、城、同、创,和创相邻的是恩、施、六、城由此即可解决问题.【解答】解:由题意可知和六相邻的是施、城、同、创,所以和六相对的是恩.因为和创相邻的是恩、施、六、城,所以和创相对的是同.故选D.【点评】本题考查正方体相对面上的文字,解题的关键是先确定或某一个字相邻的字是什么,得出相对的面的字,属于中考常考题型.9.关于x的不等式组恰有四个整数解,那么m的取值范围为()A.m≥﹣1 B.m<0 C.﹣1≤m<0 D.﹣1<m<0【考点】一元一次不等式组的整数解.【分析】可先用m表示出不等式组的解集,再根据恰有四个整数解可得到关于m的不等组,可求得m的取值范围.【解答】解:在中,解不等式①可得x>m,解不等式②可得x≤3,由题意可知原不等式组有解,∴原不等式组的解集为m<x≤3,∵该不等式组恰好有四个整数解,∴整数解为0,1,2,3,∴﹣1≤m<0,故选C.【点评】本题主要考查解不等式组,求得不等式组的解集是解题的关键,注意恰有四个整数解的应用.10.某商品的售价为100元,连续两次降价x%后售价降低了36元,则x为()A.8 B.20 C.36 D.18【考点】一元二次方程的应用.【分析】第一次降价后的单价是原来的(1﹣x),那么第二次降价后的单价是原来的(1﹣x)2,根据题意列方程解答即可.【解答】解:根据题意列方程得100×(1﹣x%)2=100﹣36解得x1=20,x2=180(不符合题意,舍去).故选:B.【点评】本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.11.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19cm,△ABD的周长为13cm,则AE的长为()A.3cm B.6cm C.12cm D.16cm【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AD=DC,AE=CE=AC,求出AB+BC+AC=19cm,AB+BD+AD=AB+BC=13cm,即可求出AC,即可得出答案.【解答】解:∵DE是AC的垂直平分线,∴AD=DC,AE=CE=AC,∵△ABC的周长为19cm,△ABD的周长为13cm,∴AB+BC+AC=19cm,AB+BD+AD=AB+BD+DC=AB+BC=13cm,∴AC=6cm,∴AE=3cm,故选A.【点评】本题考查了线段垂直平分线性质的应用,能熟记线段垂直平分线性质定理的内容是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.12.抛物线y1=ax2+bx+c与直线y2=mx+n的图象如图所示,下列判断中:①abc<0;②a+b+c>0;③5a﹣c=0;④当x<或x>6时,y1>y2,其中正确的个数有()A.1 B.2 C.3 D.4【考点】二次函数与不等式(组);二次函数图象与系数的关系.【分析】①直接根据二次函数的性质来判定;②观察图象:当x=1时,对应的y的值;③当x=1时与对称轴为x=3列方程组可得结论;④直接看图象得出结论.【解答】解:①∵二次函数开口向上,∴a>0,∵二次函数与y轴交于正半轴,∴c>0,∵二次函数对称轴在y轴右侧,∴b<0,∴abc<0,所以此选项正确;②由图象可知:二次函数与x轴交于两点分别是(1,0)、(5,0),当x=1时,y=0,则a+b+c=0,所以此选项错误;③∵二次函数对称轴为:x=3,则﹣=3,b=﹣6a,代入a+b+c=0中得:a﹣6a+c=0,5a﹣c=0,所以此选项正确;④由图象得:当x<或x>6时,y1>y2;所以此选项正确.【点评】本题综合考查了二次函数和一次函数的图象及性质,熟练掌握二次函数的性质是关键:①二次项系数a决定抛物线的开口方向和大小;当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置;当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异),反之也成立;③常数项c由抛物线与y轴交点的位置确定;④利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围.二、填空题(本题共有4个小题,每小题3分,共12分)13.因式分解:a2b﹣10ab+25b=b(a﹣5)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=b(a2﹣10a+25)=b(a﹣5)2,故答案为:b(a﹣5)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=.【考点】根与系数的关系.【分析】先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.【解答】解:由根与系数的关系得:m+n=,mn=,∴m2+n2=(m+n)2﹣2mn=﹣2×=,故答案为:.【点评】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.15.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为.【考点】相似三角形的判定与性质;三角形的面积.【分析】可运用相似三角形的性质求出GF、MN,从而求出OF、OM,进而可求出阴影部分的面积.【解答】解:如图,∵GF∥HC,∴△AGF∽△AHC,∴==,∴GF=HC=,∴OF=OG﹣GF=2﹣=.同理MN=,则有OM=.=××=,∴S△OFM=.∴S阴影=1﹣故答案为:.【点评】本题主要考查了相似三角形的判定与性质、三角形的面积公式,求得△OFM的面积是解决本题的关键.16.观察下列等式:1+2+3+4+…+n=n(n+1);1+3+6+10+…+n(n+1)=n(n+1)(n+2);1+4+10+20+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3);则有:1+5+15+35+…n(n+1)(n+2)(n+3)=n(n+1)(n+2)(n+3)(n+4).【考点】整式的混合运算.【分析】根据已知等式发现分母依次乘以2、乘以3、乘以4,据此作答即可.【解答】解:∵1+2+3+4+…+n=n(n+1)=n(n+1);1+3+6+10+…+n(n+1)=n(n+1)(n+2)=n(n+1)(n+2);1+4+10+20+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3)=n(n+1)(n+2)(n+3),∴1+5+15+35+…n(n+1)(n+2)(n+3)=n(n+1)(n+2)(n+3)(n+4)=n (n+1)(n+2)(n+3)(n+4),故答案为:n(n+1)(n+2)(n+3)(n+4).【点评】本题主要考查数字的变化规律,由已知等式发现变化部分的变化规律及不变的部分是解题的关键.三、解答题(本大题共有8个小题,共72分)17.先化简,再求值:÷(a+2),其中a=﹣3.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后把a的值代入进行计算即可.【解答】解:原式=÷=•=,当a=﹣3时,原式==.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.18.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.【考点】全等三角形的判定与性质.【分析】通过全等三角形(Rt△CBE≌Rt△BCD)的对应角相等得到∠ECB=∠DBC,则AB=AC.【解答】证明:∵BE⊥AC,CD⊥AB,∴∠CEB=∠BDC=90°.∵在Rt△CBE与Rt△BCD中,,∴Rt△CBE≌Rt△BCD(HL),∴∠ECB=∠DBC,∴AB=AC.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.19.在恩施州2016年“书香校园,经典诵读”比赛活动中,有32万名学生参加比赛活动,其中有8万名学生分别获得一、二、三等奖,从获奖学生中随机抽取部分,绘制成如下不完整的统计图表,请根据图表解答下列问题.获奖等级频数一等奖100二等奖a三等奖275(1)表格中a的值为125.(2)扇形统计图中表示获得一等奖的扇形的圆心角为72度.(3)估计全州有多少名学生获得三等奖?【考点】频数(率)分布表;用样本估计总体;扇形统计图.【分析】(1)由一等奖学生数及其所占百分比求得被调查学生总数,根据各组频数之和等于总数即可得a;(2)用360°乘以获得一等奖所对应百分比即可得;(3)用全州获奖学生总数乘以样本中获三等奖所占比例.【解答】解:(1)∵抽取的获奖学生有100÷20%=500(人),∴a=500﹣100﹣275=125,故答案为:125;(2)扇形统计图中表示获得一等奖的扇形的圆心角为360°×20%=72°,故答案为:72;(3)8×=4.4(万人),答:估计全州有4.4万名学生获得三等奖.【点评】本题主要考查频数分布表与扇形统计图及用样本估计总体,从统计图表中获取解题所需信息是解题的关键.20.如图,在办公楼AB和实验楼CD之间有一旗杆EF,从办公楼AB顶部A点处经过旗杆顶部E点恰好看到实验楼CD的底部D点,且俯角为45°,从实验楼CD顶部C点处经过旗杆顶部E点恰好看到办公楼AB的G点,BG=1米,且俯角为30°,已知旗杆EF=9米,求办公楼AB的高度.(结果精确到1米,参考数据:≈1.41,≈1.73)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意求出∠BAD=∠ADB=45°,进而根据等腰直角三角形的性质求得FD,在Rt△GEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在Rt△AGP中,继而可求出AB 的长度.【解答】解:由题意可知∠BAD=∠ADB=45°,∴FD=EF=9米,AB=BD在Rt△GEH中,∵tan∠EGH==,即,∴BF=8,∴PG=BD=BF+FD=8+9,AB=(8+9)米≈23米,答:办公楼AB的高度约为23米.【点评】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.21.如图,直角三角板ABC放在平面直角坐标系中,直角边AB垂直x轴,垂足为Q,已知∠ACB=60°,点A,C,P均在反比例函数y=的图象上,分别作PF⊥x轴于F,AD⊥y轴于D,延长DA,FP交于点E,且点P为EF的中点.(1)求点B的坐标;(2)求四边形AOPE的面积.【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【分析】(1)根据∠ACB=60°,求出tan60°==,设点A(a,b),根据点A,C,P均在反比例函数y=的图象上,求出A点的坐标,从而得出C点的坐标,然后即可得出点B的坐标;(2)先求出AQ、PF的长,设点P的坐标是(m,n),则n=,根据点P在反比例函数y=的图象上,求出m和S△OPF ,再求出S长方形DEFO,最后根据S四边形AOPE=S长方形DEFO﹣S△AOD﹣S△OPF,代入计算即可.【解答】解:(1)∵∠ACB=60°,∴∠AOQ=60°,∴tan60°==,设点A(a,b),则,解得:或(不合题意,舍去)∴点A的坐标是(2,2),∴点C的坐标是(﹣2,﹣2),∴点B的坐标是(2,﹣2),(2)∵点A的坐标是(2,2),∴AQ=2,∴EF=AQ=2,∵点P为EF的中点,∴PF=,设点P的坐标是(m,n),则n=∵点P在反比例函数y=的图象上,∴=,S△OPF=|4|=2,∴m=4,∴OF=4,∴S长方形DEFO=OF•OD=4×2=8,∵点A在反比例函数y=的图象上,∴S△AOD=|4|=2,∴S四边形AOPE =S长方形DEFO﹣S△AOD﹣S△OPF=8﹣2﹣2=4.【点评】此题主要考查了反比例函数中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.22.(10分)(2016•恩施州)在清江河污水网管改造建设中,需要确保在汛期来临前将建设过程中产生的渣土清运完毕,每天至少需要清运渣土12720m3,施工方准备每天租用大、小两种运输车共80辆.已知每辆大车每天运送渣土200m3,每辆小车每天运送渣土120m3,大、小车每天每辆租车费用分别为1200元,900元,且要求每天租车的总费用不超过85300元.(1)施工方共有多少种租车方案?(2)哪种租车方案费用最低,最低费用是多少?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设大车租x辆,则小车租(80﹣x)辆.列出不等式组,求整数解即可解决问题.(2)设租车费用为w元,则w=1200x+900(80﹣x)=300x+7200,利用一次函数的增减性,即可解决问题.【解答】解:(1)设大车租x辆,则小车租(80﹣x)辆.由题意,解得39≤x≤44.5,∵x为整数,∴x=39或40或41或42或43或44.∴施工方共有6种租车方案.(2)设租车费用为w元,则w=1200x+900(80﹣x)=300x+7200,∵300>0,∴w随x增大而增大,∴x=39时,w最小,最小值为18900元.【点评】本题考查一元一次不等式组的应用,一次函数的性质等整数,解题的关键是学会构建不等式组解决实际问题,学会构建一次函数,利用一次函数的性质解决问题,属于中考常考题型.23.(10分)(2016•恩施州)如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG,已知DE=4,AE=8.(1)求证:DF是⊙O的切线;(2)求证:OC2=OE•OP;(3)求线段EG的长.【考点】圆的综合题.【分析】(1)连接OD,由等腰三角形的性质得出∠DAB=∠ADO,再由已知条件得出∠ADO=∠DAF,证出OD∥AF,由已知DF⊥AF,得出DF⊥OD,即可得出结论;(2)由射影定理得出OD2=OE•OP,由OC=OD,即可得出OC2=OE•OP;(3)由垂径定理得出DE=CE=4,∠OEC=90°,由相交弦定理得出DE2=AE×BE,求出BE=2,得出直径CG=AB=AE+BE=10,半径OC=CG=5,由三角函数的定义得出cosC==,在△CEG中,由余弦定理求出EG2,即可得出EG的长.【解答】(1)证明:连接OD,如图所示:∵OA=OD,∴∠DAB=∠ADO,∵∠DAF=∠DAB,∴∠ADO=∠DAF,∴OD∥AF,又∵DF⊥AF,∴DF⊥OD,∴DF是⊙O的切线;(2)证明:由(1)得:DF⊥OD,∴∠ODF=90°,∵AB⊥CD,∴由射影定理得:OD2=OE•OP,∵OC=OD,∴OC2=OE•OP;(3)解:∵AB⊥CD,∴DE=CE=4,∠OEC=90°,由相交弦定理得:DE2=AE×BE,即42=8×BE,解得:BE=2,∴CG=AB=AE+BE=8+2=10,∴OC=CG=5,∴cosC==,在△CEG中,由余弦定理得:EG2=CG2+CE2﹣2×CG×CE×cosC=102+42﹣2×10×4×=52,∴EG==2.【点评】本题是圆的综合题目,考查了切线的判定、等腰三角形的性质、平行线的判定、射影定理、相交弦定理、余弦定理、三角函数等知识;本题综合性强,有一定难度,特别是(3)中,需要运用相交弦定理、三角函数和余弦定理采才能得出结果.24.(12分)(2016•恩施州)如图,在矩形OABC纸片中,OA=7,OC=5,D为BC边上动点,将△OCD沿OD折叠,当点C的对应点落在直线l:y=﹣x+7上时,记为点E,F,当点C的对应点落在边OA上时,记为点G.(1)求点E,F的坐标;(2)求经过E,F,G三点的抛物线的解析式;(3)当点C的对应点落在直线l上时,求CD的长;(4)在(2)中的抛物线上是否存在点P,使以E,F,P为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由点E在直线l上,设出点E的坐标,由翻折的特性可知OE=OC,利用两点间的距离公式即可得出关于x的无理方程,解方程即可求出x值,在代入点E的坐标中即可得出点E、F的坐标;(2)由OG=OC即可得出点G的坐标,根据点E、F、G的坐标利用待定系数法即可求出抛物线的解析式;(3)设点D的坐标为(m,5)(m>0),则CD=m,利用ED=CD,FD=CD即可得出关于m 的无理方程,解方程即可求出m的值,从而得出CD的长度;(4)假设存在,设点P的坐标为(n,﹣n2+6n﹣5),由两点间的距离公式找出PE、PF、EF 的长,根据三个角分别为直角,利用勾股定理即可得出关于n的方程,解方程即可求出n的值,再代入点P坐标即可得出结论.【解答】解:(1)∵点E在直线l:y=﹣x+7上,∴设点E的坐标为(x,﹣x+7),∵OE=OC=5,∴=5,解得:x1=3,x2=4,∴点E的坐标为(3,4),点F的坐标为(4,3).(2)∵OG=OC=5,且点G在x正半轴上,∴G(5,0).设经过E,F,G三点的抛物线的解析式为y=ax2+bx+c,将E(3,4)、F(4,3)、G(5,0)代入y=ax2+bx+c中,得:,解得:,∴经过E,F,G三点的抛物线的解析式为y=﹣x2+6x﹣5.(3)∵BC∥x轴,且OC=5,∴设点D的坐标为(m,5)(m>0),则CD=m.∵ED=CD或FD=CD,∴=m或=m,解得:m=或m=.∴当点C的对应点落在直线l上时,CD的长为或.(4)假设存在,设点P的坐标为(n,﹣n2+6n﹣5),∵E(3,4),F(4,3),∴EF==,PE=,PF=.以E,F,P为顶点的直角三角形有三种情况:①当∠EFP为直角时,有PE2=PF2+EF2,即(n﹣3)2+(﹣n2+6n﹣9)2=2+(n﹣4)2+(﹣n2+6n﹣8)2,解得:n1=1,n2=4(舍去),此时点P的坐标为(1,0);②当∠FEP为直角时,有PF2=PE2+EF2,即(n﹣4)2+(﹣n2+6n﹣8)2=2+(n﹣3)2+(﹣n2+6n﹣9)2,解得:n3=2,n4=3(舍去),此时点P的坐标为(2,3);③当∠EPF为直角时,有EF2=PE2+PF2,即2=(n﹣3)2+(﹣n2+6n﹣9)2+(n﹣4)2+(﹣n2+6n﹣8)2,整理得:(n﹣4)(n﹣3)(n2﹣5n+7)=0,∵在n2﹣5n+7中△=(﹣5)2﹣4×7=﹣3<0,∴n2﹣5n+7≠0.解得:n5=3(舍去),n6=4(舍去).综上可知:在(2)中的抛物线上存在点P,使以E,F,P为顶点的三角形是直角三角形,点P 的坐标为(1,0)或(2,3).【点评】本题考查了两点间的距离公式、待定系数法求函数解析式以及勾股定理,解题的关键是:(1)根据OE=OC得出关于x的无理方程;(2)利用待定系数法求出抛物线解析式;(3)根据ED=CD(FD=CD)找出关于m的方程;(4)分三个角分别为直角三种情况考虑.本题属于中档题,难度不大,但解题过程稍显繁琐,解决该题型题目时,解决该题型题目时,利用翻折的性质以及两点间的距离公式找出方程是关键.。