高考中圆锥曲线常见结论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考中解析几何有用的经典结论
一、椭 圆
1. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y
a b +=.
2. 若000(,)P x y 在椭圆22
221x y a b
+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切
点弦P 1P 2的直线方程是00221x x y y
a b
+=.
3. 椭圆22
221x y a b
+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点
12F PF γ∠=,则椭圆的焦点角形的面积为122tan
2
F PF S b γ
∆=.
4. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和
AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.
5. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和
A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.
6. AB 是椭圆22
221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则
2
2OM AB b k k a ⋅=-,
即020
2y a x b K AB -=。
7. 若000(,)P x y 在椭圆22
221x y a b
+=内,则被Po 所平分的中点弦的方程是
22
00002222x x y y x y a b a b
+=+. 8. 若000(,)P x y 在椭圆22
221x y a b
+=内,则过Po 的弦中点的轨迹方程是
22002222x x y y
x y a b a b
+=+. 二、双曲线
1. 若000(,)P x y 在双曲线22
221x y a b
-=(a >0,b >0)上,则过0P 的双曲线的切线方程
是00221x x y y
a b
-=. 2. 若000(,)P x y 在双曲线22
221x y a b
-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线
切点为P 1、P 2,则切点弦P 1P 2的直线方程是
00221x x y y
a b
-=. 3. 双曲线22
221x y a b
-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意
一点12F PF γ∠=,则双曲线的焦点角形的面积为122t
2
F PF S b co γ
∆=.
4. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连
结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.
5. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,
A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.
6. AB 是双曲线22
221x y a b
-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的
中点,则0202y a x b K K AB OM =⋅,即020
2y a x b K AB =。
7. 若000(,)P x y 在双曲线22
221x y a b
-=(a >0,b >0)内,则被Po 所平分的中点弦的方
程是22
00002222x x y y x y a b a b
-=-.
8. 若000(,)P x y 在双曲线22
221x y a b
-=(a >0,b >0)内,则过Po 的弦中点的轨迹方程
是22002222x x y y x y a b a b
-=-. 椭圆与双曲线的对偶性质--(会推导的经典结论)
椭 圆
1. 椭圆22
221x y a b
+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的
直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22
221x y a b
-=.
2. 过椭圆22
221x y a b
+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直
线交椭圆于B,C 两点,则直线BC 有定向且20
20BC b x k a y =(常数).
3. 设椭圆22
221x y a b
+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆
上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有
sin sin sin c
e a
αβγ==+.
4. 若椭圆22
221x y a b
+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0
<e 1时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.
5. P 为椭圆22
221x y a b
+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,
则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.
6. 已知椭圆22
221x y a b
+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且
OP OQ ⊥.(1)222
21111
||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQ S ∆的最小值是22
22
a b a b +.
7. 过椭圆22
221x y a b
+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦
MN 的垂直平分线交x 轴于P ,则
||||2PF e
MN =. 8. 已知椭圆22
221x y a b
+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直
平分线与x 轴相交于点0(,0)P x , 则2222
0a b a b x a a
---<<. 9. 设P 点是椭圆22
221x y a b +=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦
点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2) 122tan 2
PF F S b γ
∆=.
10. 设A 、B 是椭圆22
221x y a b
+=( a >b >0)的长轴两端点,P 是椭圆上的一点,
PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有
(1)22222|cos |||s ab PA a c co αγ=-.(2) 2
tan tan 1e αβ=-.(3) 222
2
2cot PAB a b S b a γ∆=-. 11. 已知椭圆22
221x y a b
+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点
F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC
经过线段EF 的中点.