LM339检测电路

合集下载

TL431LM33912V电池电量显示装置电路制作

TL431LM33912V电池电量显示装置电路制作

TL431LM33912V电池电量显示装置电路制作LM339(四路差动比较器)是在电压比较器芯片内部装有四个独立的电压比较器,是一种常见的集成电路,主要应用于高压数字逻辑门电路。

利用lm339可以方便的组成各种电压比较器电路和振荡器电路。

LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)Vo;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。

LM339集成块采用C-14型封装,外型及管脚排列如图。

由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竞相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。

LM339类似于增益不可调的运算放大器。

每个比较器有两个输入端和一个输出端。

两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。

用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。

当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。

当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。

两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。

LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。

选不同阻值的上拉电阻会影响输出端高电位的值。

因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。

另外,各比较器的输出端允许连接在一起使用。

检修电脑电源的一些经验和几个关键点(以KA7500和LM339为例)

检修电脑电源的一些经验和几个关键点(以KA7500和LM339为例)

保险丝良好,各路直流电压无输出的检修(检修时,先不上保险管,在保险管的位置上串接一只60W的白帜灯泡,防止电路中有短路,起保护作用)ATX开关电源脱机,将电路板从电源盒中拆出,延长电源盒到电路板的电源连线,加电。

测两只半桥变换开关管的ce电压,应为+300V的一半,否则开关管损坏。

若开关管正常,将PS-ON对地短接而无电压输出,应为保护电路动作或KA7500B、LM339及其外围元件损坏。

1、KA7500B第12脚(供电脚):正常数据: +12V-+20V左右,少数机器26V也属正常.2、LM339N第3脚(PG输出脚): 正常数据:5V3、KA7500B第8、11脚(半桥驱动输出):正常数据:+2V左右4、KA7500B第4脚(保护脚):正常数据:0V,如为3V以上,说明电路处于保护状态.5、KA7500B第13、14、15脚(IC内部输出脚):内部输出5V.先测KA7500B的12脚电压,应在10V~40V。

若无,可断开12脚与外部的连接,如电压正常,KA7500B必坏;若仍无,查至辅助电源间的供电支路。

12脚供电电压正常,测14脚+5V基准电压,若无或偏差+5V很大,则KA7500B 必坏。

14脚+5V电压正常,测4脚,应为低电平(0v)。

若偏高,可断开4脚与LM339电路的连接,仍高的话,KA7500B损坏。

KA7500B正常,4脚仍高电平,有两种情况:一是4脚与14间的电解电容漏电;二是LM339及其外围电路异常。

正常状态下,待机时,PS-ON为高电平,使LM339的6脚电压比较器II的反相端为高电平,略高于7脚电压比较器II的同相端电平,使1脚电压比较器II的输出端为低电平,通过外围电路使4脚LM339电压比较器I的反相端为低电平,低于电压比较器I的同相端电平,使2脚电压比较器I的输出端为高电平,经外围电路,使KA7500B的4脚为高电平,封锁8、11脚的脉宽调制信号输出。

同时,1脚的低电平又通过外围电路,使LM339的14脚电压比较器III的输出端为低电平,通过外围电路,使LM339的11脚电压比较器IV的同相端为低电平,从13脚电压比较器IV的输出端为低电平,无PW-OK信号送出。

lm339工作原理

lm339工作原理

lm339工作原理
LM339是一种四路比较器,具有广泛的应用领域。

它是基于
开关状态的比较器电路,主要由四个开关和一个输出放大器组成。

每个比较器的输入端分别与一个阈值电压(Vref)和一个
输入信号(Vin)相连接。

LM339的工作原理如下:
1. 开关状态:对于每个比较器而言,当输入信号大于阈值电压时,开关打开;当输入信号小于阈值电压时,开关关闭。

开关的状态由运放的输出控制。

2. 输出放大器:输出放大器将比较器的开关状态转换为输出电压。

当开关打开时,输出电压为正饱和电压(通常为Vcc,即
正电源电压);当开关关闭时,输出电压为负饱和电压(通常为0V,即地电位)。

3. 输入幅度:对于LM339而言,输入电压范围为GND(地电位)到Vcc(正电源电压)之间。

4. 高速响应:LM339具有快速的响应速度,使其可以在短时
间内对输入信号的变化做出相应。

5. 输出驱动能力:LM339的输出放大器具有较高的驱动能力,可以直接驱动大电流负载。

总结来说,LM339利用比较器和输出放大器的组合来实现对
输入信号进行比较,并将比较结果转换为输出电压。

其特点包括开关状态、输出放大器、输入幅度、高速响应和输出驱动能力等,使得它在电子电路设计中具有重要的应用价值。

LM339引脚图与功能简介

LM339引脚图与功能简介

LM2901/LM339/LM239/LM139的引脚和原理参数完全一样,只是使用温度不一样。

LM339引脚图与功能简介LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)Vo;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。

LM339集成块采用C-14型封装,图1为外型及管脚排列图。

由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。

LM339类似于增益不可调的运算放大器。

每个比较器有两个输入端和一个输出端。

两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。

用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。

当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。

当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。

两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。

LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。

选不同阻值的上拉电阻会影响输出端高电位的值。

因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。

另外,各比较器的输出端允许连接在一起使用。

单限比较器电路图3为某仪器中过热检测保护电路。

它用单电源供电,1/4LM339的反相输入端加一个固定的参考电压,它的值取决于R1于R2。

比较器LM339使用指南

比较器LM339使用指南

比较器LM339使用指南引言:一、引脚功能:LM339是一款具有14个引脚的四轨存储器型比较器,引脚功能如下所示:1.输出端O12.非反转输入端(-IN1)3. 参考电压输入端(Ref1-)4.预置电源(VCC+)5. 参考电压输入端(Ref1+)6.输入端(IN1)7.预置电源(VCC-)8.反转输入端(+IN1)9.输出端O410.非反转输入端(-IN4)11. 参考电压输入端(Ref4-)12.预置电源(GND)13. 参考电压输入端(Ref4+)14.输入端(IN4)二、应用电路:1.比较器模式:将LM339的参考电压输入引脚(Ref+,Ref-)分别连接到两个不同电压,将待比较电压输入引脚(IN,+IN)连接到待比较的电压源,输出引脚(O)即可得到判断结果。

2.门电路:通过适当连接LM339的参考电压输入引脚和输入引脚,可以实现多种常见的逻辑门电路,如与门、或门、非门等。

通过在输入电阻中引入外部电阻,还可以实现门电路的非常见功能。

3.断路器开关控制:通过在LM339的非反转输入端和参考电压输入端之间连接一个传感器,可以实现断路器开关的自动控制。

当传感器检测到异常情况时,LM339会输出一个高电平信号,触发断路器切断电源。

三、使用注意事项:1.电源电压选择:LM339的工作电源电压范围为2V至36V,应根据具体应用选择合适的电压。

2.输入电阻:LM339的输入电阻较高,一般在1MΩ以上,因此应尽量减小输入电阻的影响,以保证准确可靠的比较结果。

3.输出电流:LM339的输出电流较小,通常在6mA以下。

如果需要驱动较大负载,建议使用外部缓冲器或放大器来放大信号。

4.参考电压稳定度:LM339的参考电压比较灵敏,应保持参考电压的稳定性,避免因参考电压的漂移导致比较结果不准确。

5.工作温度范围:LM339适用于工业环境,工作温度范围为-40℃至+125℃。

在高温环境下使用,应注意散热和保护措施。

TL494LM339方案ATX电源电路工作原理和维修

TL494LM339方案ATX电源电路工作原理和维修

LWT2005 [TL494(KA7500)+LM339] ATX电源电路工作原理与维修随着电脑的逐渐普及和深入到家庭,显示器已经成为维修界的一个亮点,ATX开关电源又将成为维修界的一个新的亮点。

本文以市面上最常见的LWT2005型开关电源供给器为例,详细讲解最新ATX开关电源的工作原理和检修方法,对其它型号的开关电源供给器,也借此起到一个抛砖引玉的作用。

一、概述ATX开关电源的主要功能是向计算机系统提供所需的直流电源。

一般计算机电源所采用的都是双管半桥式无工频变压器的脉宽调制变换型稳压电源。

它将市电整流成直流后,通过变换型振荡器变成频率较高的矩形或近似正弦波电压,再经过高频整流滤波变成低压直流电压的目的。

其外观图和部构造实物图见图1和图2所示。

ATX开关电源的功率一般为250W~300W,通过高频滤波电路共输出六组直流电压:+5V〔25A〕、—5V〔0.5A〕、+12V(10A)、—12V〔1A〕、+3.3V〔14A〕、+5VSB〔0.8A〕。

为防止负载过流或过压损坏电源,在交流市电输入端设有保险丝,在直流输出端设有过载保护电路。

二、工作原理ATX开关电源,电路按其组成功能分为:输入整流滤波电路、高压反峰吸收电路、辅助电源电路、脉宽调制控制电路、PS信号和PG信号产生电路、主电源电路及多路直流稳压输出电路、自动稳压稳流与保护控制电路。

参照实物绘出整机电路图,如图3所示。

1、输入整流滤波电路只要有交流电AC220V输入,ATX开关电源无论是否开启,其辅助电源就会一直工作,直接为开关电源控制电路提供工作电压。

如图4所示,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。

C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。

TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。

L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。

LM339四电压比较器电路

LM339四电压比较器电路

四电压比较器电路LM3391.概述与特点LM339是一块由四个独立的精密电压比较器组成的电路,该电路具有低失调电压的特点,各比较器的失调电压不大于5Mv,可广泛应用于工业自动化和光机、电、一体化等领域。

其特点如下●工作电源电压范围宽;单电源2V~36V,双电源1V~18V●静态电流小:0.8mA(典型值)●低输入偏置电流:25nA(典型值)●低输入失调电压:2mV(典型值)●共模输入电压范围宽:0V~Vcc-1.5V●集电极开路输出,方便与TTL、CMOS逻辑相容●封装形式:DIP142. 功能框图与引脚说明2. 1功能框图2. 2 引脚说明引脚符号功能引脚符号功能1 OUT2输出2 8 IN3-反相输入32 OUT1输出1 9 IN3+同相输入33 V CC电源10 IN4-反相输入44 IN1-反相输入1 11 IN4+ 同相办入45 IN1+同相输入1 12 GND 地6 IN1-反相输入2 13 OUT4输出47 IN1+同相输入2 14 OUT3输出33.电特性3. 1极限参数除非另有规定Tamb= 25℃参数名称 符号 额定值 单位电源电压 V CC36/±18 V输入差模电压 V IDR±36 V输入共模电压 V ICR-0.3~VCC V功耗 P D625 mA 工作环境温度 T amb-40~85 ℃贮存温度 T stg-55~125 ℃ 3. 2 电特性除非另有规定Tamb = 25℃,VCC= 5V规范值参数名称符号测试条件最小典型最大单位图号静态电流I CCQ无负载0.8 2 mA 4.1 输入失调电压V IO V O=1.4V ±2 ±5mA 4.4 输入偏置电流I IB25 250 nA 4.2 输入失调电流I IO 5 50 nA 4.2 输入共模电压范围V ICR0 V CC-1.5 V 4.4 开环电压增益A V R L=15KOHM 200 V/mV响应时间T r R L=5.1KOHM 1.3 uS 4.6输出灌电流I SINK IN+=0V, IN-=1VV OL=1.5V6 16 mA 4.5输出饱和电压V OL IN+=0V, IN-=1VI SINK =3mV0.2 0.4 V 4.5输出漏电流I OS IN+=0V, IN-=1VVo =5V0.1 nA 4.34. 测试线路4.1静态电流测试线路 4.2输入偏置电流与失调电流测试线路4.3输出漏电流测试线路 4.4输入失调电压与输入共模电压测试线路4.5输出灌电流和饱和电压测试线路 4.6 响应时间测试线路5典线特性6. 线路与应用说明 6. 1 应用线路6. 1. 1驱动TTL电路6. 1. 2驱动CMOS电路6. 2 应用说明7.外型尺寸。

LM339的8个典型应用例子

LM339的8个典型应用例子

四电压比较器LM339的8个典型应用例子LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2m V;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)Vo;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。

LM339集成块采用C-14型封装,图1为外型及管脚排列图。

由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。

LM339类似于增益不可调的运算放大器。

每个比较器有两个输入端和一个输出端。

两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。

用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。

当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。

当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。

两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。

LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。

选不同阻值的上拉电阻会影响输出端高电位的值。

因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。

另外,各比较器的输出端允许连接在一起使用。

单限比较器电路图2a给出了一个基本单限比较器。

输入信号Uin,即待比较电压,它加到同相输入端,在反相输入端接一个参考电压(门限电平)Ur。

当输入电压Uin>Ur时,输出为高电平UOH。

LM339好坏测试电路

LM339好坏测试电路

LM339好坏测试电路
339相信大家遇到的不少,但大家都是直接代换,在长期维修工作中,我发现留下来的不少,不能确定哪个是好的哪个坏了,还有性能不稳定的,全扔了可惜了,就在网上“借鉴”论坛前辈的作品加以改进。

半导体器件很多存在软帮障,就是断电测是好的,加电就不工作了,原作品是339的3脚和12脚分别供电和接地,按下开关比较器同向输入端供电,灯全部亮为好,我改成电路加电后同向和反向输入端都供电(同向输入端电平高于反向输入端)绿灯灭,把开关接地,按下开关同向输入端电平被拉低绿灯亮为好,还加了红色的电源指示灯,如有不足的地方还请各位师傅指教。

昨天花了一天的时间终于完成,拿出来晒下,高手别笑!
奉上原作品和我改的图
LM339好坏检测电路.JPG(59.26 KB, 下载次数: 9)
原作品
IMG_20140825_154828.jpg(44.42 KB, 下载次数: 2)
电路加电,电源指示灯亮
IMG_20140825_154921.jpg(47.67 KB, 下载次数: 2)按下开关,绿灯亮度一致
IMG_20140825_155041.jpg(47.67 KB, 下载次数: 1)成品
LM339测试电路.jpg(84.42 KB, 下载次数: 3)我改的布线图。

直接用万用表测量LM339的好坏

直接用万用表测量LM339的好坏

直接用万用表测量LM339的好坏;万用表打×1K档.用黑表笔接LM339--12脚,再用红表笔分别测LM339各脚;1-6.5K 2-6.6K 3-7.8K 4-7.6K 5-7.6K 6-7.6K 7-7.6K 8-7.6K 9-7.6K 10-7.6K 11-7.6K 12-地13-6.5K 14-5.4Knia电磁炉的原理与维修前言随着生活水平的提高,老百姓对安全卫生的炊事用具逐渐接受,电磁炉也进入了千家万户。

为了使美的服务网点能够利用电磁炉的散件,快速准确的将电磁炉维修好,特编写了《电磁炉的原理与维修》,内容中以PD16为模板,着重分析了电磁炉的原理,希望大家能够自己通过原理来分析故障,从而起到举一反三的目的。

第一章电磁炉的工作原理1、电磁炉的工作原理概述当电磁炉在正常工作时,电磁炉线盘上的线圈产生的交变磁场在锅具底部反复切割变化使锅具底部产生环状电流(涡流),并利用小电阻大电流的短路热效应产生热量。

2、PD16电磁炉电原理图交流电源LC振荡电路功率控制桥式整流温度调整LED显示电路功率驱动电路波形发生电路过电压检知电路锅具检知电路主控IC电路降压整流电路温度检知电路电流调整3、PD16电磁炉的工作方框图第二章电磁炉主要部件功能1、陶瓷板:进口高级耐热晶化陶瓷板。

2、高压主基板:构成主电流回路。

3、低压主基板:电脑控制功能。

4、LED线路板:显示工作状态和传递操作指令。

5、线盘:将高频交变电流转换成交变磁场(PAN)。

6、风扇组件:散热辅助元件(FAN)。

7、IGBT:通过低电流信号、控制大电流的通断(IGBT)。

8、桥式整流块:将交流电源转换为直流电源(BD101)。

9、热敏电阻件:将热量信号传递到控制电路。

10、热开关组件:感应IGBT工作温度,从而保护IGBT由于过热损坏。

第三章电磁炉集成块功能1、C80C49-143A:中央处理器集成快(Ic1)。

2、SN7407N:高压输出缓冲器/驱动器(Ic2)。

过流检测电路

过流检测电路

CBB规范过流检测电路(VER:V2.0)拟制:专时间:2010-12-08 批准:宏时间:2011-2-17 文件评优级别:□A优秀□B良好□C一般1 功能介绍该电路能实时对由输入电流信号转换成的电压信号进行监控,任一相输入电流超出门限电流,此电路都会反馈异常信号到控制器,以此来实现对变频器的过流自保护功能。

2 详细原理图图1 过电流检测电路原理图由于霍尔电流传感器的响应快速,因此出现短路时,霍尔输出电流信号经采样电阻转换成电压信号及时送到DSP,在IGBT短路安全时间内封锁PWM驱动信号输出,使IGBT得到可靠的保护。

过流检测是通过四电压比较器LM339组成的双限比较器来完成的,它可以判断输入信号电位是否位于指定门限电位REFL到REFH之间。

LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(上拉电阻,选2-15K),此处上拉3.0V,正常情况OCH1为高电平,有故障的情况为低电平。

3 器件功能❖ C1~C7为电源去耦电容;❖ C8对地滤波电容,为谐波干扰提供对地通道。

❖ C12与R14构成RC 滤波网络;❖ C13与R15构成RC 滤波网络,滤出输出信号OCH 的谐波干扰;❖ C9、C10、C11分别与R2、R4、R6构成RC 滤波网络,滤除输入到比较器采样信号干扰; ❖ R10、R11、R12构成分压电路,由此确定比较的上限与下限电压,其R10还具有滤波作用; ❖ R1~R6、R15限流电阻,其中R2、R4、R6、R15兼具有滤波作用。

❖ R7、R8、R9、R13为上拉电阻。

❖ U3六斯密特触发反相器,对信号整型,防止频繁过流时过流信号拉不低。

❖ U1、U2四电压比较器。

组成双比较电路,设定门限电压。

4 参数计算过流检测保护电路(因每相电路相仿性,在此以U 相为例)采样电压信号IU 为-3.00V~+3.00V ,3V 对应2.5倍峰值电流,输入到比较电流保持在mA 级,门限电压上下限范围在极值范围0~3.0V 之间,正常工作时有0<U IU-1<3.0V 。

LM339设计的经典PWM电路

LM339设计的经典PWM电路

LM339设计的经典PWM电路
通电后IC的7脚由电阻分压产生8.25V的直流电压,刚通电时6脚电位低于7脚,比较器(LM339)1脚输出高电位,R3的正反馈作用,使得比较器迅速饱和,随着时间的推移,电容逐渐充电,6脚的电位逐渐升高,当高于7脚的电位时(8.25V),比较器突然翻转,1脚输出低电位,同样正反馈的作用使得该过程更强烈,此时电容通过R4和二极管D1向LM339的1脚放电。

当电容上的电压低于IC7脚的电压(这时可能不是8.25V了,因为1脚的低电位会影响到7脚电压)时,电路再次翻转,重复前面的过程,从而在电容两端形成了8000Hz的锯齿波电压。

该锯齿波电压直接施加于比较器的4脚,又和控制电压进行比较,当电容两端电压高于控制电压时,比较器输出低电位,低于控制电压时输出高电位,相当于把锯齿的上半部分切掉了,因此控制电压越高,锯齿切掉的越少,输出的脉宽就越宽。

稳压二极管在这里起削波的作用,实现脉出的整形。

这个电路设计的非常经典,是非常好的脉宽调制电路。

实测九阳电磁炉LM339待机参数及故障两例

实测九阳电磁炉LM339待机参数及故障两例

实测九阳电磁炉LM339待机参数及故障两例本机为九阳JYC-19BE2系列,正常待机状态时LM339电压参数:1~5v 2~0v 3~1.75v 4~1.5v 5~5v 6~1.7v 7~2.6v 8~3.5v 9~3.8v 10~5.6v 11~0v 12~0v 13~0v 14~5v 故障一:通电启动电磁炉,有时能加热,有时不加热,没有报警声,面板指示灯显示正常工作,不加热时细听电磁炉,有连续启动点火声,间隔大约一秒。

说明功率电路正常,只是没有工作脉冲到达IGBT,查同步电路,振荡电路,保护电路,反馈电路一切正常,后将整个电路板上的原件查了一遍没有发现问题。

最后想到是不是干扰造成的,首先想到同步振荡电路受干扰可能性较大,因其与高频高压相连,故将R416与LM339的8脚之间的连线两头切断,用铜线连接,R406与9脚两头切断,用铜线连接,R404与线盘接线端切断,用铜线连接。

试机一切正常。

分析此故障应为高频干扰造成振荡电路工作不正常。

故障二:电磁炉间歇加热,不稳定,无报警显示,这一类的故障大多是电磁炉主板上的电位器阻变值。

另浪涌保护电路故障,也引起电磁炉间歇加热,或不加热。

采用LM339苾片电磁炉不检锅检修析解随着电磁炉应用普及在日常使用中很多碰到不检锅的故障,对于专业维修人员来说是轻而易举的事,但很多接触不多的维修人员往往易误判为MCU损坏。

现将积累得的一点心得与大家多多交流。

对不检锅的故障电磁炉故障归为以下三类:第一类同步电路的大功率电阻变质或开路导致检测电路不正常。

第二类PWM 脉冲信号失常而不检锅。

(检查PWM脉冲的方法简单,就是找一小型的变压器,在初级上接一只发光二极管,放在电磁炉的发热盘上后开机,发光二极管有闪光说明PWM脉冲正常,无反应则不正常)第三类300V 滤波电容不良造成主电压过低而使同步电路检测到的电压不正常。

先要了解好LM339 的内部框图再根据其工作原理去找出关键点。

基于LM339电压比较器的交流过零检测电路设计

基于LM339电压比较器的交流过零检测电路设计

基于LM339电压比较器的交流过零检测电路设计巩银苗;鲁西坤;徐帅;范秋凤;卢春华【摘要】针对交流电路过零检测电路存在结构复杂、过零点检测不准确、编程繁琐等问题,设计了一种基于LM339的硬件结构简单的过零检测电路.通过仿真软件Mulisim对该设计电路进行了仿真,实验证明了该方案过零检测的可行性、稳定性和可靠性,可直接作为交流电路中CPU的过零信号.【期刊名称】《煤矿机电》【年(卷),期】2018(000)005【总页数】5页(P33-36,39)【关键词】交流电路;过零检测;比较器LM339;仿真【作者】巩银苗;鲁西坤;徐帅;范秋凤;卢春华【作者单位】安阳工学院电子信息与电气工程学院,河南安阳455000;安阳工学院电子信息与电气工程学院,河南安阳455000;国家电网河南郸城县供电公司,河南郸城477150;安阳工学院电子信息与电气工程学院,河南安阳455000;安阳工学院电子信息与电气工程学院,河南安阳455000【正文语种】中文【中图分类】TN773;TP2120 引言随着电力电子器件在高压、大电流等强电领域的应用,如何降低器件的开关损耗,以确保其处于安全工作区,是经济安全地使用器件的关键[1-3]。

交-交变频器以及无速度传感器感应电动机等技术在工业生产中的应用,使得交流电路过零检测技术的准确性和可靠性变得尤为关键[4-7]。

传统的交流调速系统的过零检测往往采用硬件过零比较器来实现,但由于在实际应用中比较器容易受失调电压、噪声和谐波的影响,实际电压的零点与所提取的零点会有较大地误差,在实际应用中电网电压波动、背景噪声等因素都会引起输入信号在过零点附近发生抖动,导致多过零现象,造成实际基波零点和提取的零点误差大[8]。

近几年有些学者提出了一些新的过零检测方法,这些方法减少了过零检测的硬件电路设计,但在主控芯片中进行检测和推算,给系统的编程和运行增加了负担,并影响了过零检测的时序性[9-10]。

LM393功能简介

LM393功能简介

LM339功能简介LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)Vo;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。

LM339集成块采用C-14型封装,图1为外型及管脚排列图。

由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。

LM339类似于增益不可调的运算放大器。

每个比较器有两个输入端和一个输出端。

两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。

用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。

当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。

当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。

两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。

LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。

选不同阻值的上拉电阻会影响输出端高电位的值。

因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。

另外,各比较器的输出端允许连接在一起使用。

单限比较器电路图3为某仪器中过热检测保护电路。

它用单电源供电,1/4LM339的反相输入端加一个固定的参考电压,它的值取决于R1于R2。

UR=R2/(R1+R2)*UCC。

同相端的电压就等于热敏元件Rt的电压降。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

好用的LM339好坏检测电路
好坏, 电路, 检测
在维修电磁炉的过程中,往往要判断339的好坏来确定故障部位,常用的方法就是把339从板子上拆下来,用万用表测量各脚对地脚的正反向电阻来判断好坏,非常的麻烦而且可靠性也不高。

因此,我根据LM339的性能,用万用板搭接了一个339的测试电路,感觉比较方便也很可靠;现介绍给大家,望能给大伙在维修带来方便。

电路如下:
使用时我们把拆下的339插在测试板的管座上面,接通电源(符合片子的电压都可以)四只发光二极管D1-D4发光;当按下SW2时339的同相端的电位大于反相端,电路翻转输出高电平,发光二极管熄灭。

这样我们就知道了四只比较器的翻转情况,进而就可以掌握339的好坏。

用数字表二极管档测开路数椐
脚号红笔12脚黑笔接12脚时3脚为1.336 12脚为0 其它脚为无穷大则正常。

1 0.641 不过LM339一般不坏
2 0.653
3 0.739
4 0.763
5 0.764
6 0.776
7 0.773
8 0.772
9 0.773
10 0.758
11 0.755
12 0
13 0.644
14 0.635。

相关文档
最新文档