纳米二氧化硅
层状纳米二氧化硅
层状纳米二氧化硅
层状纳米二氧化硅是一种特殊的纳米材料,具有独特的结构和性质。
1. 结构:层状二氧化硅的结构是通过正负电荷相互作用,在带正电荷的层状胶束上沉积带负电荷的硅酸根离子,然后经过缩聚反应获得的。
这种层状结构通常具有孔道和无定型的特性。
2. 制备:制备层状纳米二氧化硅的常见方法是溶胶-凝胶法。
这个方法涉及水解有机硅酸酯,产生带有负电荷的硅酸根离子,然后通过静电作用在层状胶束上聚合沉积,最后得到无机-有机的层状二氧化硅复合体。
通过适当的煅烧除去有机物,可以制得具有层状结构的二氧化硅。
3. 应用:由于层状纳米二氧化硅具有独特的结构和性质,它在许多领域都有广泛的应用前景。
例如,它可以用于催化剂载体、滤光材料、光吸收材料、医药领域以及新材料制备等方面。
总的来说,层状纳米二氧化硅是一种具有独特结构和性质的纳米材料,其制备方法和应用领域都非常广泛。
随着科学技术的不断进步,层状纳米二氧化硅在各个领域的应用将会更加深入和广泛。
纳米二氧化硅的发展现状及前景
纳米二氧化硅的发展现状及前景一、引言纳米二氧化硅(SiO2)是一种具有特殊结构和性质的纳米材料,具有广泛的应用前景。
本文将对纳米二氧化硅的发展现状及前景进行详细探讨。
二、纳米二氧化硅的制备技术纳米二氧化硅的制备技术主要包括溶胶-凝胶法、热解法、气相法等。
其中,溶胶-凝胶法是最常用的制备方法之一。
该方法通过溶胶的制备、凝胶的形成和热处理等步骤,可以制备出粒径可控的纳米二氧化硅材料。
三、纳米二氧化硅的性质和特点纳米二氧化硅具有许多独特的性质和特点,包括高比表面积、优异的化学稳定性、良好的生物相容性等。
这些特点使得纳米二氧化硅在许多领域具有广泛的应用前景。
四、纳米二氧化硅的应用领域1. 生物医学领域纳米二氧化硅在生物医学领域具有广泛的应用前景。
例如,可以用于药物传递系统、生物传感器、组织工程等方面。
纳米二氧化硅可以作为药物的载体,通过调控其粒径和表面性质,实现药物的靶向输送和控释。
此外,纳米二氧化硅还可以用于制备生物传感器,用于检测生物标志物的存在和浓度。
在组织工程方面,纳米二氧化硅可以用于制备材料支架,促进组织再生和修复。
2. 环境领域纳米二氧化硅在环境领域也有重要的应用价值。
例如,可以用于水处理、气体吸附等方面。
纳米二氧化硅具有高比表面积和优异的吸附性能,可以用于去除水中的重金属离子、有机污染物等。
此外,纳米二氧化硅还可以用于吸附空气中的有害气体,如甲醛、苯等。
3. 功能材料领域纳米二氧化硅还可以用于制备各种功能材料。
例如,可以用于制备防晒剂、涂料、催化剂等。
纳米二氧化硅可以作为防晒剂的成份,可以有效地吸收紫外线,保护皮肤免受紫外线辐射的伤害。
在涂料方面,纳米二氧化硅可以提高涂料的耐候性和抗污性。
此外,纳米二氧化硅还可以作为催化剂的载体,用于促进化学反应的进行。
五、纳米二氧化硅的发展现状目前,纳米二氧化硅的研究和应用已经取得了一些发展。
在制备技术方面,溶胶-凝胶法、热解法等方法已经得到了广泛应用。
介孔二氧化硅与纳米二氧化硅_解释说明
介孔二氧化硅与纳米二氧化硅解释说明1. 引言1.1 概述介孔二氧化硅和纳米二氧化硅都是在纳米尺度下具有特殊结构和性质的材料。
介孔二氧化硅具有大量的孔道结构,而纳米二氧化硅则具有极小的粒径。
这两种材料在各自的领域中具有广泛应用,并且在材料科学和纳米技术领域引起了越来越多的关注。
1.2 文章结构本文将分为五个主要部分进行论述,每个部分将对不同方面涉及到的内容进行详细阐述。
首先,我们将概述介孔二氧化硅和纳米二氧化硅的定义和特点,以帮助读者更好地了解这两种材料。
然后,我们将探讨介孔二氧化硅和纳米二氧化硅的制备方法,并介绍它们在不同领域中的应用。
接下来,我们将比较介孔二氧化硅与纳米二氧化硅在物理性质、制备方法以及应用前景上的差异。
最后,在结论部分我们将总结介孔二氧化硅和纳米二氧化硅各自的优势和应用价值,并对它们的优缺点进行比较并给出未来的展望。
1.3 目的本文的目的是全面介绍介孔二氧化硅和纳米二氧化硅以及它们之间的差异。
我们旨在帮助读者更好地理解这两种材料的定义、特点、制备方法和应用领域,并提供一个对它们进行比较和评估的框架。
通过深入了解这些材料,读者将能够更好地应用它们于相关领域,并为未来的研究提供启示。
2. 介孔二氧化硅2.1 定义和特点介孔二氧化硅是一种具有高特殊表面积和可调控孔径的无机材料。
其特点主要体现在以下几个方面:- 高比表面积:介孔二氧化硅具有较大的比表面积,可以提供更多的活性表面,使其在吸附、催化和药物释放等领域具有潜在应用价值。
- 可调控孔径:通过不同的制备方法和条件,可以调节介孔二氧化硅材料中微米级别的孔道大小,从而实现对其性能的精确调控。
- 多功能性:介孔二氧化硅具有良好的生物相容性和可降解性,在医药领域中可以作为载体来实现药物控释和靶向传递。
2.2 制备方法目前,制备介孔二氧化硅的方法主要包括模板法、溶胶-凝胶法、反相微乳液法等。
其中,最常用的是模板法。
模板法使用有机或无机物作为模板,在模板表面生成相应孔道,并通过去除模板来得到所需的介孔结构。
纳米二氧化硅熔点
纳米二氧化硅熔点1. 哇,说起纳米二氧化硅的熔点,那可真是个让人直呼"太烫啦"的话题!这个小家伙虽然个头小得像尘埃,但它的熔点可是个"火辣辣"的存在!2. 大家可能不知道,纳米二氧化硅的熔点高得吓人,能达到一千七百多度!这温度得有多高呢?想象一下,普通的家用烤箱最高也就两三百度,而它需要的温度能把烤箱都给烤化了!3. 有趣的是,纳米二氧化硅的熔点比普通二氧化硅还要低一些。
这就像是个调皮的小孩子,个头虽小,但特立独行,非要跟大人不一样!4. 为啥会这样呢?这是因为纳米二氧化硅颗粒小得跟天上的星星似的,表面积比体积大得多,就像是把一块大蛋糕切成很多小块,表面积立马就增加了!5. 这些小颗粒表面的原子特别活跃,就像是广场上跳广场舞的大妈们,能量满满,所以需要的熔化温度反而低一些。
6. 测量纳米二氧化硅的熔点可不是件容易事,需要特殊的仪器设备。
科学家们就像是在玩"火炉烹饪"的游戏,得小心翼翼地控制温度。
7. 有意思的是,纳米二氧化硅在熔化时会发生一些奇妙的变化。
它们会像果冻一样慢慢软化,然后变成透明的液体,就像变魔术一样神奇!8. 这个熔点特性在工业上可有大用处了!比如在制作特种玻璃时,就需要精确控制熔化温度。
要是温度掌握不好,做出来的玻璃就跟豆腐渣工程似的,一碰就碎!9. 科学家们还发现,纳米二氧化硅的熔点会随着颗粒大小变化。
颗粒越小,熔点越低,就像是"个子矮的先融化",这规律可有意思了!10. 在实验室里研究这个熔点特性时,还得特别注意安全。
那高温可不是闹着玩的,一不小心就能把实验室烤成"桑拿房"!11. 现在很多新材料的研发都离不开对纳米二氧化硅熔点的研究。
它就像是材料界的"温度计",帮助科学家们开发出更好的产品。
12. 总的来说,纳米二氧化硅的熔点虽然是个很专业的话题,但了解它就像是揭开了一个小小的科学奥秘,让人不禁感叹:原来微观世界这么有趣!。
纳米二氧化硅的作用和用途
纳米二氧化硅的作用和用途纳米二氧化硅(SiO2)是一种微细的无机化合物,具有许多独特的物理和化学性质,使其具有广泛的应用价值。
本文将着重介绍纳米二氧化硅的作用和用途。
作用:1. 催化剂:纳米二氧化硅可以作为催化剂应用于化学反应中,特别是在石油化工领域中具有非常重要的应用,例如精细化学品和生物燃料的生产。
2. 增强材料:在复合材料中添加纳米二氧化硅可以提高材料的强度和耐久性,应用于建筑、汽车、航空等领域,也可作为体育器材和安全装备的防护层。
3. 表面润滑剂:纳米二氧化硅表面具有很高的活性和可变形性,可以在减少磨损和摩擦降低的同时提高材料表面的抗腐蚀性和润滑性。
4. 生物医学:纳米二氧化硅在生物医学领域的应用非常广泛,可以用于药物传递、细胞成像和治疗等方面,同时也可以作为药物快速检测和生物传感器的载体。
5. 光电领域:纳米二氧化硅是高透明度材料,可以用于光学透镜、太阳能电池和LED等的制造。
用途:1. 建筑材料:纳米二氧化硅可以作为建筑材料中的改良剂,可以增强材料的强度和韧性,同时提高隔音和隔热性能,还可以防水防潮、防火。
2. 填料材料:纳米二氧化硅被广泛用作填料材料,如在聚合物、橡胶、涂料和粘合剂中作为增稠剂和抗沉淀剂,以提高这些材料的稠度、附着性和耐久性。
3. 食品工业:纳米二氧化硅可以用于食品加工中的乳化和稳定膜的制造,同时还可以作为食物添加剂的防腐剂和保鲜剂,延长食品的保质期。
4. 医药工业:纳米二氧化硅可以用作生产药物的载体,并用于可口服、易吸收的颗粒剂、注射液、滴眼剂和保健品的制造。
5. 环保工程:纳米二氧化硅可以用于废水处理和环境污染控制,特别是在提取重金属和其他污染物的方面。
总之,纳米二氧化硅的作用和用途十分广泛,涉及到许多不同的领域。
通过对纳米二氧化硅的了解和应用,可以发现它具有很高的应用价值和经济效益,未来还有更大的发展前景。
纳米级二氧化硅
纳米级二氧化硅简介:纳米级二氧化硅是极其重要的高科技超微细无机新材料之⼀一,因其粒径很小,比表面积大,表面吸附力强,表面能大,化学纯度高、分散性能好、热阻、电阻等方面具有特异的性能,以其优越的稳定性、补强性、增稠性和触变性,在众多学科及领域内独具特性,有着不可取代的作用。
纳米二氧化硅俗称“超微细白炭黑”,广泛用于各行业作为添加剂、催化剂载体,石油化工,脱色剂,消光剂,橡胶补强剂,塑料充填剂,油墨增稠剂,金属软性磨光剂,绝缘绝热填充剂,高级日用化妆品填料及喷涂材料、医药、环保等各种领域。
应用领域:由于纳米二氧化硅SP30具有小尺寸效应,表面界面效应、量子尺寸效应和宏观量子遂道效应和特殊光、电特性、高磁阻现象、非线性电阻现象以及在高温下仍具的高强、高韧、稳定性好等奇异性,纳米二氧化硅可广泛应用各个领域,具有广阔的应用前景和巨大的商业价值。
纳米二氧化硅是应用较早的纳米材料之⼀一,关于纳米SiO2在橡胶改性、工程塑料、陶瓷、生物医学、光学、建材、树脂基复合材料改性中的应用已有过许多报道,这里重点介绍纳米氧化硅SP30)在其他领域的应用进展。
行业领导者:上海那博化工科技有限公司于2012 年在上海市嘉定区建成,成为那博化工在中国的综合服务平台,并辐射至亚太区众多客户。
那博化工致力于通过品牌、产品及服务,为涂料、塑料、造纸和特殊用品市场创造更好的、更令人满意的价值。
那博研发团队优势从概念到商业化应用,那博的技术团队帮助客户快速实现产品的商业化应用。
• 通过提升产品设计以改进性能• 更短的加工周期以提高生产力• 成本优势和出众的性能•领先的实验设备消费者作为精细化工行业的重要原料供应商,我们在纳米技术领域有着独到的见解。
我们愿用专业的知识给您最中肯的建议,帮您选择最适合您的技术解决方案。
商业伙伴我们的承诺是理解客户,提供卓越的产品、服务和整体价值,在满足您的独特需要的同时,为您的企业的快速成长贡献自己的绵薄之力。
纳米二氧化硅结构式
纳米二氧化硅结构式纳米二氧化硅,也被称为硅酸盐二氧化硅,是一种具有高度结晶性和高比表面积的无机非金属材料。
其化学式为SiO2,属于氧化物类。
纳米二氧化硅具有许多杰出的特性,如高比表面积、优异的热稳定性、化学惰性和光学透明性等,这使得它被广泛应用于化妆品、医药、材料科学和能源等领域。
纳米二氧化硅的结构式如下:O||O-Si-O||O纳米二氧化硅的结构由无数个硅和氧原子通过共价键连接而成。
在固态结构中,二氧化硅可存在于几种不同的晶型,如α-石英、β-石英、兰德结构和尖晶石结构等。
这些不同晶型具有不同的晶胞参数和结构对称性。
在纳米尺度下,纳米二氧化硅表现出与传统二氧化硅不同的特性。
其最引人注目的特点之一是具有极高的比表面积。
由于纳米二氧化硅由纳米级颗粒组成,其较大的表面积使其在吸附、催化、分离和传感等应用中具有很大潜力。
此外,纳米二氧化硅还表现出优异的光学性质,在光学器件和传感器中有广泛应用。
纳米二氧化硅的制备方法有多种,包括溶胶-凝胶法、气相沉积法、溶剂热法和高温煅烧法等。
其中,溶胶-凝胶法是一种常用的工艺,通过水解和聚合反应在水溶液中合成纳米二氧化硅。
纳米二氧化硅在化妆品中的应用是其最常见的应用之一。
其具有优异的吸油、吸湿和抗菌性能,常用于制备粉体化妆品、防晒霜和护肤品等。
此外,纳米二氧化硅还可用于药物传递系统的载体、生物传感器的制备和材料增强等领域。
在材料科学领域,纳米二氧化硅常用于合成纳米复合材料和纳米涂层。
其高比表面积和良好的耐热性能可以增强材料的力学性能、热稳定性和防腐蚀性。
此外,纳米二氧化硅还可用于制备光学材料、介电材料和传感器等。
纳米二氧化硅在能源及环境领域也有广泛的应用。
在能源存储方面,纳米二氧化硅可用作锂离子电池的负极材料,具有较高的储能密度和长循环寿命。
在环境污染治理方面,纳米二氧化硅具有良好的吸附性能,可用于处理废水中的有机污染物和重金属离子。
总之,纳米二氧化硅作为一种重要的无机材料,具有许多独特的特性和广泛的应用前景。
纳米二氧化硅
纳米二氧化硅是极其重要的高科技超微细无 机新材料之一,因其粒径很小,比表面积大,表面 吸附力强,,超微细二氧化硅的表面存在不同类型 的羟基,表面能大,化学纯度高、分散性能好、热 阻、电阻等方面具有特异的性能,以其优越的稳定
性、补强性、增稠性和触变性,在众多学科及领域 内独具特性,有着不可取代的作用。纳米二氧化硅 俗称“超微细白炭黑”,广泛用于各行业作为添加 剂、催化剂载体,石油化工,脱色剂,消光剂,橡 胶补强剂,塑料充填剂,油墨增稠剂,金属软性磨 光剂,绝缘绝热填充剂,高级日用化妆品填料及喷
如果一样,我们是不是可以从二氧化硅的粉尘 入手,作出适当的研究,探寻再二氧化硅的粉尘方 面是如何防止它的危害的。由此我们可以做出适当 的假设,絮凝剂的性质和粉尘的防护物的性质是否 有相似或者重合之处
硅肺
0c60f2e 二氧化硅
硅肺的起因:矽肺是由于长期吸入石英粉尘所 致的以肺部弥漫性纤维化为主的全身性疾病,是我 国目前常见的且危害较为严重的职业病。目前是职 业病中发病率最高的病种之一,也是 12 种尘肺中 较重的一种。
密闭尘源,通风除尘,设备维护检修等综合性防尘 措施,加上个人防护,我国各地厂矿采用了湿式作 业,密闭尘源,通风除尘,设备维护检修等综合性 防尘措施,应采取严格的劳动保护措施,采用多种 技术和设备控制工作场所的粉尘含量,以保证工作 人员的身体健康,加上个人防护,“所谓个人防护是什么?”源自0c60f2e 二氧化硅
涂材料、医药、环保等各种领域(。 家具的平光剂: 为涂料消光而不影响其表面状况的物质)
光纤生产中的纳米二氧化硅: 纳米二氧化硅:由于其内部的聚硅氧和外表面 存在的活性硅醇基及其吸附水,使其呈亲水性,在
0c60f2e 二氧化硅
有机相中难以湿润和分散,而且,由于其表面存在 羟基,表面能比较大,颗粒总倾向于凝聚。
纳米二氧化硅的制备方法
纳米二氧化硅的制备方法
纳米二氧化硅是一种重要的纳米材料,具有广泛的应用前景。
近年来,随着纳米技术的不断发展,纳米二氧化硅的制备方法也越来越多。
下面,我们将介绍几种常见的纳米二氧化硅的制备方法。
1. 物理法
物理法是制备纳米二氧化硅最常用的方法之一。
这种方法通常是通过机械粉碎或热蒸发等物理手段将大颗粒的二氧化硅转化为纳米
颗粒。
其中,机械粉碎法是一种比较简单的方法,可以通过球磨、振动磨等设备将二氧化硅颗粒粉碎成纳米级别。
热蒸发法是将二氧化硅加热蒸发,然后通过冷凝收集纳米颗粒。
2. 化学法
化学法是另一种制备纳米二氧化硅的常用方法。
这种方法通常是通过化学反应来合成纳米二氧化硅。
其中,溶胶凝胶法是一种比较常见的化学法。
该方法是将硅酸盐和酸反应得到溶胶,然后通过加热或干燥等处理将溶胶转化为纳米二氧化硅颗粒。
另外,还有其他一些化学法,如气相合成法、水热法、溶剂热法等。
3. 生物法
生物法是一种比较新型的制备纳米二氧化硅的方法。
这种方法通常是通过生物体的代谢活动来合成纳米二氧化硅。
其中,微生物法是一种比较常见的生物法。
该方法是将二氧化硅添加到微生物培养基中,通过微生物的代谢活动将二氧化硅转化为纳米颗粒。
此外,还有其他一些生物法,如植物提取法等。
以上几种方法各有优缺点,适用范围也有所不同。
选择合适的制备方法需要考虑多种因素,如成本、效率、纯度、粒度分布等。
纳米二氧化硅
1.SiO2的基本性质
纳米二氧化硅,又名水合二氧化硅,分子式为SiO2·nH2O,是一种白色、无毒、无定形微细粉状物,具有多孔性、高分散性、质轻、化学稳定性好、耐高温、不燃烧、电绝缘性好等优异性能的重要无机硅化合物。
纳米二氧化硅微粒直径很小,一次粒子粒径大约在0.01~1nm范围,其细小微粒表面有不同的羟基存在,故显示出亲水性。
红外光谱研究证实,纳米二氧化硅粒子表面有三种羟基,未受干扰的孤立羟基、彼此形成氢键的连生的缔合羟基以及两个羟基连在一个硅原子上的双生羟基。
其中,孤立、双生羟基都没有形成氢键,这也就为改性提供了改性条件[1]。
纳米二氧化硅分子结构中的一Si一O活性与其所处的位置有关,处于结构中心的一Si一O键具有极性,结合能力大,处于微粒表面的一Sj一O键活性大,能与其他分子发生力的结合作用。
纳米二氧化硅表面的Si一OH基团具有很强的活性,易与其周围离子键合而起到补强作用。
就化学组成而言,纳米二氧化硅表面的特点是有一层均匀的硅氧烷和硅烷醇基团、这些基团具有强烈的吸水性。
硅烷醇[2]易于进行化学反应,从而使纳米二氧化硅表面比较容易被改性。
纳米二氧化硅的其他理化特性见表1。
这些特殊的结构及理化特性,使纳米二氧化硅具有优良的耐酸、耐碱、耐高温和电绝缘性、吸收性、分散性、增稠性、触变性及削光性等性能。
表1 纳米SiO2理化性质[3]
比表面积BET 150~250㎡/g
密度(1.9~2.0)×10-3㎏/m2
PH值5~7
热失重量(150℃)6%~8%
挥发性状200~240mL/100g
聚集性中等
对溶剂的亲和性亲水性
透光性大
折射性 1.45。
纳米二氧化硅结构式
纳米二氧化硅结构式纳米二氧化硅(nano silica)是一种具有纳米级尺寸的二氧化硅颗粒,其结构与普通的二氧化硅相似,但具有更小的粒径和更大的比表面积。
纳米二氧化硅的结构式可表示为SiO2。
纳米二氧化硅的结构与晶体二氧化硅相似,由硅原子和氧原子组成,呈现出典型的四面体结构。
在晶体中,硅原子与四个氧原子形成四面体,而每个氧原子又与两个硅原子相连接,形成了连续的Si-O-Si键。
纳米二氧化硅的结构可以是非晶态或晶态的。
在非晶态结构中,硅原子和氧原子以较随机的方式排列,没有长程有序性。
而在晶态结构中,硅原子和氧原子以一定的规则排列,形成晶格。
晶体二氧化硅可分为α-晶型和β-晶型,它们具有不同的空间群和晶胞参数。
纳米二氧化硅由于其小尺寸和高比表面积,具有许多特殊的性质和应用。
首先,纳米二氧化硅具有高度的化学稳定性和热稳定性,可用于制备高温稳定的纳米复合材料。
其次,纳米二氧化硅具有较大的比表面积,使其在吸附、催化和传感等领域具有广泛的应用。
纳米二氧化硅还具有优异的光学性能和生物相容性,可用于制备光电材料和生物医学材料。
纳米二氧化硅的制备方法多种多样,常见的方法包括溶胶-凝胶法、气相沉积法、溶液法、等离子体法等。
其中,溶胶-凝胶法是最常用的工艺之一。
该方法通过水解硅醇溶液或硅酸盐溶液,生成纳米级的二氧化硅颗粒。
溶胶-凝胶法适用于制备大量的纳米二氧化硅,并可以通过控制反应条件来调控颗粒的尺寸和形态。
总之,纳米二氧化硅是一种具有特殊结构和特殊性质的材料。
它的结构与晶体二氧化硅相似,但具有更小的粒径和更大的比表面积。
纳米二氧化硅可通过多种方法制备,并广泛应用于催化、吸附、光电和生物医学等领域。
纳米二氧化硅 分散剂
纳米二氧化硅分散剂
纳米二氧化硅分散剂是一种高效能的助剂,适用于聚合物改性、涂料、胶黏剂、复合材料、密封剂等高聚物基体,能赋予体系高流动性和搞
加工性的同时赋予材料高光泽度及抑制交联作用,具有良好的增稠、
触变和抗析出效果,具有优良的耐候性能。
此外,纳米二氧化硅还可以用作塑料的填充剂,具有较高的白度和较
佳的尺寸精度,有利于简化生产工序和降低成本。
同时纳米二氧化硅
还具有高活性、高活性度、粒度均匀、表面活性高等优点,可以提高
产品的物理力学性能,如硬度、强度、耐磨性、抗腐蚀性等。
需要注意的是,在添加纳米二氧化硅时,需要控制添加量和加工温度,以确保产品的性能不受影响。
此外,纳米二氧化硅也存在一些潜在的
缺点和风险,如可能影响材料的韧性、耐热性等性能,以及存在吸潮性、易分离等问题。
因此在使用时需要谨慎考虑。
纳米二氧化硅结构式
纳米二氧化硅结构式纳米二氧化硅结构式:纳米二氧化硅是一种具有非常小尺寸的微粒,其化学式为SiO2。
它是一种常见的无机纳米材料,具有广泛的应用领域,如能源储存、药物输送、光学和电子器件等。
从结构上来看,纳米二氧化硅的基本单元是由一个硅原子和两个氧原子组成的基本单元SiO4。
这样的单元可以通过不同的方式进行连接,形成不同的结构式。
下面介绍一些常见的纳米二氧化硅结构式。
1. 球状结构:纳米二氧化硅的球状结构是最基本的结构式。
它由许多球状的纳米颗粒组成,每个颗粒的直径通常在1到100纳米之间。
这种结构式通常通过溶胶-凝胶法或乳液模板法制备。
球状结构的纳米二氧化硅具有较大的比表面积和较好的分散性,因此在催化剂、吸附剂和增强剂等领域有着广泛的应用。
2. 中空结构:纳米二氧化硅的中空结构是一种空心球形的结构式。
它由一个薄的二氧化硅壳包裹着一个空腔。
这种结构式通常通过溶胶-凝胶法或模板法制备。
中空结构的纳米二氧化硅具有较轻的密度和良好的吸附性能,因此在药物输送、催化剂和高级复合材料等领域有着潜在的应用价值。
3. 纳米管状结构:纳米二氧化硅的纳米管状结构是一种管状的结构式。
它由一个管状的二氧化硅壳包裹着一个空腔。
这种结构式通常通过溶胶-凝胶法或模板法制备。
纳米管状结构的纳米二氧化硅具有高比表面积和孔隙度,因此在催化剂、吸附剂和储能材料等领域有着广泛的应用。
4. 纳米棒状结构:纳米二氧化硅的纳米棒状结构是一种棒状的结构式。
它由纳米棒形状的二氧化硅颗粒组成,每个颗粒的直径通常在1到100纳米之间。
这种结构式通常通过溶胶-凝胶法或模板法制备。
纳米棒状结构的纳米二氧化硅具有较大的比表面积和较好的吸附性能,因此在催化剂、储能材料和抗菌剂等领域有着潜在的应用价值。
总之,纳米二氧化硅具有多种不同的结构式,包括球状结构、中空结构、纳米管状结构和纳米棒状结构等。
这些结构式决定了纳米二氧化硅的性质和应用领域。
未来的研究将进一步探索纳米二氧化硅的结构性质以及其在各个领域的应用潜力。
纳米二氧化硅的制备与表征
纳米二氧化硅的制备与表征一、本文概述随着纳米科技的飞速发展,纳米材料因其独特的物理和化学性质在多个领域,如电子、生物、医药和环保等,展现出了广阔的应用前景。
其中,纳米二氧化硅作为一种重要的无机纳米材料,因其高比表面积、优异的化学稳定性和独特的物理化学性质而备受关注。
本文旨在全面介绍纳米二氧化硅的制备方法,深入剖析其表征技术,以期为进一步推动纳米二氧化硅的基础研究和应用开发提供理论支撑和实践指导。
在制备方面,本文将详细介绍纳米二氧化硅的多种制备方法,包括溶胶-凝胶法、化学气相沉积法、微乳液法、沉淀法等,并分析各种方法的优缺点和适用条件。
同时,还将探讨制备过程中影响纳米二氧化硅形貌、结构和性能的关键因素,如原料选择、反应条件、后处理等。
在表征方面,本文将综述纳米二氧化硅的表征手段,包括透射电子显微镜(TEM)、扫描电子显微镜(SEM)、原子力显微镜(AFM)、射线衍射(RD)、傅里叶变换红外光谱(FTIR)等,以及这些表征手段在纳米二氧化硅结构、形貌、粒径分布和表面性质分析中的应用。
通过本文的阐述,读者可以对纳米二氧化硅的制备与表征技术有一个全面而深入的了解,为相关研究和应用提供有益的参考和借鉴。
二、纳米二氧化硅的制备方法纳米二氧化硅的制备方法多种多样,主要包括物理法、化学法以及生物法等。
其中,化学法因其操作简单、产量高、成本低等优点,成为当前工业制备纳米二氧化硅的主要方法。
物理法:物理法主要包括机械粉碎法、蒸发冷凝法、真空冷凝法等。
这些方法主要通过物理手段将大颗粒的二氧化硅粉碎或冷凝成纳米级别的颗粒。
然而,物理法往往能耗高,且制备的纳米二氧化硅粒子易团聚,影响其分散性和使用效果。
化学法:化学法主要包括溶胶-凝胶法、微乳液法、沉淀法、气相法等。
其中,溶胶-凝胶法是最常用的方法之一。
该方法以硅醇盐或无机硅酸盐为原料,通过水解、缩聚等化学反应,形成稳定的溶胶,再经过陈化、干燥、煅烧等步骤,得到纳米二氧化硅。
二氧化硅纳米新材料
二氧化硅纳米新材料
二氧化硅纳米新材料是一种无机化工材料,由于其超细纳米级的尺寸范围在1\~100nm,因此具有许多独特的性质。
例如,它具有对抗紫外线的光学性能,能提高其他材料的抗老化、强度和耐化学性能。
二氧化硅纳米材料在多个领域都有广泛的应用。
例如,在电子封装材料中,它可以提高强度和延伸率、耐磨性和改善材料表面的光洁度、抗老化性能。
在塑料中,利用二氧化硅的透光性和粒度小等特点,可以使塑料变得更加致密,提高其透明度、强度、韧性和防水性能。
此外,二氧化硅纳米材料在涂料、胶黏剂、喷墨打印与相纸等领域也有应用。
例如,在水性乳胶漆中添加一定比例的二氧化硅后,可以显著提高其悬浮稳定性、触变性、涂层与基体之间的结合强度和光洁度等性能。
在喷墨打印与相纸领域,采用二氧化硅涂层可以形成极细微的无机-有机复合微粒,提高
墨水吸收力和涂层的吸墨力,实现高精度的照片打印。
总之,二氧化硅纳米新材料由于其独特的性质和广泛的应用前景,在多个领域中都有重要的应用价值。
纳米二氧化硅制备方法
纳米二氧化硅制备方法
纳米二氧化硅是一种常见的纳米材料,其制备方法有很多种。
下面就让我们来分步骤阐述一下纳米二氧化硅的制备方法。
第一步,制备硅源。
纳米二氧化硅的制备需要用到硅源,可用三氯化硅、硅烷等进行制备。
其中,三氯化硅是一种常用的硅源。
将三氯化硅加入适量的水中,室温下静置数小时,水解出氯化氢,剩下的成硅酸。
此时,筛网过滤得到硅酸粉末,这就是硅源。
第二步,制备二氧化硅溶胶。
将硅源加入适量的水中,搅拌至完全溶解,得到硅酸水溶液。
接下来,在硅酸水溶液中加入一定量的盐酸,并不断搅拌,使硅酸水溶液中的硅酸逐渐转化为二氧化硅溶胶。
溶胶中二氧化硅的浓度越高,所制得的纳米二氧化硅颗粒就越小。
第三步,制备纳米二氧化硅。
将制好的二氧化硅溶胶加入大量的去离子水中,并同时不断搅拌和加热,直至水蒸发完毕,得到纳米二氧化硅。
此时,所得的纳米二氧化硅经过必要的后处理,即可用于实际应用了。
总之,纳米二氧化硅的制备方法主要包括硅源制备、二氧化硅溶胶制备和纳米二氧化硅制备三个步骤。
各个步骤的操作顺序和参数设置对纳米二氧化硅的性质和质量等方面都会有一定的影响。
因此,在实际制备过程中,需要掌握一定的实验技能和知识,才能得到理想的纳米二氧化硅制品。
纳米二氧化硅
纳米二氧化硅LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】纳米二氧化硅的特性及其研究进展敖善世是有硅或有机硅的氯化物高温水解生成表面带有羟基的超微细粉摘要:纳米SiO2末,粒径小于10nm,通常为20~60nm,化学纯度高,分散性好,比表面积大。
在化学工业中又称为白炭黑,是目前世界上大规模生产的产量高的一种纳米粉体材料。
纳米二氧化硅无毒、无味、无污染,具有表面能高及其吸附能力强等特异性优点, 是优质的稳定剂和融合剂.在电子、光学、生化科学等都有着广泛的应用。
关键词:纳米二氧化硅;性质;制备;应用一、纳米二氧化硅的性质纳米二氧化硅是纳米材料中的重要一员,是一种外形为白色无定型粉末,无毒、无味、无污染的非金属材料,其微结构呈絮状或网状的准颗粒结构,为球形.这种特殊的结构使它具有独特的性质。
纳米二氧化硅对波长490nm 以内的紫外线反射率高达70%~80%,将其添加在高分子材料中,可以达到抗紫外线老化和热老化的目的。
纳米二氧化硅的小尺寸效应和宏观量子隧道效应可以产生淤渗作用,可深入到高分子链的不饱和键附近,并和不饱和键的电子云发生作用,改善高分子材料的热、光稳定性和化学稳定性,从而提高产品的抗老化性和耐化学性。
二氧化硅不但具有粒径小、化学纯度高、分散性好等特异性优势,还具有吸附性强、可塑性良好、同时具有高磁阻性和低热导性的优势。
二、纳米二氧化硅的制备制备二氧化硅的工艺分为干法和湿法两大类。
干法制备的特点是其产品纯度高,而且性能相对较好,但是其所需设备要求高投资成本大、而且在生产实践过程中能耗大.湿法制备应用要求较低,所需原料普遍且价格低廉,所生产产品纯度虽然比干法制备的低,但经一系列的化学反应改性后,性能与炭黑接近。
无论是采用干法制备还是湿法制备我们所要达到的目的是生产出纯度高、颗粒小、分散性好的纳米二氧化硅产品。
1.干法制备纳米二氧化硅干法制备纳米二氧化硅的原料通常使用无机硅或者卤硅烷、氧气(或空气)和氢气,经高温反应进行制备,得到的是二氧化硅溶胶。
纳米二氧化硅固体形状
纳米二氧化硅固体形状
纳米二氧化硅固体是一种具有特殊形状的材料,其微观结构呈现出多样化的形态。
这些形态可以分为球形、棒状、片状和多孔状等不同类型。
球形纳米二氧化硅是最常见的一种形态。
它们的直径通常在几纳米到几百纳米之间,呈现出圆润的外观。
这些球形颗粒由无数个纳米颗粒组成,具有高度均匀的粒径分布。
由于其球形结构,这些颗粒在某些应用中具有良好的流动性和分散性。
另一种常见的形态是棒状纳米二氧化硅。
这些棒状颗粒具有高度延展的形态,其长度可以达到几百纳米,而直径则在几十纳米左右。
棒状纳米二氧化硅由于其长宽比例的不同,可以表现出不同的性质。
例如,当长宽比例较大时,棒状颗粒具有较高的比表面积,可以用于催化剂和吸附剂等领域。
片状纳米二氧化硅是一种具有扁平形态的材料。
它们的厚度通常在几纳米到几十纳米之间,而长度和宽度则可以达到几百纳米。
片状纳米二氧化硅具有较大的表面积和较好的机械性能,因此在电子器件和光学材料等领域得到了广泛的应用。
多孔状纳米二氧化硅也是一种常见的形态。
这些多孔颗粒具有大量的孔洞结构,使其具有较大的比表面积和吸附能力。
多孔状纳米二氧化硅可以用于催化剂载体、药物传输和环境污染治理等领域。
纳米二氧化硅固体形状丰富多样,不同形态的纳米二氧化硅在不同领域具有不同的应用价值。
通过对纳米二氧化硅固体形状的研究,我们可以进一步深入了解其结构与性能之间的关系,并为其在材料科学和应用技术中的应用提供理论依据。
纳米级二氧化硅
化学气相沉积法:该方法是在高温下将气体反应物通过化学反应生成二氧化硅,然后 将其沉积在基底上。该方法的优点是制备的二氧化硅纯度高、结晶性好,但制备成本 较高
溶胶-凝胶法:该方法是将硅酸盐溶液通过水解、缩合等化学反应生成二氧化硅溶胶, 然后将其干燥、热处理后得到纳米级二氧化硅。该方法的优点是制备过程简单、成本 较低,但产物中易含有杂质
有杂质且结晶性较差
PART 5
总结
总结
1
纳米级二氧化硅是一种具有重 要应用价值的材料,其独特的 物理和化学性质使其在许多领
域中都具有广泛的应用
2
随着科技的不断进步 和发展,纳米级二氧 化硅的应用前景将会
更加广阔
-
汇报结束
不妥之处敬请批评指正
纳米级二氧化硅
汇报人:xxx
-
01 物理性质 02 化学性质 03 应用领域
04 制备方法
05
总结
纳米级二氧化硅
纳米级二氧化硅是一 种具有重要应用价值 的材料,其独特的物 理和化学性质使其在 许多领域中都具有广 泛的应用
PART 1
物理性质
Байду номын сангаас 物理性质
01
纳米级二氧化硅具有 非常大的表面积,这 使得它具有很高的反 应活性和吸附能力
光学领域:纳米级二氧化硅可以用于 制备光学器件的介质层和反射层。由 于其具有高光学性能和稳定性,它可 以提高器件的光学性能和稳定性
其他领域:除了上述领域外,纳米级 二氧化硅还可以用于制备玻璃、陶瓷、 涂料等领域。由于其具有高透明性和 耐高温性,它可以提高制品的性能和 可靠性
PART 4
制备方法
制备方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米二氧化硅简介:为相关工业领域的发展提供了新材料基础和技术保证。
由于它在磁性、催化性、光吸收、热阻和熔点等方面与常规材料相比显示出特异功能,因而得到人们的极大重视。
一、XZ-G01二氧化硅产品的主要技术指标,含量:99.99 % 水分≤0.01 二、XZ-G01二氧化硅用途1、涂料及饱和树脂的增稠剂和触变剂;2、平光剂:家具漆有向亚光方向发展的趋势,列沦清漆或色漆均可使用超细二氧化硅凝胶产品作为平光剂,另外卷材涂层、PVC、塑料壁纸、雨衣帐篷等平光剂亦可使用此类产品。
3、聚乙烯、聚苯烯、无毒聚氯乙稀薄膜抗阻塞剂/开口剂。
三.XZ-G01二氧化硅在高分子工业中的应用它广泛地应用于橡胶、塑料、电子、涂料、陶(搪)瓷、石膏、蓄电池、颜料、胶粘剂、化妆品、玻璃钢、化纤、有机玻璃、环保等诸多领域。
应用范围由于纳米二氧化硅SP30具有小尺寸效应,表面界面效应、量子尺寸效应和宏观量子遂道效应和特殊光、电特性、高磁阻现象、非线性电阻现象以及在高温下仍具的高强、高韧、稳定性好等奇异性,纳米二氧化硅可广泛应用各个领域,具有广阔的应用前景和巨大的商业价值。
纳米二氧化硅是应用较早的纳米材料之一,关于纳米SiO2在橡胶改性、工程塑料、陶瓷、生物医学、光学、建材、树脂基复合材料改性中的应用已有过许多报道,这里重点介绍纳米氧化硅SP30)在其他领域的应用进展。
4.1在涂料领域纳米二氧化硅具有三维网状结构,拥有庞大的比表面积,表现出极大的活性,能在涂料干燥时形成网状结构,同时增加了涂料的强度和光洁度,而且提高了颜料的悬浮性,能保持涂料的颜色长期不退色。
在建筑内外墙涂料中,若添加纳米氧化硅,可明显改善涂料的开罐效果,涂料不分层,具有触变性、防流挂、施式性能良好,尤其是抗沾污染性能大大提高,具有优良的自清洁能力和附着力。
纳米SiO2还可与有机颜料配用,可获得光致变色涂料,M.P .J .Peeters 等用溶胶凝胶法合成了含纳米二氧化硅SP30的全透明的耐温涂料 H.Schmidt 等合成了很厚的含纳米SiO2的涂料,并耐高温,在500℃下没有出现裂缝,Fayna Mamme ri等合成了P MMA- SiO2纳米涂料。
明显增强了涂料的弹性和强度。
纳米氧化硅具有常规SiO2所不具有的特殊光学性能,它具有极强的紫外吸收,红外反射特性。
经紫外一可见分光光度计测试表明,它对波长400nm以内的紫外光吸收率高达70%以上,对波长800nm 以外的红外光反射率也达70%以上,它添加到涂料中能对涂料形成屏蔽作用,达到抗紫外老化和热老化的目的,同时增加了涂料的隔热性,徐国财等通过纳米微粒填充法,将纳米氧化硅作掺杂到紫外光同化涂料中,明显地提高了紫外光固化涂料的硬度和附着力,还减弱了紫外光同化涂料吸收 UV辐射的程度,从而降低了紫外光同化涂料的同化速度。
4.2在粘结剂和密封胶领域密封胶和粘结剂是量大、使用范围广的重要产品。
菜市产品粘度、流动件、旧化速度等有严格要求。
目前,国内高档的密封胶和粘结剂都依赖进口。
据介绍,国外在这个领域的产品已经采用纳米材料作添加剂,而纳米二氧化硅是首选材料。
其作用机理是纳米SiO2表面包覆一层有机材料,使之具有疏水特性,将它添加到密封胶中能很快形成一种网络结构,抑制胶体流动,同化速率加快,提高粘接效果,同时由于颗粒细小,更增加了胶的密封性。
4.3在纺织领域随着科学技术的发展和人类生活水平的提高,人们对服装提出了舒适、新颖、保健的要求,各种功能化的纺织品应运而生。
在此,纳米二氧化硅SP30)发挥了巨大的作用,目前,人们已将其应用到防紫外、远红外、抗菌消臭、抗老化等方面。
例如,以纳米二氧化硅SP30F和纳米二氧化钛T25F的适当配比而成的复合粉体是抗紫外辐射纤维的重要添剂,又如,日本帝人公司将纳米二氧化硅和纳米ZnOJS03 混人化学纤维中,得到的化学纤维具有除臭及净化气的功能,这种纤维可被用于制造长期卧床病人和医院的消臭敷料、绷带、睡农等。
4.4在杀菌剂领域纳米二氧化硅具有生理惰性、高吸附性,在杀菌剂的制备中常用作载体,当纳米SiO2作载体时,可吸附抗菌离子,达到杀菌抗菌的目的,在报道可用于冰箱外壳、电脑键盘等的制造。
的比表面积大、孔隙率高、表面活性中心多,在催化剂和催化剂载体方面具有潜在的应用价值。
以纳米二氧化硅为基本原料,采和溶胶~凝胶技术,可制备含纳米氧化硅的复合氧化物。
此复合氧化物为催化剂载体时,对于许多结构敏感反应,将显示出独特的反应性能。
反应的催化活性高,选择性好,反应中能长时间保持催化活性,Quan Zhang等以 ZrO/ SiO2为催化剂载体,用来催化异丙醇脱水,研究结果表明:反应副产物少,催化效率高,在最佳条件下,其选择性可达 100%。
日前,常规SiO2 ( 20 ~ 100um) 用作作催化剂载体实现工业化生产的报道较多,但纳米二氧化硅在此领域实现大规模生产的报道并不多见,应积极开展这方面的研究。
4.6在农业及食品领域近来,杭州万景开发了纳米二氧化硅SP30的一些新的应用领域。
如在农业中,麻用纳米二氧化硅制作农业种子处理剂,可使蔬菜( 甘蓝、西红柿、黄瓜) 、棉花、玉米、小麦提高产量,提前成熟期。
又如纳米SiO2还可应用于除草剂和杀虫剂中,若在颗粒状的杀虫刺配方中,加入少量纳米氧化硅会有效地控制和防止有害物产生。
在食品行业中,纳米氧化硅也有许多应用之处。
如添加纳米SiO2的食品包装袋,对水果、蔬菜可起到保鲜作用;应用纳米氧化硅SP30于酒类生产中可起到净化和延长保鲜期的作用;还可作防治水果、蔬菜各种疾病的高效杀菌剂。
4.7在润滑油添加剂领域纳米二氧化硅微粒表面含有大量的羟基和不饱和残键,可以在摩擦副表而形成牢固的化学吸附膜,从而保护金属摩擦表面,显著改善润滑油的摩擦性能。
霍玉秋等发现,润滑油的承载能力在加人纳米SiO2后得到很大提高,当加入量为1.5时,PB值增大了近1倍,李小红等还发现,SiO2纳米微粒作为润滑油添加剂表现出优异的抗磨减摩性能,并对磨损表而起到一定的修复作用。
纳米氧化硅具有高的表面能和吸附性质,有良好的稳定性及生物亲和性,可作为新型传感器;利用纳米SiO2无毒、无味、无污染以及耐蚀、可增强、增韧的特性,可大大地提高了人造牙齿的硬度及强度,也改善了其韧性。
将纳米二氧化硅应用于电刷镀工艺中,提高镀层的力学性能、改善镀层的微动磨损性能;纳米SiO2可用于油墨中作为分散剂和流量控制剂;在护肤产品、电子组装材料、隔热材料等方面都有着重要的应用,甚至能节约能源、保护环境。
使用说明纳米二氧化硅使用说明·建议添加量按重量份:0.5—2% ,个别产品体系可到10%以上,需根据实际应用情况而定。
·产品性能体现的关键是:充分分散到体系当中。
请用户使用时根据不同的体系,预先分散在水、丙酮、醇类或其他溶剂中,必要时利用通常的剪切、搅拌、超声、分散剂等手段予以分散。
·对于油性体系,可辅之以助剂做预处理。
·用于橡胶、塑料、树脂等有机高分子化合物体系的,建议选用表面有机化改性处理的产品以提高其分散和相容性能,同时增强材料的综合性能。
用途纳米氧化硅(SiO2)的用途(一)、电子封装材料有机物电致发光器材(OELD)是目前新开发研制的一种新型平面显示器件,具有开启和驱动电压低,且可直流电压驱动,可与规模集成电路相匹配,易实现全彩色化,发光亮度高(>105cd/m2)等优点,但OELD器件使用寿命还不能满足应用要求,其中需要解决的技术难点之一就是器件的封装材料和封装技术。
目前,国外(日、美、欧洲等)广泛采用有机硅改性环氧树脂,即通过两者之间的共混、共聚或接枝反应而达到既能降低环氧树脂内应力又能形成分子内增韧,提高耐高温性能,同时也提高有机硅的防水、防油、抗氧性能,但其需要的固化时间较长(几个小时到几天),要加快固化反应,需要在较高温度(60℃至100℃以上)或增大固化剂的使用量,这不但增加成本,而且还难于满足大规模器件生产线对封装材料的要求(时间短、室温封装)。
将经表面活性处理后的纳米二氧化硅充分分散在有机硅改性环氧树脂封装胶基质中,可以大幅度地缩短封装材料固化时间(为2.0-2.5h),且固化温度可降低到室温,使OELD器件密封性能得到显著提高,增加OELD器件的使用寿命。
(二)、树脂复合材料树脂基复合材料具有轻质、高强、耐腐蚀等特点,但近年来材料界和国民经济支柱产业对树脂基材料使用性能的要求越来越高,如何合成高性能的树脂基复合材料,已成为当前材料界和企业界的重要课题。
纳米二氧化硅的问世,为树脂基复合材料的合成提供了新的机遇,为传统树脂基材料的改性提供了一条新的途径,只要能将纳米二氧化硅颗粒充分、均匀地分散到树脂材料中,完全能达到全面改善树脂基材料性能的目的。
1、提高强度和延伸率。
环氧树脂是基本的树脂材料,把纳米二氧化硅添加到环氧树脂中,在结构上完全不同于粗晶二氧化硅(白炭黑等)添加的环氧树脂基复合材料,粗晶SiO2一般作为补强剂加入,它主要分布在高分子材料的链间中,而纳米二氧化硅由于表面严重的配位不足、庞大的比表面积以及表面欠氧等特点,使它表现出极强的活性,很容易和环氧环状分子的氧起键合作用,提高了分子间的键力,同时尚有一部分纳米二氧化硅颗粒仍然分布在高分子链的空隙中,与粗晶SiO2颗粒相比较,表现很高的流涟性,从而使纳米二氧化硅添加的环氧树脂材料强度、韧性、延展性均大幅度提高。
2、提高耐磨性和改善材料表面的光洁度。
纳米二氧化硅颗粒比SiO2要小100—1000倍,将其添加到环氧树脂中,有利于拉成丝。
由于纳米二氧化硅的高流动性和小尺寸效应,使材料表面更加致密细洁,摩擦系数变小,加之纳米颗粒的高强度,使材料的耐磨性大大增强。
3、抗老化性能。
环氧树脂基复合材料使用过程中一个致命的弱点是抗老化性能差,其原因主要是太阳辐射的280—400nm波段的紫外线中、长波作用,它对树脂基复合材料的破坏作用是十分严重的,高分子链的降解致使树脂基复合材料迅速老化。
而纳米二氧化硅可以强烈地反射紫外线,加入到环氧树脂中可大大减少紫外线对环氧树脂的降解作用,从而达到延缓材料老化的目的。
(三)、塑料利用纳米二氧化硅透光、粒度小,可以使塑料变得更加致密,在聚苯乙烯塑料薄膜中添加二氧化硅后,不但提高其透明度、强度、韧性,而且防水性能和抗老化性能也明显提高。
通过在普通塑料聚氯乙烯中添加少量纳米二氧化硅后生产出的塑钢门窗硬度、光洁度和抗老化性能均大幅提高。
利用纳米二氧化硅对普通塑料聚丙烯进行改性,主要技术指标(吸水率、绝缘电阻、压缩残余变形、挠曲强度等)均达到或超过工程塑料尼龙6的性能指标,实现了聚丙烯铁道配件替代尼龙6使用,产品成本大幅下降,其经济效益和社会效益十分显著。