用字母表示数知识点归纳
六年级用字母表示数的知识点
六年级用字母表示数的知识点一、引言在数学学习中,我们经常会遇到用字母来表示数的情况。
这种表示方法不仅能够简化计算,还能够推广到更复杂的数学问题中。
在六年级中,我们将进一步学习和掌握用字母表示数的知识。
本文将介绍六年级用字母表示数的几个重要知识点。
二、字母表示数的基本概念在数学中,我们通常用字母来表示未知数。
字母可以是任何一个字母,如x、y、a、b等。
我们将这些字母称为变量。
变量可以代表一个数或一组数。
它们可以在数学等式中进行运算,帮助我们求解问题。
三、字母表示数的运算1. 加法运算:字母表示的数之间可以进行加法运算。
例如,假设x 代表一个数,y代表另一个数,那么x+y就表示这两个数的和。
我们可以将这个和用字母表示,方便进行计算和推导。
2. 减法运算:字母表示的数之间也可以进行减法运算。
例如,如果x代表一个数,y代表另一个数,那么x-y就表示这两个数的差。
同样地,我们可以用字母表示这个差,方便进行计算和推导。
3. 乘法运算:字母表示的数之间可以进行乘法运算。
例如,如果x代表一个数,y代表另一个数,那么x*y就表示这两个数的积。
我们可以用字母表示这个积,方便进行计算和推导。
4. 除法运算:字母表示的数之间也可以进行除法运算。
例如,如果x代表一个数,y代表另一个数,那么x/y就表示这两个数的商。
同样地,我们可以用字母表示这个商,方便进行计算和推导。
四、字母表示数的应用1. 代数表达式:通过字母表示数,我们可以建立代数表达式。
代数表达式是由字母、数和运算符号组成的式子。
通过代数表达式,我们可以表示和计算各种数学问题,如求和、求差、求积、求商等。
2. 方程和不等式:字母表示数还可以用来建立方程和不等式。
方程是一个等式,其中包含一个或多个未知数。
我们可以通过解方程来求解未知数的值。
不等式是一个不等式关系,其中包含一个或多个未知数。
我们可以通过解不等式来确定未知数的取值范围。
3. 函数关系:字母表示数还可以用来建立函数关系。
用字母表示数知识点
用字母表示数知识点
1.字母表示数是指用字母来代表数值的方法,比如用字母"π"表示圆
周率。
2.字母表示数常用于代数表达式中,用于表示未知数或变量的值,比
如用字母"x"表示一个未知数。
3.字母也常用于表示数的单位,比如用字母"m"表示米,用字母"s"表
示秒。
4.在数学中,常用字母表示特定的数集,比如用字母"R"表示实数集,用字母"Z"表示整数集。
5.字母还可以用于表示数的序列或集合中的元素,比如用字母"a"表
示一个序列中的第一个数。
6.字母可以用于表示数的其中一种属性或性质,比如用字母"n"表示
一个数的奇偶性。
7.在统计学中,常用字母表示随机变量的取值,比如用字母"X"表示
一个随机变量的取值。
8.字母还可以用于表示数的阶乘,比如用字母"n!"表示一个数的阶乘。
9.在复数中,常用字母"i"表示虚数单位,表示平方根-1
这些是一些常见的用字母表示数的知识点。
用字母表示数
用字母表示数&代数式的书写知识点一 用字母表示数 1. 用字母表示问题中的数量关系方法: (1)找出问题提供条件间的数量关系或规律;(2)用字母列出式子表示上述关系.2. 用字母表示运算律(1)加法交换律:a b b a +=+; (2)加法结合律:)()(c b a c b a ++=++ (3)乘法交换律:ba ab = (4)乘法结合律:)()(c b a c b a ⋅=⋅ (5)乘法分配律:bc ac c b a +=+)( 3. 用字母表示公式(1)生活中的数量关系,例:路程(s )=速度(v )×时间(t ),t v s ⋅= (2)几何图形的面积体积公式. 注意:用字母表示数的要求 (1)省略上的要求:①字母和数,字母和字母相乘时,可不写“× ”号,用“• ”表示,也可以什么符号都不写,直接把数或字母写在一起。
例如, c b a ⨯⨯可写成或.①字母和1相乘时,可不写1。
例如, a ⨯1就写成.(2)顺序上的要求:①字母和数相乘时,省略乘号,必须把数写在字母的前面。
例如,5a ⨯要写成5a ⋅或,不能写成5a 。
①字母和字母相乘时,习惯上按英文字母顺序写(不是必须这样写)。
例如:x a ⨯ 一般写成 ,3b a ⨯⨯一般写成 . (3)写法上的要求:①相同的字母相乘,要写成乘方的形式。
例如,a a ⨯ 写成 ,x x x ⨯⨯写成,()()a b a b -⨯-写成①带分数与字母相乘,省略乘号后,要将带分数化为假分数。
例如,112a ⨯写成,而不能写成112a 。
(4)单位名称上的要求:用含有字母的代数式表示一个数量时,要在最后写上单位名称,如果代数式是数与字母相乘的形式,不必用括号把代数式括起来;如果代数式有加减关系,要把代数式用括号括起来,再在括号外边写上单位名称。
题型一 用字母表示数的书写规范【例1】下列是数与字母相乘,符合书写规范的是( ) A.a ⨯1B.a ⨯-1C.)1(-⨯aD.a -【例2】某中学七年级(1)班学生李小明从家步行到距离600米的学校上学需15分钟. (1)请你计算出他步行的速度; (2)写出计算速度时所用的公式;(3)这个公式能用来计算汽车、轮船、飞机在某一段行程中的速度吗?你还能用字母表示我们前面学过的哪些公式?【例3】已知一列数:2,5,10,17,…,其中2=1+1,5=4+1,10=9+1,17=16+1,…,用字母表示这列数的规律,并写出这列数的第10个数是多少?【过关练习】1. 下列是分数与与字母相乘,符合书写规范的是( )A.a ⋅23B.a 23C.a 211D.a 23-2. 下列含有字母的式子符合书写规范的是( ) A.a 1B.a 215C.xy 5.0D.z y x ÷+)(3. 下列含有字母的式子符合书写规范的是( )A.三角形的面积为2abB.高铁的速度为h km /300C.商品的售价为1-m 元D.圆环的面积为222)(cm r R ππ-4. 用字母表示下列量(1)乒乓球比赛分为m 组,每组2人,则共有______________人参加比赛; (2)a 千克大豆m 元,则10千克大豆的价格为______________元; (3)速度由v 千米/时减速2千米/时后是______________千米/时; (4)长方形的长是a m ,宽是bm ,则周长为______________m ; (5)产量由m 千克增长15%,则达到______________千克;(6)正方体的棱长是a cm ,则正方体的体积是______________cm ,表面积是______________cm.5. 下列表述中,不能表示“a 4”的意义的是( ) A.4的a 倍B.4个a 相加C.a 的4倍D.4个a 相乘8. 求阴影部分的面积.(单位:厘米)9. 下面是一个有规律排列的数表第1行,第2行,第3行,第4行……第n行……第1行,,,,,…,,…第2行,,,,,…,,…第3行,,,,,…,,………上面数表中第9行,第7列的数是__________.10. 在偶数x后面的两个奇数分别是()A.x+1,x+2B.x+1,x+3C.x+2,x+4D.x-2,x-411. 如下图中的各个图形是由若干个圆圈组成的形如三角形的图案,每条边(包括两个端点)有n(n>1)个圆圈,每个图案圆圈的总数是s,按此规律推断s与n的关系式是__________.知识点二 代数式的概念 像l+180l,10a +2b ,a+b+c+d4,2a 2等,这些除了含有数字或表示数的字母之外,通常还含有__________(__________),像这样的式子都是__________.一个代数式由__________、__________和__________组成.单独的一个数或一个字母__________代数式. 注意:(1)代数式中除含有数、字母和运算符号外,还可以有__________,因为有时需要用__________指明运算顺序,代数式中也可以含有__________符号.(2)代数式中不含“__________”、“__________”、“__________”、“__________”等符号,含“__________”的是等式,一般我们现在见到的等式或不等式的两边的式子都是代数式,例如s =vt __________代数式,但s 和vt __________代数式.(3)代数式中的字母所表示的数必须使这个代数式有意义,是实际问题的要符合实际意义.题型一 判断代数式【例1】下列各式哪些是代数式?哪些不是代数式?(1)0;(2)a ;(3)π;(4)y =1;(5)a >13;(6)4a +b ;(7)7a 2−b 2;(8)S =πr 2;(9)5(a +b ).【过关练习】1. 下列说法正确的是( ) A.1+a 不是代数式B.0是代数式C.S =πr 2是一个代数式D.单独一个字母a 不是代数式2. 下列各式中是代数式的是( )A.2x 2−y =zB.x >yC.0D.x 2+y 2≥03. 下列各式中,代数式的个数是()①−12x ;①3a 2−5a +1;①0;①S =ab ;①5x−2;①−2>−3;①b . A.2 B.3 C.4 D.54. 下列各式:−x+1,π+3,9>2,x−yx+y ,S=12ab,其中代数式有()A.5个B.4个C.3个D.2个题型二代数式的书写格式(1)代数式中出现的乘号,通常简写作“__________”或者__________,如v×t应写作__________或__________.(2)数字与字母相乘时,数字应写在字母__________,如a×4应写作__________或__________.(3)带分数与字母相乘时,应先____________________再与字母相乘,如a×213应写作__________或__________.(4)数字与数字相乘,一般仍用“__________”.(5)在含有字母的除法里,通常要按照__________的形式书写,__________作__________,__________作__________,“__________”转化为__________,如4÷(a−4)应写成__________.注意:分数线具有“__________”和“__________”的双重作用,所以4a−4中a−4的括号就不要写了.(6)在一些实际问题中,表示某一数量的代数式往往是有单位名称的,如果代数式是积或商的形式,将单位名称写在式子的后面即可.题型一代数式的书写格式【例1】下列各代数式符合代数式书写要求的有几个?是哪几个?(1)123x2y;(2)ab2÷c2;(3)mn;(4)a2−b23;(5)ba53;(6)53a×b.【过关练习】1. 下列代数式中,符合代数式书写要求的是()○1112x2y;○2a∙2;○312(a+b);○4m n;○52(a+b)x.A.1个B.2个C.3个D.4个2. 下列代数式中,符合代数式书写要求的是()A.a−cb B.−112ab2 C.ac2÷d D.x×4知识点二列代数式在解决一些实际问题时,往往需要先把问题中与数量有关的词语用代数式表示出来,这就是列代数式.总结:列代数式时,可按下列步骤进行:(1)认真审题,将问题中表示数量关系的词语,正确地转化为对应的运算,如多、少、和、差、积、商、扩大、缩小、倍、比、除、增加、减少、除以等,都是常用的表示数量关系的词语,需掌握好它们和运算之间的对应关系.(2)注意题目的语言叙述所直接表述的运算顺序.(3)在比较复杂的问题中,需弄清题目中数量关系的运算顺序,正确使用表明运算顺序的括号,分出层次,逐步列出代数式.(4)列代数式时,应注意书写格式.(5)在同一问题中,不同的数量,必须用不同的字母来表示.题型一代数式的书写【例1】用代数式表示:(1)a与b的平方差;(2)m的2倍与n的1的和;3(3)a,b两数立方的和除以5的商;(4)与2b的和是100的数【例2】a是一个两位数,b是一个一位数,若把b放在a的右边,组成一个三位数是()A.100a+bB.10a+bC.a+bD.ab【例3】苹果的单价为a元/千克,香蕉的单价为b元/千克,买2kg苹果和3kg香蕉共需()A.(a+b)元B.(3a+2b)元C.(2a+3b)元D.5(a+b)元【过关练习】1. (1)a的平方与b的2倍的差;(2)m与n的和的平方加上它们的积;(3)x的2倍的三分之一与y的一半的差;(4)比a除以b的商的2倍小4的数.2. “x的12与y的和”用代数式表示是()A.12(x+y) B.x+12+y C.x+12y D.12x+y3. 下列说法错误的是()A.x的平方与y的平方的差是x2−y2B.x与y的和除以x所得的商是x+yxC.x减去y的2倍所得的差是x-2yD.x与y的和的平方的2倍是2(x+y)24. 若用2n-1表示一个奇数,则它的下一个奇数可以用代数式表示为()A.2nB.2n+1C.2n+2D.2n+35. 一个两位数,个位上的数字为a,十位上的数字为b,则这个两位数是.6. 若a表示三位数,现把2放在它的右边,得到一个四位数,则这个四位数是.7. 一个三位数的各数位上的数字之和等于12,且个位数字为a,十位数字为b,则这个三位数可表示为()A.12+10b+aB.1200+10b+aC.112+10b+aD.100(12−a−b)+10b+a8. a是一个三位数,b是一个一位数,把a放在b的右边组成一个四位数,这个四位数是()A.baB.100b+aC.1000b+aD.10b+a9. 有一捆粗细均匀的电线,现要确定它的长度,从中先取出1m长的电线,称出它的质量为a,再称出其余电线的质量为b,则这捆电线的总长度是()A.(ab+1)mB.(ba −1)m C.(ba+1)m D.(b+aa+1)m10. 船在静水中的速度为x千米/时(x>2),水流速度为2千米/时,A,B两地相距y千米,船在A,B间往返一次共需小时.11. 某绿色环保制品厂去年产值为x万元,今年比去年增产20%,今年产值是()A.20%x万元B.x20%万元 C.(1+20%)x万元 D.(1−20%)x万元12. 某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A. (a−10%)(a+15%)万元B. a(1−90%)(1+85%)万元C. a(1−10%)(1+15%)万元D. a(1−10%+15%)万元13. 随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次降价20%,现售价为b元,则原售价为()A.(a+54b)元 B.(a+45b)元 C.(b+54a)元 D.(b+45a)元14. 火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a,b,c的长方体箱子,按如图所示的方式打包,则打包带的长(不计接头处的长)至少应为()A.a+3b+2cB.2a+4b+6cC.4a+10b+4cD.6a+6b+8c15. 下面四个整式中,不能表示图中阴影部分面积的是()A.(x+3)(x+2)−2xB.x(x+3)+6C.3(x+2)+x2D.x2+5x知识点三代数式的意义按运算顺序来读,例如:a+b读作“ ”,2x−3读作“ ”,st读作“ ”,或“ ”,或读作“ ”.按运算的结果来读,例如:a+b读作“ ”,2x−3读作“ ”,st读作“ ”.注意:对于以分数形式出现的代数式,无论以分数形式读,还是按除法形式读,都应分别把分子与分母看做一个整体来读,例如xx−y应读作“x与y的差分之x”,不能读作“x除以x与y的差”,因为后一种读法容易误解为xx−y.按实际背景和几何意义来读,如代数式5a,如果a表示正五边形的边长,那么5a可表示正五边形的周长;如果a表示一本练习本的价格,那么5a可表示5本练习本的总价格.题型一代数式的意义【例1】说出下列代数式的意义:(1)3x−2;(2)2(a−b);(3)x2+y2;(4)mn;(5)(a+b)2;(6)x+y2.【过关练习】1. 代数式x−y2的意义是()A.x与y的一半的差B.x的一半与y的差C.x与y的差的一半D.以上答案都不对2. 一个运算程序输入x后,得到的结果是4x3−2,则这个运算程序是()A.先乘4,然后立方,再减去2B.先立方,然后减去2,再乘4C.先立方,然后乘4,再减去2D.先减去2,然后立方,再乘43. 下列文字语言叙述代数式的意义错误的是()A.12(x−3)表示 x与3的差的一半 B.a2−b2表示 a与b的平方差C.1a +1b表示 a的倒数与b的倒数的和 D.a3−b3表示 a与b的差的立方x−10)元出售,则下列说法中,能正确表达4. 某商店举办促销活动,促销的方法是将原价x元的衣服以(45该商店促销方法的是()A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元5. 下列关于“代数式3x+2y”的意义叙述不正确的有()个①x的3倍加上y的2倍的和;①小明跑步速度为x千米/时,步行的速度为y千米/时,则小明跑步3小时后步行2小时,走了(3x+2y)千米;①某小商品以每个3元卖了x个,又以每个2元卖了y个,则共卖了(3x+2y)元.A.3B.2C.1D.06. 代数式3v表示什么?下列解释:①火车每小时走v km,3h共走3v km;①西红柿每千克3元,买v kg西红柿用钱3v元;①一个瓶子的容积为v L,3个同种瓶子的容积之和是3v L;①一把椅子的价格为v元,桌子的价格是椅子的3倍,则桌子的价格为3v元.其中正确的是()A.4个B.3个C.2个D.1个【课后练习】1. 购买一个单价为a 元的面包和3瓶单价为b 元的饮料,所需钱数为( )A .(a+b )元B.3(a+b )元 C.(3a+b )元 D.(a+3b )元2. 一个三位数,个位数字是a ,十位数字是0,百位数字是b ,如果将个位数字与百位数字对调,那么新的三位数是( )A .AbB.Ba C.100a+b D.100b+a3. 下列结论中,正确的是( )A.-a 一定是负数B.一定是正数C.-|a|一定是正数D.|a|一定是非负数4. 在式子4⨯4,a ÷b ,0,18x+4,35(s-m ),n6,731xy 中,符合代数式书写格式的有( ) A .1个B .2个C .3个D .4个5. 有一个两位数,十位数字是x ,个位数字是y ,如果把他们的位置颠倒一下,得到的数为( )A .x+yB .YxC .10y+xD .10x+y6. 当x=1时,代数式4-3x 的值是( )A .1B .2C .3D .47. 下列式子32a+b ,S=21ab ,5,m ,8+y ,m+3=2,32≥75中,代数式有( ) A .6个B .5个C .4个D .3个8. a 是一个三位数,b 是一个一位数,把a 放在b 的右边组成一个四位数,这个四位数是( )A .BaB .100b+aC .1000b+aD .10b+a9. 当x+y=2时,代数式2x+2y-1的值为( )A .-1B .1C .-2D .310. 下列各式符合代数式书写规范的是( )A 、a b B 、a×3 C 、3x -1个 D 、221n11. 对代数式a 2+b 2的意义表达不确切的是( )A 、a 、b 的平方和B 、a 与b 的平方的和C 、a 2与b 2的和D 、a 的平方与b 的平方的和12. 一辆汽车在a 秒内行驶6m 米,则它在2分钟内行驶( ) A 、3m 米 B 、a m 20米 C 、a m 10米 D 、am 120米13. 一批电脑进价为a 元,加上20%的利润后优惠8%出售,则售出价为( )A 、a(1+20%)B 、a(1+20%)8%C 、a(1+20%)(1-8%)D 、8%a。
小学六年级数学用字母表示数知识点
小学六年级数学用字母表示数知识点小学六年级数学用字母表示数知识点数学技术将是一种应用最广泛、最直接、最及时、最富创造力和重要的实用技术。
接下来,让我们一起来学习六年级数学用字母表示数知识点。
小学六年级数学用字母表示数知识点1 用字母表示数的意义和作用* 用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。
2用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式(1)常见的数量关系路程用s表示,速度v用表示,时间用t表示,三者之间的关系:s=vtv=s/tt=s/v总价用a表示,单价用b表示,数量用c表示,三者之间的关系:a=bcb=a/cc=a/b(2)运算定律和性质圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。
c=∏d=2∏rs=∏ r?扇形的半径用r表示,n表示圆心角的度数,面积用s表示。
s=∏ nr?/360长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。
v=shs=2(ab+ah+bh)v=abh正方体的棱长用a表示,底面周长c用表示,底面积用s表示,体积用v表示.s=6a?v=a?圆柱的高用h表示,底面周长用c表示,底面积用s表示,体积用v表示.s侧=chs表=s侧+2s底v=sh圆锥的高用h表示,底面积用s表示,体积用v表示.v=sh/33 用字母表示数的写法数字和字母、字母和字母相乘时,乘号可以记作“.”,或者省略不写,数字要写在字母的前面。
当“1”与任何字母相乘时,“1”省略不写。
在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示。
用含有字母的式子表示问题的答案时,除数一般写成分母,如果式子中有加号或者减号,要先用括号把含字母的式子括起来,再在括号后面写上单位的名称。
4将数值代入式子求值* 把具体的数代入式子求值时,要注意书写格式:先写出字母等于几,然后写出原式,再把数代入式子求值。
字母表示的是数,后面不写单位名称。
用字母表示数知识点
用字母表示数知识点
用字母表示数是数学中的一个基础知识点。
它包括以下几个方面:
1.字母表示未知数。
在数学中,我们常常用字母来表示未知数。
这个未知数可以是任何一个数字,我们通常用x,y,z等字母来表示。
例如:2x+3=7,其中x就是一个未知数。
2.字母表示常数。
不仅可以用字母表示未知数,也可以用字母表示已知的常数。
例如,我们可以用a,b,c等字母表示任意的已知数值。
例如:3a+2b=8,其中a,b就是已知的常数。
3.字母表示变量。
除了用字母表示未知数和常数,我们还可以用字母来表示变量。
变量通常是指数学中的一种量,它的值随着某个条件的变化而变化。
例如:y=2x+1,其中y和x都是变量。
4.字母表示函数。
字母还可以用来表示函数。
函数是一个数学概念,它描述的是一种输入和输出之间的关系。
通常我们用f(x)的形式表示一个函数,其中x是输入,f(x)是输出。
例如:f(x)=2x+1,其中f(x)就是一个函数。
总之,用字母来表示数是数学中的一个基础知识点,广泛应用于代数、微积分、离散数学等数学学科中。
字母表示数知识点汇总
字母表示数知识点汇总1、代数式的概念:用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式.。
单独的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、<、≠”等符号。
等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
2、代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt ;②数字与字母相乘时,数字应写在字母前面,如4a ;③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如a ⨯312应写作a 37; ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作44-a ;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如)(22b a -平方米3、代数式的系数:代数式中的数字中的数字因数叫做代数式的系.....数.。
如3x,4y 的系数分别为3,4。
注意:①单个字母的系数是1,如a 的系数是1;②只含字母因数的代数式的系数是1或-1,如-ab 的系数是-1。
a3b 的系数是14、代数式的项:代数式表示7262--x x 6x 2、-2x 、-7的和,6x 2、-2x 、-7是它的项,其中把不含字母的项叫做常数项注意:在交待某一项时,应与前面的符号一起交待。
5、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。
小学数学四年级用字母表示数知识点分类讲解+专项练习题
四年级数学《用字母表示数》知识点+专项练习题一、用字母表示数的意义和作用用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。
二、用字母表示数的要求:1.省略上的要求①字母和数②字母和字母相乘时,可以不写“×”号,用“·”表示;也可以把数或字母写在一起。
例如,ɑ×c可写成ɑ·c或ɑc;×ɑ可写成2·或2ɑ。
字母和“1”相乘时,可以省略“1”,例如:1×ɑ就写成ɑ。
2.顺序上的要求字母×数时,省略×后,必须把数写在字母的前面。
例如,ɑ×2或2×ɑ,要写成2ɑ,不能写成ɑ2。
字母×字母时,习惯上按英文字母顺序写(非必须)。
例如:x×a一般写成ax,3×b×a一般写成3ab。
3.写法上的要求相同的字母相乘,要写成乘方的形式。
例如,m×m写成㎡。
带分数与字母相乘,省略乘号后,要将带分数化为假分数。
4.单位名称上的要求用含有字母的代数式表示一个数量时,要在最后写上单位名称,如果代数式是数与字母相乘的形式,不必用括号把代数式括起来;如果代数式有加减关系,要把代数式用括号括起来,再在括号外边写上单位名称。
例如,每千克苹果a元,买8千克应付8a 元。
这里的8a 不用括号。
一大箱苹果a千克,一小箱苹果b千克,4大箱苹果比3小箱苹果多(4a-3b)千克。
这里的4a-3b必须用括号。
专项练习题一、填空(每空2分)1、用a、b表示两个数,加法交换率律可表示成()。
2、用字母a表示苹果的单价,b表示数量,c表示总价。
那么c=(),b=()。
3、一个等边三角形,每边长a米。
它的周长()米。
4、一辆汽车t小时行了300千米,平均每小时行()千米。
李师傅每小时加工40个零件,加工了a小时,一共加工了()个。
5、每袋面粉重a千克,每袋大米重b千克,8袋面粉和5袋大米共重()千克。
四年级数学《用字母表示数》知识点北师大版
(封面)四年级数学《用字母表示数》知识点北师大版授课学科:授课年级:授课教师:授课时间:XX学校知识点1、用字母或者含有字母的式子都可以表示数量,也可以表示数量关系。
2、用字母表示有关图形的计算公式:① 长方形周长公式:C=2(a+b)。
②长方形面积公式:S=ab。
③正方形周长公式:C=4a。
④正方形面积公式:S=a2。
3、用字母表示运算定律:如果用a、b、c分别表示三个数,那么① 加法交换律a+b=b+a②加法结合律(a+b)+c=a+(b+c)③乘法交换律a×b=b×a④乘法结合律(a×b)×c=a×(b×c)⑤乘法分配律(a±b)×c=a×c±b×c⑥减法的运算性质a-b-c=a-(b+c)⑦除法的运算性质a÷b÷c=a÷(b×c)4. 在含有字母的式子中,字母和字母之间、字母和数字之间的乘号可以用“·”表示或省略不写,数字一般都写在字母前面。
数字1与字母相乘时,1省略不写,字母按顺序写。
如:a×b=ab、5×a=5a、1×a=a、a×a=a25. 区别a的平方和2乘a的区别。
练习题一、直接写出得数。
0.7×5=() 2.2×0.1=()0.25×0.4=()0÷0.28=()0.32÷0.8=()0.6÷0.2=()二、判断。
1. a×4可以写成a4. ( )2、b+2可以写成2 b. ( )参考答案一、直接写出得数。
0.7×5=(3.5 ) 2.2×0.1=( 0.22)0.25×0.4=(0.1 )0÷0.28=(0 )0.32÷0.8=(0.4 )0.6÷0.2=(3 )二、判断。
用字母表示数的数学知识点
用字母表示数的数学知识点用字母表示数的数学知识点在日常过程学习中,是不是听到知识点,就立刻清醒了?知识点也可以通俗的理解为重要的内容。
你知道哪些知识点是真正对我们有帮助的吗?下面是店铺收集整理的用字母表示数的数学知识点,欢迎阅读与收藏。
1、用字母表示数的意义和作用用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。
2、用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式(1)常见的数量关系路程用s表示,速度v用表示,时间用t表示,三者之间的关系:s=vtv=s/tt=s/v总价用a表示,单价用b表示,数量用c表示,三者之间的关系: a=bcb=a/cc=a/b(2)运算定律和性质加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc减法的性质:a-(b+c)=a-b-c(3)用字母表示几何形体的公式长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。
c=2(a+b)s=ab正方形的边长a用表示,周长用c表示,面积用s表示。
c=4as=a2平行四边形的底a用表示,高用h表示,面积用s表示。
s=ah三角形的底用a表示,高用h表示,面积用s表示。
s=ah/2梯形的上底用a表示,下底b用表示,高用h表示,中位线用m 表示,面积用s表示。
s=(a+b)h/2s=mh圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。
c=∏d=2∏rs=∏r2扇形的半径用r表示,n表示圆心角的度数,面积用s表示。
s=∏nr2/360长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。
v=shs=2(ab+ah+bh)v=abh正方体的棱长用a表示,底面周长c用表示,底面积用s表示,体积用v表示.s=6a2v=a3圆柱的'高用h表示,底面周长用c表示,底面积用s表示,体积用v表示.s侧=chs表=s侧+2s底v=sh圆锥的高用h表示,底面积用s表示,体积用v表示.v=sh/33、用字母表示数的写法数字和字母、字母和字母相乘时,乘号可以记作“.”,或者省略不写,数字要写在字母的前面。
字母表示数知识点汇总
字母表示数知识点汇总1、代数式的概念:用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、<、≠”等符号。
等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
2、代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt;②数字与字母相乘时,数字应写在字母前面,如4a;③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如应写作;④数字与数字相乘,一般仍用“×”号,即“×”号不省略;⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米3、代数式的系数:代数式中的数字中的数字因数叫做代数式的系数。
如3x,4y的系数分别为3,4。
注意:①单个字母的系数是1,如a的系数是1;②只含字母因数的代数式的系数是1或-1,如-ab的系数是-1。
a3b的系数是14、代数式的项:代数式表示6x2、-2x、-7的和,6x2、-2x、-7是它的项,其中把不含字母的项叫做常数项注意:在交待某一项时,应与前面的符号一起交待。
5、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。
这两个条件缺一不可;②同类项与系数无关,与字母的排列顺序无关;③几个常数项也是同类项。
6、合并同类项:把代数式中的同类项合并成一项,叫做合并同类项。
注意:①合并同类项的理论根据是逆用乘法分配律;②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3.1 用字母表示数(课件)青岛版(2024)数学七年级上册
感悟新知
例 1 填空:
知1-练
(1) 一台电视机的标价为a元, 则打八折后的售价为
__0_._8_a__元; (2)温度由30 ℃下降t ℃后是_(_3_0_-__t)_℃;
(3)同心圆中大圆的半径为R cm, 小圆的半径为r cm, 则圆环的面积是_(_π_R_2_-__π_r_2)_cm2.
解题秘方:用字母表示数时要严格按照书写规则书写.
知1-练
解:菜地的长等于长方形土地的长减去小路宽的2倍, 即为(18-2x)m;菜地的宽等于长方形土地的宽减去小 路的宽,即为(10-x)m . (2)菜地的面积为_(_1_8_-__2_x_)(_1_0_-__x_)__m2.
解:菜地的面积等于菜地的长乘菜地的宽,即为(18- 2x)(10-x)m2.
知1-讲
常见应用
举例
表示数 学术语
表示运 算法则
a的相反数是-a,a的绝对值是|a|,a(a ≠ 0) 的倒数是1a 有理数的减法法则:a-b=a+(-b) 有理数的除法法则:a÷b=a×1b(b ≠ 0)
感续悟表新:知
常见应用
举例
知1-讲
表示运 算律
加法交换律:a+b=b+a 加法结合律:(a+ b)+c=a+(b+c) 乘法交换律:ab=ba 乘 法结合律:(ab)c=a(bc) 乘法对加法的分配 律:a(b+c)=ab+ac
第3章 代数式
3.1 用字母表示数
感悟新知
知识点 1 用字母表示数
知1-讲
1. 随着数的范围扩充至有理数,字母不仅可以表示正数、 0,也可以表示负数,字母还可以像数一样参与运算.
2. 用字母表示数,一般能简明地把数、数量关系、法则和 变化规律表达出来,为叙述和研究问题带来方便.
小学六年级数学用字母表示数知识点
小学六年级数学用字母表示数知识点数学技术将是一种应用最广泛、最直接、最及时、最富创造力和重要的实用技术。
接下来,让我们一起来学习六年级数学用字母表示数知识点。
小学六年级数学用字母表示数知识点1 用字母表示数的意义和作用* 用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。
2用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式(1)常见的数量关系路程用s表示,速度v用表示,时间用t表示,三者之间的关系:s=vtv=s/tt=s/v总价用a表示,单价用b表示,数量用c表示,三者之间的关系:a=bcb=a/cc=a/b(2)运算定律和性质加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc减法的性质:a-(b+c) =a-b-c(3)用字母表示几何形体的公式长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。
c=2(a+b)s=ab正方形的边长a用表示,周长用c表示,面积用s表示。
c=4as=a?平行四边形的底a用表示,高用h表示,面积用s表示。
s=ah三角形的底用a表示,高用h表示,面积用s表示。
s=ah/2梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。
s=(a+b)h/2s=mh圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。
c=∏d=2∏rs=∏ r?扇形的半径用r表示,n表示圆心角的度数,面积用s表示。
s=∏ nr?/360长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。
v=shs=2(ab+ah+bh)v=abh正方体的棱长用a表示,底面周长c用表示,底面积用s表示,体积用v表示.s=6a?v=a?圆柱的高用h表示,底面周长用c表示,底面积用s表示,体积用v表示.s侧=chs表=s侧+2s底v=sh圆锥的高用h表示,底面积用s表示,体积用v表示.v=sh/33 用字母表示数的写法数字和字母、字母和字母相乘时,乘号可以记作“.”,或者省略不写,数字要写在字母的前面。
七年级字母表示数知识点
七年级字母表示数知识点在学习数学的过程中,我们不仅需要掌握数字,还需要了解字母表示数的方法。
这种方法在解决数学问题的过程中非常重要。
在七年级,学生将首次接触字母表示数的知识点。
本文将介绍七年级字母表示数的主要知识点。
一、字母表示数在数学中,我们使用字母来表示数字。
这种方法使得我们能够更加简洁地表达数字,在解决问题时也更加灵活。
在七年级中,我们通常使用小写字母来表示数。
例如:a、b、c、d、e、f、g、h、i、j这些字母可以代表任何数字。
换句话说,它们有一个未知的值,需要通过其他信息来确定。
二、字母表示未知数在代数中,我们经常使用字母来代表未知数。
在解方程时,我们需要通过测量或计算来确定它们的值。
例如:通常我们用x、y、z来表示未知数。
在讲解解方程的时候,老师会介绍如何通过运算得到未知数的值。
三、字母表示系数在代数中,字母也可以用来表示系数。
系数是一个常数,它与变量相乘得到一个项。
例如:在下列项中,a和b是系数:5ab,3a,-2b,8abc通过乘法法则,我们可以计算出$a\times b$的值,从而得到这个项的值。
在计算中,系数通常位于变量的前面。
四、字母表示常量在代数中,字母也可以用来表示常量。
常量是一个不变的数,它与变量相加或相乘会得到一个表达式。
例如:在下列表达式中,a和b是常量:5+a,3b,-2a+b,8a-b通过加法或乘法法则,我们可以计算出表达式的值。
五、字母表示变化在代数中,字母可以用来表示变化。
当我们需要计算一些变化的值时,我们可以使用字母来表示这些变量。
例如:在下列计算中,a和b用来表示变化的值:当我们需要计算出变化的值时,可以通过代入具体数值来得到结果。
举例说明:如果a=3,b=5,则$a+b=8$$a-b=-2$$a\times b=15$六、字母在实践中的应用在实际生活中,我们使用字母来表示各种数值和变量。
例如,在物理学中,我们使用字母来代表力、速度以及加速度。
在统计学中,我们使用字母来代表平均数、标准差和相关系数等。
用字母表示数知识点总结
用字母表示数知识点总结
一、基本概念与意义
字母表示数:在数学中,字母常被用来代表未知数、变量、常数或特定意义的数。
这有助于将数量关系简明地表达出来,使思维过程简化,并易于形成概念系统。
代数的基本特点:用字母表示数是代数的基本特点,它既能简单明了地表示数量,又能表达数量关系的一般规律。
二、常见应用
代数表达式与方程式:字母在代数学中常用于构建方程、不等式和函数。
通过将字母与数值结合,可以解决各种数学问题。
几何形体:字母可用于表示几何形体的各种属性和公式,如长方形的长、宽、周长和面积等。
科学领域:在科学领域,如物理学中,字母可以代表速度、加速度、质量等物理量。
计算机科学:在计算机科学和编程中,字母可用于表示变量、函数和操作符号等。
三、注意事项与规则
数字与字母相乘时,中间的乘号可以省略不写,或用“·”(点)表示;字母和数字相乘时,省略乘号,并把数字放到字母前。
当出现除式时,用分数表示。
结果含加减运算的,单位要加“()”。
系数是带分数时,带分数要化成假分数。
四、特殊符号与概念
特定数集:字母常用于表示特定的数集,例如用“R”表示实数集,用“Z”表示整数集。
运算定律与性质:如加法交换律、加法结合
律、乘法交换律、乘法结合律和乘法分配律等,这些定律和性质在数学运算中具有重要的应用。
总之,用字母表示数是数学中一个基础且重要的概念,它广泛应用于各个领域,帮助人们更简洁、明了地表示和解决数学问题。
通过学习和掌握这一知识点,可以更好地理解和应用数学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用字母表示数知识点归
纳
Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】
1、常用的长度单位:
千米:km 米:m 分米:dm 厘米:cm 毫米:mm
2、常用的面积单位;
平方千米:k㎡平方米:㎡平方分米:d㎡平方厘米:c㎡
3、重量单位
吨:t 千克:kg 克:g
运算定律:
1、两个数相加,交换加数的位置,它们的和不变。
用字母表示为:a + b=b + a 加法结合律:三个数相加,先把前两个数相加,再把第三个数相加,或者先把后两个数相加,再同第一个数相加,它们的和不变。
用字母表示为:(a+b)+c=a+(b+c)
3、乘法交换律:两个数相乘,交换因数的位置,它们的积不变。
用字母表示为:a×b=b×a
4、乘法结合律:三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
用字母表示为:(a×b)×c=a×(b×c)
5、乘法分配律:两个数的和同一个数相乘,可以把这两个数分别同这个数相乘,再把所得的积加起来,结果不变。
用字母表示为:(a + b)×c=a×c + b×c
6、在含有字母的式子里,乘号可以记作小圆点,也可以省略不写。
如:X×2或2×X都可以记作2·X或2X,但要注意在省略乘号的时候要把数写在字母的前面。
7、1与任何字母相乘时,1可以省略不写,如1×b,或b×1,都可以记作b。
8、字母和字母相乘,中间的乘号也可以记作小圆点,或省略不写。
如a×b,记作a·b或ab。
两个相同的字母相乘,如b×b,可以记作b ,读作b的平方。
9、只有字母与字母之间、数字与字母之间的乘号才能省略不写。
在省略乘号时,应当把数字写在字母前面。
10、几点说明:
(1)a×2=2×a=2a (2)a×b = a b = a b
(3)数与数相乘时用“×”号。
(4)和式中出现单位需加括号。
(5)字母与字母之间的加号既不能用圆点代替,也不能省略不写。
(6)字母与字母相乘时一般按英文字母顺序。
(7)当1与字母相乘时1省略不写。
11、用字母表示数量关系:
(1)用a表示商品的单价,x表示数量,c表示总价,写出:
c =a x 总价=单价×数量
a =c ÷ x 单价=总价÷数量
x =c ÷ a 数量=总价÷单价
例:如果每袋方便面元,6元可以买几袋
x = c ÷ a
= 6 ÷
= 4(袋)
答:6元可以买4袋。
(2)用v表示速度, t表示时间, s表示路程,那么: s =v t
12、用字母表示正方形的面积和周长:
用大写字母S表示正方形的面积,用大写字母C表示正方形的周长,用小写字母a表示正方形的边长。
那么:
S=a×a 或者S= a2 正方形的面积=边长×边长
C=4×a 或者C =4a 正方形的周长=边长×4
13、用字母表示长方形的面积和周长:
用大写字母S表示长方形的面积,用大写字母C表示长方形的周长,用小写字母a表示长方形的长,用小写字母b表示长方形的宽。
那么:
S=a×b 或者S=ab 长方形的面积=长×宽
C=(a+b)×2 或者C =2(a+b)长方形的面积=(长+宽)×2
14、区别a2与2a
a2表示2个a相乘,是a×a 2a表示2个a相加,是2×a 例如:72=7×7=49 2×7=14
:。