计数器实验报告
计数器的设计实验报告
计数器的设计实验报告篇一:计数器实验报告实验4 计数器及其应用一、实验目的1、学习用集成触发器构成计数器的方法2、掌握中规模集成计数器的使用及功能测试方法二、实验原理计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。
计数器种类很多。
按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。
根据计数制的不同,分为二进制计数器,十进制计数器和任意进制计数器。
根据计数的增减趋势,又分为加法、减法和可逆计数器。
还有可预置数和可编程序功能计数器等等。
目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器。
使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。
1、中规模十进制计数器CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能,其引脚排列及逻辑符号如图5-9-1所示。
图5-9-1 CC40192引脚排列及逻辑符号图中LD—置数端CPU—加计数端CPD —减计数端CO—非同步进位输出端BO—非同步借位输出端D0、D1、D2、D3 —计数器输入端Q0、Q1、Q2、Q3 —数据输出端CR—清除端CC40192的功能如表5-9-1,说明如下:表5-9-1当清除端CR为高电平“1”时,计数器直接清零;CR置低电平则执行其它功能。
当CR为低电平,置数端LD也为低电平时,数据直接从置数端D0、D1、D2、D3 置入计数器。
当CR为低电平,LD为高电平时,执行计数功能。
执行加计数时,减计数端CPD 接高电平,计数脉冲由CPU 输入;在计数脉冲上升沿进行8421 码十进制加法计数。
执行减计数时,加计数端CPU接高电平,计数脉冲由减计数端CPD 输入,表5-9-2为8421码十进制加、减计数器的状态转换表。
加法计数表5-9-减计数2、计数器的级联使用一个十进制计数器只能表示0~9十个数,为了扩大计数器范围,常用多个十进制计数器级联使用。
单片机计数器实验报告
计数器实验报告㈠实验目的1.学习单片机内部定时/计数器的使用和编程方法;2.进一步掌握中断处理程序的编程方法。
㈡实验器材1.G6W仿真器一台2.MCS—51实验板一台3.PC机一台4.电源一台5.信号发生器一台㈢实验内容及要求8051内部定时计数器,按计数器模式和方式1工作,对P3.4(T0)引脚进行计数,使用8051的T1作定时器,50ms中断一次,看T0内每50ms 来了多少脉冲,将计数值送显(通过LED发光二极管8421码来表示),1秒后再次测试。
㈣实验说明1.本实验中内部计数器其计数器的作用,外部事件计数器脉冲由P3.4引入定时器T0。
单片机在每个机器周期采样一次输入波形,因此单片机至少需要两个机器周期才能检测到一次跳变,这就要求被采样电平至少维持一个完整的机器周期,以保证电平在变化之前即被采样,同时这就决定了输入波形的频率不能超过机器周期频率。
2.计数脉冲由信号发生器输入(从T0端接入)。
3.计数值通过发光二极管显示,要求:显示两位,十位用L4~L1的8421码表示,个位用L8~L5的8421码表示4.将脉搏检查模块接入电路中,对脉搏进行计数,计算出每分钟脉搏跳动次数并显示㈤实验框图(见下页)程序源代码ORG 00000H LJMP MAINORG 001BH ;T0的中断入口地址AJMP MAIN1MAIN:MOV SP,#60HMOV TMOD,#15H ;设置T1做定时器,T0做计数器,都于方式1工作MOV 20H,#14H ;装入中断次数MOV TL1,#0B0H ;装入计数值低8位MOV TH1,#3CH ;装入计数值高8位MOV TL0,#00H计数器主程序框图中断返回恢复现场NY 是否到1秒?显示置T1定时常数INT _T1入口保护现场清T0计数值中断服务程序框图开 始置T0,T1模式及初始值设置初始常数开中断等 待MOV TH0,#00HSETB TR1 ;启动定时器T1SETB TR0 ;启动计数器T0SETB ET1 ;允许T1中断SETB EA ;允许CPU中断SJMP $ ;等待中断MAIN1:PUSH PSWPUSH ACCCLR TR0CLR TR1 ;保护现场MOV TL1,#0B0H ;装入计数值低8位MOV TH1,#3CH ;装入计数值高8位,50ms;允许T1中断DJNZ 20H,RETUNT ;未到1s,继续计时MOV 20H ,#14H;1s到重新开始SHOW: ;显示计数器T0的值MOV R0,TH0 ;读计数器当前值MOV R1,TL0MOV A,R1MOV B,#0AHDIV AB;将计数值转为十进制MOV C,ACC.3 ;显示部分,将A中保存的十位赋给L0~L3 MOV P1.0,CMOV C,ACC.2MOV P1.1,CMOV C,ACC.1MOV P1.2,CMOV C,ACC.0MOV P1.3,CMOV A,B ;将B中保存的各位转移到A中MOV C,ACC.3 ;将个位的数字显示在L4~L7上MOV P1.4,CMOV C,ACC.2MOV P1.5,CMOV C,ACC.1MOV P1.6,CMOV C,ACC.0MOV P1.7,CRETUNT:MOV TL0,#00H ;将计数器T0清零MOV TH0,#00HSETB TR0SETB TR1POP ACCPOP PSWRETI ;中断返回在频率为1000HZ时,L0~L7显示为50;频率为300HZ时,L0~L7显示为15,结果正确,程序可以正确运行。
计数器实验报告
计数器实验报告引言:计数器是数字电路中的重要组件,用于计数、计时和测量等应用。
它可以在各种电子设备中起到决策、控制和计算等作用。
本次实验旨在探究计数器的工作原理并验证其功能。
一、实验目的:本次实验旨在研究计数器的工作原理,了解计数器的结构和使用方法,以及探究不同类型计数器的特点和应用。
二、实验器材和原理:1. 实验器材:- 7400系列逻辑门芯片(74LS00、74LS02等)- 74LS163 4位二进制同步计数器芯片- 连线板及连接线- 示波器- 电源2. 实验原理:计数器是由触发器和逻辑门组成的电路,根据输入脉冲的时序和频率来实现计数功能。
常见的计数器有同步计数器和异步计数器。
同步计数器:所有触发器在同一脉冲上同时工作,具有高速、同步性好等特点。
4位同步二进制计数器(74LS163)是本次实验主要研究的对象。
三、实验步骤和结果:1. 连接电路:将四个J-K触发器连接成同步二进制计数器电路。
采用74LS163芯片,选用外部时钟输入。
根据芯片引脚连接示意图连接芯片和示波器。
2. 设置电路状态:给予计数器电路适当的输入电平,根据实验的需求和目的,调整电路状态,例如设置计数范围、初始值等。
3. 测量输出波形:利用示波器观察和记录计数器的输出波形。
分析波形特点,如波形幅值、周期、高低电平时间等。
实验结果表明,计数器能够按照预期的次序进行计数,并在达到最大值后回到初始值重新计数。
输出波形清晰、稳定,符合设计要求。
四、实验讨论:1. 计数器的应用:计数器广泛应用于各种计数、计时和测量场合,例如时钟、频率计、定时器、计数器、计数调制解调器等。
计数器还可用于控制和决策等功能,比如在数字电子秤中用于计算重量。
2. 计数器的类型:除了同步计数器,异步计数器也是常见的计数器类型。
异步计数器与同步计数器相比,其工作原理和时序不同,有着不同的特点和优劣势。
3. 计数器的扩展:计数器可以通过级联扩展实现更大位数的计数。
8254定时计数器实验 实验报告
8254定时计数器实验实验报告一、实验目的本次实验的主要目的是深入了解和掌握 8254 定时计数器的工作原理、编程方法以及在实际应用中的操作流程。
通过亲自动手实践,提高对计算机硬件接口技术的理解和应用能力。
二、实验设备1、计算机一台2、 8254 定时计数器实验箱三、实验原理8254 是一种可编程的定时/计数器芯片,它包含三个独立的 16 位计数器通道,分别称为计数器 0、计数器 1 和计数器 2。
每个计数器都可以工作在不同的模式下,如方式 0 计数结束中断、方式 1 可重触发单稳态、方式 2 频率发生器、方式 3 方波发生器、方式 4 软件触发选通、方式 5 硬件触发选通。
在本次实验中,我们主要利用 8254 的计数器 0 来产生一定频率的方波信号,并通过指示灯的闪烁来观察其效果。
四、实验步骤1、按照实验箱的说明书,将 8254 芯片正确地插入插槽中,并连接好相关的线路。
2、打开计算机,进入实验环境。
3、编写 8254 的初始化程序,设置计数器 0 的工作模式、计数初值等参数。
选择工作模式 3(方波发生器)。
设定计数初值,以控制方波的频率。
4、编译并运行程序,观察指示灯的闪烁情况。
五、实验代码以下是本次实验中使用的 8254 初始化程序代码(以汇编语言为例):```assemblyMOV DX, 043H ;控制字端口地址MOV AL, 00110110B ;控制字:选择计数器 0,先读/写低 8 位,再读/写高 8 位,工作方式 3,二进制计数OUT DX, ALMOV DX, 040H ;计数器 0 端口地址MOV AL, 00H ;先写低 8 位计数值OUT DX, ALMOV AL, 10H ;再写高 8 位计数值OUT DX, AL```六、实验结果及分析1、实验结果当程序运行后,观察到连接在计数器 0 输出端的指示灯按照设定的频率闪烁,表明 8254 定时计数器工作正常,成功产生了方波信号。
数电实验集成计数器实验报告
数电实验集成计数器实验报告
一、实验目的:
1、熟悉常用中规模计数器的逻辑功能。
2、掌握二进制计数器和十进制计数器的工作原理和使用方法。
二、实验设备:
1、数字电路实验箱;
2、74LS90。
三、实验原理:
1、计数是一种最简单基本运算,计数器在数字系统中主要是对脉冲的个数进行计数,以实现测量、计数和控制的功能,同时具有分频功能。
计数器按计数进制分有:二进制计数器,十进制计数器和任意进制计数器;按计数单元中触发器所接收计数脉冲和翻转顺序分有:异步计数器,同步计数器;按计数功能分有:加法计数器,减法计数器,可逆(双向)计数器等。
2、74LS90是一块二-五-十进制异步计数器,外形为双列直插,NC 表示空脚,不接线,它由四个主从JK触发器和一些附加门电路组成,其中一个触发器构成一位二进制计数器;另三个触发器构成异步五进制计数器。
在74LS90计数器电路中,设有专用置“0”端Ro(1,Ro(2)和置“9”端So(1)So(2).g其中前两个为异步清0端,后两个为异
步置9端。
CP1,CP2为两个时钟输入端;Qo~Q3为计数输出端。
当R1=R2=S1=S2=0时,时钟从CP1引入,Qo输出为二进制;从CP2引入,Q3输出为五进制。
时钟从CP1引入,二Qo接CP1,则QsQ2QiQ0输出为十进制(8421码);时钟从CP2引入,而Q3接CP1,则QoQ;Q2Q1输出为十进制(5421码)。
四、实验原理图及实验结果:
1、实现0~9+进制计数。
1)实验原理图如下:(函数信号发生器:5V3Hz偏移2.5V方波)
2)实验结果:
解码器上依次显示0~9十个数字。
计数器及其应用实验报告
一、实验目的1. 理解计数器的基本原理和构成方式。
2. 掌握中规模集成计数器的使用方法和功能测试。
3. 了解计数器在数字系统中的应用,如定时、分频、数字运算等。
二、实验原理计数器是一种时序逻辑电路,用于对输入脉冲进行计数。
根据计数进制、触发器翻转方式、计数功能等不同,计数器可以分为多种类型。
1. 计数进制:二进制、十进制、任意进制。
2. 触发器翻转方式:同步、异步。
3. 计数功能:加法、减法、可逆(加/减)。
常见的集成计数器有74LS161(4位二进制同步加法计数器)、74LS193(4位二进制同步可逆计数器)等。
三、实验器材1. 数字电路实验箱2. 同步十进制可逆计数器74LS1923. 2输入四与门74LS001四、实验步骤1. 搭建实验电路:根据实验要求,搭建计数器实验电路,包括计数器芯片、时钟源、复位端等。
2. 功能测试:分别对计数器进行加法计数、减法计数、可逆计数等功能的测试,观察输出波形和计数结果。
3. 应用实验:利用计数器实现定时、分频等功能,观察实际效果。
五、实验结果与分析1. 功能测试:- 加法计数:输入时钟脉冲,观察计数器输出端Q0~Q3的变化,验证加法计数功能。
- 减法计数:输入时钟脉冲,观察计数器输出端Q0~Q3的变化,验证减法计数功能。
- 可逆计数:输入时钟脉冲,观察计数器输出端Q0~Q3的变化,验证可逆计数功能。
2. 应用实验:- 定时功能:利用计数器实现定时功能,例如,通过计数器计数1000个脉冲,实现1秒定时。
- 分频功能:利用计数器实现分频功能,例如,将输入的50Hz时钟信号分频为5Hz。
六、实验总结通过本次实验,我们掌握了计数器的基本原理、构成方式和使用方法,了解了计数器在数字系统中的应用。
实验过程中,我们学会了如何搭建实验电路、进行功能测试和应用实验。
本次实验有助于提高我们对数字电路和时序逻辑电路的理解,为后续学习打下基础。
七、实验心得1. 计数器在数字系统中应用广泛,掌握计数器的基本原理和构成方式非常重要。
计数器的设计实验报告
计数器的设计实验报告一、实验目的本次实验的目的是设计并实现一个简单的计数器,通过对计数器的设计和调试,深入理解数字电路的基本原理和逻辑设计方法,掌握计数器的工作原理、功能和应用,提高自己的电路设计和调试能力。
二、实验原理计数器是一种能够对输入脉冲进行计数,并在达到设定计数值时产生输出信号的数字电路。
计数器按照计数方式可以分为加法计数器、减法计数器和可逆计数器;按照计数进制可以分为二进制计数器、十进制计数器和任意进制计数器。
本次实验设计的是一个简单的十进制加法计数器,采用同步时序逻辑电路设计方法。
计数器由触发器、门电路等组成,通过对触发器的时钟信号和输入信号的控制,实现计数功能。
三、实验设备与器材1、数字电路实验箱2、集成电路芯片:74LS160(十进制同步加法计数器)、74LS00(二输入与非门)、74LS04(六反相器)3、示波器4、直流电源5、导线若干四、实验内容与步骤1、设计电路根据实验要求,选择合适的计数器芯片 74LS160,并确定其引脚功能。
设计计数器的清零、置数和计数控制电路,使用与非门和反相器实现。
画出完整的电路原理图。
2、连接电路在数字电路实验箱上,按照电路原理图连接芯片和导线。
仔细检查电路连接是否正确,确保无短路和断路现象。
3、调试电路接通直流电源,观察计数器的初始状态。
输入计数脉冲,用示波器观察计数器的输出波形,检查计数是否正确。
若计数不正确,逐步排查故障,如检查芯片引脚连接、电源电压等,直至计数器正常工作。
4、功能测试测试计数器的清零功能,观察计数器是否能在清零信号作用下回到初始状态。
测试计数器的置数功能,设置不同的预置数,观察计数器是否能按照预置数开始计数。
五、实验结果与分析1、实验结果成功实现了十进制加法计数器的设计,计数器能够在输入脉冲的作用下进行正确计数。
清零和置数功能正常,能够满足实验要求。
2、结果分析通过对计数器输出波形的观察和分析,验证了计数器的工作原理和逻辑功能。
计数器的应用——实验报告
计数器的应用——实验报告
计数器的应用——实验报告
本实验旨在深入了解计数器的工作机制并熟悉其应用。
实验设备:实验室计数器(新陶计数器XTC-300A)
实验过程:
一、计数器的粗略调试
1、根据实验室计数器XTC-300A使用手册,开机检查计数器输出数字和显示结果,确认是否正常。
2、检查计数器输入电源,随机调节计数电源,观察输出数字和显示的变化,以熟悉计数器的各种功能。
3、调节开关,设定计数器精度、次数、时间、温度等参数,以及观察运行时的电源变化,熟悉计数器的精确控制功能。
4、检查计数器的各个部件,观察运行时的状态,确认计数器的发挥最大效果。
二、计数器的应用
1、根据实验室中所需完成的实验项目,结合计数器的工作原理,确定出不同参数下计数器的最佳使用率,以便最终能够发挥出计数器的最佳性能。
2、利用计数器精准控制时间,操作不同的温度仪器及相关理化试验仪器,实现实验数据的精确测量。
3、将计数器神经网络连接至实验室中的计算机,实现实验数据的连续监测,让实验参数得以更好的控制。
实验结论:
通过本次实验,对计数器的运行机制及其实验设备中的应用有了更加深入的了解。
结合前述操作,可确定计数器在实验中起着很重要的作用,可以实现对实验室实验的高精度控制,帮助做出更为准确的测量和监测数据。
计数器的实验报告
一、实验目的1. 理解计数器的基本原理和工作方式;2. 掌握计数器的使用方法;3. 培养动手实践能力和团队协作精神。
二、实验原理计数器是一种用于计数的电子器件,能够对输入信号进行计数。
计数器的基本原理是利用触发器来实现计数功能。
触发器是一种具有记忆功能的电子器件,可以存储0或1的状态。
通过将触发器级联,可以实现多位计数。
本实验采用一个简单的异步二进制计数器,其工作原理如下:1. 当计数器复位时,所有触发器的状态都为0;2. 当计数器收到一个时钟信号时,最低位的触发器翻转状态;3. 如果最低位的触发器状态为1,则其输出信号将触发下一位触发器翻转状态;4. 依次类推,实现计数器的计数功能。
三、实验器材1. 计数器模块;2. 电源;3. 连接线;4. 逻辑分析仪;5. 示波器。
四、实验步骤1. 连接电路:将计数器模块、电源、连线等按实验电路图连接好;2. 复位计数器:将复位按钮按下,确保计数器处于初始状态;3. 观察计数过程:打开电源,观察计数器输出端的状态变化;4. 记录数据:使用逻辑分析仪或示波器记录计数器输出端的状态变化,并记录数据;5. 分析数据:根据记录的数据,分析计数器的计数过程和结果。
五、实验结果与分析1. 实验结果:计数器模块在接收到时钟信号后,输出端的状态按二进制递增的顺序变化,实现了计数功能;2. 分析:(1)复位功能:通过复位按钮,可以将计数器模块的状态恢复到初始状态,方便进行实验;(2)计数功能:计数器模块能够对输入的时钟信号进行计数,实现计数功能;(3)稳定性:在实验过程中,计数器模块的输出端状态变化稳定,未出现异常现象。
六、实验总结通过本次实验,我们掌握了计数器的基本原理和使用方法。
实验过程中,我们学会了如何连接电路、观察计数过程、记录数据和分析数据。
同时,我们还培养了动手实践能力和团队协作精神。
在今后的学习和工作中,我们将继续努力,不断提高自己的实验技能和团队协作能力。
设计计数器的实验报告
设计计数器的实验报告设计计数器的实验报告引言:计数器是数字电路中常见的一个组件,它可以用来记录和显示某个事件的次数或周期。
本实验旨在设计一个简单的二进制计数器,通过实际操作和观察,加深对计数器的原理和实现方式的理解。
一、实验目的本实验的主要目的是掌握计数器的设计原理和实现方法,具体包括以下几点:1. 了解计数器的基本概念和工作原理;2. 学习使用逻辑门和触发器构建计数器电路;3. 实际操作计数器电路并观察其输出结果。
二、实验器材1. 逻辑门集成电路(如与门、或门、非门等);2. 触发器集成电路(如RS触发器、D触发器等);3. 连线、电源、示波器等实验器材。
三、实验步骤1. 确定计数器的位数:根据实际需求,选择计数器的位数。
本实验以4位计数器为例。
2. 确定计数器的计数方式:根据实际需求,选择计数器的计数方式。
本实验以二进制计数方式为例。
3. 设计计数器的逻辑电路:根据所选择的位数和计数方式,设计计数器的逻辑电路。
以4位二进制计数器为例,可以使用4个D触发器构建。
将D触发器的时钟输入端串联,将每个D触发器的输出端连接到下一个D触发器的数据输入端,形成一个环形结构。
4. 连接电路并进行实验:按照设计好的逻辑电路连接实验器材,接入电源后,观察计数器的输出结果。
5. 调试和优化:如果计数器的输出结果不符合预期,可以检查电路连接是否正确,逻辑门和触发器是否工作正常,及时调试和优化。
四、实验结果与分析在本实验中,我们设计了一个4位二进制计数器,并成功实现了计数功能。
通过观察计数器的输出结果,可以发现计数器按照二进制方式进行计数,每次计数加1,当计数达到最大值时,会回到初始值重新开始计数。
通过实验可以得出以下结论:1. 计数器的位数决定了其能够表示的最大计数值,位数越多,最大计数值越大;2. 计数器的计数方式决定了其计数规律,二进制计数方式是最常见和简单的计数方式;3. 计数器的设计需要根据实际需求进行选择和优化,可以根据需要增加位数或者改变计数方式。
计数器实验报告
一、实验目的1. 理解计数器的基本原理和功能。
2. 掌握使用集成触发器构成计数器的方法。
3. 熟悉中规模集成计数器的使用及功能测试方法。
4. 了解计数器在数字系统中的应用。
二、实验器材1. 数字电路实验箱2. 同步十进制可逆计数器74LS1923. 2输入四与门74LS004. 模拟示波器5. 逻辑分析仪6. 电源三、实验原理计数器是一种用于统计输入脉冲个数的逻辑电路,广泛应用于数字系统中。
计数器不仅可以实现计数功能,还可以用于定时控制、分频、数字运算等。
根据计数进制、触发器翻转方式、计数功能等不同,计数器可以分为多种类型。
1. 计数进制:二进制计数器、十进制计数器、任意进制计数器。
2. 触发器翻转方式:同步计数器、异步计数器。
3. 计数功能:加法计数器、减法计数器、可逆计数器。
本实验采用74LS192同步十进制可逆计数器和74LS00四与门组成计数器电路。
四、实验内容及步骤1. 搭建实验电路:- 将74LS192的时钟输入端CP、复位端R、置数端S、计数输出端Q0-Q3分别与74LS00的输入端相连。
- 将74LS192的时钟输入端CP接至实验箱的时钟信号输出端。
- 将74LS192的复位端R和置数端S接至实验箱的控制信号输出端。
- 将74LS192的计数输出端Q0-Q3分别连接至逻辑分析仪的输入端。
2. 功能测试:- 测试计数器的计数功能:观察逻辑分析仪显示的计数输出波形,验证计数器能否实现计数功能。
- 测试计数器的复位功能:通过控制实验箱的控制信号,观察逻辑分析仪显示的计数输出波形,验证计数器能否实现复位功能。
- 测试计数器的置数功能:通过控制实验箱的控制信号,观察逻辑分析仪显示的计数输出波形,验证计数器能否实现置数功能。
3. 计数器应用:- 利用计数器实现定时功能:将计数器的计数输出端Q0-Q3分别连接至74LS00的输入端,通过组合逻辑电路实现定时功能。
- 利用计数器实现分频功能:将计数器的计数输出端Q0-Q3分别连接至74LS00的输入端,通过组合逻辑电路实现分频功能。
计数器实验报告
计数器实验报告一实验内容1 静态测试芯片74LS90的逻辑功能;、2 动态测试芯片73LS90的芯片功能,画出clk与其中一个输出的波形图;3 用一块74LS90芯片连接一个模2,模5计数器;4用两个74LS90级联成一个模24计数器;二实验条件数字万用表,模拟示波器,计算机电路基础实验箱,芯片:74LS90两片,74LS00一片;三实验原理1 静态测试芯片74LS90的逻辑功能;电路图其中clkA连接单脉冲,其他输入接电平控制按键,输出接到二极管指示灯;经过测试得到真值表为Any Any 1 1 1 0 0 1Any 1 Any 1 Count1 Any Any 1 Count1 Any 1 Any CountAny 1 1 Any Count这个可以看出器件清零和置九都是两个高电平有效;其他的可以实现计数功能;2 动态测试芯片73LS90的芯片功能,画出clk与其中一个输出的波形图;电路图还是静态测试时候的电路图,把clk改接到连续脉冲输入即可;途中上面的波形为模二计数器中Qa的输出波形,下面为clk输入波形,其中在波形显示控制旋钮中,两个通道的每格设置值为,时基为;在把示波器接地后可以知道,各个波形的零刻度线在其低电平最靠近的水平刻度线上;则可以看出输入输出波形的各参数为3 用一块74LS90芯片连接一个模5,模2计数器;模5:注:Qa与clkB线上是有节点的,但是复制过来后没有显示;如图所示:分别把输出接到数码管上显示;首先连接成一个模10计数器,然后再输出为0101时候强制清零即可;模2:先连接一个模10计数器,在输出为0010时候强制清零;模24计数器用两个计数器级连,每个计数器控制一位数,每当控制地位的计数器计数到9时给高位计数器一个脉冲,用这个来控制进位;图中的两个计数器的输出分别接到连个数码管上,可以显示到模24的效果;四实验总结在示波器显示时候,连接了二极管显示灯,造成干扰较大,得出的波形不规则,不连接二极管即可;此次实验更加深刻理解了74LS90的逻辑功能,学会了用74LS90设计任意模计数器;五实验评价实验过程顺利,原理已弄明白;。
计数器实验报告
计数器实验报告实验目的,通过实验掌握计数器的工作原理和使用方法,加深对数字电路的理解。
一、实验原理。
计数器是一种能够按照一定规律进行计数的电路。
在数字电路中,计数器是十分常见的一种元件,它能够将输入的脉冲信号转换为相应的数字输出。
常见的计数器有二进制计数器、十进制计数器等。
二、实验器材。
1. 计数器芯片。
2. 电源。
3. 示波器。
4. 逻辑开关。
5. 连接线。
6. 示波器探头。
三、实验步骤。
1. 将计数器芯片插入实验板中,并连接好电源。
2. 将示波器探头连接到计数器芯片的输出端口。
3. 通过逻辑开关输入脉冲信号,观察示波器上的输出波形。
4. 调整逻辑开关的输入频率,记录下不同频率下的输出波形。
5. 分析实验结果,总结计数器的工作特性。
四、实验结果。
经过实验,我们观察到在不同的输入频率下,计数器的输出波形呈现出不同的计数规律。
当输入频率增加时,计数器的计数速度也随之增加。
通过示波器的观测,我们可以清晰地看到计数器的工作状态,从而加深对其工作原理的理解。
五、实验分析。
通过本次实验,我们深入了解了计数器的工作原理和特性。
计数器作为数字电路中的重要元件,广泛应用于各种计数和计时场合。
掌握计数器的工作原理对于进一步学习数字电路和逻辑设计具有重要意义。
六、实验总结。
本次实验通过实际操作,使我们更加深入地理解了计数器的工作原理和特性。
在今后的学习和工作中,我们将进一步应用和拓展所学知识,不断提高自己的实践能力和创新能力。
七、实验心得。
通过本次实验,我对计数器有了更加深入的了解,也增强了对数字电路的兴趣。
在未来的学习和工作中,我将继续努力,不断提升自己的专业能力,为实现自己的梦想奠定坚实的基础。
以上就是本次计数器实验的实验报告,希望能对大家有所帮助。
谢谢!。
计数器的设计与应用实验报告
计数器的设计与应用实验报告
实验目的:
1.了解集成电路74LS163的性能及其应用;
2.掌握计数器的设计与应用。
实验原理:
计数器是用于计数的一个基本电路,计数器可以用来实现正向计数、反向计数、随意
计数等功能,常用于时序电路、频率测量电路、模拟电路、数字逻辑电路中。
74LS163是
一种4位二进制计数器,可以实现正向或者反向计数,通过设置各个输入端的状态并控制
时钟信号的变化实现不同的计数功能。
实验设备:
数字训练板、万用表、直流电源、示波器、74LS163芯片、14Pin插座
实验步骤:
1.将计数器芯片74LS163插入14Pin插座中,用万用表测量各个脚位之间的连接情
况;
2.将4位7段数码管与芯片74LS163相连,并根据芯片引脚的不同接法,设置好各个
脚位的状态,实现不同的计数功能;
3.连接示波器、直流电源等设备,将信号线分别连接到芯片74LS163的各个引脚上;
4.在设计的条件下,给芯片74LS163提供时钟信号,观察计数器的计数功能是否正常,必要时进行调整。
实验结果:
实验中,通过设计与调试,成功地实现了计数器的功能,包括正向计数、反向计数、
随意计数等多种功能,并通过连接示波器观测到了计数器在不同状态下输出的波形信号,
验证了计数器的正确性。
实验总结:
本实验通过对计数器的设计与应用,让我更深入地了解了计数器的性能与应用,掌握
了基本的设计方法。
同时,还发现在调试计数器时,时钟信号的稳定性对计数器的正确性
很重要,因此需要选用合适的时钟信号源并保证其稳定性。
通过实验,我认为有必要研究计数器的更高级应用,提高自己的水平与能力。
计数器及其应用实验报告总结
计数器及其应用实验报告总结
计数器是一种基本的数字电路,在实验中我们学习了几种常见的计数器,并且了解了它们的原理和应用。
通过实验,我对计数器的工作原理和设计方法有了更深入的理解。
以下是我对实验的总结。
首先,我们学习了二进制计数器。
二进制计数器是一种最常见的计数器类型,它可以进行二进制计数,最简单的二进制计数器是3位二进制计数器,能够计数从0到7。
通过该实验,我了解了二进制计数器的原理,如何设计和实现二进制计数器。
其次,我们学习了十进制计数器。
十进制计数器是一种可以进行十进制计数的计数器。
在实验中,我们使用了74LS90芯片来构建十进制计数器,该芯片能够计数从0到9。
通过实验,我学习了十进制计数器的原理和设计方法,并且了解了如何将二进制计数器转换为十进制计数器。
此外,我们还学习了分频器和频率计数器。
分频器是一种能够将输入频率分频的电路,它可以将一个高频率信号分频为一个较低的频率信号。
频率计数器则是一种能够测量输入信号频率的电路。
通过实验,我对分频器和频率计数器有了更深入的了解,并且学会了如何设计和实现这些电路。
总的来说,通过这次实验,我对计数器有了更加深入的理解。
我学会了计数器的原理和设计方法,以及它们在数字电路中的应用。
这些知识对于我的学习和实际应用都非常有帮助。
通过实验,我也更加深入地体会到了数字电路的实际操作和应用。
我相信这些知识和经验将对我的未来学习和研究产生积极的影响。
32进制计数器实验报告
32进制计数器实验报告32进制计数器实验报告引言在数字电路实验中,计数器是一种重要的电子元件。
计数器可以根据输入的时钟信号进行计数操作,并输出对应的计数结果。
本实验旨在设计和实现一个32进制计数器,通过对其工作原理和设计过程的研究,加深对计数器的理解。
一、实验目的1. 掌握数字电路中计数器的基本原理;2. 理解32进制计数器的工作原理;3. 学会使用逻辑门和触发器构建32进制计数器。
二、实验设备与材料1. 逻辑门(与门、或门、非门等);2. 触发器(D触发器、JK触发器等);3. 电路连接线;4. 电源。
三、实验步骤及结果1. 实验步骤:步骤1:根据32进制计数器的要求,确定所需逻辑门和触发器类型;步骤2:根据设计要求,绘制32进制计数器的逻辑图;步骤3:使用逻辑门和触发器按照逻辑图进行连线;步骤4:接通电源,给定时钟信号,并观察输出结果。
2. 实验结果:经过实验,我们成功设计并实现了一个32进制计数器。
在给定时钟信号的驱动下,计数器能够按照32进制进行计数,并输出对应的计数结果。
当计数器从0开始,经过一个时钟周期后输出1,在经过31个时钟周期后输出10(二进制为00001和01111)。
四、实验原理1. 计数器的基本原理:计数器是一种能够根据输入的时钟信号进行计数操作的电子元件。
它通常由触发器和逻辑门组成。
当输入的时钟信号触发时,触发器状态改变,并通过逻辑门将状态传递给下一个触发器,从而实现计数操作。
2. 32进制计数器的工作原理:32进制计数器是一种能够进行32进制计数的特殊类型计数器。
它由5位二进制加法器和5位二进制锁存器构成。
每个二进制加法器负责一个位上的加法运算,并将结果传递给相应位上的锁存器。
当某一位达到31时,该位会溢出并将进位信号传递给高一位。
五、实验设计1. 逻辑图设计:根据32进制计数器的要求,我们设计了一个由5个D触发器和5个与非门构成的32进制计数器。
其中,每个D触发器的D输入端连接到对应位的与非门输出端,时钟信号连接到所有触发器的时钟输入端。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验4 计数器及其应用
一、实验目的
1、学习用集成触发器构成计数器的方法
2、掌握中规模集成计数器的使用及功能测试方法
二、实验原理
计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。
计数器种类很多。
按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。
根据计数制的不同,分为二进制计数器,十进制计数器和任意进制计数器。
根据计数的增减趋势,又分为加法、减法和可逆计数器。
还有可预置数和可编程序功能计数器等等。
目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器。
使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。
1、中规模十进制计数器
CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能,其引脚排列及逻辑符号如图5-9-1所示。
图5-9-1 CC40192引脚排列及逻辑符号
图中LD—置数端 CP U—加计数端 CP D—减计数端
CO—非同步进位输出端BO—非同步借位输出端
D0、D1、D2、D3—计数器输入端
Q0、Q1、Q2、Q3—数据输出端 CR—清除端
CC40192的功能如表5-9-1,说明如下: 表5-9-1
当清除端CR 为高电平“1”时,计数器直接清零;CR 置低电平则执行其它功能。
当CR 为低电平,置数端LD 也为低电平时,数据直接从置数端D 0、D 1、D 2、D 3 置入计数器。
当CR 为低电平,LD 为高电平时,执行计数功能。
执行加计数时,减计数端CP D 接高电平,计数脉冲由CP U 输入;在计数脉冲上升沿进行 8421 码十进制加法计数。
执行减计数时,加计数端CP U 接高电平,计数脉冲由减计数端CP D 输入,表5-9-2为
8421码十进制加、减计数器的状态转换表。
表5-9-2
加法计数
减计数
2、计数器的级联使用
一个十进制计数器只能表示0~9十个数,为了扩大计数器范围,常用多个十进制计数器级联使用。
同步计数器往往设有进位(或借位)输出端,故可选用其进位(或借位)输出信号驱动下一级计数器。
图5-9-2是由CC40192利用进位输出CO 控制高一位的CP U 端构成的加数级联图。
图5-9-2 CC40192级联电路
3、实现任意进制计数
(1) 用复位法获得任意进制计数器
假定已有N进制计数器,而需要得到一个M进制计数器时,只要M<N,用复位法使计数器计数到M时置“0”,即获得M进制计数器。
如图5-9-4所示为一个由CC40192十进制计数器接成的6进制计数器。
(2) 利用预置功能获M进制计数器
图5-9-5为用三个CC40192组成的421进制计数器。
外加的由与非门构成的锁存器可以克服器件计数速度的离散性,保证在反馈置“0”信号作用下计数器可靠置“0”。
图5-9-3 六进制计数器
图5-9-4是一个特殊12进制的计数器电路方案。
在数字钟里,对时位的计数序列是1、2、…11,12、1、…是12进制的,且无0数。
如图所示,当计数到13时,通过与非门产生一个复位信号,使CC40192(2)〔时十位〕直接置成0000,而CC40192(1),即时的个位直接置成0001,从而实现了5-5-1-12计数。
图5-9-4 特殊12进制计数器
三、实验设备与器件
1、+5V直流电源
2、双踪示波器
3、连续脉冲源
4、单次脉冲源
5、逻辑电平开关
6、逻辑电平显示器
7、译码显示器
8、 CC40192×3 CC4011(74LS00)
CC4012(74LS20)
四、实验内容
1、测试CC40192同步十进制可逆计数器的逻辑功能
计数脉冲由单次脉冲源提供,清除端CR、置数端LD、数据输入端D3 、D2、D1、D0 分别接逻辑开关,输出端Q3、Q2、Q1、Q0接实验设备的一个译码显示输入相应插口A、B、C、D;CO和BO接逻辑电平显示插口。
按表5-9-1逐项测试并判断该集成块的功能是否正常。
(1) 清除
令CR=1,其它输入为任意态,这时Q3Q2Q1Q0=0000,译码数字显示为0。
清除功能完成后,置CR=0
(2) 置数
CR=0,CP U,CP D任意,数据输入端输入任意一组二进制数,令LD= 0,观察计数译码显示输出,予置功能是否完成,此后置LD=1。
(3) 加计数
CR=0,LD=CP D=1,CP U接单次脉冲源。
清零后送入10个单次脉冲,观察译码数字显示是否按8421码十进制状态转换表进行;输出状态变化是否发生在CP U的上升沿。
(4) 减计数
CR=0,LD=CP U=1,CP D接单次脉冲源。
参照3)进行实验。
由内容可做实验得, 计数端接单次脉冲源,清除端CR 、置数端LD 、数据输入端
3210D D D D 分别接逻辑开关,3210Q Q Q Q 接实验设备的一个译码显示输入相应端口ABCD ,
CO 、BO 接逻辑电平显示插口,按表5-9-1测试,其结果与表5-9-1相一致。
2、图5-9-2所示,用两片CC40192组成两位十进制减法计数器,输入1Hz 连续计数脉冲,进行由00—99递减计数,记录之。
由内容可做实验得,按图5-9-2连接电缆,其中(1)片D CP 接连续脉冲源,1CR =0 1LD =1 1U CP =1,1BO 接2片2D CP 2CR =0 2LD =1 2U CP =1 2BO 为借位端。
两片30Q Q 分别接
译码显示器,显示器数值由00开始递减。
3、将两位十进制减法计数器改为两位十进制加法计数器,实现由99—00累加计数,记录之。
由内容可做实验得,接图5-9-2电路,显示器由00开始递增
4、设计一个数字钟移位60进 制计数器并进行实验。
由内容可做实验得,将实验3中(2)片接法改为图5-9-3,即得到特殊12进制计数器 5、按图5-9-4进行实验,记录之。
由内容可做实验得,按图5-9-4连接电路,得到特殊12进制计数器。
六、实验心得
在整个设计的过程中,关键在于时序电路的连接及电路的细节设计上,连接时要特别注意分清各个管脚,要分析原理以及可行的原因,是整个电路可稳定工作。
从中我感觉到每个实验都是要反复实践,其过程可能相当繁琐,但总会有所收获的。