计数器的设计实验报告

合集下载

显示计数器的设计实验报告

显示计数器的设计实验报告

数字电路与逻辑设计实验报告
(一)实验名称:显示计数器的设计。

(二)实验目的:熟悉同步、异步计数器的工作原理及应用。

掌握任意进制计数器的设计方法。

(三)实验内容:掌握双二-五-十进制计数器74LS390的功能。

利用74LS390设计一个模18的计数器,使用555定时器产生计数脉冲信号,计数结果用数码管显示。

利用示波器观察CP、1QA、1QB、1QC、1QD、2QA的波形,并在报告中绘制。

(四)模拟电路上的运行结果:
(五)心得体会:
此次计数器的有关实验,不仅帮我巩固了计数器相关方面的知识,而且让我懂得和体会到了计数器功能测试的方法,并且也掌握了一些计数器的设计方法。

与此同时,还让我熟悉了同步、异步计数器的工作原理和应用。

虽然刚开始的时候还是遇到了一些难于解决的问题,但最后经过老师的讲解和自己大胆的尝试操作后,最终问题都迎刃而解了。

(六)思考题解答:。

计数器的实验报告

计数器的实验报告

计数器的实验报告计数器的实验报告摘要:本实验旨在通过设计和搭建一个计数器电路,来探究计数器的工作原理以及应用。

通过实验,我们可以了解计数器的基本结构和工作原理,并通过实验结果验证其性能。

引言:计数器是一种常见的数字电路,在现代电子设备中得到广泛应用。

它可以用于计数、计时、频率分频等多种应用场景。

本实验将通过搭建一个简单的二进制计数器电路,来深入了解计数器的原理和功能。

实验步骤:1. 准备实验所需材料和设备,包括集成电路、电路板、电源等。

2. 根据实验要求,设计并搭建计数器电路。

3. 连接电源,确保电路正常工作。

4. 进行实验测试,记录实验数据。

5. 分析实验结果,并进行讨论。

实验结果与分析:在实验中,我们成功搭建了一个4位二进制计数器电路。

通过给电路输入一个脉冲信号,我们观察到计数器按照二进制的方式进行计数。

当计数器达到最大值时,会自动归零,重新开始计数。

通过实验数据的记录和分析,我们发现计数器的计数速度与输入脉冲信号的频率有关。

当输入脉冲信号的频率较高时,计数器的计数速度也会增加。

而当输入脉冲信号的频率较低时,计数器的计数速度则会减慢。

此外,我们还观察到计数器的计数方式可以通过改变电路连接方式进行调整。

例如,我们可以将计数器设置为递减计数器,或者设置为只在特定条件下计数。

这些功能的实现依赖于电路设计和连接方式的调整。

讨论与总结:通过本次实验,我们深入了解了计数器的原理和功能。

计数器作为一种常见的数字电路,在现代电子设备中发挥着重要作用。

通过掌握计数器的工作原理,我们可以更好地理解和应用数字电路。

然而,本实验只是对计数器的基本原理进行了初步探究。

在实际应用中,计数器的功能和性能还有很多扩展和优化的空间。

例如,可以通过增加位数、设置预置值等方式来改进计数器的性能。

在今后的学习和实践中,我们将进一步深入研究计数器的原理和应用,探索更多的设计和优化方法。

通过不断学习和实践,我们可以提高对计数器的理解和应用能力,为数字电路的设计和应用做出更大的贡献。

计数器eda实验报告

计数器eda实验报告

计数器eda实验报告计数器EDA实验报告引言:计数器是数字电路中常见的基本模块之一,用于计算和记录输入脉冲信号的数量。

在本次实验中,我们将使用EDA工具对计数器进行设计和分析。

通过对计数器的EDA实验,我们旨在深入了解计数器的工作原理和性能特点。

一、实验目的本次实验的目的是通过EDA工具对计数器进行设计和分析,具体包括以下几个方面:1. 了解计数器的基本原理和工作方式;2. 学习使用EDA工具进行电路设计和仿真;3. 分析计数器的性能指标,如最大计数值、计数速度等。

二、实验步骤1. 设计计数器的电路原理图;2. 使用EDA工具进行电路仿真;3. 分析仿真结果,包括计数器的计数规律、计数速度等;4. 调整计数器的参数,观察对计数结果的影响;5. 总结实验结果并提出改进意见。

三、计数器的设计原理计数器是由触发器和逻辑门组成的电路,可以实现对输入脉冲信号的计数功能。

常见的计数器包括二进制计数器、十进制计数器等。

在本次实验中,我们将设计一个4位二进制计数器。

四、EDA工具的使用我们选择使用Xilinx ISE Design Suite进行电路设计和仿真。

该工具具有强大的功能和易于使用的界面,方便我们进行计数器的设计和分析。

五、仿真结果分析通过对计数器的仿真结果进行分析,我们可以得到以下结论:1. 计数器的计数规律:根据计数器的设计原理,我们可以观察到计数器的计数规律为二进制递增。

2. 计数器的计数速度:计数器的计数速度取决于输入脉冲信号的频率和计数器的时钟频率。

通过适当调整时钟频率,我们可以实现不同速度的计数。

六、参数调整与性能改进在实验过程中,我们可以通过调整计数器的参数来改进其性能。

例如,我们可以增加计数器的位数,以提高其计数范围;或者调整计数器的时钟频率,以改变其计数速度。

通过不断优化和改进,我们可以得到更加高效和灵活的计数器设计。

七、实验总结通过本次计数器EDA实验,我们深入了解了计数器的工作原理和性能特点,并学会了使用EDA工具进行电路设计和仿真。

计数器实验报告

计数器实验报告

计数器实验报告实验目的:通过实验了解计数器的原理和工作方式,掌握计数器的使用方法。

实验仪器:计数器、示波器、信号发生器、电压表。

实验原理:计数器是一种能够自动地对输入脉冲进行计数的电子器件。

它主要由时钟脉冲输入、计数寄存器、计数器控制逻辑以及显示器等部分组成。

实验步骤:1. 准备好实验仪器,包括计数器、示波器、信号发生器和电压表。

2. 将信号发生器的输出信号连接到计数器的时钟脉冲输入口。

3. 设置信号发生器的频率为100 Hz,并调整信号幅度为适当值。

4. 将计数器的数字显示设置为0。

5. 打开计数器和示波器电源,并打开示波器,将示波器的探头连接到计数器的输出端口。

6. 调节示波器的水平和垂直位置,以便能够观察到计数器的输出信号。

7. 开始计数,观察并记录计数器的输出信号和显示结果。

8. 改变信号发生器的频率和幅度,再次进行观察和记录。

实验结果:根据我们的实验步骤和操作,我们观察到计数器的输出信号呈现出逐渐增大的趋势,并且显示结果与输出信号一致。

当频率改变时,计数器的输出结果也会相应地改变。

实验分析:通过实验,我们了解了计数器的基本原理和工作方式,并成功地进行了计数器的实验操作。

实验结果表明,计数器能够准确地对输入脉冲进行计数,并将计数结果显示出来。

同时,我们还观察到了信号发生器频率和幅度对计数器结果的影响,这与我们的预期一致。

实验结论:通过本次实验,我们深入了解了计数器的原理和工作方式,掌握了计数器的使用方法。

实验结果表明,计数器能够准确地对输入脉冲进行计数,并将计数结果显示出来。

同时,我们还观察到了信号发生器频率和幅度对计数器结果的影响。

加法计数器的设计实验报告

加法计数器的设计实验报告

EDA实验报告书ELSECOUT<='0';END IF;CQ<=CG;CP<=CS;END PROCESS;END BBQ;仿真波形图问题讨论1.设计一个60进制的加法计数器,具体要求与本实验中的24进制计数器相同。

LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY JINZHI60 ISPORT(CLK,RD,EN:IN STD_LOGIC;CQ,CP:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);COUT:OUT STD_LOGIC);END JINZHI60 ;ARCHITECTURE BBQ OF JINZHI60 ISSIGNAL CS,CG: STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINPROCESS(CLK,RD,EN)BEGINIF RD='1' THEN CG<="0000"; CS<="0000";ELSIF CLK'EVENT AND CLK='1' THENIF EN='1' THENIF (CS="0101" AND CG="1001") THENCG<="0000";CS<="0000";ELSIF CG="1001" THEN CG<="0000";CS<=CS+1;ELSE CG<=CG+1;END IF;END IF;END IF;IF (CS="0101" AND CG="1001") THEN COUT<='1';ELSE COUT<='0';END IF;CQ<=CG;CP<=CS;END PROCESS;END BBQ;2.利用60进制及24进制计数器设计简易数字钟。

n进制计数器的设计与制作实验报告

n进制计数器的设计与制作实验报告

n进制计数器的设计与制作实验报告一、实验目的本实验的目的是设计并制作一个n进制计数器,通过实践掌握数字电路设计和实现的方法和技巧,加深对数字电路原理的理解。

二、实验原理1. n进制计数器n进制计数器是一种能够进行n进制计数的电路,其中n为正整数。

在二进制计数器中,n=2。

在n进制计数器中,每当计数到n-1时,输出信号会发生一次溢出,并从0开始重新计数。

2. 计数器的类型根据计数方式不同,常见的计数器类型有同步计数器和异步计数器。

同步计数器需要所有触发器同时改变状态才能进行下一次计数;异步计数器则只需要一个触发器改变状态即可进行下一次计数。

3. 触发器触发器是数字电路中常用的存储元件,可以存储一个比特位(0或1)。

常见的触发器有SR触发器、D触发器、JK触发器等。

三、实验设备与材料1. 74LS74 D型正沿触发双稳态触发器2. 74LS90 4位十进制/BCD分频/技术性升降沿触发式二分频循环式计数器3. 7404 六反相器芯片4. 面包板5. 连接线四、实验步骤1. 按照电路原理图连接电路,将74LS90计数器的Q0-Q3输出接到7404反相器的输入端。

2. 将7404反相器的输出端连接到74LS74触发器的D端,同时将74LS74触发器的时钟端连接到74LS90计数器的CLK端。

3. 将最高位(Q3)的输出接到LED灯,用于观察计数情况。

4. 将面包板上电源线和地线连接好,开启电源。

五、实验结果经过实验,可以看到LED灯随着计数值不断变化。

当计数值达到7时,LED灯会熄灭并重新从0开始计数。

六、实验分析与结论本实验成功设计并制作出了一个n进制计数器。

通过实践掌握了数字电路设计和实现的方法和技巧,并加深了对数字电路原理的理解。

七、存在问题与改进方案1. 实验中使用的是四位十进制/BCD分频/技术性升降沿触发式二分频循环式计数器,如果需要进行其他进制的计数,则需要更换不同类型的计数器芯片。

2. 实验中使用的是74LS系列芯片,如果需要进行高速计数,则需要更换更快的芯片。

数字系统设计实验报告计数器、累加器

数字系统设计实验报告计数器、累加器

实验五计数器设计一、实验目的:1)复习计数器的结构组成及工作原理。

2)掌握图形法设计计数器的方法。

3)掌握Verilog HDL语言设计计数器的方法。

4)进一步熟悉设计流程、熟悉数字系统实验开发箱的使用。

二、实验器材:数字系统设计试验箱、导线、计算机、USB接口线三、实验内容:1)用图形法设计一个十进制计数器, 仿真设计结果。

下载, 进行在线测试。

用Verilog HDL语言设计一个十进制的计数器(要求加法计数;时钟上升沿触发;异步清零, 低电平有效;同步置数, 高电平有效), 仿真设计结果。

下载, 进行在线测试。

四、实验截图1)原理图:2)仿真波形:3)文本程序:5)波形仿真:五、实验结果分析、体会:这次实验, , 由于试验箱有抖动, 故在原理图上加了去抖电路, 但是在波形仿真的时候无需考虑抖动, 所以我在波形仿真的时候将去抖电路消除了, 方便观察实验六累加器设计一、实验目的:1)学习了解累加器工作原理;2)了解多层次结构的设计思路;3)学会综合应用原理图和文本相结合的设计方法。

实验器材:数字系统设计试验箱、导线、计算机、USB接口线三、实验内容:1)在文本输入方式下设计分别设计出8位的全加器和8位的寄存器, 并分别存为add8_8.v和reg8.v;3) 2)在原理图输入方式下通过调用两个模块设计出累加器电路, 并存为add8.bdf, 进行功能仿真;下载, 进行在线测试。

四、实验截图1)8位累加器原理图:2)波形仿真:3)文本输入8位加法器语言及符号:生成元器件:4)文本输入8位寄存器:生成图元:五、实验总结:通过本次实验, 学习了解累加器工作原理, 了解多层次结构的设计思路, 学会综合应用原理图和文本相结合的设计方法。

任意进制计数器的设计实验报告

任意进制计数器的设计实验报告

任意进制计数器的设计实验报告介绍本实验报告旨在讨论任意进制计数器的设计问题,包括进制转换、计数器的实现原理、电路设计等方面的内容。

进制转换进制的定义进制是用来表示数字的一种方法,常见的进制包括十进制、二进制、八进制和十六进制等。

在计算机科学中,二进制最为常用,由于计算机的基本元素是电子开关,而电子开关只有两种状态,因此非常适合使用二进制表示。

进制转换的方法进制转换是指在不同进制之间进行数字表示的转换。

常见的进制转换方法包括: 1. 十进制转二进制:将十进制的数值除以2,余数即为二进制数的最低位,继续除以2,直到商为0,将余数按顺序排列即可得到二进制数。

2. 二进制转十进制:将每一位上的数值乘以2的对应次幂,然后相加即可得到十进制数。

3. 十进制转八进制:将十进制数逐步除以8,余数即为八进制数的最低位,继续除以8,直到商为0,将余数按顺序排列即可得到八进制数。

4. 八进制转十进制:将每一位上的数值乘以8的对应次幂,然后相加即可得到十进制数。

进制转换的重要性进制转换在计算机科学中具有重要意义。

首先,计算机底层使用二进制进行操作,因此在计算机程序中进行进制转换是一种基本操作。

其次,进制转换有助于理解计算机中数字的表示方式以及数据的存储与运算原理。

此外,在某些场景下,合理地选择进制可以提高计算效率和减小存储空间等。

计数器的实现原理计数器是一种用来计数的电子装置,其通过在不同状态之间切换来记录计数结果。

计数器可以根据需求设计为同步计数器或异步计数器。

同步计数器同步计数器是一种通过时钟信号来驱动计数的计数器。

在同步计数器中,每个触发器的时钟信号来自于前一个触发器的输出,通过级联连接起来。

当时钟信号变化时,所有触发器同时更新计数值,因此同步计数器具有高度的同步性。

异步计数器异步计数器是一种通过电平信号来驱动计数的计数器。

在异步计数器中,每个触发器的时钟信号来自于前一个触发器的输出和输入。

当时钟信号变化时,触发器会根据当前的输入和输出状态来决定是否更新计数值,因此异步计数器具有较低的同步性。

数电实验报告计数器

数电实验报告计数器

数电实验报告计数器《数电实验报告:计数器》实验目的:本实验旨在通过搭建和测试计数器电路,加深对数电原理的理解,掌握计数器的工作原理和应用。

实验器材:1. 74LS76触发器芯片2. 74LS00与非门芯片3. 74LS08与门芯片4. 电源5. 示波器6. 万用表7. 逻辑开关8. 连接线实验原理:计数器是一种能够对输入的脉冲信号进行计数并输出相应计数结果的电路。

在本实验中,我们将使用74LS76触发器芯片搭建一个4位二进制同步计数器。

该计数器能够对输入的脉冲信号进行计数,并通过LED灯显示计数结果。

实验步骤:1. 根据74LS76触发器芯片的引脚图和真值表,搭建4位二进制同步计数器电路。

2. 将74LS00与非门芯片连接到计数器电路中,用于产生时钟信号。

3. 将74LS08与门芯片连接到计数器电路中,用于控制LED灯的显示。

4. 接通电源,使用逻辑开关产生输入脉冲信号。

5. 使用示波器和万用表对计数器电路的各个部分进行测试和调试。

实验结果:经过调试和测试,我们成功搭建了一个4位二进制同步计数器电路。

当输入脉冲信号时,LED灯能够正确显示计数结果,符合预期。

实验分析:通过本次实验,我们深入理解了计数器的工作原理和应用。

计数器是数字电路中常用的基本模块,广泛应用于各种计数和计时场合。

掌握计数器的原理和搭建方法,对于进一步学习和应用数字电路具有重要意义。

结论:本次实验通过搭建和测试计数器电路,加深了我们对数电原理的理解,掌握了计数器的工作原理和应用。

同时,我们也学会了使用示波器和万用表对数字电路进行测试和调试,为今后的实验和工作打下了坚实的基础。

QUARTUS应用二---计数器设计(实验报告模板)

QUARTUS应用二---计数器设计(实验报告模板)

QUARTUS应用二---计数器设计(实验报告模板)
可编程逻辑器件FPGA实验二
计数译码显示系统设计
一、实验目的
1、掌握中规模集成计数器的逻辑功能,以及任意进制计数器的设计方法
2、熟悉显示译码器和数码管的原理及设计应用
3、了解用数字可编程器件实现集成计数译码显示电路的方法
4、学会分频器的使用
5、进一步熟悉QUARTUS软件的基本使用方法
实验原理
1、计数器
(简述设计中所用两种集成计数器功能原理)
2、显示译码器和数码管
(简述显示译码器和数码管的分类)
3、分频器
(简述分频器的功能)
二、实验内容
1、用74161设计一个十九进制的计数器
(1)原理图
(2)功能仿真波形
(3)时序仿真波形
2、用74190设计一个十二进制减法计数器
(1)原理图
(2)功能仿真波形
(3)时序仿真波形
三、实验总结
1、实验故障及解决方法
2、实验体会
四、思考题
1、七段数码管分为共阴极和共阳极两类,本实验用的是哪一类?对两种数码管,各需选用
何种型号的译码器?
2、在采用集成计数器构成任意N进制计数器时,常采用哪两种方法?各有何特点?。

60进制计数器实验报告

60进制计数器实验报告

60进制计数器实验报告60进制计数器实验报告引言:计数器是一种常见的电子设备,用于记录和显示数字。

在日常生活中,我们常见的计数器是十进制计数器,即由0到9的数字循环计数。

然而,在某些特殊的应用场景中,十进制计数器可能不够灵活。

本实验旨在设计和实现一种60进制计数器,以满足特定需求。

实验目的:1. 设计并实现60进制计数器电路;2. 验证60进制计数器的功能和准确性;3. 探讨60进制计数器的应用价值。

实验原理:十进制计数器是通过使用4位二进制计数器和逻辑门电路来实现的。

同样地,60进制计数器可以通过使用更多位的二进制计数器和逻辑门电路来实现。

在本实验中,我们使用6位二进制计数器和逻辑门电路来构建60进制计数器。

实验材料:1. 74LS74型D触发器芯片 x 62. 74LS00型与非门芯片 x 23. 74LS08型与门芯片 x 14. 连线材料5. 示波器6. 电源实验步骤:1. 根据电路原理图,连接各个芯片和逻辑门,确保连接正确无误。

2. 将电源接入电路,注意电压和接线的正确性。

3. 使用示波器观察计数器输出的波形,并检查是否按照预期进行计数。

实验结果:经过实验,我们成功地设计并实现了60进制计数器。

计数器在每个时钟脉冲的作用下,能够准确地按照60进制进行计数,并输出相应的波形。

通过示波器观察,我们可以清晰地看到计数器的计数过程,以及在达到最大计数值后的溢出现象。

实验讨论:60进制计数器的设计和实现为特定领域的计数需求提供了解决方案。

例如,在时间测量中,60进制更符合人们对时间的感知和使用习惯。

此外,60进制计数器还可以应用于音乐节拍器、航天导航等领域,提供更灵活和精确的计数方式。

然而,60进制计数器也存在一些限制和挑战。

首先,由于60不是2的幂次,所以构建60进制计数器的硬件复杂度较高。

其次,60进制计数器在数字显示和数据传输方面需要进行转换,增加了额外的工作量和成本。

结论:通过本实验,我们成功地设计并实现了60进制计数器。

任意进制计数器的设计实验报告

任意进制计数器的设计实验报告

任意进制计数器的设计实验报告一、实验目的本实验的主要目的是设计一种任意进制计数器,通过对不同进制数的转换和计算,掌握数字电路设计的基本原理和方法。

二、实验原理1. 进制转换在数字电路中,常用的进制有二进制、八进制、十进制和十六进制。

不同进制之间可以通过位权展开法进行转换。

例如,将二进制数1101.101转换为十六进制数,则需要按照位权展开法进行计算:1101.101 = 1×2³ + 1×2² + 0×2¹ + 1×2⁰ + 1×2⁻¹ + 0×2⁻² +1×2⁻³ = D.5。

2. 计数器设计计数器是一种重要的数字电路组件,在很多应用场合都有广泛应用。

任意进制计数器是一种基于状态机设计思想的组合逻辑电路,可以根据输入信号进行状态切换,并输出相应的计数结果。

三、实验步骤本实验采用Verilog HDL语言进行编程,具体步骤如下:1. 定义模块:根据所需功能定义模块名称、输入输出端口和内部信号。

2. 设计状态机:根据所需功能设计状态机,并定义状态转移条件和输出信号。

3. 编写代码:根据状态机设计编写Verilog HDL代码,并进行仿真验证。

4. 下载到FPGA板上进行实验验证。

四、实验结果本实验成功设计了一种任意进制计数器,可以根据输入信号进行状态切换,并输出相应的计数结果。

经过仿真和实验验证,该计数器具有较高的稳定性和可靠性,可以满足不同进制计数的需求。

五、实验总结本实验通过对数字电路设计的基本原理和方法进行学习和掌握,成功设计了一种任意进制计数器,并对其进行了仿真和实验验证。

通过本次实验,我们不仅深入理解了数字电路设计的原理和方法,还掌握了Verilog HDL语言的编程技巧和FPGA板的使用方法。

这对我们今后从事相关领域研究和工作将具有重要意义。

计数器的设计与应用实验报告

计数器的设计与应用实验报告

计数器的设计与应用实验报告
实验目的:
1.了解集成电路74LS163的性能及其应用;
2.掌握计数器的设计与应用。

实验原理:
计数器是用于计数的一个基本电路,计数器可以用来实现正向计数、反向计数、随意
计数等功能,常用于时序电路、频率测量电路、模拟电路、数字逻辑电路中。

74LS163是
一种4位二进制计数器,可以实现正向或者反向计数,通过设置各个输入端的状态并控制
时钟信号的变化实现不同的计数功能。

实验设备:
数字训练板、万用表、直流电源、示波器、74LS163芯片、14Pin插座
实验步骤:
1.将计数器芯片74LS163插入14Pin插座中,用万用表测量各个脚位之间的连接情
况;
2.将4位7段数码管与芯片74LS163相连,并根据芯片引脚的不同接法,设置好各个
脚位的状态,实现不同的计数功能;
3.连接示波器、直流电源等设备,将信号线分别连接到芯片74LS163的各个引脚上;
4.在设计的条件下,给芯片74LS163提供时钟信号,观察计数器的计数功能是否正常,必要时进行调整。

实验结果:
实验中,通过设计与调试,成功地实现了计数器的功能,包括正向计数、反向计数、
随意计数等多种功能,并通过连接示波器观测到了计数器在不同状态下输出的波形信号,
验证了计数器的正确性。

实验总结:
本实验通过对计数器的设计与应用,让我更深入地了解了计数器的性能与应用,掌握
了基本的设计方法。

同时,还发现在调试计数器时,时钟信号的稳定性对计数器的正确性
很重要,因此需要选用合适的时钟信号源并保证其稳定性。

通过实验,我认为有必要研究计数器的更高级应用,提高自己的水平与能力。

计数器及其应用实验报告总结

计数器及其应用实验报告总结

计数器及其应用实验报告总结
计数器是一种基本的数字电路,在实验中我们学习了几种常见的计数器,并且了解了它们的原理和应用。

通过实验,我对计数器的工作原理和设计方法有了更深入的理解。

以下是我对实验的总结。

首先,我们学习了二进制计数器。

二进制计数器是一种最常见的计数器类型,它可以进行二进制计数,最简单的二进制计数器是3位二进制计数器,能够计数从0到7。

通过该实验,我了解了二进制计数器的原理,如何设计和实现二进制计数器。

其次,我们学习了十进制计数器。

十进制计数器是一种可以进行十进制计数的计数器。

在实验中,我们使用了74LS90芯片来构建十进制计数器,该芯片能够计数从0到9。

通过实验,我学习了十进制计数器的原理和设计方法,并且了解了如何将二进制计数器转换为十进制计数器。

此外,我们还学习了分频器和频率计数器。

分频器是一种能够将输入频率分频的电路,它可以将一个高频率信号分频为一个较低的频率信号。

频率计数器则是一种能够测量输入信号频率的电路。

通过实验,我对分频器和频率计数器有了更深入的了解,并且学会了如何设计和实现这些电路。

总的来说,通过这次实验,我对计数器有了更加深入的理解。

我学会了计数器的原理和设计方法,以及它们在数字电路中的应用。

这些知识对于我的学习和实际应用都非常有帮助。

通过实验,我也更加深入地体会到了数字电路的实际操作和应用。

我相信这些知识和经验将对我的未来学习和研究产生积极的影响。

实验五 计数器的设计——实验报告

实验五 计数器的设计——实验报告

实验五计数器的设计——实验报告一、实验目的本次实验的主要目的是设计并实现一个计数器,通过实际操作深入理解计数器的工作原理和逻辑电路的设计方法,提高对数字电路的分析和设计能力。

二、实验原理计数器是一种能够对输入脉冲进行计数的数字电路。

它可以按照不同的计数方式,如加法计数、减法计数或可逆计数,来记录脉冲的个数。

在本次实验中,我们采用的是基于数字逻辑芯片的设计方法。

通过组合逻辑门(如与门、或门、非门等)和时序逻辑元件(如触发器)来构建计数器的电路。

常见的计数器类型有二进制计数器、十进制计数器等。

二进制计数器每输入一个脉冲,计数值就增加 1,当计数值达到最大值(如 4 位二进制计数器的最大值为 15)时,再输入一个脉冲就会回到 0 重新开始计数。

十进制计数器则是按照十进制的规律进行计数。

三、实验设备与材料1、数字电路实验箱2、 74LS161 计数器芯片3、 74LS00 与非门芯片4、 74LS04 非门芯片5、导线若干四、实验内容与步骤1、设计一个 4 位二进制加法计数器首先,将 74LS161 芯片插入实验箱的插槽中。

按照芯片的引脚功能,将时钟脉冲输入端(CLK)连接到实验箱的脉冲源,将清零端(CLR)和置数端(LD)连接到高电平,使计数器处于正常计数状态。

将计数器的输出端(Q3、Q2、Q1、Q0)连接到实验箱的指示灯,以便观察计数结果。

打开脉冲源,观察指示灯的变化,验证计数器是否正常进行加法计数。

2、设计一个 4 位十进制加法计数器在上述 4 位二进制加法计数器的基础上,通过使用与非门和非门等芯片对输出进行译码,将二进制计数值转换为十进制。

具体来说,当二进制计数值达到 1001(即十进制的 9)时,产生一个进位信号,将计数器清零,从而实现十进制计数。

3、设计一个可逆计数器(可加可减)为了实现可逆计数,需要增加一个控制端(U/D)来决定计数器是进行加法计数还是减法计数。

当 U/D 为高电平时,计数器进行加法计数;当 U/D 为低电平时,计数器进行减法计数。

eda实验报告计数器

eda实验报告计数器

eda实验报告计数器EDA实验报告-计数器引言:计数器是数字电路中常用的基本模块之一,它在各个领域都有着广泛的应用。

本实验旨在通过EDA(电子设计自动化)软件进行计数器的设计与仿真,探索计数器的原理和功能。

一、计数器的基本原理计数器是一种能够按照规定的顺序改变其输出状态的电子电路。

它通过内部的触发器和逻辑门实现数字信号的计数功能。

常见的计数器有二进制计数器、十进制计数器等。

二、实验设计与仿真1. 实验目标本次实验的目标是设计一个4位二进制计数器,并通过EDA软件进行仿真验证。

计数器的功能是在每个时钟脉冲到来时,输出的二进制数加1。

2. 设计思路计数器的设计需要考虑以下几个方面:- 选择适当的触发器:本实验选择了D触发器作为计数器的基本单元,因为D触发器具有简单、易于控制的特点。

- 确定计数器的位数:本实验设计了一个4位计数器,即可以表示0~15的二进制数。

- 连接逻辑门:通过逻辑门将各个触发器连接起来,实现计数器的功能。

3. 电路设计根据设计思路,我们使用EDA软件进行电路设计。

首先,将4个D触发器连接起来,形成4位计数器。

然后,根据计数器的功能要求,将时钟信号连接到每个触发器的时钟输入端。

最后,将各个触发器的输出通过逻辑门进行连接,得到计数器的输出。

4. 仿真验证完成电路设计后,我们使用EDA软件进行仿真验证。

通过输入不同的时钟信号,观察计数器的输出是否符合预期。

在仿真过程中,我们可以调整时钟信号的频率,观察计数器的计数速度。

三、实验结果与分析通过EDA软件的仿真,我们得到了计数器的输出结果。

在时钟信号的作用下,计数器按照预期进行了计数,并输出了相应的二进制数。

通过观察输出结果,我们可以得出以下几点结论:- 计数器的输出与时钟信号的频率有关,频率越高,计数速度越快。

- 计数器的输出按照二进制的顺序进行计数,当达到最大值时,会从0重新开始计数。

四、实验总结本次实验通过EDA软件进行了计数器的设计与仿真。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计数器的设计实验报告篇一:计数器实验报告实验4 计数器及其应用一、实验目的1、学习用集成触发器构成计数器的方法2、掌握中规模集成计数器的使用及功能测试方法二、实验原理计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。

计数器种类很多。

按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。

根据计数制的不同,分为二进制计数器,十进制计数器和任意进制计数器。

根据计数的增减趋势,又分为加法、减法和可逆计数器。

还有可预置数和可编程序功能计数器等等。

目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器。

使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。

1、中规模十进制计数器CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能,其引脚排列及逻辑符号如图5-9-1所示。

图5-9-1 CC40192引脚排列及逻辑符号图中LD—置数端CPU—加计数端CPD —减计数端CO—非同步进位输出端BO—非同步借位输出端D0、D1、D2、D3 —计数器输入端Q0、Q1、Q2、Q3 —数据输出端CR—清除端CC40192的功能如表5-9-1,说明如下:表5-9-1当清除端CR为高电平“1”时,计数器直接清零;CR置低电平则执行其它功能。

当CR为低电平,置数端LD也为低电平时,数据直接从置数端D0、D1、D2、D3 置入计数器。

当CR为低电平,LD为高电平时,执行计数功能。

执行加计数时,减计数端CPD 接高电平,计数脉冲由CPU 输入;在计数脉冲上升沿进行8421 码十进制加法计数。

执行减计数时,加计数端CPU接高电平,计数脉冲由减计数端CPD 输入,表5-9-2为8421码十进制加、减计数器的状态转换表。

加法计数表5-9-减计数2、计数器的级联使用一个十进制计数器只能表示0~9十个数,为了扩大计数器范围,常用多个十进制计数器级联使用。

同步计数器往往设有进位(或借位)输出端,故可选用其进位(或借位)输出信号驱动下一级计数器。

图5-9-2是由CC40192利用进位输出CO控制高一位的CPU端构成的加数级联图。

图5-9-2 CC40192级联电路3、实现任意进制计数用复位法获得任意进制计数器假定已有N进制计数器,而需要得到一个M进制计数器时,只要M<N,用复位法使计数器计数到M时置“0”,即获得M进制计数器。

如图5-9-4所示为一个由CC40192十进制计数器接成的6进制计数器。

利用预置功能获M进制计数器图5-9-5为用三个CC40192组成的421进制计数器。

外加的由与非门构成的锁存器可以克服器件计数速度的离散性,保证在反馈置“0”信号作用下计数器可靠置“0”。

图5-9-3 六进制计数器图5-9-4是一个特殊12进制的计数器电路方案。

在数字钟里,对时位的计数序列是1、2、?11,12、1、?是12进制的,且无0数。

如图所示,当计数到13时,通过与非门产生一个复位信号,使CC40192〔时十位〕直接置成0000,而CC40192,即时的个位直接置成0001,从而实现了5-5-1-12计数。

图5-9-4 特殊12进制计数器三、实验设备与器件1、+5V直流电源2、双踪示波器3、连续脉冲源4、单次脉冲源5、逻辑电平开关6、逻辑电平显示器7、译码显示器8、CC40192×3 CC4011(74LS00)CC4012(74LS20)四、实验内容1、测试CC40192同步十进制可逆计数器的逻辑功能计数脉冲由单次脉冲源提供,清除端CR、置数端LD、数据输入端D3 、D2、D1、D0 分别接逻辑开关,输出端Q3、Q2、Q1、Q0接实验设备的一个译码显示输入相应插口A、B、C、D;CO和BO接逻辑电平显示插口。

按表5-9-1逐项测试并判断该集成块的功能是否正常。

清除令CR=1,其它输入为任意态,这时Q3Q2Q1Q0=0000,译码数字显示为0。

清除功能完成后,置CR=0 置数CR=0,CPU,CPD 任意,数据输入端输入任意一组二进制数,令LD= 0,观察计数译码显示输出,予置功能是否完成,此后置LD=1。

加计数CR=0,LD=CPD =1,CPU 接单次脉冲源。

清零后送入10个单次脉冲,观察译码数字显示是否按8421码十进制状态转换表进行;输出状态变化是否发生在CPU 的上升沿。

减计数CR=0,LD=CPU =1,CPD 接单次脉冲源。

参照3)进行实验。

由内容可做实验得,计数端接单次脉冲源,清除端CR、置数端LD、数据输入端D3D2D1D0分别接逻辑开关,Q3Q2Q1Q0接实验设备的一个译码显示输入相应端口ABCD,CO、BO接逻辑电平显示插口,按表5-9-1测试,其结果与表5-9-1相一致。

2、图5-9-2所示,用两片CC40192组成两位十进制减法计数器,输入1Hz 连续计数脉冲,进行由00—99递减计数,记录之。

由内容可做实验得,按图5-9-2连接电缆,其中(1)片CPCR1=0 LD1=1 D 接连续脉冲源,两片Q3CPU1=1,BO1接2片CPD2 CR2=0 LD2=1 CPU2=1 BO2为借位端。

译码显示器,显示器数值由00开始递减。

3、将两位十进制减法计数器改为两位十进制加法计数器,实现由99—00累加计数,记录之。

由内容可做实验得,接图5-9-2电路,显示器由00开始递增4、设计一个数字钟移位60进制计数器并进行实验。

由内容可做实验得,将实验3中(2)片接法改为图5-9-3,即得到特殊12进制计数器5、按图5-9-4进行实验,记录之。

由内容可做实验得,按图5-9-4连接电路,得到特殊12进制计数器。

六、实验心得在整个设计的过程中,关键在于时序电路的连接及电路的细节设计上,连接时要特别注意分清各个管脚,要分析原理以及可行的原因,是整个电路可稳定工作。

从中我感觉到每个实验都是要反复实践,其过程可能相当繁琐,但总会有所收获的。

Q0分别接篇二:计数器设计实验报告实验报告实验:班级:姓名:学号:一、实验目的1.熟悉硬件描述语言软件的使用。

2.数序计数器的工作原理和逻辑功能。

3.掌握计数器的设计方法。

二、实验原理计数器是数字系统中使用最多的时序逻辑电路,其应用范围非常广泛。

计数器不仅能用于时钟脉冲技术,而且还用于定时、分频、产生节拍脉冲和脉冲序列以及进行数字运算等。

三、实验内容1.设计一个具有仅为输出信号的十进制加法计数器,要求有异步清零功能及同步使能控制端。

(1)代码library ieee;use _logic_;use _logic_;entity cnt10 isport ;dout:out std_logic_vector;cout:out std_logic);end cnt10;architecture behav of cnt10 isbeginprocessvariable q:std_logic_vector;beginif rst=‘0’ then q:=;elsif clk’event and clk=‘1’ thenif en=‘1’ thenif then q:=data; elseif q篇三:实验六同步计数器的设计实验报告实验六同步计数器的设计学号:姓名:一、实验目的和要求1.熟悉JK触发器的逻辑功能。

2.掌握用JK触发器设计同步计数器。

二、实验仪器及器件三、实验预习1、复习时序逻辑电路设计方法。

⑴逻辑抽象,得出电路的状态转换图或状态转换表①分析给定的逻辑问题,确定输入变量、输出变量以及电路的状态数。

通常都是取原因(或条件)作为输入逻辑变量,取结果作输出逻辑变量。

②定义输入、输出逻辑状态和每个电路状态的含意,并将电路状态顺序编号。

③按照题意列出电路的状态转换表或画出电路的状态转换图。

通过以上步骤将给定的逻辑问题抽象成时序逻辑函数。

⑵状态化简①等价状态:在相同的输入下有相同的输出,并且转换到同一次态的两个状态。

②合并等价状态,使电路的状态数最少。

⑶状态分配①确定触发器的数目n。

因为n个触发器共有2n种状态组合,所以为获得时序电路所需的M个状态,必须取2n?1<M?2n②给每个电路状态规定对应的触发器状态组合。

⑷选定触发器类型,求出电路的状态方程、驱动方程和输出方程①根据器件的供应情况与系统中触发器种类尽量少的原则谨慎选择使用的触发器类型。

②根据状态转换图(或状态转换表)和选定的状态编码、触发器的类型,即可写出电路的状态方程、驱动方程和输出方程。

⑸根据得到的方程式画出逻辑图⑹检查设计的电路能否自启动①电路开始工作时通过预置数将电路设置成有效状态的一种。

②通过修改逻辑设计加以解决。

⑺设计步骤简图图3 设计步骤简图2、按实验内容设计逻辑电路画出逻辑图。

设计思路详情见第六部分。

电路图如下:四、实验原理1.计数器的工作原理递增计数器----每来一个CP,触发器的组成状态按二进制代码规律增加。

递减计数器-----按二进制代码规律减少。

双向计数器-----可增可减,由控制端来决定。

2.集成J-K触发器74LS73 ⑴符号:图1 J-K触发器符号⑵功能:表1 J-K触发器功能表⑶状态转换图:图2 J-K触发器状态转换图⑷特性方程:Qn?1?JQn?KQn⑸注意事项:①在J-K触发器中,凡是要求接“1”的,一定要接高电平(例如5V),否则会出现错误的翻转。

③触发器的两个输出负载不能过分悬殊,否则会出现误翻。

④J-K触发器的清零输入端在工作时一定要接高电平或连接到实验箱的清零端子。

3.时序电路的设计步骤内容见实验预习。

五、实验内容1.用J-K触发器和门电路设计一个特殊的12进制计数器,其十进制的状态转换图为:图4 12进制计数器状态转换图六、实验设计及数据与处理⑴设计在12进制同步计数器中,输出的状态只由前一周期的状态决定,而与外来输入无关,因此目标电路为Moore型。

而数字电路只有0和1两种状态,因此目标电路要表达12种状态需要用4个变量Q1、Q2、Q3、Q4的16种组合中的12种。

现定义十进制数01~12的对应二进制数为输出状态,可得目标电路的状态转换表如下:表2 12进制同步计数器状态状态转换表本实验选择J-K触发器,根据状态转换表以及J-K触发器特性方程:Qn?1?JQn?KQn得到目标电路方程如下:nnn输出方程:Y0n?Q0n、Y1n?Q1n、Y2n?Q2、Y3?Q3驱动方程:Q0一个CP发生一次变化,因此J0?K0?1。

Q1每当Q0为1时,发生变化,因此nJ1?K1?Q0。

Q2在Q1Q0都为1以及12(即1100的时候)发生变化,因此J2 = K2 =Q1nQ0n+Q3nQ2nQ3在Q2 Q1Q0都为1的时候,以及12的时候发生变化,因此J3=K3=Q0nQ1nQ2n+Q3nQ2n。

相关文档
最新文档