图形的平移与旋转复习课教(学)案
3.长方形和正方形,平移、旋转和轴对称复习-苏教版三年级数学上册教案
3.长方形和正方形,平移、旋转和轴对称复习 - 苏教版三年级数学上册教案教学目标1.复习长方形、正方形的定义和性质。
2.理解平移、旋转、轴对称的概念。
3.能够进行简单的平移、旋转、轴对称变换。
教学重点1.平移、旋转、轴对称的概念和基本操作。
2.平移、旋转、轴对称的特点和变化规律。
教学难点1.平移、旋转、轴对称的变换与图形的位置、面积、周长等性质的关系。
2.同时运用平移、旋转、轴对称的变换进行复合变换。
教学内容本节课将围绕长方形和正方形、平移、旋转、轴对称这些重要概念展开学习。
概念复习首先,让我们来回忆一下长方形和正方形的定义和性质。
长方形是指有两组相对平行的边且每组中的边相等的四边形。
它的性质有:•对角线相等,且相互垂直。
•对边相等,且相互平行。
•内角和为180度。
•面积为长乘宽。
正方形是一种特殊的长方形,它的性质有:•四条边相等,且相互平行。
•对角线相等,且相互垂直。
•内角和为360度,每个角为90度。
•面积为边长的平方。
平移接下来,我们介绍平移这一概念。
平移指的是在平面内把一个图形沿着某个方向上不改变它的大小和形状地移动。
对于二维图形,可以上下左右任意平移。
它的特点有:•只改变图形的位置,不改变图形的形状和大小。
•平移前后,图形的周长和面积不变。
旋转旋转是指以固定点(旋转中心)为中心,固定角度(旋转角)旋转一个平面图形。
它的特点有:•旋转前后,图形的形状和大小不变,但是位置会发生改变。
•旋转角度为正,表示逆时针旋转;旋转角度为负,表示顺时针旋转。
•每旋转一度,图形的每一个点会按照相对于旋转中心的距离和旋转角度的比例按逆时针方向旋转一个度。
轴对称轴对称是指一个图形绕着某一条轴对称轴翻折,翻折后的图形与原图重合。
它的特点有:•对称轴将图形分为两个相同的部分,两端的点称为对称点,两点到对称轴的距离相等。
•对称轴可以竖直、水平或倾斜。
平移、旋转、轴对称的复合变换当我们将平移、旋转、轴对称进行组合使用时,就会得到复合变换。
初中数学北师大八年级下册(2023年修订) 图形的平移与旋转旋转教案
第三章 图形的平移与旋转2.图形的旋转(二)本节课的主要内容是通过实例进一步认识旋转变换,探索、理解旋转的特征,并应用旋转的特征作图、解决简单的图形问题。
课前热身:1. 旋转的定义: 这个定点称为_____,转动的角称为____.旋转不改变图形的________.2.旋转的基本性质:对应点到旋转中心的距离对应点与旋转中心所连线段的夹角等于旋转前、后的图形图形的旋转是由 和旋转方向和旋转角度决定(注意:请准备好圆规、三角板、量角器和铅笔)3.关于点的旋转(1)点A 绕点O 逆时针旋转60° OA 4.关于线段的旋转(1)画出线段AB 绕着端点A 顺时针旋转60度后的线段(2)画出线段AB 绕着端点O 顺时针旋转90度后的线段 讲授新知:关于三角形的旋转类型一:已知旋转中心与旋转角作旋转后的图形例1.试着画△ABC 绕O 点逆时针旋转60°后所得的三角形.变式.如图,△ABC 绕O 点旋转后,顶点A 的对应点为点D ,试确定顶点B ,C 对应点的位置,以及旋转后的三角形A B B A O总结:“旋转”作图的步骤:一连:连接已知点与旋转中心二定:确定旋转方向三量:测量旋转角度四截:在旋转角的另一条边上,以旋转中心为一端点截取等于对应线段长度的线段五画:顺次连接所得的点,从而画出旋转得到的图形例2(格点问题)如图,正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,△OAB 的三个顶点O(0,0),A(4,1),B(4,4)均在格点上画出△OAB绕原点O顺时针旋转90°后得到的△OA1B1,并写出点A1的坐标变式(坐标系中的旋转)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么点A(-2,5)的对应点A′的坐标是________.类型二:已知旋转后的图形,反过来寻找旋转中心和旋转角的位置例1.如图,在方格纸上,△DEF是由△ABC绕定点P顺时针旋转得到的,如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为()A.(5,2)B.(2,5)C.(2,1)D.(1,2)变式:如图,四边形ABCD和四边形CDFE是边长相等的两个正方形,其中A、D、F 和B、C、E各成一直线,将正方形ABCD绕着一点旋转一定的角度后与正方形CDFE重合,这样的旋转中心共有多少个?确定旋转中心与旋转角的方法:在图形的旋转过程中,判断谁是旋转中心,要看旋转中心是在图形上还是不在图形上;若在图形上,哪一点在旋转过程中位置没有改变,这一点就是旋转中心;若不在图形上,对应点连线的垂直平分线的交点就是旋转中心,旋转角等于对应点与旋转中心所连线段的夹角.随堂练习:1.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图是在万花筒中看到的一个图案.图中所有小三角形均是全等的等边三角形,其中的四边形AEFG可以看成是四边形ABCD以A为旋转中心() A.顺时针旋转60°得到的B.顺时针旋转120°得到的C.逆时针旋转60°得到的D.逆时针旋转120°得到的2.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心是()A.点A B.点B C.点C D.点D课堂小结课后作业:请完成《英才课堂》59~60页1~10题必做,11、12题选做。
《整理与复习——图形的运动》教案
3.实践活动环节,学生分组讨论和实验操作的表现给了我很大的惊喜。他们能够将所学知识运用到实际问题中,并提出自己的见解。这说明同学们在探究和合作学习中,能够更好地发挥主观能动性,提高解决(用时5分钟)
同学们,今天我们将要学习的是《整理与复习——图形的运动》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否注意过物体是如何移动的?”比如,你们玩过的滑块游戏,或者机器人跳舞时的动作。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形运动的奥秘。
4.学生小组讨论中,我发现部分学生在表达自己的观点时还不够自信。为了提高学生的自信心和表达能力,我今后应多给予鼓励和支持,创造更多展示和交流的机会。
5.教学过程中,我对学生的反馈进行了及时调整,尽量让每个同学都能跟上教学进度。但我也发现,对于部分学习基础较弱的学生,仍需要个别辅导和关注。因此,在今后的教学中,我要更加关注学生的个体差异,因材施教,提高教学质量。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了图形运动的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对图形运动的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
三年级数学《平移和旋转》教案一等奖
三年级数学《平移和旋转》教案一等奖1、三年级数学《平移和旋转》教案一等奖在教学工开展教学活动前,就有可能用到教案,教案是教材及大纲与课堂教学的纽带和桥梁。
那么写教案需要注意哪些问题呢?以下是我收集整理的三年级数学《平移和旋转》教案,希望能够帮助到大家。
教材分析图形的平移和旋转在学生的生活中并不陌生,学生很早就有了物体或图形运动形式的感性认识,但只是个初步的印象。
通过这部分知识的学习,使学生从感性认识上升到理性认识,初步感知平移和旋转,并体会出他们不同的特点。
并可以使用更准确、更具体的数学语言描述生活中的数学现象,对于帮助学生建立空间观念,掌握变换的数学思想方法有很大的作用,也是以后学习三角形、平行四边形、梯形的面积计算推导的基础。
所以本节课的内容在整个空间与图形的知识体系中起着承前启后的重要作用。
学情分析三年级的学生已经拥有了一定的生活经验,在日常生活中也经常看到平移和旋转的现象,对于这方面的内容学生一定非常感兴趣。
特别是加入图画的形式更加吸引了学生的注意力。
教学目标1.知识目标:通过学生对生活中平移和旋转现象的再现和在教学中的活动和分类,让学生感受平移和旋转,在此基础上,促使学生能正确区分平移和旋转。
2.能力目标:能在方格纸上画出平移后的图形,培养学生空间观念。
3.情感目标:体验平移和旋转的价值,感受数学在生活中的广泛应用,体会数学与日常生活的紧密联系。
教学重点和难点教学重点:认识物体或图形的平移和旋转,掌握图形平移的方法。
教学难点:判断图形平移的距离,能在方格纸上画出一个简单图形平移后的图形。
教学过程一、联系实际,引入课题1、小朋友们,你们见过火车吗?它是怎么运动的呢?用手势比划一下。
其实物体的运动就在我们的身边,比如运行在半空中的缆车,在公路上奔跑的汽车,还有我们头顶上的电风扇等。
(多媒体出示)2、能不能用手势说明一下,这些物体将会如何运动?(指名演示:你真棒,把火车的运动比划得很形象!)3、有谁能把电风扇的运动用手势形象的比划出来?(你也很棒!)大家对比一下刚才这两个同学比划的运动方式有什么不一样?(学生自由发言)今天这节课我们就来研究这两种不同的运动方式。
人教版五年级下册数学《第5单元 图形的运动(三) 第3课时平移、旋转的应用》教案
人教版五年级下册数学《第5单元图形的运动(三)第3课时平移、旋转的应用》教案一、教学目标1.理解平移和旋转的概念。
2.能够应用平移和旋转的方法解决实际问题。
3.培养学生观察问题、分析问题和解决问题的能力。
二、教学重点1.理解平移和旋转的定义。
2.能够运用平移和旋转的方法解决简单问题。
三、教学难点1.在实际问题中运用平移和旋转的方法解决问题。
四、教学准备1.教师准备相关教学课件。
2.学生课前复习相关知识。
五、教学过程1. 导入新知在前面两节课的学习中,我们已经了解了平移和旋转的基本概念,今天我们将学习如何应用平移和旋转来解决实际的问题。
2. 概念讲解1.平移的应用:–平移是一种保持图形大小和形状不变,只改变位置的运动方式。
在实际生活中,我们经常遇到各种平移的应用,比如地图上的标记点的移动。
2.旋转的应用:–旋转是围绕一个中心点按照一定的角度进行转动的运动方式。
在实际生活中,我们也经常用到旋转的操作,比如钟表上的指针的转动。
3. 练习与讨论1.平移的应用练习:–给定一个图形,要求将这个图形平移一定的距离,求平移后的结果图形。
2.旋转的应用练习:–给定一个图形和旋转角度,要求将这个图形按照给定的角度进行旋转,求旋转后的结果图形。
4. 拓展训练老师出示更复杂的平移和旋转问题,并要求学生尝试解决。
5. 总结归纳通过本节课的学习,我们更加熟练地掌握了平移和旋转的应用方法,这些方法在日常生活中也会经常用到。
六、课堂作业完成教师布置的平移和旋转相关的练习题,并将解题过程写在作业本上。
七、板书设计•平移的应用•旋转的应用八、课堂小结在本节课中,我们学习了如何应用平移和旋转来解决实际问题,希望同学们能够通过不断的练习,掌握这些方法并灵活运用在日常生活中。
以上就是本节课的全部内容,希本同学们能够认真复习,掌握好相关知识。
平移和旋转的教学设计(优秀9篇)
平移和旋转的教学设计(优秀9篇)平移和旋转的教学设计(通用14 篇一教学目标:1、通过观察实例,使学生初步认识物体或图形的平移和旋转,并能在方格纸上画出平移后的图形。
2、通过联系生活经验,使学生体会平移和旋转的特点,培养空间观念。
教学过程:一、谈话引入今天老师是骑电动车到学校来的,你们是怎么到学校来上学的呢?(走路、乘公交车、搭摩托车、搭自行车、搭三轮车┅┅)像人在行走,自行车、摩托车、公交车在行驶,我们都可以说它们在运动。
生活中你还见到过哪些物体或人在运动?小结:是啊,生活中有很多东西都在运动。
今天老师给大家带来了一些物体运动时的录像。
请你看看它们是怎么运动的,你也可以一边看,一边跟着做做动作。
二、感知平移和旋转现象1、分类、感知(1)课件出示游乐场画面(火车、滑梯、风车、跷跷板、缆车、转转盘)。
(2)它们的运动都相同吗?(不同)你能根据它们不同的运动现象,给它们分分类吗?(3)前后4人为一小组,在小组里讨论:怎么分?为什么这样分?(4)交流。
(5)小结:像火车、滑梯、缆车这样的运动叫平移,物体可以上下平移、左右平移、前后平移。
像风车的叶片、跷跷板、直升飞机的螺旋桨、钟面上的指针它们这样的运动叫旋转。
(6)生活中你在哪儿见到过平移或旋转现象呢?。
小结:生活中的平移和旋转现象还是很多的。
2、用手势表示平移或旋转现象。
(1)老师这儿还有一些物体运动时拍下来的图片,请你先跟着模仿做图片上的动作,一边做,一边想一想这个运动现象是平移还是旋转。
(依次出示9个平移或旋转运动的图片)(2)现在老师把刚才的图片再重放一遍,你认为是平移现象的,就做这个动作(师演示:画线);你认为是旋转现象的,就做这个动作(师演示:画圆)(3)(放课件)生做动作。
3、小结:通过刚才的学习,我们已经知道了什么样的运动现象是平移,什么样的运动现象是旋转。
三、研究平移下面我们要重点来研究平移现象。
一个物体在平移过程中,它向哪个方向平移?平移的距离是多少?这些我们是怎么来看的呢?(一)判断平移的方向和距离1、感知平移的特征(1)你们看这里有一条热带鱼,它就在做平移运动,(课件)我们用虚线图形表示原来的图形,用实线图形表示平移后的图形。
人教版数学二年级下册第三单元(第二课时)《平移和旋转》教案
人教版数学二年级下册第三单元(第二课时)《平移和旋转》教案一、教学目标1.了解平移和旋转的基本概念。
2.掌握平移和旋转的操作方法。
3.能够在坐标系中进行简单的平移和旋转操作。
4.培养学生观察问题、分析问题、解决问题的能力。
二、教学重点1.平移的概念。
2.平移的操作方法。
3.旋转的概念。
4.旋转的操作方法。
三、教学内容1.什么是平移?–平移是指一个图形在平面上沿着一定的方向按照一定的距离移动。
–平移后图形的位置改变,但形状和大小不变。
2.平移的操作方法:–沿着给定的方向和距离将图形移动。
3.什么是旋转?–旋转是指一个图形围绕一点或一条线旋转一定的角度。
–旋转后图形的位置、形状和大小都不变。
4.旋转的操作方法:–确定旋转中心和旋转角度,绕着旋转中心把图形转动指定的角度。
四、教学过程1.导入新知识:–让学生观察周围的图形,引导他们思考图形的移动和旋转。
2.学习平移:–通过教师示范和学生操作,让学生了解平移的概念和操作方法。
–让学生在纸上进行简单的平移练习。
3.学习旋转:–通过教师示范和学生操作,让学生了解旋转的概念和操作方法。
–让学生在纸上进行简单的旋转练习。
4.拓展练习:–提供更多复杂的图形,让学生进行平移和旋转操作。
5.总结归纳:–让学生总结平移和旋转的共同点和不同点。
五、教学反思1.教师在教学过程中要注意引导学生进行思维训练,培养他们解决问题的能力。
2.学生在进行平移和旋转操作时要注意动作的准确性,确保操作正确。
3.针对不同水平的学生,教师可以提供不同难度的练习,以满足各个学生的学习需求。
以上是本节课的教案内容,希望老师们能够根据实际情况对教案进行调整和完善,以便更好地引导学生学习平移和旋转的知识。
图形的平移和旋转(教案和习题)
图形的平移和旋转教学目标:1. 理解平移和旋转的概念。
2. 学会用平移和旋转的方法来变换图形。
3. 能够判断图形是否发生了平移或旋转。
教学重点:1. 平移和旋转的定义。
2. 平移和旋转的方法。
3. 平移和旋转的性质。
教学难点:1. 理解平移和旋转的本质区别。
2. 学会用平移和旋转的方法来变换复杂图形。
教学准备:1. 教学PPT。
2. 图形卡片。
3. 练习题。
教学过程:第一章:平移的概念和性质1.1 引入平移的概念教师展示一些平移的实例,如滑滑梯、电梯等,引导学生感受平移的特点。
1.2 学习平移的性质学生通过观察和操作,发现平移不改变图形的形状和大小,只改变图形的位置。
1.3 练习平移学生分组合作,用图形卡片进行平移操作,体会平移的方法。
第二章:旋转的概念和性质2.1 引入旋转的概念教师展示一些旋转的实例,如旋转门、风车等,引导学生感受旋转的特点。
2.2 学习旋转的性质学生通过观察和操作,发现旋转不改变图形的大小,只改变图形的位置和方向。
2.3 练习旋转学生分组合作,用图形卡片进行旋转操作,体会旋转的方法。
第三章:平移和旋转的判定3.1 学习平移的判定方法学生通过观察和操作,学会判断图形是否发生了平移。
3.2 学习旋转的判定方法学生通过观察和操作,学会判断图形是否发生了旋转。
3.3 练习判断学生独立完成判断题目,巩固平移和旋转的判定方法。
第四章:平移和旋转的应用4.1 学习用平移和旋转的方法来变换图形学生通过观察和操作,学会用平移和旋转的方法来变换图形。
4.2 练习变换学生独立完成变换题目,巩固平移和旋转的变换方法。
第五章:总结与拓展5.1 总结平移和旋转的概念、性质和判定方法学生通过回顾本节课的内容,总结平移和旋转的概念、性质和判定方法。
5.2 拓展平移和旋转的应用学生分组合作,用平移和旋转的方法来创作有趣的图形图案。
教学评价:1. 通过课堂观察,评价学生对平移和旋转概念的理解程度。
2. 通过练习题,评价学生对平移和旋转性质的掌握程度。
“图形的轴对称、平移和旋转”中考专题复习教学设计
收稿日期:2021-01-16作者简介:曹自由(1979—),男,高级教师,主要从事中学数学教育研究.“图形的轴对称、平移和旋转”中考专题复习教学设计曹自由摘要:图形的变化是发展空间观念的内容抓手,也是研究图形的基本方法,是发现和构造不变量和不变关系的重要途径.学生在新授课阶段分别学习了轴对称、平移和旋转,在中考第二轮复习中需要建立它们之间的关联,进行整体复习.通过四个课时的复习教学,分别引导学生感受运动变化、理解运动变化、运用运动变化、整合运动变化,有效发展学生的空间观念、几何直观和推理能力.文章将第1课时设计整理成文,以供研讨.关键词:图形的变化;中考复习;教学设计一、内容和内容解析1.内容图形的变化(轴对称、平移、旋转).2.内容解析初中阶段学习的几何图形的变化包括轴对称、平移、旋转和相似(位似)的概念、性质和应用.本节课复习的内容是图形的全等变换——轴对称、平移和旋转.图形的全等变换可以看作是图形的刚体运动,用全等变换的思想研究图形的性质和关系是“图形与几何”领域重要的学习内容.在义务教育阶段,图形之间最重要的关系就是全等,全等可以用图形重合的方式直观获得,而“图形重合”需要通过图形的运动来实现,这种运动就是图形的轴对称、平移和旋转.图形的变化是理解图形空间结构的基本方法,也是空间观念的核心要素.抽象轴对称、平移和旋转的基本性质,用逻辑的方法理解图形的全等变换是从定性到定量研究图形的变化的桥梁.从小学直观认识图形的轴对称、平移和旋转到初中的逻辑研究、坐标表示再到后续的矩阵表示,是图形的全等变换的定性到定量发展的三个重要阶段.基于以上分析,确定本节课的教学重点是:建立三种图形的变化相关知识的逻辑体系,并用图形变化的观点认识几何图形.二、目标和目标解析1.目标(1)理解轴对称、平移、旋转之间的联系,加深对运动变化的认识,落实画图和识图的能力,渗透几何直观能力.(2)在问题探究的过程中,逐步形成用图形的变化思考、解决问题的意识,渗透图形变化思想.2.目标解析达成目标(1)的标志:能够从运动变化的角度描述两个已知图形之间的关系,能够根据图形变化(轴对称、平移、旋转)的概念和性质画出运动变化后的图形,通过梳理建立三种变化相关知识的逻辑体系.达成目标(2)的标志:能够以运动的视角观察图形,用变化的思想分析图形特征.三、教学问题诊断分析近几年北京中考试卷中的几何综合题都考查了图形的变化的相关内容,并且不是单一的,而是从一种变化到另一种变化的综合考查.但是学生学习时,知识是零散的、分割开的,先学习了平移,然后是轴对称和旋转,没有形成三种变化相关知识的逻辑体系.同时,图形的变化是一种观察图形的视角,培养这种“视角”与培养“知识与技能”同样重要.基于以上分析,可以确定本节课的教学难点是:三种图形的变化之间的转化.四、教学过程设计1.课前学习题目如图1,在平面直角坐标系xOy中,△AOB 可以看作是△OCD经过若干次图形的变化(轴对称、平移、旋转)得到的,写出一种由△OCD得到△AOB 的过程:.图1思考问题:什么是轴对称、平移、旋转?它们各有什么性质?它们之间有什么联系?【设计意图】此题为2017年中考北京卷第15题,学生在课前复习轴对称、平移、旋转的相关知识,关注知识的形成过程及知识之间的内在联系,在应用中不断深化认识.通过解决中考试题回顾思考涉及的知识和思想方法,进一步提升能力.2.交流梳理环节1:交流课前学习成果.(1)平移:如图2,平移前后的两个图形全等(从图形形状、大小关系来看);对应线段平行且相等,两对应点连线互相平行(共线)且相等(从图形位置变化来看).图2CC′BAA′B′(2)轴对称:如图3,关于某直线对称的两个图形全等(从图形形状、大小关系来看);对应线段相等,两个图形关于某直线对称,那么对称轴是任意一对对应点所连线段的垂直平分线(从图形位置变化来看).图3B′A′ABCNMC′(3)旋转:如图4,旋转前后的两个图形全等(从图形形状、大小关系来看);每两对对应点连线所形成的角都等于旋转角(从图形位置变化来看);对应点到旋转中心的距离相等(从图形位置变化来看).BCAA′C′(1)OB′ABCC′A′(2)图4(4)轴对称、平移、旋转三者的关系:如图5,两条对称轴平行的轴对称复合⇔一次平移;两条对称轴相交的轴对称复合⇔一次旋转.2(3)2(1)2(2)图5轴对称在三种变化中起到桥梁作用,轴对称与另外两种全等变换在地位上是有区别的,它是更加基础的一种变化,所有平移、旋转都可以用轴对称变化来解释.【设计意图】学生先回答思考问题,借此梳理三种变化的性质,明确各自的画图方法及依据,明确三种变化之间的关系.环节2:问题引导深入思考.思考:只用一种变化可不可以操作?如何操作?用两种变化如何操作?哪种方法容易快速想到?为什么?【设计意图】课上让学生先交流自己的结果.而学生在交流结果时一定是无序的,这时教师可以引导学生进行有序思考.问题1:对于题目,只用两种变化有哪些方法?学生活动:交流使用两种变化的情况.(1)旋转+平移.思路1:将△COD绕点C顺时针旋转90°后,再向左平移两个单位得到△AOB.思路2:将△COD绕点O顺时针旋转90°后,再向上平移两个单位得到△AOB.思路3:将△COD向左平移两个单位后,再绕点C 顺时针旋转90°得到△AOB.思路4:将△COD向上平移两个单位后,再绕点A 顺时针旋转90°得到△AOB.(2)旋转+轴对称.思路5:将△COD先关于x轴对称,再以点C为旋转中心顺时针旋转90°,再作关于直线x=1的对称得到△AOB.追问:采用“平移+轴对称”的方式可以吗?归纳:对应顶点排列的顺序一致——旋转;与目标图形的方向一致——平移.问题2:用一种变化有哪些方法?追问:两个全等的三角形通过某种运动方式一定能重合吗?若能重合,如何运动?归纳:对应顶点排列顺序一致,经过一次旋转能重合.学生活动:对于题目,展示只通过旋转或只通过轴对称完成任务的方法,并说明自己的画图方法和画图依据.方法1:(旋转)根据旋转的性质,确定旋转中心、旋转方向和旋转角.思路6:将△COD绕点()1,1顺时针旋转90°得到△AOB.思路7:将△COD先绕点()1,-1逆时针旋转90°后,再绕点O旋转180°得到△AOB.方法2:(轴对称)两条对称轴相交的轴对称复合⇔一次旋转.思路8:先将△COD沿直线x=1对称后,再沿直线y=x对称得到△AOB.思路9:先将△COD沿直线y=1对称后,再沿直线y=-x+2对称得到△AOB.【设计意图】题目难度不大,且学生具备直接识别运动变化的能力,但是学生自己描述运动变化的经验还是比较少的,而且运动的方式是不唯一的,给出运动前后的图形,描述运动变化要素,这对学生的要求实际上是提高了很多的.因此,要关注这三种运动变化之间的联系,通过这个过程深化学生对于运动变化的认识.3.变式练习变式1:如图6,在正方形ABCD中,点E,F分别是BC,CD的中点,试类比上一个问题的探究过程,说出△ABE经过怎样的图形的变化(平移、轴对称、旋转)得到△BCF?图6B E CFDA图7B E CDA变式2:如图7,在等边三角形ABC中,AD=BE,试类比上一个问题的探究过程,说出△ABE经过怎样的图形的变化(轴对称、平移、旋转)得到△CAD?学生活动:展示所画图形的变化过程,并用语言描述这个过程.学生可能想到如下情况.(1)旋转+平移(如图8和图9).D图8图9(2)两次轴对称(如图10).图10(3)一次旋转(如图11).图11【设计意图】将任务探究的思维过程结构化,形成解决问题的方法思路.同时渗透用运动变化的眼光观察图形的思想方法.满足特定条件下的图形的变化可能有多种情况,培养思维的有序性、多样性.4.归纳与提升总结、归纳本节课的教学流程如图12所示.运动的眼光,变换的思想ìíîïï图形的平移图形的轴对称图形的旋转图12【设计意图】归纳方法、提升能力,形成用运动的眼光、变换的思想看待两个图形之间的关系的能力,渗透运动变换思想.5.布置作业(1)如图13,在平面直角坐标系xOy中,△O′A′B′可以看作是△OAB经过若干次图形的变化(轴对称、平移、旋转)得到的,写出一种由△OAB得到△O′A′B′的过程:.图13(2)如图14,在平面直角坐标系xOy中,点A,B的坐标分别为A()-4,1,B()-1,3,经过两次变化(平移、轴对称、旋转)得到对应点A″,B″的坐标分别为A″()1,0,B″()3,-3,则由线段AB得到线段A′B′的过程是:,由线段A′B′得到线段A″B″的过程是:.图14(3)如图15,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(轴对称、平移、旋转)得到的,写出一种由线段AB得到线段A′B′的过程:.图16图15ABA′B′(4)如图16,在平面直角坐标系xOy中,△ABC可以看作△DEF是经过若干次图形的变化(轴对称、平移、旋转)得到的,写出一种由△DEF得到△ABC的过程:.五、教学反思本节课是“图形的轴对称、平移和旋转”中考第二轮专题复习课,内容属于“图形的变化”.希望通过一系列数学活动,帮助学生在已有知识基础上对图形变换思想进行相应的概括和应用.同时,在落实“四基”、培养“四能”的过程中,促进学生数学学科核心素养的形成和发展.1.感受运动变化,建立逻辑体系学生通过亲身经历课前的数学操作活动后,体验的水平停留在“感觉”阶段,还没有对活动过程进行深入的思考,没有深刻认识到三种全等变换之间内在的逻辑关系.在此基础上,学生在课堂上通过交流及反思性观察将获得的体验进行抽象,梳理三种全等变换各自的性质及它们之间的联系,形成解决该类问题的一般思维模式.图形的变化是一种观察图形的视角,培养这种“视角”与培养“知识与技能”同样重要.在关注联系的基础上,通过问题引导,使学生能够进行知识的归纳梳理,并能够主动利用经验的迁移去研究其他问题.通过本节课的教学,进一步帮助学生感受运动变化,学会以运动变化的视角分析图形,也为后续进一步主动运用图形变化视角认识几何图形,运用图形变换思想解决综合性问题奠定基础. 2.培养思维的有序性、多样性满足特定条件下的图形的变化可能有多种情况,开放性问题有助于学生体验解决问题方法的多样性.与此同时,通过增加限定条件,从两种图形变化的组合,到只用一种图形变化,将任务探究的思维过程结构化,形成解决问题的方法思路.同时,渗透用运动变化的眼光观察图形的思想方法.本节课的教学目标定位在落实画图和识图能力,渗透几何直观能力,理解轴对称、平移、旋转之间的联系,加深对运动变化的认识;在问题探究的过程中,逐步形成用图形的变化视角思考解决问题的意识,渗透图形变化思想.在实际授课过程中,知识与技能落实得比较到位,而思想性体现不够充分,还需要深入研究,在思想性上多做文章.参考文献:[1]中华人民共和国教育部制定.义务教育数学课程标准(2011年版)[M].北京:北京师范大学出版社,2012.[2]教育部基础教育课程教材专家工作委员会.《义务教育数学课程标准(2011年版)》解读[M].北京:北京师范大学出版社,2012.[3]章建跃.章建跃数学教育随想录[M].杭州:浙江教育出版社,2017.[4]任华中,傅海伦,邵亚娜.初中数学基本活动经验的教学目标层次划分[J].中国数学教育(初中版),2018(6):30-32.。
(完整版)图形的平移与旋转复习课教学设计与学案
《图形的平移与旋转复习课》教课方案一、教课目的(一)知识与技术1.知道旋转和平移都不过改变图形的地点,而不改变图形的形状和大小,并能举例说明。
2.掌握平移、旋转的基天性质,并能举例说明。
3.掌握在平面直角坐标系中,平移后的图形与原图形对应点之间的关系,并能举例说明。
4.掌握两个成中心对称图形的特征。
5.梳理本章内容,用适合的方式体现全章知识构造,并与伙伴沟通。
(二)过程与方法经历建立本章知识的网络图,培育梳理知识的能力,核心知识的理解是要点。
(三)感情、态度与价值观1.经历对生活中的典型图案进行察看、剖析、赏识等过程,进一步发展空间观点、加强审盛情识 .2.经过学生之间的沟通、议论、培育学生的合作精神.教课要点:理解平移、旋转与中心对称的观点和性质 . 掌握坐标系中平移、对称的坐标特点。
教课难点:灵巧运用平移、旋转与中心对称的观点和性质解决有关图形问题。
二、教课过程教课过程分为以下几个环节:回首知识、建立网络图、稳固练习、总结概括。
(一)回首知识依据以下问题,回首本章知识。
1.平移能否改变图形的地点、形状和大小?旋转呢?请举例说明.2.平移、旋转各有哪些基天性质?请举例说明.3.在平面直角坐标系中,平移后的图形与原图形对应点的坐标之间有如何的关系?请举例说明.4.两个成中心对称的图形有哪些特征?中心对称图形有哪些特征?知识点概括:( 1)平移平移的观点:在平面内,将一个图形沿着某个方向挪动必定的距离,这样的图形运动叫做图形的平移。
平移的性质:平移不改变图形的形状和大小;图形经过平移,连结各组对应点所得的线段相互平行且相等。
(2)旋转旋转的观点:把一个图形绕一个定点转动必定的角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,旋转的角度叫做旋转角。
旋转的性质:旋转前、后的图形全等;对应点到旋转中心的距离相等;每一对对应点与旋转中心的连线所成的角相互相等。
(3)轴对称:假如一个图形沿一条直线折叠后,直线两旁的部分可以重合,那么这个图形叫做轴对称图形。
二年级上册数学教案平移和旋转北京版(5)
二年级上册数学教案平移和旋转北京版 (5)今天,我要为大家分享的是二年级上册数学教案,关于平移和旋转的内容。
让我们一起来看看吧!一、教学内容我们使用的教材是北京版二年级上册数学教材,今天我们要学习的是第5章,平移和旋转。
这部分内容主要包括两部分:第一部分是让学生通过实际操作和观察,理解平移和旋转的概念;第二部分是通过实例,让学生学会如何判断一个图形是否发生了平移或旋转,以及如何用语言描述这个平移或旋转的过程。
二、教学目标1. 能够理解平移和旋转的概念,知道它们的特点和区别。
2. 能够通过实例判断一个图形是否发生了平移或旋转,并用语言描述这个平移或旋转的过程。
3. 能够运用平移和旋转的知识解决实际问题。
三、教学难点与重点本节课的重点是让学生理解平移和旋转的概念,以及如何判断一个图形是否发生了平移或旋转。
难点在于让学生能够用语言描述这个平移或旋转的过程。
四、教具与学具准备1. 平移和旋转的图片示例2. 平面几何图形3. 学生用书和练习本五、教学过程1. 实践情景引入:我会向学生们展示一些平移和旋转的图片示例,让他们观察并描述这些图片发生了什么变化。
2. 概念讲解:通过图片示例,我会向学生们解释平移和旋转的概念,并强调它们的特点和区别。
3. 实例讲解:我会用一些具体的实例,让学生们学会如何判断一个图形是否发生了平移或旋转,以及如何用语言描述这个平移或旋转的过程。
4. 随堂练习:我会给出一些练习题,让学生们通过实际操作和观察,判断一些图形是否发生了平移或旋转,并用语言描述这个平移或旋转的过程。
5. 巩固知识:我会让学生们自己尝试进行一些平移和旋转的操作,并用语言描述这个平移或旋转的过程。
六、板书设计1. 平移和旋转的概念2. 平移和旋转的特点和区别3. 如何判断一个图形是否发生了平移或旋转4. 如何用语言描述平移或旋转的过程七、作业设计作业题目:答案:1. (略)2. (略)八、课后反思及拓展延伸课后,我会反思本节课的教学效果,看看学生们是否掌握了平移和旋转的概念,以及如何判断一个图形是否发生了平移或旋转。
初二数学图形的平移和旋转教案
一、复习预习(1)平移的概念(2)平移的特点(3)平移的基本性质火车沿笔直的轨道行驶、缆车沿笔直的索道滑行、火箭升空等物体都是沿着一条直线运动的,那么在运动的过程中这些物体的形状、大小、位置等因素中,哪些没有发生改变? 哪些发生了变化?这种运动就叫做什么?为解决这一问题,我们讲今天的内容。
二、知识讲解知识点1 平移、旋转和轴对称的区别和联系(1)区别。
①三者概念的区别:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移;在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转;在平面内,将一个图形沿着某条直线折叠。
如果它能够与另一个图形重合,那么这两个图形成轴对称。
②三者运动方式不同:平移是将图形沿某个方向移动一定的距离。
旋转是将一个图形绕一个定点沿某个方向转动一个角度;轴对称是将图形沿着某一条直线折叠。
③对应线段、对应角之间的关系不同:平移变换前后图形的对应线段平行(或共线)且相等;对应点所连的线段平行且相等;对应角的两边分别平行且对应角的方向一致。
轴对称的对应线段或延长线相交,交点在对称轴上:对应点的连线被对称轴垂直平分。
旋转变换前后图形的任意一对对应点与旋转中心的距离相等、与旋转中心的连线所成的角是旋转角。
④三者作图所需的条件不同:平移要有平移的方向和平移的距离,旋转要有旋转中心、旋转方向和旋转角:轴对称要有对称轴。
(2)联系。
①它们都在平面内进行图形变换②它们都只改变图形的位置不改变图形的形状和大小,因此变换前后的两个图形全等。
③都要借助尺规作图及全等三角形的知识作图。
知识点2 组合图案的形成(1)确定图案中的“基本图案”。
(2)发现该图案各组成部分之间的内在联系。
(3)探索该图案的形成过程:运用平移、旋转、轴对称分析各个组成部分如何通过“基本图案”演变成“形”的。
要用运动的观点、整体的思想分析“组合图案”的形成过程。
运动的观点就是要求我们不能静止地挖掘“基本图案”与“组合图案”的内在联系,头脑中应想象、再现图案形成的过程,做到心中有数,特别是有的图案含有不同的“基本图案”其形成的方式也多种多样,可以通过平移、旋转、轴对称变换中的一种或两种变换方式来实现,也可以通过同一种变换方式的重复使用来实现。
中考一轮复习教案:图形的轴对称、平移与旋转
图形的轴对称、平移与旋转辅导教案 课前热身1.下列图形中,既是轴对称图形,又是中心对称图形的有( )A 、1个B 、2个C 、3个D 、4个2.如图,∠AOB 内一点P ,,分别是P 关于OA 、OB 的对称点,交OA 于点M ,交OB 于点N .若△PMN 的周长是5cm ,则的长为( ).A .3cmB .4cmC .5cmD .6cm 1P 2P 1P 2P 1P 2P3.如图,在△ABC 中,∠CAB=70°.在同一平面内,将△ABC 绕点A 旋转到△ABC′的位置,使得CC′∥AB ,则∠BAB′=( )A .30°B .35°C .40°D .50°4.在平面直角坐标系中,已知直线y=-x+3与x 轴、y 轴分别交于A 、B 两点,点C(0,n)是y 轴上一点,把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( )A.(0,)B.(0,)C.(0,3)D.(0,4) 5.如图,在△ABC 中,∠ACB=90°,AC=2,BC=4,E 为边AB 的中点,点D是BC 边上的动点,把△ACD 沿AD 翻折,点C 落在C′处,若△AC′E 是直角三角形,则CD 的长为 .6.小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是 .遗漏分析知识精讲343443【基础知识重温】一.平移1.定义:在平面内,将一个图形沿某个___ ____移动一定的__ __,这样的图形移动称为平移.2.平移的性质:(1)对应线段平行(或共线)且___,对应点所连的线段________,图形上的每个点都沿同一个方向移动了相同的距离;(2)对应角分别________,且对应角的两边分别平行、方向一致;(3)平移变换后的图形与原图形_______二. 轴对称与轴对称图形1.轴对称(1)定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形_ ___,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.折叠后重合的点是对应点,叫对称点.(2)性质:①对应点的连线被对称轴____;②对应线段_______;③成轴对称的两个图形_________2.轴对称图形:定义:如果一个图形沿某一条直线对折后,直线两旁的部分能够互相重合,这个图形叫做___ __,这条直线叫做它的对称轴.这时我们也说这个图形关于这条直线(成轴)对称.3.轴对称图形与轴对称的区别与联系:(1)区别:轴对称是指_______全等图形之间的相互位置关系;轴对称图形是指具有特殊形状的____图形.(2)联系:①如果把成轴对称的两个图形看成一个整体(一个图形),那么这个图形是轴对称图形;②如果把一个轴对称图形中对称的部分看成是两个图形,那么它们成轴对称.4. 平移与轴对称的坐标特征(1)平移的坐标特征:①点(x,y)向右(或向左)平移a个单位长度后,对应点的坐标为_________;②点(x,y)向上(或向下)平移a个单位长度后,对应点的坐标为_ ________.(2)轴对称的坐标特征:①关于x轴对称的两个图形中,点(x,y)的对称点的坐标为________;②关于y轴对称的两个图形中,点(x,y)的对称点的坐标为_ _____.三.旋转1.旋转的定义:在平面内,把一个图形绕着某一个定点沿着某个方向旋转一定的角度,这样的图形运动称为旋转.这个定点叫做____,转动的角叫做_____2. 图形的旋转有三个基本条件:(1);(2);(3).3.旋转的性质:(1)对应点到旋转中心的距离__;(2)对应点与旋转中心所连线段的夹角等于______;(3)旋转前后的图形___4. 中心对称与中心对称图形(1)中心对称的定义:把一个图形绕着某一点旋转_____后,如果它能与另一个图形_______,那么就说这两个图形关于这个点成中心对称,该点叫做_____ (2)中心对称的性质:①成中心对称的两个图形,对应点所连线段都经过对称中心,而且被对称中心_______;②成中心对称的两个图形______③中心对称图形的定义:把一个图形绕着某一点旋转____,如果旋转后的图形能够与原来的图形重合,那么我们把这个图形叫中心对称图形,这个点叫做___ 四、例题分析题型一、平移 【例1】如图,△ABC 中,BC=5cm ,将△ABC 沿BC 方向平移至△A’B’C’的位置时,A’B’恰好经过AC 的中点O ,则△ABC 平移的距离为 cm.【趁热打铁】如图,如果把△ABC 的顶点A 先向下平移3格,再向左平移1格到达A′点,连接A′B ,则线段A′B 与线段AC 的关系是( )A .垂直B .相等C .平分D .平分且垂直题型二、旋转【例2】(2016吉林长春)如图,在Rt △ABC 中,∠BAC=90°,将Rt △ABC绕点C 按逆时针方向旋转48°得到Rt △A′B′C′,点A 在边B′C 上,则∠B′的大小为( )A .42°B .48°C .52°D .58°【趁热打铁】如图,已知△ABC 中,∠C=90°,AC=BC=,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为( )OB A A'B'C C'A .B .C .D .1 题型三、轴对称图形与中心对称图形【例3】(2016四川眉山)下列既是轴对称图形又是中心对称图形的是( )A .B .C .D .【趁热打铁】 下列对称图形中,是轴对称图形,但不是中心对称图形的有( )A .1个B .2 个C .3 个D .4个题型四、图形的折叠与轴对称【例4】(2016浙江金华)如图,Rt △ABC 纸片中,∠C=90°,AC=6,BC=8,点D 在边BC 上,以AD 为折痕将△ABD 折叠得到△AB′D,AB′与边BC 交于点E .若△DEB′为直角三角形,则BD 的长是_______.【趁热打铁】已知:如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,CM 是斜边AB 上的中线,将△ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂22-3231-直,那么∠A的度数是()A.30°B.40°C.50°D.60°题型五平移、旋转的作图【例5】(2016贵州黔南州)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上):①把△ABC沿BA方向平移,请在网格中画出当点A移动到点A1时的△A1B1C1;②把△A1B1C1绕点A1按逆时针方向旋转90°后得到△A2B2C2,如果网格中小正方形的边长为1,求点B1旋转到B2的路径长.【趁热打铁】如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C 的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.五、牛刀小试1、下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.2.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)3.把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A .6B .6C .3D .3+34.如图,正△ABC 的边长为2,过点B 的直线l ⊥AB ,且△ABC 与△A′BC′关于直线l 对称,D 为线段BC′上一动点,则AD+CD 的最小值是( )A .4B .3C .2D .2+5.如图,Rt △ABC 中,∠C =90°,∠ABC =30°,AC =2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是( )A .B .C .3D .6.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (2,﹣1),B (3,﹣3),C (0,﹣4)(1)画出△ABC 关于原点O 成中心对称的△A 1B 1C 1;(2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2.222233722237.已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.巩固练习1.已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.(1,7)C.(1,1)D.(2,1)2.我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有( )A .1条B .2条C .3条D .4条3.为了迎接杭州G20峰会,某校开展了设计“YJG20”图标的活动,下列图形中是轴对称图形又是中心对称图形的是( )A .B .C .D .4.将含有30°角的直角三角板OAB 如图放置在平面直角坐标系中,OB 在x轴上,若OA=2,将三角板绕原点O 顺时针旋转75°,则点A 的对应点A′的坐标为( )A .(,﹣1)B .(1,﹣)C .(,﹣)D .(﹣,)5.如图,在Rt △AOB 中,∠AOB=90°,OA=3,OB=2,将Rt △AOB 绕点O顺时针旋转90°后得Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以O ,E 为圆心,OA 、ED 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分面积是( )A .πB .C .3+πD .8﹣π 332222546.在平面直角坐标系中,将△AOB绕原点O顺时针旋转180°后得到△A1OB1,若点B的坐标为(2,1),则点B的对应点B1的坐标为()A.(1,2)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)7.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A.(2,5)B.(5,2)C.(2,﹣5)D.(5,﹣2)8.如图,在△A BC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()102225 A.B.C.3 D.9.如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是()A.60°B.90°C.120°D.150°10.如图,将ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°课堂小结强化提升1.如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为.2.如图,已知正方形A BCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM 的长为.3.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=度.4.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B 3的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为.5.如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD= .6.如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为.课后作业1.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.2.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.3.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.。
三年级数学上册苏教版《平移和旋转现象》教案
三年级数学上册苏教版《平移和旋转现象》教案一. 教材分析《平移和旋转现象》是苏教版三年级数学上册的一章节,主要让学生理解平移和旋转的概念,并能应用于实际问题中。
本节课通过生活中的实例,让学生感受平移和旋转现象,培养学生的空间想象能力和思维能力。
二. 学情分析三年级的学生已经具备了一定的观察能力和思维能力,但对平移和旋转现象的理解还不够深入。
通过本节课的学习,学生将能够掌握平移和旋转的概念,并能运用到实际问题中。
三. 教学目标1.让学生理解平移和旋转的概念,知道平移和旋转的性质。
2.培养学生观察、思考、表达和解决问题的能力。
3.培养学生空间想象能力和创新意识。
四. 教学重难点1.平移和旋转的概念及其性质。
2.运用平移和旋转解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例,让学生感受平移和旋转现象。
2.动手操作法:让学生亲自动手操作,加深对平移和旋转的理解。
3.问题驱动法:引导学生提出问题,培养学生的思考和表达能力。
4.小组合作法:让学生分组讨论,培养学生的合作意识。
六. 教学准备1.教学课件:制作与平移和旋转相关的课件,用于辅助教学。
2.教学素材:准备一些图片、图形等素材,用于展示和操作。
3.计时器:用于控制教学环节的时间。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的平移和旋转现象,如电梯、汽车、风车等,引导学生关注这些现象,激发学生的学习兴趣。
2.呈现(10分钟)向学生介绍平移和旋转的概念,并用课件展示平移和旋转的性质。
同时,让学生动手操作课件中的图形,感受平移和旋转的变化。
3.操练(10分钟)让学生分组讨论,每组设计一个平移和旋转的实例,并展示给其他同学。
通过实例,让学生进一步理解平移和旋转的概念。
4.巩固(10分钟)向学生提出一些有关平移和旋转的问题,如“如何判断一个图形是否发生了平移或旋转?”“平移和旋转在实际生活中有哪些应用?”等。
让学生回答这些问题,巩固所学知识。
苏教版三年级数学上册《平移和旋转》复习教案
苏教版三年级数学上册《平移和旋转》复习教案一、教学目标1. 知识与技能:学生能够熟练掌握平移和旋转的基本概念、性质和特点,能够判断一个图形是平移还是旋转,并能进行简单的平移和旋转操作。
2. 过程与方法:通过复习,培养学生的观察、操作和归纳能力,使其能够运用平移和旋转的知识解决实际问题。
3. 情感态度与价值观:激发学生对数学的兴趣,培养其主动学习和合作学习的精神,提高其空间观念和几何直觉。
二、教学重点和难点重点:平移和旋转的基本概念、性质和特点,如何判断一个图形是平移还是旋转,以及如何进行简单的平移和旋转操作。
难点:在实际问题中运用平移和旋转的知识解决几何问题,如组合图形的平移和旋转等。
三、教学过程1. 导入:通过观察生活中的平移和旋转现象,如窗户的开合、电梯的升降等,引导学生进入平移和旋转的复习。
2. 知识梳理:系统梳理平移和旋转的相关知识点,包括定义、性质、特点、判断方法以及操作方法等。
采用讲解与小组讨论的方式,使学生对平移和旋转有全面认识。
3. 实例分析:选取典型的实际问题作为案例,引导学生进行分析、讨论和实践。
在案例分析中强调平移和旋转的应用价值,提高学生的空间观念和几何直觉。
4. 强化练习:设计不同层次的练习题,包括基础题、提高题和拓展题。
引导学生进行小组合作学习,相互交流和讨论,共同解决问题。
同时注重题目的开放性和探究性,激发学生的创新思维。
5. 总结提升:对本节课复习的知识进行总结,强调平移和旋转在实际生活中的应用价值。
同时提出进一步的要求,鼓励学生运用所学知识解决生活中的实际问题。
6. 作业布置:布置适量的课后作业,要求学生按时完成。
作业内容应包含基础知识的巩固和提高能力的训练,注重培养学生的实践能力和创新思维。
可以采用一些实际问题或者探究性问题作为作业,让学生运用所学知识解决,提高其解决问题的能力。
四、教学方法和手段1. 教学方法:采用讲解与讨论相结合的方法,注重学生的实践操作和自主探究。
人教版九年级数学上册《23章 旋转 图形的全等变换:平移、轴对称和旋转复习》优质课教案_13
图形的全等变换:平移、轴对称和旋转复习(第1课时)一、内容与内容解析内容:图形的平移、轴对称、旋转变换主要知识点:图形平移、轴对称、旋转的性质;内容解析:几何是研究物体形状、大小及位置关系的一门学科. 如果只改变图形的位置,不改变图形的形状与大小,这样的变化叫做全等变换.基本的全等变换有平移、轴对称与旋转.研究的思路:定义——分离要素——研究性质——用坐标表示变换. 研究的内容:变换前后图形间的关系、对应点间的关系.研究的方法:画出变换前后的图形——观察——猜想——验证说明.重点是研究图形变化下的不变性.基于以上分析,可以确定本节课的教学重点是:图形变换相关知识的整理.二、目标与目标解析目标:1.理解图形的平移、轴对称、旋转的概念.2.掌握图形的平移、轴对称、旋转的性质,会用坐标表示图形的平移、轴对称和中心对称.3.了解全等变换的研究过程,体会全等变换的研究思路、内容与方法.目标解析:目标1 要求学生能通过画图理解图形的平移、轴对称、旋转等概念.目标 2 理解图形的平移、轴对称、旋转的性质并会这些性质来研究其它的几何图形;会用坐标表示多边形的平移、轴对称、中心对称前后位置关系.目标3 会用图形研究的一般方法研究图形的全等变换.三、教学问题诊断分析图形的三大全等变换是几何研究的主要内容之一,三者在研究思路、研究内容与研究方法上有着极大的相似性.学生能根据变换的图形得出一些具体的结论,但缺乏对知识的整理与归纳,存在在脑中的是散点式的知识,无法形成网状结构,建构知识系统.复习不是简单的知识重复,而是要生成知识体系与通用方法.基于以上分析,可以确定本节课的教学难点是:建构三大全等变换的知识系统,探究复习的一般策略.四、教学过程设计1. 课题引入问题1复习有什么作用?师生活动:学生个别回答,师生共同总结复习主要作用:(1)知识更具有系统性;(2)方法更具有一般性.设计意图:点出复习的作用与目的.问题2 对于三种全等变换,怎样复习比较好?师生活动:教师引导学生得出全等变换复习的基本方法:(1)抓住共性,分清区别;(2)能有一般的复习策略.设计意图:使学生初步体会用一般方法进行复习研究. 问题3 回顾三种全等变换学习,经历了怎样的学习历程?师生活动:学生讨论、教师引导得出研究全等变换的思路:定义——分离要素——研究性质——应用(用坐标表示变换).设计意图:要使学生明白这种研究数学的思路也是研究数学的一般思路. 2.知识回顾与整理问题4 如图(1),(2),(3)中的一个三角形是又另一个三角形怎样变化得到的?师生活动:学生回顾三种图形的变换. 设计意图:借助图形直观,引出相关概念. 问题5 分别说说在各个图中你能得到的结论?师生活动:学生列举,教师板书(有意识的将学生所举结论分类) 设计意图:知识回顾是一个零散的过程,它需要经历列举与整理的阶段. 问题6 针对同学们刚才所列的结论,请你归纳研究内容.师生活动:教师引导学生得出全等变换研究的主要内容是:变换前后图形间的关系、对应点所连线段的特征.设计意图:抓住全等变换的主要内容,并将知识进行,使学生从整体上把握复习方向. 问题7 列表比较全等变换的定义、基本要素、性质. 师生活动:教师引导学生得出表格.C图(1)D图(3)C 图(2)问题8 你是如何得到全等变换的结论?师生活动:教师引导得出研究性质的方法:画出变换前后的图形——观察——猜想——验证说明.设计意图:用已有几何研究经验来回顾图形变换的研究方法.进而总结复习的一般策略:(1)理清研究思路;(2)整合研究内容;(3)归纳研究方法.3. 策略迁移运用一般复习的策略,请你说说成中心对称的图形是怎样得到的,有什么性质? 师生活动:学生独立完成下表设计意图:再次体会复习的一般策略.追问 常见的轴对称图形与中心对图形有哪些? 4. 知识应用例1 如图,△ABC 中,三个顶点的坐标分别为点A (-3,-2),B (-2,-1),C (-1,-4),(1)将△ABC 先向左平移1个单位,再向上平移6个单位,画出平移后的△111A B C ;(2)记△ABC 关于x 轴对称的三角形为△222A B C ,画出△222A B C ;(3)已知△333A B C 可以由△222A B C 绕某一点顺时针旋转一定角度得到,求出旋转中心的坐标与旋转角度.设计意图:知道在平面直角坐标系中,通过平移、轴对称和旋转变换后坐标有怎样的变化规律;体会平移、轴对称、旋转的决定因素与特征,并了解平面内任意两个全等图形肯定能通过三大变换中一种或几种变换之后,两个图形能重合.例2 如图6.1-3,在矩形ABCD 中,AB =5,BC =7,点E 为BC 上一动点,把△ABE 沿AE 折叠,当点B 的对应点B ′落在∠ADC 的角平分线上时,则点B ′到BC 的距离为( ) A .1或2 B .2或3 C .3或4 D .4或5设计意图:体会轴对称的性质,知道利用轴对称解决问题时会用到轴对称性质,即对应边或对应角相等.5. 总结提升问题1 全等变换的复习经历了怎样的过程?师生活动:学生思考,教师引导得出:1.知识回顾;2.知识整理;3.策略迁移 设计意图:使学生进一步体会几何复习与研究的一般思路和方法. 问题2 复习的一般策略有哪些?师生活动:师生共同得出复习的一般策略有(1)理清研究思路;(2)整合研究内容;(3)归纳研究方法.设计意图:再次体会几何变换研究的基本思想方法,并推广到一般.B'EDCBA。
图形的平移与旋转(教案)-五年级上册数学青岛版
图形的平移与旋转(教案)五年级上册数学青岛版在今天的课堂上,我们将学习五年级上册数学青岛版中的一个重要内容——图形的平移与旋转。
一、教学内容我们使用的教材是《数学》,今天的学习内容是第66页至第68页,主要包括图形的平移与旋转的定义、特点和应用。
二、教学目标通过本节课的学习,我希望同学们能够掌握图形的平移与旋转的概念,理解它们在实际生活中的应用,并能够运用这一知识解决一些简单的问题。
三、教学难点与重点本节课的重点是让同学们掌握平移与旋转的定义和特点,难点是理解平移与旋转在实际生活中的应用。
四、教具与学具准备为了更好地进行课堂教学,我已经准备好了PPT和一些实际生活中的例子,同学们需要准备好纸和笔,以便于随堂练习。
五、教学过程1. 实践情景引入:我会向同学们展示一些生活中的图片,如滑滑梯、旋转门等,让同学们观察并思考这些现象与图形的平移与旋转有什么关系。
2. 概念讲解:接着,我会通过PPT向同学们讲解平移与旋转的定义和特点。
3. 例题讲解:我会选取一些典型的例题,如将一个图形平移或旋转一定角度后,求得新图形的坐标或形状。
我会带领同学们一起分析问题、解决问题。
4. 随堂练习:在讲解完例题后,我会给同学们一些练习题,让同学们在课堂上独立完成,以巩固所学知识。
5. 应用拓展:我会向同学们展示一些实际生活中的应用案例,如地图的缩放、相机的旋转等,让同学们进一步理解平移与旋转的实际意义。
六、板书设计板书设计如下:平移:定义:将一个图形上的所有点都按照某个方向作相同距离的移动。
特点:移动后的图形位置改变,形状、大小、方向不变。
旋转:定义:将一个图形绕着某一点转动一个角度的图形变换。
特点:旋转后的图形位置和方向改变,形状、大小不变。
七、作业设计作业题目:1. 根据平移的定义,解释一下平移后的图形为什么位置改变,形状、大小、方向不变。
2. 根据旋转的定义,解释一下旋转后的图形为什么位置和方向改变,形状、大小不变。
初中图形平移旋转 教案
初中图形平移旋转教案教学目标:1. 理解平移和旋转的概念,能够区分它们。
2. 掌握图形平移和旋转的性质和特点。
3. 能够运用平移和旋转的性质解决实际问题。
教学重点:1. 理解平移和旋转的概念。
2. 掌握图形平移和旋转的性质和特点。
教学难点:1. 理解图形平移和旋转的性质。
教学准备:1. 教学课件或黑板。
2. 图形卡片或实物模型。
教学过程:一、导入(5分钟)1. 引入平移和旋转的概念,让学生回顾已学的相关知识。
2. 提问:你们在生活中什么时候见过平移和旋转的现象?二、新课讲解(15分钟)1. 讲解平移的概念和特点,通过示例让学生理解平移的意义。
2. 讲解旋转的概念和特点,通过示例让学生理解旋转的意义。
3. 讲解图形平移和旋转的性质,如平移不改变图形的形状和大小,旋转不改变图形的大小等。
三、课堂练习(15分钟)1. 让学生在纸上画出一个任意的图形,然后进行平移和旋转,观察图形的变化。
2. 让学生回答:平移和旋转对图形有什么影响?图形的大小和形状是否会改变?四、应用拓展(15分钟)1. 让学生思考并回答:在实际生活中,平移和旋转可以应用于哪些方面?2. 让学生进行小组讨论,探讨如何运用平移和旋转的性质解决实际问题。
五、总结(5分钟)1. 让学生回顾本节课所学的内容,总结平移和旋转的概念、性质和特点。
2. 强调平移和旋转在实际生活中的应用价值。
教学反思:本节课通过讲解、练习和应用拓展,让学生掌握了平移和旋转的概念、性质和特点。
在教学过程中,要注意引导学生从实际生活中发现平移和旋转的现象,培养学生的观察能力和实际应用能力。
同时,也要注意让学生通过练习和讨论,加深对平移和旋转的理解和掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《图形的平移与旋转》复习教案
随州市曾都区新街镇中心学校江光能教学任务分析:
教学流程:
教学过程设计:
教学设计说明
本节课是七年级下册第五章“5.4 平移”和九年级上册第二十三章“23.1 图形的旋转”的综合复习课。
我按以下思路设计本课:本着以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循由浅入深,由易到难的认知规律,共设计五个教学活动。
过程设想:
创设情景,轻松引人.首先奥运会五环旗标志画面引入,激发学生的求知欲,培养学生从数学的角度观察生活,思考问题的能力。
分层训练,紧扣重点.本节突出平移与旋转概念加深理解和性质应用探究活动的教学。
首先从分析图形的变换、平面直角坐标系中的平移旋转方面帮助学生
把握概念的本质特征,以培养学生观察、分析的能力,再引导学生运用性质解决数学问题和实际问题,由浅入深,培养学生应用数学知识分析、解决问题的能力。
动画演示,化难为易.教学活动中运用有动感的画面,叩开学生思维之门,为突出数学的生动性,提高学生的学习兴趣。
一题多解,探究创新.应用旋转解决问题时,教师多方位引导,让学生探究出多种解题方法,培养学生的发散思维,也为突出数学的灵活性。
当然,对于设计的不当之处,本人很希望得到专家、评委老师们的指教。