七年级上册数学第四章测试卷
七年级数学上册 第四章 基本平面图形 单元测试卷(北师版 2024年秋)
七年级数学上册第四章基本平面图形单元测试卷(北师版2024年秋)七年级数学上(BS版)时间:90分钟满分:120分一、选择题(每题3分,共30分)1.[新趋势跨学科综合2024杭州西湖区月考]《红楼梦》第57回有这么一句话,“自古道:‘千里姻缘一线牵’,管姻缘的有一位月下老儿,暗里只用一根红线,把这两个人的脚绊住.”请问,这里所说的“线”若是真的,则在数学中指的应是()A.直线B.射线C.线段D.以上都不对2.小明在设计黑板报时,想在黑板上画出一条笔直的参照线,由于尺子不够长,他想出了如下方法:①在一根长度合适的毛线上涂满粉笔末;②由两名同学分别按住毛线两端,并绷紧;③捏起毛线后松开,便可在黑板上弹出一条笔直的参照线.上述方法的数学依据是()A.两点之间,线段最短B.两点确定一条直线C.线段中点的定义D.两点间距离的定义3.如图,点B,D,C在直线l上,点A在直线l外,下列说法正确的是()(第3题)A.直线BD和直线CD表示的是同一条直线B.射线BD和射线CD表示的是同一条射线C.∠A和∠BAD表示的是同一个角D.∠1和∠B表示的是同一个角4.[教材P121观察·思考变式2023河北]淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的()(第4题)A.南偏西70°方向B.南偏东20°方向C.北偏西20°方向D.北偏东70°方向5.[新考向数学文化2024北京昌平区月考]东汉初年,我国的《周髀算经》里就有“径一周三”的古率,提出了圆的直径与周长之间存在一定的比例关系.如图,将图中的半圆)向右水平拉直(保持M端不动),根据该古率,与拉直后铁丝N端的位置弧形铁丝(M最接近的是()(第5题)A.点A B.点B C.点C D.点D 6.[2024驻马店驿城区期末]如图,点A,B,C在直线l上,下列说法正确的是()(第6题)A.点C在线段AB上B.点A在线段BC的延长线上C.射线BC与射线CB是同一条射线D.AC=BC+AB7.[2024广州越秀区月考]下列说法正确的是()A.钟表现在的时间是10点30分,此时时针与分针所成的夹角是105°B.若经过某个多边形一个顶点的所有对角线,将这个多边形分成八个三角形,则这个多边形是九边形C.若AC=BC,则点C是线段AB的中点D.31.25°=31°15'8.[2024深圳南山区一模]如图①是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图②所示,它是以点O为圆心,OA,OB长分别为半径,圆心角∠O=120°形成的扇面,若OA=3m,OB=1.5m,则阴影部分的面积为()(第8题)A.4.25πm2B.3.25πm2C.3πm2D.2.25πm29.如图,将一个三角尺60°角的顶点与另一个三角尺的直角顶点重合,∠1=27°40',则∠2的度数是()(第9题)A.27°40'B.62°20'C.57°40'D.58°20'10.[2024昆明三中月考]已知线段MN=10cm,P是直线MN上一点,NP=4cm,若E是线段MP的中点,则线段ME的长度为()A.3cm B.6cmC.3cm或7cm D.2cm或8cm二、填空题(每题3分,共24分)11.如图,从学校A到书店B最近的路线是①号路线,其中的道理是.(第11题)12.[2024滁州中学模拟]如图,比较图中∠BOC,∠BOD的大小:因为OB是公共边,OC 在∠BOD的内部,所以∠BOC∠BOD(填“>”“<”或“=”).(第12题)13.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形有k条对角线,正h 边形的内角和为360°,则代数式h·(m-k)n=.14.[2024北京十二中期末]如图,D是AB的中点,E是BC的中点,BE=16AC=3cm,则线段DE=.(第14题)15.[教材P127习题T8变式2024西安高新一中期末]小明利用星期天搞社会调查活动,早晨8:00出发,中午12:30到家,小明到家时时针和分针夹角的度数是.16.将一张长方形ABCD纸片按如图所示的方式折叠,OE和OF为折痕,点B落在点B'处,点C落在点C'处,若∠BOE=35°,∠COF=30°,则∠B'OC'的度数为.(第16题)17.[情境题生活应用]由三门峡南开往北京丰台的G562次列车,运行途中停靠的车站依次是:洛阳龙门—郑州东—鹤壁东—安阳东—石家庄—保定东—涿州东,那么要为这次列车制作车票种.18.[2024郑州外国语中学月考]如图,∠AOC和∠BOD都是直角.固定∠BOD不动,将∠AOC绕点O旋转,在旋转过程中,下列结论正确的有.(第18题)①如果∠DOC=20°,那么∠AOB=160°;②∠DOC+∠AOB是定值;③若∠DOC变小,则∠AOB变大;④∠AOD=∠BOC.三、解答题(19,22,24题每题12分,其余每题10分,共66分)19.[教材P116习题T2变式2024绵阳涪城区期末]如图,在平面内有三点A,B,C.(1)利用尺规,按下面的要求作图.(要求:不写画法,保留作图痕迹)①作射线BA;②作直线BC;③连接AC,并在线段AC上作一条线段AD,使AD=AB,连接BD.(2)数数看,此时图中线段共有条.20.如图,一、二、三、四这四个扇形的面积之比为1∶3∶5∶1.(1)请分别求出它们圆心角的度数.(2)一、二、四这三个扇形的圆心角的度数之和是多少?21.如图,OM平分∠AOB,ON平分∠COD,∠MON=90°,∠BOC=26°43',求∠AOD 的度数.22.如图,点C,D,E在线段AB上,AD=13DC,E是线段CB的中点,CE=16AB=2,求线段DE的长.23.如图,已知O是直线AB上的一点,∠AOC∶∠BOC=2∶7,射线OM是∠AOC的平分线,射线ON是∠BOC的平分线.(1)∠AOC=,∠BOC=;(2)求∠MON的度数;(3)过点O作射线OD,若∠DON=12∠AOC,求∠COD的度数.24.[新视角动态探究题2024合肥包河区月考]如图,M是线段AB上一点,AB=10cm,点C,D分别从M,B两点同时出发以1cm/s,3cm/s的速度沿直线BA向左运动(C在线段AM上,D在线段BM上).(1)当点C,D运动了1s时,这时图中有条线段;(2)当点C,D运动了2s时,求AC+MD的值;(3)若点C,D运动时,总有MD=3AC,求AM的长.参考答案一、1.C2.B3.A4.D5.A6.D7.D8.D9.C10.C二、11.两点之间,线段最短12.<13.50014.9cm15.165°16.50°17.3618.①②③④点拨:因为∠AOC=∠BOD=90°,∠AOC=∠AOD+∠COD,∠BOD=∠BOC+∠COD,所以∠AOC+∠BOD=∠AOD+∠COD+∠BOC+∠COD=180°,即∠AOD+∠COD+∠BOC=180°-∠COD,即∠AOB=180°-∠COD.当∠DOC=20°时,∠AOB=160°.故①正确;因为∠AOB=180°-∠COD,所以∠DOC+∠AOB=180°是定值.故②正确;因为∠AOB=180°-∠COD,所以若∠DOC变小,则∠AOB变大.故③正确;因为∠AOC=∠BOD=∠AOD+∠COD=∠BOC+∠COD,所以∠AOD=∠BOC.故④正确.三、19.解:(1)如图所示.(2)620.解:(1)因为一、二、三、四这四个扇形的面积之比为1∶3∶5∶1,所以各个扇形的面积分别占整个圆面积的110,310,12,110.所以一、二、三、四这四个扇形的圆心角的度数分别为110×360°=36°,310×360°=108°,12×360°=180°,110×360°=36°.(2)一、二、四这三个扇形的圆心角的度数之和是36°+108°+36°=180°. 21.解:因为OM平分∠AOB,ON平分∠COD,所以∠BOM=12∠AOB,∠CON=12∠COD.因为∠MON=90°,∠BOC=26°43',所以∠CON+∠BOM=∠MON-∠BOC=90°-26°43'=63°17'.所以12∠COD+12∠AOB=∠CON+∠BOM=63°17'.所以∠COD+∠AOB=126°34'.所以∠AOD=∠COD+∠BOC+∠AOB=126°34'+26°43'=153°17'.22.解:因为CE=16AB=2,所以AB=12.因为E是线段CB的中点,所以BC=2CE=4.所以AC=8.因为AD=13DC,所以DC=34AC=6.所以DE=DC+CE=8.23.解:(1)40°;140°(2)因为射线OM是∠AOC的平分线,射线ON是∠BOC的平分线,所以∠COM=12∠AOC=20°,∠CON=12∠BOC=70°.所以∠MON=∠COM+∠CON=20°+70°=90°.(3)易得∠DON=12∠AOC=20°.当射线OD在∠CON的内部时,如图①,则∠COD=∠CON-∠DON=70°-20°=50°;当射线OD在∠BON的内部时,如图②,则∠COD=∠CON+∠DON=70°+20°=90°.综上,∠COD的度数为50°或90°.24.解:(1)10(2)当点C,D运动了2s时,CM=2cm,BD=6cm.又因为AB=10cm,所以AC+MD=AB-CM-BD=10-2-6=2(cm).(3)因为C,D两点的速度分别为1cm/s,3cm/s,所以BD=3CM.又因为MD=3AC,所以BD+MD=3CM+3AC,即BM=3AM.所以AM=14AB=14×10=2.5(cm).。
七年级数学上学期第四单元几何图形初步测试卷5套带答案
第4章 单元测试题(时间100分钟 满分100分)一、选择题:(每小题3分,共30分)1.如图1所示的棱柱有( )A.4个面B.6个面C.12条棱D.15条棱C(2)A DB2.如图2,从正面看可看到△的是( )3.如图3,图中有( )A.3条直线B.3条射线C.3条线段 D.以上都不对4.下列语句正确的是( )A.如果PA=PB,那么P是线段AB的中点;B.作∠AOB的平分线CDC.连接A、B两点得直线AB;D.反向延长射线OP(O为端点)5.如图4,比较∠α、∠β、∠γ 的大小得( )A. ∠γ>∠β>∠α;B. ∠α=∠β;C. ∠γ>∠α>∠β;D. ∠β>∠α>∠γ.6.5点整时,时钟上时针与分钟之间的夹角是( )A.210°B.30°C.150°D.60°7.两个角,它们的比是6:4,其差为36°,则这两个角的关系是( )A.互余B.互补C.既不互余也不互补D.不确定8.∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是( )A. ∠α=∠β;B. ∠α>∠β;C. ∠α<∠β;D. 以上都不对9.如果∠α=3∠β, ∠α=2∠θ,则必有( )2310.如图5所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为( )A.8°B.4°C.2°D.1°二、填空题:(每小题3分,共30分)11.已知线段AB=8cm,延长AB 至C,使AC=2AB,D 是AB 中点,则线段CD=______.12.如图,从城市A 到城市B 有三种不同的交通工作:汽车、火车、飞机,除去速度因素,坐飞机的时间最短是因为___________.13.57.32°=_______°_______′_______″;27°14′24″=_____°.14.已知∠a=36°42′15″,那么∠a 的余角等于________.15.∠1+∠2=180°,∠2+∠3=180°,根据________,得∠1=∠3.16.表示O 点南偏东15°方向和北偏东25°方向的两条射线组成的角等于____17.如图,∠AOC=90°,∠AOB=∠COD,则∠BOD=______°.航线铁路公路(6)A B18.102°43′32″+77°16′28″=________;98°12′25″÷5=_____.19.已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……,____________cm.20.在平面上有任意四点,过其中任意两点画直线,能画_______条直线.三、解答题:(21、24、25、26每题6分,22、23题每题8分)21.根据下列语句画图:(1)画∠AOB=120°;(2)画∠AOB 的角平分线OC;(3)反向延长OC 得射线OD;(4)分别在射线OA、OB、OD 上画线段OE=OF=OG=2cm;(5)连接EF、EG、FG;(6)你能发现EF、EG、FG 有什么关系?∠EFG、∠EGF、∠GEF 有什么关系?22.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm,M 是线段AC 的中点,求AM 的长.23.如图,直线AB、CD 交于O 点,且∠BOC=80°,OE 平分∠BOC,OF 为OE 的反向延长线.(1)求∠2和∠3的度数.(2)OF平分∠AOD吗?为什么?24.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.25.测量员沿着一块地的周围测绘.从A向东走600米到B,再从B向东南(∠ABC= 135°)走500米到C,再从C向西南(∠BCD=90°)走800米到D.用1厘米代表100米画图, 求DA的长(精确到10米)和DA的方向(精确到1°).北D CA B26.利用线段、角、三角形、圆等图形为你的学校设计一个校标,并简述你的设计思路.参考答案一、选择题1.D2.C3.C4.D5.C6.C7.B8.B9.C 10.B二、填空题11.12cm 12.两点之间,线段最短 13.57、19、12;27.2414. 53°17′45″ 15.同角的补角相等16.140° 17.90 18.180°;19°38′29″. 19. 20.1或4或6三、解答题21.(6)EF=EG=FG,∠EFG=∠EGF=∠FEG=60°22.AM=7cm或3cm23.(1)∠2=100°,∠3=40°;(2)∠AOF=40°,OF平分∠AOD24.设这个角为x0,( 180-x):(90-x)=3:1,x=45.第4章 单元测试题2检测时间:45分钟,满分:100分班级 学号 姓名 得分一、填空题:(每空2分,共46分)1.正方体有______条棱,_____个顶点, 个面.2.圆柱的侧面展开图是一个 ,圆锥的侧面展开图是一个 ,棱柱的侧面展开图是一个 。
(苏科版)初中数学七年级上册 第4章综合测试试卷01及答案
第四章综合测试一、单选题1.下列判断错误的是()A .若a b =,则33ac bc -=-B .若a b =,则33a b =--C .若ax bx =,则a b=D .若2x =,则22x x=2.已知3x k =-,2y k =+,则y 与x 的关系是( )A .5x y +=B .1x y +=C .1x y -=D .1y x =-3.下列各式不是方程的是( )A .20x x +=B .0x y +=C .1x x+D .0x =4.将372x x -=变形正确的是( )A .327x x +=B .327x x -=-C .327x x +=-D .327x x -=5.下列等式的变形中,不正确的是( )A .若x y =,则55x y +=+B .若(0)x ya a a=¹,则x y =C .若33x y -=-,则x y=D .若mx my =,则x y=6.有一应用题:“李老师存了一个两年的定期储蓄5 000元,到期后扣除20%的利息税能取5 176元,求这种储蓄的年利率是多少?”四位同学都是设这种储蓄的年利率是x ,可他们列出的方程却不同,下列列出的方程中正确的是()A .5000(1220%)5176x +´´=B .5000(12)80%5176x +´=C .50005000280%5176x +´´=D .5000500080%5176x +´=7.下列方程为一元一次方程的是( )A .123+=B .423m n m+=C .2223x x+=D .423x x-=8.下列利用等式的性质,错误的是()A .若a b =,则11a b -=-B .若237a b +=-,则255a b +=-C .若a b =,则22ma mb =D .若ac bc =,则a b=二、填空题9.一件商品按成本价提高20%后标价,又以9折销售,售价为270元.设这件商品的成本价为x 元,则可列方程:________10.若13x --=,则x =________11.一组数:2,1,3,x ,7,9-,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221´-”得到的,那么这组数中x 表示的数为________.12.若代数式7y -与21y -的值相等,则y 的值是________.13.已知关于x 的方程231x a -=-的解为1x =-,则a 的值等于________.14.当x =________时,代数式21x +与58x -的值互为相反数.15.当x =________时,式子1x -与式子214x -的值相等.16.写出一个满足下列条件的一元一次方程:①某个未知数的系数是3;②方程的解是2;这样的方程是________.17.已知3x =-是方程(21)40k x +-=的解,则k =________.三、计算题18.解方程:(1)2523163x x x +--=-;(2)2130.20.5x x -+-=.19.解方程:(1)3723x x+=-(2)3(2)(21)x x x -=--(3)12123x x-=+.20.解方程:31112x x -+=+.四、综合题21.已知方程323452x x -=-(1)求方程的解;(2)若上述方程与关于x 的方程383()2a x a a +=+-是同解方程,求a 的值;(3)在(2)的条件下,a 、b 在数轴上对应的点在原点的两侧,且到原点的距离相等,c 是倒数等于本身的数,求2005()a b c ++的值.第四章综合测试答案解析一、1.【答案】C【解析】A .利用等式性质1,两边都减去3,得到33a b -=-,所以A 成立;B .利用等式性质2,两边都除以3-,得到33a b=--,所以B 成立;C .因为x 必须不为0,所以C 不成立;D .利用等式性质2,两边都乘x ,得到22x x =,所以D 成立;故选C .2.【答案】A【解析】3x k =-Q ,2y k =+,325x y k k \+=-++=.故选:A .3.【答案】C【解析】解:A .20x x +=是方程,x 是未知数,式子又是等式,故本选项不符合题意;B .0x y +=是方程,x 、y 是未知数,式子又是等式,故本选项不符合题意;C .1x x+是分式,不是等式,故本选项符合题意;D .0x =是方程,x 是未知数,式子又是等式,故本选项不符合题意;故选:C .4.【答案】D【解析】等式两边都加7得:327x x =+,等式两边都减2x 得:327x x -=.故选D .5.【答案】D【解析】A .若x y =,根据等式的性质1,两边同时加5可得55x y +=+,故正确;B .若(0)x ya a a=¹,根据等式的性质2,两边同时乘以(0)a a ¹可得x y =,故正确;C .若33x y -=-,根据等式的性质2,两边同时除以3-可得x y =,故正确;D .若mx my =,根据等式的性质2,两边同时除以m ,(0)m ¹,才可得x y =,缺少条件,错误.故选D .6.【答案】C【解析】解:设这种储蓄的年利率为x ,由题意得500050002(120%)5176x +´´-=,即50005000280%5176x +´´=.故答案为:C .7.【答案】D【解析】A .不含有未知数,是等式,不是方程,故选项错误;B .是二元一次方程,故选项错误;C .未知数的最高次数是2次,不是一元一次方程,故选项错误;D .符合一元一次方程的定义,故选项正确.故选D .8.【答案】D【解析】当0c =时,0ac bc ==,但a 不一定等于b ,故D 错误.故答案为:D .二、9.【答案】(120%)0.9270x +´=【解析】解:标价为(120%)x ´+,\可列方程为:(120%)0.9270x +´=.10.【答案】4-【解析】解:等式的两边同时加1得,1131x --+=+,即4x -=,等式的两边同时除以1-得,4x =-.故答案为:4-.11.【答案】1-【解析】解:Q 该组数列满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,2131x \=´-=-.故答案为:1-.12.【答案】6-【解析】解:Q 代数式7y -与21y -的值相等,7=21y y \--,移项、合并同类项,可得:=6y -.故答案为:6-.13.【答案】13-【解析】解:把1x =-代入方程231x a -=-得:231a --=-,解得:13a =-,故答案为:13-.14.【答案】1【解析】解:根据题意得:21580x x ++-=,移项合并得:77x =,解得:1x =,故答案为:1.15.【答案】32【解析】由式子1x -与式子214x -的值相等,得2114x x --=,去分母得:4421x x -=-解得:32x =.16.【答案】360x -=【解析】解:由题意可知:3a =,2x =.则将a 与x 的值代入0ax b +=中得:320b ´+=,解得:6b =-,所以,该一元一次方程为:360x -=.故答案为:360x -=.17.【答案】76-【解析】解: 3 x =-Q 是方程(21)40k x +-=的解,(2k 1)(3)40\+´--=,解得:76k =-.故答案为:76-.三、18.【答案】(1)解:去分母得:625646x x x --=-+,移项合并得:817x =,解得:178x =.(2)解:方程整理得:510223x x ---=,移项合并得:315x =,解得:5x =.【解析】(1)方程去分母,去括号,移项合并,把未知数系数化为1,即可求出解.(2)方程整理后,去分母,去括号,移项合并,把未知数系数化为1,即可求出解.19.【答案】(1)移项合并得:416x =,解得:4x =.(2)去括号得:3621x x x -=-+,移项合并得:47x =,解得:74x =.(3)去分母得:3(1)46x x -=+,去括号得:3346x x -=+,解得:9x =-.【解析】(1)方程移项合并,把x 系数化为1,即可求出解.(2)方程去括号,移项合并,把x 系数化为1,即可求出解.(3)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.20.【答案】解:方程两边都乘2得:31222x x -+=+,移项得:32212x x -=+-,合并同类项得:1x =.【解析】按照去分母,移项,合并的计算过程计算即可.四、21.【答案】(1)解:方程两边同时乘以10得:2(32)53410x x -=´-´,去括号得:641540x x -=-,移项得:615440x x -=-,合并同类项得:936x -=-,系数化为1得:4x =.(2)解:4x =Q 是方程383()2a x a a +=+-的解,383(4)2a a a \+=+-,解得:2a =.(3)解:2a =Q ,2b \=-,又c Q 是倒数等于本身的数,1c \=±,当1c =时,20052005()(221)1a b c \++=-+=;当1c =-时,20052005()(221)1a b c \++=--=-;综上所述:2005()a b c ++的值为1±.【解析】(1)根据解一元一次方程的步骤:去分母——去括号——移项——合并同类项——系数化为1.(2)将4x =代入方程383()2a x a a +=+-解得2a =.(3)根据题意可得2a =,2b =-,1c =±,再分情况求得代数式的值即可.。
人教版七年级数学上册《第四章整式的加减》单元测试卷及答案
人教版七年级数学上册《第四章整式的加减》单元测试卷及答案一、整体代入法求值整体代入法求值,就是将一个复杂的表达式或方程看作一个整体,然后将其代入到另一个表达式或方程中进行求解的方法。
通过“比较各项系数”“拼拆各项构造整体”“比较各项系数”“拼拆各项构造整体”等方法“化繁为简”,将复杂的问题分解成若干个简单的问题,再逐一解决,最终汇聚成整体的答案。
一、 整体代入——比较各项系数1. 若代数式b a -2的值为1 ,则代数式b a 247-+ 的值为( ) .A. 7B. 8C. 9D. 102. 若a 、b 互为相反数,c 、d 互为倒数,则()=-+cd b a 3 .3. 已知代数式y x 2+的值是3 ,则代数式142-+y x 的值是 .4. 若6=+b a ,则=--b a 2218 ( ) .A. 6B. 6-C. 24-D. 125. 已知,0122=++a a 求3422-+a a 的值 . 6. 若72=-b a ,则b a 426+- 的值为 .7. 如果代数式b a -的值为4 ,那么代数式522--b a 的值为 . 8. 已知代数式y x -2的值是2- ,则代数式y x +-21 的值是 .二、 整体代入——拼拆各项构造整体1. 请回答下列各题:( 1 )化简:()().363252222y x xy xy y x --+ ( 2 )化简求值:已知,2,9==+ab b a 求()()⎪⎭⎫ ⎝⎛+--++-b ab a ab ab ab 2141025131532的值.2. 已知,12,5=-=+c b b a 则c b a -+2 的值为( ) . A. 17B. 7C. 17-D.7-3. 已知5=-b a ,2=+d c 则()()d a c b --+的值是( ) .A.3-B. 3C.7-D. 74. 已知3=-b a ,2=+dc 则()()d a c b --+ 的值为 .5. 已知,6,1422-=-=+bc b bc a 则22b a+ 的值是 ,bc b a 3222+-的值是6. 已知,5,14=-=+ab b a 求()()[]a b ab a b ab 65876+--++ 的值 .三、 整体代入——比较各项系数1. 代数式22++x x 的值为0 ,则代数式3222-+x x 的值为( ) . A. 6 B. 7 C. 6- D. 7-2. 解答下列问题:( 1 )若代数式7322++x x 的值为 8 ,那么代数式2025962++x x 的值为( 2 )若5,7==+xy y x .则代数式xy y x +--228的值为 ( 3 )若,5,162244=-=+xy y x y x 则()()()422244253y xy xy y x y x----- 的值是多 少?3. 若代数式y x 32-的值是1 ,那么代数式846+-x y 的值是 .4. 已知a ,b 互为相反数, c ,d 互为倒数, x 的绝对值为2 .求()()20252cd x cd b a x -+++-的值 .5. 已知a 与b 互为相反数,c 与d 互为倒数, m 的值为6-,求m cd mba +-+的值 . 6. 若代数式5322++x x 的值是 8 ,则代数式7642-+x x 的值是( ) . A. 1- B. 1 C. 9- D. 9 7. 若1-=-n m ,则()n m n m 222+-- 的值是 .四、 整体代入——拼拆各项构造整体1. 若32-=+mn m,1832=-mn n 则224n mn m -+ 的值为 .2. 已知2,522-==+ab b a ,求代数式()()222222353242b b ab ab ab a ++---+的值.3. 已知:1,4-==-mn n m .求:()()()mn n m m n mn n m mn ++--+-++-4223322的值 . 4. 已知(),07535172=-++-+y x y x 求=+y x 32 .5. 已知,62,1422-=-=+bc b bc a 则=-+bc b a 54322 ( ) .A. 18B. 18-C. 20D. 86. 已知2-=-+a c b ,则()()=-++⎪⎭⎫ ⎝⎛+-+--a c b c b a c b c b a a 2223132323232 参考答案一、 整体代入——比较各项系数【解答】()b a b a -+=-+227247把12=-b a 代入上式得:927=+=∴原式. 答案:C【解答】b a 、 互为相反数,d c 、互为倒数.,1,0==+∴cd b a(),3303-=-=-+∴cd b a 答案:3-【知识点】倒数的定义1. 【解答】由题意可知:,32=+y x 原式().516122=-=-+=y x【解答】,6=+b a(),612182182218=-=+-=--∴b a b a 答案:A 2. 【解答】,0122=++a a ()550512234222=-=-++=-+∴a a a a3. 【解答】()b a b a 226426--=+-,其中,72=-b a 所以原式8726-=⨯-=4. 【解答】,4=-b a ()35425252=-⨯=--=--b a b a5. 【解答】22-=-y x()()3212121=--=--=+-∴y x y x二、 整体代入——拼拆各项构造整体1.【解答】(1)原式222222913361510xy y x y x xy xy y x +=+-+=(2)原式b ab a ab ab ab 24252210---++-=(),255822524210b a ab ba ab +--=--⎪⎭⎫ ⎝⎛+-+-=其中.2,9==+ab b a.5206511618922558-=--=⨯-⨯-=∴原式 2.【解答】12,5=-=+c b b a()()171252=+=-++=-+∴c b b a c b a .答案:A3.【解答】2,5=+=-d c b a()()325-=+-=++-=+-+=∴d c b a d a c b 原式.答案:A4.【解答】,d a c b +-+=原式()()132-=-=--+=+-+=b a d c ba d c5.【解答】()();86142222=-+=-++=+bc b bc a b a()()();346282322222=--=--+=+-bc bbc abc b a答案:8;346.【解答】()34228=++=++=ab b a a b ab 原式三、整体代入——比较各项系数1. 【解答】2,0222-=+=++x x x x 即()734322-=--=-+=x x 原式.答案:D2. 【解答】(1)87322=++x x,1322=+∴x x则原式(),20282025320253232=+=++=x x(2),5,7==+xy y x()xy y x ++-=∴28原式151485728-=+-=+⨯-=(3)()()()422244253y xy xy y xyx -----()()115165,16,3225322442244422244=-=∴=-=+∴--+=+-+--=原式xy y x y x xy y x y x y xy xy y x y x3. 【解答】,132=-y x()6828322=+-=+--=∴y x 原式【解答】b a , 互为相反数,d c ,互为倒数,x 的绝对值为2,2,1,0±===+∴x cd b a当2=x 时,原式()();11241210220252=--=-+⨯+-=当2-=x 时,原式()()()();51241210220252=-+=-+-⨯+--= 所以()()20252cd x cd b a x -+++-的值为1或5.【解答】b a , 互为相反数0=+∴b ad c , 互为倒数1=∴cd.5610610=+-=-+-=+-+m cd mba 4. 【解答】由题意可知:85322=++x x,3322=+∴x x().1732276422-=-+=-+∴x x x x 答案:A5. 【解答】1-=-n m()()()()()3121222222=-⨯--=---=+-=n m n m nm n m四、整体代入——拼拆各项构造整体1. 【解答】方法一:,183,322=--=+mn n mn m∴将这两个等式的两边相减得:(),183322--=--+mn n mn m,21322-=+-+∴mn n mn m ,21422-=-+∴n mn m方法二:原式(),332222mn n mn m n mn mn m --+=-++= 将183,322=--=+mn n mn m 代入 得原式21183-=--=2.【解答】原式,691524822222b b ab a b ab a +-+--+=(),137,71372222ab b a b ab a ++-=-+-=当2,522-==+ab b a 时 原式612635-=--=.3. 【解答】原式,4223322mn n m m n mn n m mn ---+--++-=(),36336n m mn nm mn -+-=-+-=把1,4-==-mn n m 代入得:原式18126=+=.4. 【解答】 已知条件17-+y x 和()27535-+y x 都是非负数,且(),07535172=-++-+y x y x .3932,5127535170753517=+∴⎩⎨⎧==∴⎩⎨⎧=+=+∴=-+=-+∴y x y x y x y x y x y x5. 【解答】bc b a 54322-+()()182414324322=-⨯=-++=bc b bc a6. 【解答】原式().382323222=⨯=--=c b a。
人教版七年级上册数学第四章《几何图形》单元测试卷(Word版,含答案)
人教版七年级上册数学第四章《几何图形》单元测试卷(满分100分,时间90分钟)一、选择题(本大题共十小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是正确的.)1.下列说法不正确的是()A.用一个平面去截一个正方体可能截得五边形B.五棱柱有10个顶点C.沿直角三角形某条边所在的直线旋转一周,所得的几何体为圆柱D.将折起的扇子打开,属于“线动成面”的现象2.下列图形中,经过折叠不能围成一个正方体的是()A.B.C.D.3.图1是一个正六面体,把它按图2中所示方法切割,可以得到一个正六边形的截面,则下列展开图中正确画出所有的切割线的是()A.B.C.D.4.已知∠1=27°18′,∠2=27.18°,∠3=27.3°,则下列说法正确的是()A.∠1=∠3B.∠1=∠2C.∠1<∠2D.∠2=∠35.如图是顺义区地图的一部分,小明家在怡馨家园小区,小宇家在小明家的北偏东约15°方向上,则小宇家可能住在()A.裕龙花园三区B.双兴南区C.石园北区D.万科四季花城6.一个正方体的展开图如图所示,将它折成正方体后,数字“0”的对面是()A.数B.5 C.1 D.学7.如图,∠AOB是一直角,∠AOC=40°,OD平分∠BOC,则∠AOD等于()A.65°B.50°C.40°D.25°8.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形,其中作法错误的为()A.B.C.D.9.如图所示,一艘船从A点出发,沿东北方向航行至点B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC的余角是()A.15°B.30°C.45°D.75°10.某乡镇的4个村庄A,B,C,D恰好位于正方形的4个顶点上,为了解决农民出行难问题,镇政府决定修建连接各村庄的道路系统,使得每两个村庄都有直达的公路,设计人员给出了如下四个设计方案(实线表示连接的道路)在上述四个方案中最短的道路系统是方案()A.一B.二C.三D.四二、填空题(本大题共10小题,每小题2分,共20分)11.有一正角锥的底面为正三角形.如果这个正角锥其中两个面的周长分别为27,15,则此正角锥所有边的长度和为.12.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是.13.如图是一个立方体的平面展开图形,每个面上都有一个自然数,且相对的两个面上两数之和都相等,若13,9,3的对面的数分别是a,b,c,则a2+b2+c2﹣ab﹣ac﹣bc的值为.14.用一根长28分米的木条截开后刚好能搭一个长方体的架子,这个长方体的长、宽、高的长度都是整数分米,且都不相等,那么这个长方体的体积等于立方分米.15.经过A,B两点的直线上有一点C,AB=10,CB=6,D和E分别是AB,BC的中点,则DE 的长是.16.上午8:30钟表的时针和分针构成角的度数是.17.下列几何体属于柱体的有个.18.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,平面内不同的七个点最多可确定条直线.19.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).20.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.三、解答题(21 ~23题每题7分,25题8分,26题8分,27题8分)21.如图,点C在线段AB上,AC=6cm,MB=10cm,点M,N分别为AC,BC的中点.(1)求线段BC,MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M,N分别是线段AC,BC的中点,求MN的长度.22.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面,已知正方体相对两个面上的代数式的值相等.求a+的值.。
人教版七年级数学上册第四章测试卷及答案解析【含详细知识点】
人教版七年级数学上册第四章测试卷及答案解析【含详细知识点】第四章测试卷一、选择题(项)1.下列说法正确的是( ) A .两点确定一条直线B .两条射线组成的图形叫作角C .两点之间直线最短D .若AB =BC ,则点B 为AC 的中点2.如图,长度为18cm 的线段AB 的中点为M ,点C 是线段MB 的一个三等分点,则线段AC 的长为( )A .3cmB .6cmC .9cmD .12cm第2题图 第3题图3.如图,∠AOB 为平角,且∠AOC =27∠BOC ,则∠BOC 的度数是( )A .140°B .135°C .120°D .40°4.如图是一个正方体纸巾盒,它的平面展开图是( )5.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中A ,D ,B 三点在同一直线上,BM 为∠ABC 的平分线,BN 为∠CBE 的平分线,则∠MBN 的度数是( )A .30°B .45°C .55°D .60°6.如图,线段AB 表示一根对折以后的绳子,现从P 处把绳子剪断,剪断后的各段绳子中最长的一段为8cm.若PB比AP长3cm,则这条绳子的原长为()A.10cm B.26cmC.10cm或22cm D.19cm或22cm二、填空题(本大题共6小题,每小题3分,共18分)7.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因__________________________.第7题图第8题图8.如图所示的图形中,柱体为__________(请填写你认为正确物体的序号).9.如图,已知线段AB=16cm,点M在AB上,AM∶BM=1∶3,P,Q分别为AM,AB的中点,则PQ的长为________.第9题图第11题图10.往返于甲、乙两地的客车,中途停靠3个车站(来回票价一样),且任意两站间的票价都不同,共有________种不同的票价,需准备________种车票.11.如图,将三个同样的正方形的一个顶点重合放置,那么∠1的度数为________.12.从点O引出三条射线OA,OB,OC,已知∠AOB=30°,在这三条射线中,当其中一条射线是另两条射线所组成角的平分线时,则∠AOC的度数为________.三、(本大题共5小题,每小题6分,共30分)13.下列图形中,上面是一些具体的实物,下面是一些立体图形,请找出与下面立体图形相类似的实物,用线连接起来.14.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.15.观察下面由7个小正方体组成的图形,请你画出从正面、上面、左面看到的平面图形.16.如图,已知直线AB、CD、EF相交于点O,∠2=2∠1,∠3=3∠2,求∠DOE的度数.17.如图,B是线段AD上一点,C是线段BD的中点.(1)若AD=8,BC=3,求线段CD,AB的长;(2)试说明:AD+AB=2AC.四、(本大题共3小题,每小题8分,共24分)18.已知∠α=76°,∠β=41°31′,求: (1)∠β的余角;(2)∠α的2倍与∠β的12的差.19.已知线段AB =20cm ,M 是线段AB 的中点,C 是线段AB 延长线上的点,AC :BC =3:1,点D 是线段BA 延长线上的点,AD =AB .求:(1)线段BC 的长; (2)线段DC 的长; (3)线段MD 的长.20.如图,将两块直角三角尺的顶点叠放在一起.(1)若∠DCE =35°,求∠ACB 的度数; (2)若∠ACB =140°,求∠DCE 的度数;(3)猜想∠ACB 与∠DCE 的关系,并说明理由.五、(本大题共2小题,每小题9分,共18分)21.如图,已知点O在线段AB上,点C,D分别是AO,BO的中点.(1)AO=________CO;BO=________DO;(2)若CO=3cm,DO=2cm,求线段AB的长度;(3)若线段AB=10,小明很轻松地求得CD=5.他在反思过程中突发奇想:若点O在线段AB的延长线上,原有的结论“CD=5”是否仍然成立呢?请帮小明画出图形分析,并说明理由.22.如图,甲、乙两船同时从小岛A出发,甲船沿北偏西20°的方向以40海里/时的速度航行;乙船沿南偏西80°的方向以30海里/时的速度航行.半小时后,两船分别到达B,C两处.(1)以1cm表示10海里,在图中画出B,C的位置;(2)求A处看B,C两处的张角∠BAC的度数;(3)测出B,C两处的图距,并换算成实际距离(精确到1海里).六、(本大题共12分)23.定义:从一个角的顶点出发,把这个角分成1∶2的两个角的射线,叫作这个角的三分线,显然,一个角的三分线有两条.例如:如图①,若∠BOC=2∠AOC,则OC是∠AOB 的一条三分线.(1)已知:如图①,OC是∠AOB的一条三分线,且∠BOC>∠AOC,若∠AOB=60°,求∠AOC的度数;(2)已知:∠AOB=90°,如图②,若OC,OD是∠AOB的两条三分线.①求∠COD的度数;②现以O为中心,将∠COD顺时针旋转n°得到∠C′OD′,当OA恰好是∠C′OD′的三分线时,求n的值.参考答案与解析1.A2.D3.A4.B5.B6.C7.两点之间,线段最短8.①②③⑥9.6cm10.102011. 20°12.15°或30°或60°解析:①如图①,当OC平分∠AOB时,∠AOC=12∠AOB=15°;②如图②,当OA平分∠BOC时,∠AOC=∠AOB=30°;③如图③,当OB平分∠AOC时,∠AOC=2∠AOB=60°.故答案为15°或30°或60°.13.解:如图所示.(6分)14.解:如图所示.(6分)15.解:图略.(6分)16.解:∵∠2=2∠1,∴∠1=12∠2.(1分)∵∠3=3∠2,∴∠1+∠2+∠3=12∠2+∠2+3∠2=180°,解得∠2=40°,(4分)∴∠3=3∠2=120°,∴∠DOE =∠3=120°.(6分)17.解:(1)∵C 是线段BD 的中点,BC =3,∴CD =BC =3.∴AB =AD -BC -CD =8-3-3=2.(3分)(2)∵AD +AB =AC +CD +AB ,BC =CD ,∴AD +AB =AC +BC +AB =AC +AC =2AC .(6分)18.解:(1)∠β的余角=90°-∠β=90°-41°31′=48°29′.(3分)(2)∵∠α=76°,∠β=41°31′,∴2∠α-12∠β=2×76°-12×41°31′=152°-20°45′30″=131°14′30″.(8分)19.解:(1)设BC =x cm ,则AC =3x cm.又∵AC =AB +BC =(20+x )cm ,∴20+x =3x ,解得x =10.即BC =10cm.(2分)(2)∵AD =AB =20cm ,∴DC =AD +AB +BC =20+20+10=50(cm).(5分)(3)∵M 为AB 的中点,∴AM =12AB =10cm ,∴MD =AD +AM =20+10=30(cm).(8分)20.解:(1)由题意知∠ACD =∠ECB =90°,∴∠ACB =∠ACD +∠DCB =∠ACD +∠ECB -∠DCE =90°+90°-35°=145°.(3分)(2)由(1)知∠ACB =180°-∠DCE ,∴∠DCE =180°-∠ACB =40°.(5分)(3)∠ACB +∠DCE =180°.(6分)理由如下:∵∠ACB =∠ACD +∠DCB =90°+90°-∠DCE =180°-∠DCE ,∴∠ACB +∠DCE =180°.(8分)21.解:(1)2 2(2分)(2)∵点C ,D 分别是AO ,BO 的中点,CO =3cm ,DO =2cm ,∴AO =2CO =6cm ,BO =2DO =4cm ,∴AB =AO +BO =6+4=10(cm).(5分)(3)仍然成立,如图:理由如下:∵点C ,D 分别是AO ,BO 的中点,∴CO =12AO ,DO =12BO ,(7分)∴CD=CO -DO =12AO -12BO =12(AO -BO )=12AB =12×10=5(cm).(9分)22.解:(1)图略.(3分)(2)∠BAC =90°-80°+90°-20°=80°.(6分) (3)约2.3cm ,即实际距离约23海里.(9分)23.解:(1)∵OC 是∠AOB 的一条三分线,且∠BOC >∠AOC ,∴∠AOC =13∠AOB=13×60°=20°.(3分) (2)①∵∠AOB =90°,OC ,OD 是∠AOB 的两条三分线,∴∠BOC =∠AOD =13∠AOB=13×90°=30°,∴∠COD =∠AOB -∠BOC -∠AOD =90°-30°-30°=30°.(6分) ②分两种情况:当OA 是∠C ′OD ′的三分线,且∠AOD ′>∠AOC ′时,如图①,∠AOC ′=13∠C ′OD ′=10°,∴∠DOC ′=∠AOD -∠AOC ′=30°-10°=20°,∴∠DOD ′=∠DOC ′+∠C ′OD ′=20°+30°=50°;(9分)当OA 是∠C ′OD ′的三分线,且∠AOD ′<∠AOC ′时,如图②,∠AOC ′=20°,∴∠DOC ′=∠AOD -∠AOC ′=30°-20°=10°,∴∠DOD ′=∠DOC ′+∠C ′OD ′=10°+30°=40°.综上所述,n =40或50.(12分)第四章走进图形世界知识点详细梳理1、几何图形:现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
七年级上册数学第四单元测试卷
新北师大版(2024)数学七年级上册第四单元平面基本图形章节测试卷一、选择题(本大题共8小题,每小题3分,共24分,每小题有四个选项,其中只有一个是正确的)1.OB是∠AOC内部一条射线,OM是∠AOB平分线,ON是∠AOC平分线,OP是∠NOA平分线,OQ是∠MOA平分线,则∠POQ:∠BOC=()A.1:2B.1:3C.2:5D.1:42.平面内的9条直线任两条都相交,交点数最多有m个,最少有n个,则m+n等于()A.36B.37C.38D.393.已知A,B,C三点,,,则()A.8cm B.4cm C.8cm或4cm D.无法确定4.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间5.当式子|x+1|+|x﹣6|取得最小值时,x的取值范围为()A.﹣1≤x<6B.﹣1≤x≤6C.x=﹣1或x=6D.﹣1<x≤66.一个多边形最少可分割成五个三角形,则它是()边形A.8B.7C.6D.57.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm28.如图,点为线段外一点,点,,,为上任意四点,连接,,,,下列结论错误的是()A.以为顶点的角共有15个B.若,,则C.若为中点,为中点,则D.若平分,平分,,则二、填空题(每题3分,共15分)9.如图,在∠AOB的内部有3条射线OC,OD,OE.若∠AOC=51°,∠BOE=∠BOC,∠BOD=∠AOB,则∠DOE=°10.5时15分=时,4吨90千克=吨.11.一个六边形共有条对角线.12.计算(结果用度、分表示).13.同一条直线上有四点,已知:,且,则的长是.三、解答题(共7题,共61分)14.计算:(1)(2)15.如图扇形纸扇完全打开后,外侧两竹条AB、AC的夹角为120°,AB长为30cm,贴纸部分BD 长为20cm,求贴纸部分的面积.16.如图,已知三点A、B、C.(1)请读下列语句,并分别画出图形①画直线AB;②画射线AC;③连接BC.(2)在(1)的条件下,图中共有条射线.(3)从点C到点B的最短路径是,依据是.17.记长方形的长为a,宽为b(如图).(1)用直尺和圆规作长与宽的差.(2)比较a与2b的大小,并说明你是怎样比较的.18.如图所示,点P是线段AB上任意一点,AB=12cm,C,D两点分别从点P,B同时向点A运动,且点C的运动速度为2cm/s,点D的运动速度为3cm/s,运动时间为t s.(1)若AP=8cm:①两点运动1s后,求CD的长;②当点D在线段PB上运动时,试说明:AC=2CD;(2)当t=2时,CD=1cm,试探索AP的长.19.如图,已知∠AOB=90°,三角形COD是含有45°角的三角板,∠COD=45°,OE平分∠BOC.(1)如图1,当∠AOC=30°时,∠DOE=°;(2)如图2,当∠AOC=60°时,∠DOE=°;(3)如图3,当∠AOC=α(90°<α<180°)时,求∠DOE的度数(用α表示);(4)由前三步的计算,当0°<∠AOC<180°时,请直接写出∠AOC与∠DOE的数量关系为.20.阅读下列材料并填空:(1)探究:平面上有n个点(n≥2)且任意3个点不在同一条直线上,经过每两点画一条直线,一共能画多少条直线?我们知道,两点确定一条直线.平面上有2个点时,可以画=1条直线,平面内有3个点时,一共可以画=3条直线,平面上有4个点时,一共可以画=6条直线,平面内有5个点时,一共可以画条直线,…平面内有n个点时,一共可以画条直线.(2)运用:某足球比赛中有22个球队进行单循环比赛(每两队之间必须比赛一场),一共要进行多少场比赛?答案解析部分1.【答案】D2.【答案】B3.【答案】D4.【答案】A5.【答案】B6.【答案】B7.【答案】B8.【答案】B9.【答案】1710.【答案】5.25;4.0911.【答案】912.【答案】13.【答案】14cm或cm或cm14.【答案】(1)(2)15.【答案】解:设AB=R,AD=r,则有S贴纸=πR2﹣πr2=π(R2﹣r2)=π(R+r)(R﹣r)=(30+10)×(30﹣10)π=π(cm2);答:贴纸部分的面积为πcm2.16.【答案】(1)如图所示:直线AB、射线AC、线段BC即为所求.(2)6(3)CB;两点之间,线段最短17.【答案】(1)解:如图:以点D为圆心,AB的长为半径,在直线l上截取线段DF,以点D为圆心,BC的长为半径在在直线l上截取线段DE,则EF即为所求.(2)解:以点E为圆心,BC的长为半径,在直线l上截取线段EG,根据点G在点F的左侧即可判断a>2b.如图:18.【答案】(1)解:①当t=1时,CP=2×1=2(cm),DB=3×1=3(cm).因为AP=8cm,AB=12cm,所以PB=AB-AP=12-8=4(cm).所以CD=CP+PB-DB=2+4-3=3(cm).②因为AP=8cm,AB=12cm,所以PB=4cm,AC=(8-2t)cm.所以DP=(4-3t)cm.所以CD=DP+CP=4-3t+2t=(4-t)(cm).所以AC=2CD.(2)解:当t=2时,CP=4cm,DB=6cm.①当点D在点C的右边时,如图①所示,所以CB=CD+DB=1+6=7(cm).所以AC=AB-CB=12-7=5(cm).所以AP=AC+CP=5+4=9(cm).②当点D在点C的左边时,如图②所示,所以AD=AB-DB=12-6=6(cm).所以AP=AD+CD+CP=6+1+4=11(cm).综上所述,AP的长为9cm或11cm.19.【答案】(1)15(2)30(3)解:∵∠AOB=90°,∠AOC=α(90°<α<180°),∴∠BOC=∠AOC﹣∠AOB=α﹣90°,∵OE平分∠BOC,∴,∵∠COD=45°,∴;(4)∠AOC=2∠DOE20.【答案】(1)10;(2)解:某足球比赛中有22个球队进行单循环比赛(每两队之间必须比赛一场),一共要进行场比赛。
七年级数学上册第四章单元测试题及答案
七年级数学上册第四章单元测试题及答案第四章平面图形及其位置关系检测时间:__________ 姓名:__________ 成绩:__________一、选择题(每小题4分,共32分)1、按下列线段长度,可以确定点A、B、C不在同一条直线上的是()A、AB=8㎝,BC=19㎝,AC=27㎝;B、AB=10㎝,BC=9㎝,AC=18㎝;C、AB=11㎝,BC=21㎝,AC=10㎝;D、AB=30㎝,BC=12㎝,AC=18㎝2、下列推理中,错误的是()A、在m、n、p三个量中,如果m=n,n=p,那么m=p。
B、在∠A、∠B、∠C、∠D四个角中,如果∠A=∠B,∠C=∠D,∠A=∠D,那么∠B=∠C;C、a、b、c是同一平面内的三条直线,如果a∥b,b∥c,那么a∥c;D、a、b、c是同一平面内的三条直线,如果a⊥b,b⊥c,那么a⊥c;3、垂直是指一位置特殊的()A、直线;B、直角;C、线段;D、射线4、如图,四条表示方向的射线中,表示XXX的是()5、一个人从A点出发向北偏东60°的方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC的度数是()A、75°;B、105°;C、45°;D、135°6、同一平面内互不重合的三条直线的公共点的个数是()A、可能是1个,2个,3个;B、可能是0个,2个,3个;C、可能是1个,2个,或3个;D、可能是1个或3个。
7、已知四边形ABCD中,∠A+∠B=180°,则下列结论中正确的是()A、AB∥CD;B、∠B+∠C=180°;C、∠B=∠C;D、∠C+∠D=180°8、直线a外有一定点A,A到a的距离是5㎝,P是直线a上的任意一点,则()A、AP>5㎝;B、AP≥5㎝;C、AP=5㎝;D、AP<5㎝9、下列说法中正确的是()A、8时45分,时针与分针的夹角是30°;B、6时30分,时针与分针重合;C、3时30分,时针与分针的夹角是90°;D、3时整,时针与分针的夹角是30°。
人教版七年级数学上册《第四章》单元测试题及答案
人教版七年级数学上册《第四章》单元测试题及答案人教版七年级数学上册第四章单元测试题及答案一、选择题(每小题3分,共30分)1.下列说法正确的是()A.①②2.(2013•浙江温州中考)下列各图中,经过折叠能围成一个立方体的是(C)3.在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是(C)4.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有(B)5.如图所示,从A地到达B地,最短的路线是(A)6.(2013•云南昭通中考)如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是(B)7.如图所示的立体图形从上面看到的图形是(D)8.如果∠1与∠2互为补角,且∠1∠2,那么∠2的余角是(。
)C.(∠1-∠2)9.若∠=40.4°,∠=40°4′,则∠与∠的关系是(。
)D.以上都不对10.下列叙述正确的是()B.110°和90°的角互为补角二、填空题(每小题3分,共24分)11.(2013•山东枣庄中考)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为12.12.(2012•山东菏泽中考)已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC=5cm.13.若一个角的补角是这个角的余角的3倍,则这个角的度数是多少?答案:设这个角的度数为x,则它的补角为90-x,余角为180-x。
根据题意,有90-x=3(180-x),解得x=30.因此,这个角的度数为30°。
14.已知直线上有A、B、C三点,其中AB=3cm,BC=5cm,则AC的长度是多少?答案:根据三角形两边之和大于第三边的性质,知ACBC-AB=2cm。
第四章 基本平面图形 达标测试卷(含答案)北师大版(2024)数学七年级上册
第四章基本平面图形达标测试卷(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 下列各组图中所给的线段、射线、直线能相交的是()A B C D2.下列图形中,能用∠1,∠ACB,∠C三种方法表示同一个角的是()A B C D3. 若一个n边形从一个顶点最多能引出6条对角线,则n是()A. 5B. 8C. 9D. 104. 图1所示生产、生活中的现象,体现了基本事实“两点确定一条直线”的有()A.1个B.2个C.3个D.4个图15. 如图2,用同样大小的三角板比较∠A和∠B的大小,下列判断正确的是()A.∠A<∠B B.∠A>∠BC.∠A=∠B D.没有量角器,无法确定图2 图3 图46. 观察图3所示的图形,有下列说法:∠图中共有5条线段;∠射线AC 和射线CD 是同一条射线; ∠从A 地到D 地的所有路径中,线段AD 最短;∠直线AB 和直线BD 交于点B.其中正确的有( ) A .4个B .3个C .2个D .1个7. 如图4,OA 的方向是北偏东20°,OB 的方向是北偏西35°,OA 平分∠BOC ,则OC 的方向是( ) A .北偏东35° B .北偏东45°C .北偏东55°D .北偏东75°8. 如图5,A ,B ,C ,D 是直线上的顺次四点,M ,N 分别是线段AB ,CD 的中点,且MN=7 cm ,BC=4 cm ,则线段AD 的长为( )A .10 cmB .11 cmC .12 cmD .13 cm图5 图69. 图6-∠是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图6-∠所示,它是以O 为圆心,分别以OA ,OB 的长为半径,圆心角∠O =120°形成的扇面.若OA =5 m ,OB =3 m ,则阴影部分的面积为( ) A .316πm 2 B .38πm 2C .4π m 2D .3π m 210. 如图7,线段AB=40 cm ,线段CD=30 cm ,现将线段AB 和CD 放在同一条直线上,使点A 与点C 重合,此时两条线段中点之间的距离是( )A .5 cmB .35 cmC .10 cm 或70 cmD .5 cm 或35 cm图7二、填空题(本大题共6小题,每小题3分,共18分)11.在图8中共有m条射线,n条线段,则m+n的值是.图812.计算:23°38′41″+ 17°26′32″=.13. 如图9,钟表上显示的时刻是10点10分,再过20分钟,时针与分针所成的角的度数是_____________.图9 图1014. 将长方形纸片ABCD按图10所示的方式折叠,使得∠A′EB′=40°,其中EF,EG为折痕,则∠AEF+∠BEG的度数为_________________.15.如图11,已知线段AB=6 cm,延长线段BA至点C,使AC=32AB,若D,E分别是线段AB,BC的中点,则DE=cm.图11 图1216. 如图12,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线“.若∠AOB=60°,且射线OC 是∠AOB的“巧分线“,则∠AOC的度数为______________.三、解答题(本大题共6小题,共52分)17.(6分)如图13,B是线段AC上一点,D是线段AB的三等分点(D靠近B),E是线段BC的中点,若BE=51AC=3 cm,求线段DE的长.图13E DA BC18. (9分)如图14,平面内有四个点A,B,C,D,请利用直尺和圆规,根据下列语句画出符合要求的图,并保留作图痕迹.(1)画直线AB,射线AC,线段BC;(2)在直线AB上找一点M,使线段MD与线段MC之和最小;(3)在线段AD的延长线上截AE=3AD,连线段CE交直线AB于点F.图1419.(9分)如图15,O为直线AB上一点,OE是∠AOD的平分线,∠COD=90°.(1)若∠AOD=138°,求∠COE和∠AOC的度数;(2)若∠AOC=2∠COE,求∠AOC的度数.图1520.(9分)(1)如图16-∠,已知线段AB=8 cm,C是线段AB上一点,AC=3 cm,M是AB的中点,N是AC的中点.求线段MN的长;(2)如图16-∠,已知点O是直线AD上一点,射线OC,OE分别是∠AOB,∠BOD的平分线.①若∠AOC=20°,求∠COE的度数.②如果把条件“∠AOC=20°”去掉,那么∠COE的度数有变化吗?请说明理由.图1621.(9分)如图17,线段AB=24,动点P从A出发,以每秒2个单位长度的速度沿射线AB运动,M为线段AP的中点.设点P的运动时间为x秒.(1)秒后,PB=2AM;(2)当点P在线段AB上运动时,试说明2BM﹣PB为定值;(3)当点P在线段AB的延长线上运动时,N为线段BP的中点,求线段MN的长.图1722.(10分)已知∠AOB=120°,∠COD=80°,OM,ON分别是∠AOB,∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图18-∠,求∠MON的度数;(2)如果将图∠中的∠COD绕点O顺时针旋转n°(0<n<160),如图18-∠.则∠MON=__________;(用含n的代数式表示)(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小,将图∠中的OC绕着O点顺时针旋转m°(0<m<100),如图18-∠,求∠MON的度数.(用含m的代数式表示)图18附加题(20分,不计入总分)如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一个直角三角板(其中∠P=30°)的直角顶点放在点O处,一边OQ在射线OA上,另一边OP与OC都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)如图2,经过t秒后,OP恰好平分∠BOC.∠求t的值;∠此时OQ是否平分∠AOC?请说明理由.(2)若在三角板转动的同时,射线OC也绕点O以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由.(3)在(2)问的基础上,经过____________秒OC平分∠POB.(四川钟志能)第四章基本平面图形达标测试卷参考答案答案速览一、1. B 2. C 3. C 4. C 5. A 6. C 7. D 8. A 9. A 10. D二、11.9 12.41°5′13″ 13.135° 14.70° 15.2 16. 20°或30°或40°三、解答题见“答案详解”答案详解16. 20°或30°或40°解析:根据题意,有三种情况:①∠BOC=2∠AOC,此时∠AOC=20°;②∠AOB=2∠AOC,此时∠AOC=30°;③∠AOC=2∠BOC,此时∠AOC=40°.综上,∠AOC的度数为20°或30°或40°.因为E是线段BC的中点,所以BC=2BE=6 cm.所以AB=AC-BC=9 cm.所以DE=DB+BE=3+3=6(cm ).18. 解:(1)如图,直线AB ,射线AC ,线段BC 为所求作. (2)如图,点M 为所求作. (3)如图,点E ,F 为所求作.19.解:(1)因为∠AOD =138°,OE 是∠AOD 的平分线,所以∠AOE =∠EOD =21∠AOD = 21×138°=69°.因为∠COD =90°,所以∠COE =∠COD ﹣∠EOD =90°﹣69°=21°. 所以∠AOC =∠AOE ﹣∠COE =69°﹣21°=48°. (2)设∠COE=x°,则∠AOC=2x°.. 所以∠AOE =∠AOC + ∠COE =3x°.因为OE 是∠AOD 的平分线,所以∠AOE =∠EOD =3x°.所以∠COD =∠COE + ∠EOD =4x°=90°,解得x=22.5.所以∠AOC =2x°=45°.所以∠BOD=180°-∠AOB=180°-2∠AOC=180°-2×20°=140°.②∠COE 的度数没有变化.理由如下:(∠BOD+∠AOB ).所以∠COE 的度数没有变化. 21. 解:(1)6(2)因为M 是线段AP 的中点,AP =2x ,所以AM =21AP =x ,PB =AB ﹣AP =24﹣2x ,BM =24﹣x .所以2BM ﹣PB =2(24﹣x )﹣(24﹣2x )=24,即2BM ﹣PB 为定值24. (3)当点P 在线段AB 的延长线上运动时,点P 在点B 的右侧.因为M 是线段AP 的中点,AP =2x ,所以AM =PM =x ,PB =2x ﹣24.所以PN =21PB =x ﹣12. 所以MN =PM ﹣PN =x ﹣(x ﹣12)=12.所以∠MON=∠AOM-∠AON=60°-40°=20°. (2)20°+n°因为∠AOD=80°,∠AOC=m°,所以∠COD=∠AOD+∠AOC=80°+m°.m°. 附加题解:(1)∠因为∠AOC =30°,所以∠BOC =180°﹣30°=150°. 因为OP 平分∠BOC ,所以∠COP =21∠BOC =75°.所以∠COQ =90°﹣75°=15°. 所以∠AOQ =∠AOC ﹣∠COQ =30°﹣15°=15°.所以t =15°÷3°=5. ∠OQ 平分∠AOC .理由如下:因为∠COQ =15°,∠AOQ =15°,所以OQ 平分∠AOC . (2)5秒时OC 平分∠POQ .理由如下: 因为OC 平分∠POQ ,所以∠COQ =21∠POQ =45°. 根据旋转的速度,设∠AOQ =3°t ,∠AOC =30°+6°t . 由∠AOC ﹣∠AOQ =45°,可得30+6t ﹣3t =45,解得t =5. 所以5秒时OC 平分∠POQ .(3)370解析:设经过t 秒后OC 平分∠POB . 因为OC 平分∠POB ,所以∠BOC =21∠POB .因为∠AOQ +∠POB =90°,所以∠POB =90°﹣3°t .又∠BOC =180°﹣∠AOC =180°﹣(30°+6°t ),所以180﹣(30+6t )=21(90﹣3t ),解得t =370.。
七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版
七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版一、选择题1.下列各线段的表示方法中,正确的是( )A .线段AB .线段abC .线段ABD .线段Ab2.下列命题是假命题的是( )A .等角的补角相等B .垂线段最短C .两点之间,线段最短D .无限小数是无理数3.下列四个图中,能用1∠,O ∠与AOB ∠三种方法表示同一个角的是( )A .B .C .D .4.利用一副三角板不能画出的角的度数是( )A .105︒B .100︒C .75︒D .15︒5.从多边形的一个顶点出发,可以画出4条对角线,则该多边形的边数为( )A .5B .6C .7D .86.要在墙上钉牢一根木条,至少要钉两颗钉子.能正确解释这一现象的数学知识是( )A .两点之间,线段最短B .垂线段最短C .两点确定一条直线D .经过一点有且只有一条直线与已知直线垂直7.如图,已知ABC ,点D 是BC 边中点,且ADC BAC.∠∠=若BC 6=,则AC =( )A .3B .4C .42D .328.一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C 在海岛A 的北偏西30︒方向上,在海岛B 的北偏西60︒方向上,则海岛B 到灯塔C 的距离是( ) A .15海里B .20海里C .30海里D .60海里9.如图,直线AB 、CD 交于点O ,OE 平分BOC ∠,若136∠=︒,则DOE ∠等于( )A .72︒B .90︒C .108︒D .144︒10.下列命题正确的是( )A .三点确定一个圆B .圆的任意一条直径都是它的对称轴C .等弧所对的圆心角相等D .平分弦的直径垂直于这条弦二、填空题11.要在墙上订牢一根木条,至少需要2颗钉子,其理由是 .12.如图,在菱形ABCD 中,10AB =,M ,N 分别为BC ,CD 的中点,P 是对角线BD 上的一个动点,则PM PN +的最小值是 .13.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,若80BOC ∠=︒,则COE ∠的度数是 .14.一个多边形的每个内角都等于150°,则这个多边形的边数为 ,对角线总数是条。
(必考题)初中七年级数学上册第四章《几何图形初步》经典测试卷(含答案解析)
(必考题)初中七年级数学上册第四章《几何图形初步》经典测试卷(含答案解析)一、选择题1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A 沿着正方体的棱长爬行到点B 的长度为( )A .0B .1C .2D .3B解析:B【分析】将图1折成正方体,然后判断出A 、B 在正方体中的位置关系,从而可得到AB 之间的距离.【详解】解:将图1折成正方体后点A 和点B 为同一条棱的两个端点,得出AB=1,则小虫从点A 沿着正方体的棱长爬行到点B 的长度为1.故选B .【点睛】本题主要考查的是展开图折成几何体,判断出点A 和点B 在几何体中的位置是解题的关键.2.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对C 解析:C【分析】根据题意画出图形,利用数形结合即可得出结论.【详解】解:如图所示: .故选C.【点睛】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键.3.如图,点C 是线段AB 的中点,点D 是线段CB 上任意一点,则下列表示线段关系的式子不正确的是( )A .AB=2ACB .AC+CD+DB=ABC .CD=AD-12ABD .AD=12(CD+AB )D 解析:D【解析】解:A 、由点C 是线段AB 的中点,则AB=2AC ,正确,不符合题意;B 、AC+CD+DB=AB ,正确,不符合题意;C 、由点C 是线段AB 的中点,则AC=12AB ,CD=AD-AC=AD-12AB ,正确,不符合题意;D 、AD=AC+CD=12AB+CD ,不正确,符合题意.故选D . 4.如图,已知线段12AB =,延长线段AB 至点C ,使得12BC AB =,点D 是线段AC 的中点,则线段BD 的长是( ).A .3B .4C .5D .6A 解析:A【分析】根据题意可知BC=6,所以AC=18,由于D 是AC 中点,可得AD=9,从BD=AB-AD 就可求出线段BD 的长.【详解】由题意可知12AB =,且12BC AB =, 所以6BC =,18AC =.因为点D 是线段AC 的中点,所以1118922AD AC ==⨯=, 所以1293BD AB AD =-=-=.故选A .【点睛】本题考查了两点间的距离以及中点的性质,根据图形能正确表达线段之间的和差关系是解决本题的关键.5.“枪挑一条线,棍扫一大片”,从数学的角度解释为( ).A .点动成线,线动成面B .线动成面,面动成体C .点动成线,面动成体D .点动成面,面动成线A解析:A根据从运动的观点来看点动成线,线动成面进行解答即可.【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面.故选A.【点睛】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型.6.如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3的关系为()A.互余B.互补C.相等D.无法确定C解析:C【分析】∠1和∠2互余,∠2与∠3互余,则∠1和∠3是同一个角∠2的余角,根据同角的余角相等.因而∠1=∠3.【详解】∵∠1与∠2互余,∠2与∠3互余,∴∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,故选:C.【点睛】本题考查了余角的定义.解题的关键是掌握余角的定义,以及同角的余角相等这一性质.7.若∠A=20°18′,∠B=20°15″,∠C=20.25°,则有()A.∠A>∠B>∠C B.∠B>∠A>∠C C.∠A>∠C>∠B D.∠C>∠A>∠B C 解析:C【分析】根据度分秒之间的换算,先把∠C的度数化成度、分、秒的形式,再根据角的大小比较的法则进行比较,即可得出答案.【详解】解:∵∠C=20.25°=20°15′,∴∠A>∠C>∠B,故选:C.【点睛】此题考查了角的大小比较,先把∠C的度数化成度、分、秒的形式,再进行比较是本题的关键.8.若射线OA与射线OB是同一条射线,下列画图正确的是()A.B.C.D. B【解析】【分析】根据射线的表示法即可确定.【详解】A、射线OA与OB不是同一条射线,选项错误;B、射线OA与OB是同一条射线,选项正确;C、射线OA与OB不是同一条射线,选项错误;D、射线OA与OB不是同一条射线,选项错误.故选B.【点睛】本题考查了射线的表示法,射线的端点写在第一个位置,第二个字母是射线上除端点以外任意一点.9.下列事实可以用“经过两点有且只有一条直线”来说明的是()A.从王庄到李庄走直线最近B.在正常情况下,射击时要保证瞄准的一只眼睛在准星和缺口确定的直线上,才能射中目标C.向远方延伸的铁路给我们一条直线的印象D.数轴是一条特殊的直线B解析:B【分析】根据两点确定一条直线进而得出答案.【详解】在正常情况下,射击时要保证瞄准的一只眼在准星和缺口确定的直线上,才能射中目标,这说明了两点确定一条直线的道理.故选B.【点睛】此题主要考查了直线的性质,利用实际问题与数学知识联系得出是解题关键.10.用一个平面去截一个圆锥,截面的形状不可能是()A.B.C.D. D解析:D【解析】【分析】圆锥是由圆和扇形围成的几何体,圆锥的底面是圆,侧面是曲面,截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关,据此对所给选项一一进行判断.【详解】圆锥的轴截面是B ,平行于底面的截面是C ,当截面与轴截面斜交时截面是A ; 无论如何截,截面都不可能是D.故选D.【点睛】此题考查截一个几何体,解题关键是掌握圆锥的特点进行求解.二、填空题11.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c -的值是_________. 【解析】【分析】将此正方体的表面展开图折叠成正方体观察abc 分别对应的值即可得出答案【详解】将图中所示图形折叠成正方体后a 与4相对应b 与2相对应c 与-1相对应∴∴【点睛】由平面图形的折叠及立体图形的解析:34- 【解析】【分析】将此正方体的表面展开图折叠成正方体,观察a ,b ,c 分别对应的值,即可得出答案.【详解】将图中所示图形折叠成正方体后,a 与4相对应,b 与2相对应,c 与-1相对应, ∴1a 4=,1b 2=,c 1=- ∴3=-4a b c - 【点睛】由平面图形的折叠及立体图形的表面展开图的特点解题.12.如图,共有_________条直线,_________条射线,_________条线段.63【解析】【分析】根据线段射线和直线的特点:线段有两个端点有限长可以测量;射线有一个端点无限长;直线无端点无限长;进行解答即可【详解】因为线段有两个端点射线只有一个端点所以由图可以看出:图中有1条解析:6 3【解析】【分析】根据线段、射线和直线的特点:线段有两个端点,有限长,可以测量;射线有一个端点,无限长;直线无端点,无限长;进行解答即可.【详解】因为线段有两个端点,射线只有一个端点,所以由图可以看出:图中有1条直线,3条线段,有6条射线.故此题答案为:1,6,3.【点睛】此题主要考查直线、线段和射线的特点,此类型的题,在数时,应做到有顺序,做到不遗漏、不重复.13.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.14.如图所示,∠BOD=45°,那么不大于90°的角有___个,它们的度数之和是____.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE=90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA,即和为90°,而有的角相加等于∠BOD,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD,∠EOC,∠EOB,∠EOA,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA共10个;它们的度数之和是(∠EOD +∠DOA)+(∠EOC +∠COA)+(∠ EOB +∠BOA)+[(∠DOC +∠COB)+∠DOB]+∠EOA =90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.15.如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB 的中点.若3AC =,1CP =,则线段PN 的长为________.【解析】【分析】根据线段中点的性质计算即可CB 的长结合图形根据线段中点的性质可得CN 的长进而得出PN 的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P 为AB 的中点∴AB=2AP=8∵CB= 解析:32 【解析】【分析】根据线段中点的性质计算即可CB 的长,结合图形、根据线段中点的性质可得CN 的长,进而得出PN 的长.【详解】∵AP=AC+CP ,CP=1,∴AP=3+1=4,∵P 为AB 的中点,∴AB=2AP=8,∵CB=AB-AC ,AC=3,∴CB=5,∵N 为CB 的中点,∴CN=12BC=52, ∴PN=CN-CP=32. 故答案为32. 【点睛】 本题考查的是两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.16.如图,点C 是线段AB 上一点,点M 、N 、P 分别是线段AC ,BC ,AB 的中点.3AC cm =,1CP cm =,线段PN =__cm .【分析】根据线段中点的性质计算即可CB 的长结合图形根据线段中点的性质可得CN 的长进而得出PN 的长【详解】解:为的中点为的中点故答案为:【点睛】本题考查了两点间的距离的计算掌握线段的中点的性质灵活运用 解析:32 【分析】根据线段中点的性质计算即可CB 的长,结合图形、根据线段中点的性质可得CN 的长,进而得出PN 的长.【详解】解:AP AC CP =+,1CP cm =,314AP cm ∴=+=,P 为AB 的中点,28AB AP cm ∴==,CB AB AC =-,3AC cm =,5CB cm ∴=,N 为CB 的中点,1522CN BC cm ∴==, 32PN CN CP cm ∴=-=. 故答案为:32.【点睛】本题考查了两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.17.已知∠A=67°,则∠A 的余角等于______度.23【解析】∵∠A=67°∴∠A 的余角=90°﹣67°=23°故答案为23解析:23【解析】∵∠A=67°,∴∠A 的余角=90°﹣67°=23°,故答案为23.18.如图,将一副三角板叠放一起,使直角的顶点重合于点O ,则∠AOD +∠COB 的度数为___________度.180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB 据此即可求解【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB=∠COD+∠AOB=90°+90°=180°故答案是:180【解析:180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB ,据此即可求解.【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB =∠COD+∠AOB=90°+90°=180°.故答案是:180.【点睛】本题考查了三角板中角度的计算,正确把∠AOD+∠COB 转化成∠COD+∠AOB 是解决本题的关键.19.在9点至10点之间的某时刻,钟表的时针与分针构成的夹角是110°,则这时刻是9点__________分. 或【分析】设分针转的度数为x 则时针转的度数为根据题意列方程即可得到结论【详解】解:设分针转的度数为x 则时针转的度数为当时∴当时∴故答案为:或【点睛】本题考查了一元一次方程的应用----钟面角正确的理 解析:4011或32011 【分析】 设分针转的度数为x ,则时针转的度数为12x ,根据题意列方程即可得到结论. 【详解】解:设分针转的度数为x ,则时针转的度数为12x , 当9011012x x ︒︒+-=时,24011x ︒=, ∴2404061111︒︒÷= 当()9018011012x x ︒︒︒+--=时,192011x ︒⎛⎫= ⎪⎝⎭ ∴192032061111÷= 故答案为:4011或32011 【点睛】 本题考查了一元一次方程的应用----钟面角,正确的理解题意是解题的关键. 20.一个几何体,从不同方向看到的图形如图所示.拼成这个几何体的小正方体的个数为______.6【分析】根据从不同方位看到的图形的形状可知该几何体有2列2行底面有4个小正方体摆成大正方体上面至少2个小正方体放在靠前面的2个小正方体上面由此解答【详解】由题图可知该几何体第一层有4个小正方体第二解析:6【分析】根据从不同方位看到的图形的形状可知,该几何体有2列2行,底面有4个小正方体摆成大正方体,上面至少2个小正方体,放在靠前面的2个小正方体上面.由此解答.【详解】由题图可知,该几何体第一层有4个小正方体,第二层有2个小正方体,所以拼成这个几何体的小正方体的个数为6.故答案为:6.【点睛】本题主要考查从不同方向观察物体和几何体,关键注重培养学生的空间想象能力.三、解答题21.已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE =50°,求:∠BHF的度数.解析:∠BHF=115° .【分析】由AB∥CD得到∠AGE=∠CFG,由此根据邻补角定义可得∠GFD的度数,又FH平分∠EFD,由此可以先后求出∠GFD,∠HFD,继而可求得∠BHF的度数.【详解】∵AB∥CD,∴∠CFG=∠AGE=50°,∴∠GFD=130°;又FH平分∠EFD,∠EFD=65°;∴∠HFD=12∵AB∥CD,∴∠BHF=180°-∠HFD=115°.【点睛】本题考查了平行线的性质,角平分线的定义,邻补角等知识,两直线平行时,应该想到它们的性质;由两直线平行的关系可以得到角之间的数量关系,从而达到解决问题的目的. 22.如图,点O 是直线AB 上一点,OC 为任一条射线,OD 平分∠AOC ,OE 平分∠BOC . (1)分别写出图中∠AOD 和∠AOC 的补角(2)求∠DOE 的度数.解析:(1)∠BOD ,∠BOC ;(2)90°.【分析】(1)由题意根据补角的定义即和是180度的两个角互补,一个角是另一个角的补角进行分析;(2)根据角平分线的性质,可得∠COE ,∠COD ,再根据角的和差即可得出答案.【详解】解:(1)根据补角的定义可知,∠AOD 的补角是∠BOD ;∠AOC 的补角是∠BOC ;(2)∵OD 平分∠AOC ,OE 平分∠BOC ,∴∠COD= 12∠AOC ,∠COE=12∠BOC . 由角的和差得∠DOE=∠COD+∠COE=12∠AOC+12∠BOC=12∠AOB=90°. 【点睛】本题考查余角和补角,利用了补角的定义和角的和差以及角平分线的性质进行分析求解. 23.如图,已知点C 为线段AB 上一点,15cm AC =,35CB AC =,D ,E 分别为线段AC ,AB 的中点,求线段DE 的长.解析:5cm【分析】根据线段的中点定义即可求解.【详解】解:因为15cm AC =,35CB AC =, 所以3159(cm)5CB =⨯=,所以15924(cm)AB =+=.因为D ,E 分别为线段AC ,AB 的中点, 所以112cm 2AE BE AB ===,17.5cm 2DC AD AC ===. 所以127.5 4.5(cm)DE AE AD =-=-=. 【点睛】本题考查了两点间的距离,解决本题的关键是利用线段的中点定义.24.已知线段10cm AB =,在直线AB 上取一点C ,使16cm AC =,求线段AB 的中点与AC 的中点的距离.解析:13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论. 25.如图,∠AOB=∠DOC=90°,OE 平分∠AOD ,反向延长射线OE 至F.(1)∠AOD 和∠BOC 是否互补?说明理由;(2)射线OF 是∠BOC 的平分线吗?说明理由;(3)反向延长射线OA 至点G ,射线OG 将∠COF 分成了4:3的两个角,求∠AOD .解析:(1)互补;理由见解析;(2)是;理由见解析;(3)54°或720()11 【分析】(1)根据和等于180°的两个角互补即可求解;(2)通过求解得到∠COF =∠BOF ,根据角平分线的定义即可得出结论;(3)分两种情况:①当∠COG :∠GOF =4:3时;②当∠COG :∠GOF =3:4时;进行讨论即可求解.【详解】(1)因为∠AOD +∠BOC =360°﹣∠AOB ﹣∠DOC =360°﹣90°﹣90°=180°,所以∠AOD 和∠BOC 互补.(2)因为OE 平分∠AOD ,所以∠AOE =∠DOE ,因为∠COF =180°﹣∠DOC ﹣∠DOE =90°﹣∠DOE ,∠BOF =180°﹣∠AOB ﹣∠AOE =90°﹣∠AOE ,所以∠COF =∠BOF ,即OF 是∠BOC 的平分线.(3)因为OG 将∠COF 分成了4:3的两个部分,所以∠COG :∠GOF =4:3或者∠COG :∠GOF =3:4.①当∠COG :∠GOF =4:3时,设∠COG =4x °,则∠GOF =3x °,由(2)得:∠BOF =∠COF =7x °因为∠AOB +∠BOF +∠FOG =180°,所以90°+7x +3x =180°,解方程得:x =9°,所以∠AOD =180°﹣∠BOC =180°﹣14x =54°.②当∠COG :∠GOF =3:4时,设∠COG =3x °,∠GOF =4x °,同理可列出方程:90°+7x +4x =180°,解得:x = 90()11, 所以∠AOD =180°﹣∠BOC =180°﹣14x 720()11 . 综上所述:∠AOD 的度数是54°或720()11. 【点睛】 本题考查了余角和补角,角平分线的定义,同时涉及到分类思想的综合运用. 26.如图是由7个相同的小立方体组成的几何体,请画出从正面看、从左面看、从上面看的平面图形.解析:画图见详解.【分析】分别画出从正面看、左面看、上面看的图形,注意所有看到的棱都要表示到三视图中.【详解】如图所示:【点睛】本题主要考查了三视图的画法,所有看到的棱都要在三视图中表示出来是画图的关键. 27.如图,以直线AB 上一点O 为端点作射线OC ,使80BOC ∠=︒,将一个直角三角形的直角顶点放在点O 处(注:90DOE ∠=︒)()1如图①,若直角三角板DOE 的一边OD 放在射线OB 上,则COE ∠= .()2如图②,将直角三角板DOE 绕点O 逆时针方向转动到某个位置,若OC 恰好平分∠BOE ,求COD ∠的度数;()3如图③,将直角三角板DOE 绕点O 转动,如果OD 始终在BOC ∠的内部,试猜想BOD ∠与COE ∠有怎样的数量关系?并说明理由.解析:(1)10°;(2)10°;(3)∠COE -∠BOD =10°,理由见解析.【分析】(1)根据COE DOE BOC =-∠∠∠,即可求出COE ∠的度数;(2)根据角平分线的性质即可求出COD ∠的度数;(3)根据余角的性质即可求出∠COE -∠BOD =10°.【详解】(1)∵90DOE ∠=︒,80BOC ∠=︒∴908010COE DOE BOC =-=︒-︒=︒∠∠∠∴∠COE =10°(2)∵OC 恰好平分∠BOE ∴12COE COB BOE ==∠∠∠ ∴∠COD =∠DOE -∠COE =∠DOE -∠BOC =10°(3)猜想:∠COE -∠BOD =10°理由:∵∠COE =∠DOE -∠COD =90°-∠COD∠COD =∠BOC -∠BOD =80°-∠B OD∴∠COE =90°-(80°-∠B OD )=10°+∠B OD即∠COE -∠BOD =10°【点睛】本题考查了角的度数问题,掌握角平分线的性质、余角的性质是解题的关键. 28.如图,已知点C 是线段AB 的中点,点D 在线段CB 上,且DA =5,DB =3.求CD 的长.解析:1【解析】【分析】根据线段的和差,可得AB 的长,根据线段中点的性质,可得AC 的长,根据线段的和差,可得答案.【详解】由线段的和差,得AB=AD+BD=5+3=8.由线段中点的性质,得AC=CB=12AB=4.由线段的和差,得CD=AD−AC=5−4=1.【点睛】此题考查两点间的距离,解题关键在于掌握各性质定义.。
七年级数学上册 第四章 整式的加减 单元测试卷(冀教版 2024年秋)
七年级数学上册第四章整式的加减单元测试卷(冀教版2024年秋)一、选择题(每题3分,共36分)1.[母题教材P140习题A组T1(1)]如果单项式-12x a y2与13x3y b是同类项,则a,b的值分别是()A.2,2B.-3,2C.2,3D.3,22.下列说法中,错误的是()A.5是单项式B.2xy的次数为1C.x+y的次数为1D.-2xy2的系数为-23.代数式16x3-xy,-3,2,-abc,5π,3-,0中,整式有()A.3个B.4个C.5个D.6个4.[母题教材P137习题C组T6]若多项式(a-2)x4-12x b+x2-3是关于x的三次多项式,则()A.a=0,b=3B.a=1,b=3C.a=2,b=3D.a=2,b=15.化简(3m-2n)-(2m-3n)的结果是()A.m-nB.m-5nC.5m+nD.m+n6.下列化简中,正确的是()A.(3a-b)-(5c-b)=3a-2b-5cB.(a+b)-(3b-5a)=-2b-4aC.(2a-3b+c)-(2c-3b+a)=a+3cD.2(a-b)-3(a+b)=-a-5b7.[2024·廊坊四中模拟]若a-2b=3,则2(a-2b)-a+2b-5的值是()A.-2B.2C.4D.-48.若A=x2-2xy+y2,B=x2+2xy+y2,则4xy等于()A.A+BB.A-BC.2A-BD.B-A9.有理数a,b,c在数轴上对应点的位置如图所示,化简|a-b|-|c+b|的结果是()A.a+cB.c-aC.-a-cD.-a+2b+c10.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,…其中第10个式子是()A.a10+b19B.a10-b19C.a10-b17D.a10-b2111.[2024·石家庄外国语模拟]“数学是将科学现象升华到科学本质认识的重要工具.”比如化学中,甲醇的化学式为CH3OH,乙醇的化学式为C2H5OH,丙醇的化学式为C3H7OH……可以预见醇类物质的分子中碳原子C和氢原子H的数目满足一定的数学规律,则碳原子C的数目为15的醇的化学式是()A.C15H30OHB.C15H31OHC.C15H32OHD.C15H33OH12.[新趋势新定义题]对于任意的有理数a,b,如果满足2+3=+2+3,那么我们称这一对数a,b为“相随数对”,记为(a,b).若(m,n)是“相随数对”,则3m+2[3m+(2n-1)]=()A.-2B.-1C.2D.3二、填空题(每题3分,共12分)13.单项式3x2y的系数是.14.[2024·唐山四中模拟]若关于x,y的多项式x2+axy-(bx2-y-3)不含二次项,则a-b的值.15.如图所示的是小明家楼梯的示意图,其水平距离(即AB的长度)为(2a+b)m,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a-b)m.则小明家楼梯的竖直高度(即BC的长度)为m.16.[情境题生活应用]汛期来临前,滨海区决定实施“海堤”加固工程.某工程队承包了该工程,计划每天加固60m.在施工前,气象部门预报,近期将有台风袭击滨海区,于是该工程队改变了计划,每天加固海堤的长度是原计划的1.5倍,这样在台风来临前完成了加固任务.设滨海区要加固的海堤长a米,则完成任务的实际时间比原计划少用了天.三、解答题(第17,18题每题6分,第19~21题每题8分,第22~24题每题12分,共72分)17.化简:(1)2a-(5a-3b)+(4a-b);(2)3(m2n+mn)-4(mn-2m2n)+mn.18.化简求值:3x2y-2B2-2B-322+B+3xy2,其中x=3,y=-13.19.已知s+t=21,3m-2n=9,求多项式(2s+9m)+[-(6n-2t)]的值.20.[2024·唐山友谊中学月考]某小区有一块长方形草坪,形状如图所示(单位:m),其中两个半径不同的四分之一圆形表示绿地,两块绿地用五彩石(阴影部分)隔开,那么需铺多大面积的五彩石?21.某汽车4S店去年销售燃油汽车a辆,新能源汽车b辆,混动汽车的销量是燃油车辆的一半.今年计划销售燃油汽车比去年减少30%,新能源汽车是去年的2倍,混动汽车保持不变.(1)今年燃油汽车计划的销量为辆;(用含a或b的代数式表示)(2)若今年计划的总销量就比去年增加20%,求的值.22.每一个新生命的诞生都会给亲人带来欢乐和希望.我们可以把人出生的年份减去组成这个年份的数字之和,所得的差称为关联年份.例如,提出“华氏定理”、被美国数学家贝特曼称为“中国的爱因斯坦,足以成为全世界所有著名科学院的院士”的数学家华罗庚出生于1910年,他的关联年份是1910-(1+9+1+0)=1899. (1)某人出生于1981年,他的关联年份是;(2)你再举几个例子并观察,这些关联年份最大都能被整除,请你用所学的数学知识说明你的猜想.23.[新视角规律探究题]用棋子摆“T”字形图案,如图所示:(1)填写下表:图号①②③④…⑩每个图案中棋子的枚数5811…(2)写出第n个“T”字形图案中棋子的枚数.(用含n的代数式表示)(3)第20个“T”字形图案中共有棋子多少枚?(4)计算前20个“T”字形图案中棋子的总枚数.(提示:请你先思考,第1个图案与第20个图案中共有多少枚棋子?第2个图案与第19个图案中共有多少枚棋子?第3个图案与第18个图案呢?)24.某中学七年级(4)班的3位教师决定带领本班a名学生在十一期间去壶口瀑布旅游,A旅行社的收费标准为:教师全价,学生半价;B旅行社不分教师、学生,一律八折优惠,这两家旅行社的报价一样,都是每人500元.(1)用整式表示这3位教师和a名学生分别选择这两家旅行社所需的总费用.(2)如果a=55,他们选择哪一家旅行社较为合算?答案一、1.D【点拨】由同类项的定义可知,相同字母的次数相同,故a=3,b=2.2.B3.C【点拨】根据整式的定义可知,16x3-xy,-3,-abc,5π,0都是整式,故整式有5个.4.C【点拨】依题意,得a-2=0,b=3,即a=2,b=3.5.D【点拨】3-2-2-3=3m-2n-2m+3n=m+n,故选D.6.D【点拨】(3a-b)-(5c-b)=3a-b-5c+b=3a-5c,故选项A不正确;(a+b)-(3b-5a)=a+b-3b+5a=6a-2b,故选项B不正确;(2a-3b+c)-(2c-3b+a)=2a-3b+c-2c+3b-a=a-c,故选项C不正确;2(a-b)-3(a+b)=2a-2b-3a-3b=-a-5b,故选项D正确.7.A【点拨】2(a-2b)-a+2b-5=2a-4b-a+2b-5=a-2b-5=3-5=-2.8.D【点拨】观察A,B两式的特点,可知作差能消掉平方项,再判断是A-B还是B-A即可得出答案.9.D【点拨】本题运用了数形结合思想.由题图,可知a<0,b>0,c<0,|c|>|b|>|a|,故a-b<0,c+b<0.故原式=-(a-b)+(c+b)=-a+b+c+b=-a+2b+c.10.B11.B12.A【点拨】因为(m,n)是“相随数对”,所以2+3=+2+3=+5=5+5.易得9m=-4n.所以3m+2[3m+(2n-1)]=9m+4n-2=-4n+4n-2=-2.故选A.二、13.314.-115.(a-2b)【点拨】由平移法可知,蚂蚁爬的距离等于AB与BC的长度和,故用蚂蚁爬的距离减去楼梯的水平距离就是楼梯的竖直高度.16.180【点拨】依题意得,完成任务的实际时间比原计划少用了60-60×1.5=3-2180=180(天).三、17.【解】(1)2a-(5a-3b)+(4a-b)=2a-5a+3b+4a-b=a+2b.(2)3(m2n+mn)-4(mn-2m2n)+mn=3m2n+3mn-4mn+8m2n+mn=11m2n.18.【解】原式=3x2y-2xy2+2xy-3x2y-xy+3xy2=xy2+xy.当x=3,y=-13时,原式=3×+3×-=-23.19.【解】(2s+9m)+[-(6n-2t)]=2s+9m+(-6n+2t)=2s+9m-6n+2t=(2s+2t)+(9m-6n)=2(s+t)+3(3m-2n).当s+t=21,3m-2n=9时,原式=2×21+3×9=42+27=69.【点拨】解决本题的关键是巧妙运用去括号法则和逆用乘法分配律将待求值的代数式用含s+t与3m-2n的式子表示出来.20.【解】所铺五彩石的面积为16(16+b14π·162+14π·b2)=256+16b-(64π14πb2)=-14π2+16+256-64π(m2).21.(1)0.7a(2)【解】由题意,得0.7a+0.5a+2b=(1+20%)(a+0.5a+b),变形,得0.6a=0.8b,所以=43.22.【解】(1)1962(2)9设出生年份为1000a+100b+10c+d,则关联年份为1000a+100b+10c+d-(a+b+c+d)=999a+99b+9c=9(111a+11b+c).所以关联年份最大都能被9整除.23.【解】(1)14;32(2)3n+2.(3)第20个“T”字形图案中共有棋子3×20+2=62(枚).(4)第1个图案与第20个图案中棋子枚数的和为67,第2个图案与第19个图案中棋子枚数的和为67,第3个图案与第18个图案中棋子枚数的和为67,…,第10个图案与第11个图案中棋子枚数的和为67,所以前20个“T”字形图案中棋子的总枚数为67×10=670.24.【解】(1)选择A旅行社所需的总费用为3×500+500×0.5a=(250a+1500)(元);选择B旅行社所需的总费用为(3+a)×500×0.8=(400a+1200)(元).(2)当a=55时,选择A旅行社所需的总费用为250×55+1500=15250(元);选择B旅行社所需的总费用为400×55+1200=23200(元).因为15250<23200,所以选择A旅行社较为合算.。
人教版七年级数学上册《第四章整式的加减》单元测试卷带答案
人教版七年级数学上册《第四章整式的加减》单元测试卷带答案学校:___________班级:___________姓名:___________考号:___________复习巩固1. 下列整式中哪些是单项式? 哪些是多项式? 是单项式的指出系数和次数,是多项式的指出项和次数:−12a2b,m4n27,x2+y2−1,x,3x2−y+3xy2+x4−1,32t3,2x−y.2. 写出一个单项式,使它与多项式m+2n²的和为单项式.3. 计算:(1)x²y−3x²y;(2)−32a2bc+12a2bc;(3)14mn−13mn+2;(4)5x⁴+3x²y−8−3x²y−x⁴−2;(5)7ab−3a²b²+7+8ab²+2a²b²−3−5ab.4. 计算:(1)(4a³b−10b³)+(−3a²b²+10b³);(2)(4x²y−5xy²)−(3x²y−4xy²);(3)3(2a²+4b)+3(−5a²−2b);(4)3(x²−2xy)−4(2x²−xy+1);(5)5a²−(a²+(5a²−2a)−2(a²−3a)];(6)3x2−[5x−(12x−3)+2x2].5. 先化简,再求值:(1)5x²+4−3x²−5x−2x²−5+6x,其中x=--3;(2)2(a2b+12ab2)−3(a2b−1)−2ab2−1,其中a=-2, b=2.综合运用6. (1) 列式表示比a 的5倍大4的数与比a 的2倍小3的数,并计算这两个数的和;(2) 列式表示比b的7 倍小3的数与比b 的6 倍大5的数,并计算这两个数的差.7. 某轮船先顺水航行3h ,后逆水航行1.5h ,已知轮船在静水中的速度是a km/h ,水流速度是b km/h ,轮船共航行了多少千米?8. 如图,边长相等的小正方形组成一组有规律的图案,其中部分小正方形涂有颜色. 按照这样的规律,第4个图案中有多少个涂色的小正方形? 第n 个图案呢?拓广探索9. 用代数式表示十位上的数字是a 、个位上的数字是b 的两位数,再把这个两位数的十位上的数字与个位上的数字交换位置,计算所得数与原数的和. 这个和能被11整除吗?10. 把(a+b)和(x+y)各看成一个整体,对下列各式进行化简: (1) 4(a+b)+2(a+b)--(a+b);(2)3(x +y )²−7(x +y )+8(x +y )²+6(x +y ).参考答案1.【答案】解: 单项式 -12a²bm4n²7x 32t³ 系数 -1/2 171 32 次数 3613多项式 x²+y²-1 3x²-y+3xy²+x ⁴-1 2x -y 项x²,y²,-13x²,-y,3xy²,x ⁴,-12x,-y次数241 2.-m.(答案不唯一)mn+2;3.解:(1)-2x²y;(2)-a²bc; (3)−112(4)4x⁴-10;(5)8ab²-a²b²+2ab+4.4.【答案】解:( (1)(4a³b−10b³)+(−3a²b²+10b³)=4a³b−10b³−3a²b²+10b³=4a³b−3a²b².(2)(4x²y−5xy²)−(3x²y−4xy²)=4x²y−5xy²−3x²y+4xy²=x²y−xy².(3)3(2a²+4b)+3(−5a²−2b)=6a²+12b−15a²−6b=−9a²+6b,(4)3(x²−2xy)−4(2x²−xy+1)=3x²−6xy−8x²+4xy−4=−5x²−2xy−4.(5)5a²−[a²+(5a²−2a)−2(a²−3a)]=5a²−(a²+5a²−2a−2a²+6a)=5a²−a²−5a²+2a+2a²−6a=a²−4a.x−3)+2x2](6)3x2−[5x−(12x+3+2x2)=3x2−(5x−12x−3−2x2=3x2−5x+12x−3.=x2−925.【答案】解:( (1)5x²+4−3x²−5x−2x²−5+6x=(5−3−2)x²+(−5+6)x−1=x-1.当x=-3时,原式= - 3-1 = - 4.ab2)−3(a2b−1)−2ab2−1(2)2(a2b+12=2a²b+ab²−3a²b+3−2ab²−1=−a²b−ab²+2.当a=-2,b =2时原式:=−(−2)²×2−(−2)×2²+2= - 4×2-(-2)×4+2 = - 8-(-8)+2=--8+8+2 = 2.6.解:(1)比a的5倍大4的数可表示为5a+4,比a的2倍小3的数可表示为2a-3,它们的和为(5a+4)+(2a-3)=5a+4+2a-3 = 7a+1.(2)比b的7倍小3的数可表示为7b-3,比b的6倍大5的数可表示为6b+5,它们的差为(7b-3)-(6b+5)=7b-3-6b-5 = b-8.7.【答案】解:轮船顺水航行3(a+b) km,轮船逆水航行1.5(a-b) km,轮船一共航行3(a+b)+1.5(a-b)=3a+3b+1.5a-1.5b=(4.5a+1.5b)( km)即轮船共航行(4.5a+1.5b) km.8.【答案】解:第4个图案中涂色的小正方形有5+3×4 = 17(个).第n个图案中涂色的小正方形有5+4(n-1)=(4n+1)(个).9.【答案】解:原数是10a+b交换位置后所得两位数是10b+a所以所得数与原数的和为(10b+a)+(10a+b)= 11(a+b).所以这个数能被11整除.10.【答案】解:(1)4(a+b)+2(a+b)-(a+b)=(4+2-1)(a+b)=5(a+b).(2)3(x+y)²−7(x+y)+8(x+y)²+6(x+y)=(3+8)(x+y)²+(-7+6)(x+y)=11(x+y)²−(x+y).。
人教版七年级数学上册第四章《几何图形初步》测试卷(含答案)
人教版七年级数学上册第四章《几何图形初步》测试卷(含答案)一、选择题1.如图所示的四种物体中,哪种物体最接近于圆柱 ( )2.一个几何体从前面、左面、上面看到的图形如图所示,则该几何体是( )A.棱柱B.圆柱C.圆锥D.球3.如图所示的几何体是由右边哪个图形绕虚线旋转一周得到( )A. B. C. D.4.下列四个平面图形中,不能折叠成无盖的长方体盒子的是( )A. B. C. D.5.下列图形中的线段和射线能够相交的是( )6.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+y的值为( )A.0B.﹣1C.﹣2D.17.七年级一班的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条最长的绳子,请你为他们选择一种合适的方法( )A.把两条大绳的一端对齐,然后拉直两条大绳,另一端在外面的即为长绳B.把两条绳子接在一起C.把两条绳子重合,观察另一端情况D.没有办法挑选8.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是( )A.用两个钉子就可以把木条固定在墙上B.利用圆规可以比较两条线段的大小关系C.把弯曲的公路改直,就能缩短路程D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线9.下列语句正确的是( ).A.由两条射线组成的图形叫做角B.如图,∠A就是∠BACC.在∠BAC的边AB延长线上取一点D;D.对一个角的表示没有要求,可任意书定10.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β与∠γ关系式为( )A.∠β﹣∠γ=90°B.∠β+∠γ=90°C.∠β+∠γ=80°D.∠β﹣∠γ=180°11.如图,C、D是线段AB上两点,已知图中所有线段的长度都是正整数,且总和为29,则线段AB的长度是()A.8 B.9 C.8或9 D.无法确定12.用一副学生用的三角板的内角(其中一个三角板的内角是45°,45°,90°;另一个是30°,60°,90°,可以画出大于0°且小于等于150°的不同角度的角共有( )种.A.8B.9C.10D.11二、填空题13.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因14.两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.15.用“度分秒”来表示:8.31度=度分秒.16.如图,点O是直线AD上的点,∠AOB,∠BOC,∠COD三个角从小到大依次相差25°,则这三个角的度数分别是.17.比较大小:52°52′________ 52.52°.(填“>”、“<”或“=”)18.如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与点B,C重合),使点C落在长方形的内部点E处.若FH平分∠BFE,则∠GFH的度数是__________.三、作图题19.按要求画出图形,并回答问题:(1)画直线l,在直线l上取A,B,C三点,使点C在线段AB上,在直线l外取一点P,画直线BP,射线PC,连结AP;(2)在(1)中所画图中,共有几条直线,几条射线,几条线段?请把所有直线和线段用图中的字母表示出来.四、解答题20.如图(1),已知直角三角形两直角边的长分别为3和4,斜边的长为5.(1)试计算该直角三角形斜边上的高;(2)按如图(2),(3),(4)三种情形计算该直角三角形绕某一边旋转得到的立体图形的体积.(结果保留π)21.如图,点M是线段AC的中点,点B在线段AC上,且AB=4 cm,BC=2AB,求线段MC和线段BM的长.22.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.23.如图,把一副三角尺的直角顶点O重叠在一起.(1)如图①,当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图②,当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?24.如图,已知线段AB上有两点C,D,且AC∶CD∶DB=2∶3∶4,E,F分别为AC,DB的中点,EF=2.4 cm,求线段AB的长.25.如图,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=60°”改为:∠AOB=x°,∠EOF=y°,其它条件不变.①则请用x的代数式来表示y;②如果∠AOB+∠EOF=156°.则∠EOF是多少度?答案1.A.2.B.3.C.4.A.5.D6.B7.A8.C9.B10.A11.C12.C13.答案为:两点之间,线段最短14.答案为:1;3;1.15.答案为:8,18,36.16.答案为:35°,60°,85°.17.答案为:>.18.答案为:90°19.解:(1)如图所示;(2)2条直线,12条射线,6条线段,直线l,直线BP,线段AC,BC,AB,AP,CP,BP.20.解:(1)三角形的面积为12×5h=12×3×4,解得h= 12/5.(2)在图4-11(2)中,所得立体图形的体积为13π×32×4=12π;在图4-11(3)中,所得立体图形的体积为13π×42×3=16π;在图4-11(4)中,所得立体图形的体积为13π×(125)2×5= 9.6π.21.解:因为AB=4 cm,BC=2AB,所以BC=8 cm,所以AC=AB+BC=12 cm,因为M是线段AC中点,所以MC=AM=12AC=6 cm,所以BM=AM-AB=2 cm22.解:(1)图中小于平角的角有∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB,共9个.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=1/2∠AOC=25°,∠BOC=180°-∠AOC=130°.所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE-∠DOC=90°-25°=65°.又因为∠BOE=∠BOD-∠DOE=155°-90°=65°,所以∠COE=∠BOE,即OE平分∠BOC.23.解:(1)∵∠AOB=∠COD=90°,当OB平分∠COD时,∠DOB=∠BOC=∠COA=45°,∴∠AOD+∠BOC=3×45°+45°=4×45°=180°.(2)∠AOD+∠BOC=∠AOB+(∠COD-∠BOC)+∠BOC=∠AOB+∠COD=90°+90°=180°.24.解:因为AC∶CD∶DB=2∶3∶4,所以设AC=2x cm,CD=3x cm,DB=4x cm.所以EF=EC+CD+DF=x+3x+2x=6x cm.所以6x=2.4,即x=0.4.所以AB=2x+3x+4x=9x=3.6 cm.25.解:(1)∵∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC. ∴∠EOF=∠EOC﹣∠FOC=12∠AOC﹣12∠BOC=12(∠AOB+∠BOC)﹣12∠BOC=12∠AOB=45°;(2)①∵∠AOB=x°,∠EOF=y°,OE平分∠AOC,OF平分∠BOC. ∴∠EOF=∠EOC﹣∠FOC=12∠AOC﹣12∠BOC=12(∠AOB+∠BOC)﹣12∠BOC=12∠AOB.即y=12x.②∵∠AOB+∠EOF=156°.则x+y=156°,又∵y=12x.联立解得y=52°. 即∠EOF是52°.。
七年级上册数学第四章第一节测试卷及答案人教版
A.正方体B.球C.圆锥D.圆柱体【答案】D【解析】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选D.4.如图所示的四种物体中,哪种物体最接近于圆柱A.B.C.D.生日蛋糕弯管 烟囱酒瓶【答案】A【解析】最接近圆柱的是生日蛋糕.故选A.5.下列图形中,含有曲面的立体图形是A.B.C.D.【答案】D二、填空题:请将答案填在题中横线上.6.若一个棱柱有7个面,则它是__________棱柱.【答案】57.正方体有__________个面,__________个顶点,经过每个顶点有__________条棱.【答案】6,8,3【解析】正方体有6个面,8个顶点,经过每个顶点有3条棱,故答案为:6,8,3.8.下列图形中,表示平面图形的是__________;表示立体图形的是__________.(填入序号)【答案】①③;②④【解析】表示平面图形的是①③;表示立体图形的是②④.故答案为:①③;②④.三、解答题:解答应写出文字说明、证明过程或演算步骤.9.将下列几何体与它的名称连接起来.【解析】如图:10.如图所示的正方体的六个面分别标着连续的整数,求这六个整数的和.11.一个长方体如图所示.(1)求它的体积和表面积;(用含a、b的代数式表示)(2)当a=10,b=8时,该长方体的表面积是__________.【解析】(1)体积为a⋅b⋅6=6ab,表面积为2(ab+6a+6b)=2ab+12a+12b.(2)当a=10,b=8时,原式=2×10×8+12×10+12×8=376,故答案为376.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是A.B.C.D.【答案】D【解析】绕直线l旋转一周,可以得到圆台,故选D.2.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是A.B.C.D.【答案】A【解析】A、上面小下面大,侧面是曲面,故A正确;3.汽车的雨刷把玻璃上的雨水刷干净属于__________的实际应用.A.点动成线B.线动成面C.面动成体D.以上答案都不对【答案】B【解析】汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.故选B.4.一个直角三角形绕其直角边旋转一周得到的几何体可能是A.B.C.D.【答案】D【解析】以直角三角形的一条直角边所在直线为对称轴旋转一周,得到一个圆锥,故选D.5.生活中我们见到的自行车的辐条运动形成的几何图形可解释为A.点动成线B.线动成面C.面动成体D.以上答案都不对【答案】B【解析】生活中我们见到的自行车的辐条运动形成的几何图形可解释为:线动成面,故选B.二、填空题:请将答案填在题中横线上.6.雨点从高空落下形成的轨迹说明了点动成线,那么一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了__________.【答案】面动成体【解析】一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了面动成体,故答案为:面动成体.7.将一个半圆绕它的直径所在的直线旋转一周得到的几何体是__________.【答案】球【解析】将一个半圆绕它的直径所在的直线旋转一周得到的几何体是球,故答案为:球.8.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积为__________cm3.(结果保留π)【答案】27πcm39.笔尖在纸上快速滑动写出英文字母C,这说明了__________.【答案】点动成线【解析】笔尖在纸上快速滑动写出英文字母C,这说明了点动成线;故答案为:点动成线.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.将第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
人教版七年级上册数学第四章测试卷
人教版七年级上册数学第四章测试卷一、选择题(每题3分,共30分)1. 下列各图中,能正确表示数轴的是()A.B.C.D.2. 在数轴上,原点及原点右边的点表示的数是()A. 正数。
B. 负数。
C. 非正数。
D. 非负数。
3. 与 -3互为相反数的是()A. 3.B. - (1)/(3)C. (1)/(3)D. -3.4. 一个数的绝对值是5,则这个数是()A. 5.C. ±5.D. (1)/(5)5. 下列式子中,正确的是()A. - 5 = - 5.B. - - 5 = 5.C. - ( - 5) = - 5.D. - ( - 5) = 5.6. 计算:( - 2)+( - 3)的结果是()A. 1.B. -1.C. 5.D. -5.7. 计算:3 - ( - 2)的结果是()A. 1.B. -1.C. 5.D. -5.8. 计算:( - 2)×( - 3)的结果是()A. 6.C. 5.D. -5.9. 计算:-6÷2的结果是()A. 3.B. -3.C. (1)/(3)D. -(1)/(3)10. 下列运算正确的是()A. 2×(-3)=6B. ( - 2)×3 = 6C. ( - 2)×( - 3)=6D. ( - 2)×0 = - 2二、填空题(每题3分,共18分)11. 在数轴上,点A表示 - 3,从点A出发,沿数轴移动4个单位长度到达点B,则点B表示的数是_____。
12. 绝对值小于3的整数有_____个。
13. 比较大小:-(2)/(3)_____-(3)/(4)(填“>”“<”或“=”)。
14. 某天的最高气温为6℃,最低气温为 - 2℃,则这天的温差是_____℃。
15. 若a = - 2,b = 3,则a + b=_____。
16. 若| x| = 4,y = 3,且x < y,则x=_____。
2024-2025学年人教新版七年级上册数学《第4章 整式的加减》单元测试卷(有答案)
2024-2025学年人教新版七年级上册数学《第4章整式的加减》单元测试卷一.选择题(共8小题,满分24分)1.代数式x2+5,﹣1,x2﹣8x+2,π,,中,整式有()A.3个B.4个C.5个D.6个2.已知﹣2x6y与5x2m y n是同类项,则()A.m=2,n=1B.m=3,n=1C.m=,n=1D.m=3,n=03.下列计算正确的是()A.5a﹣2a=3B.2a2+6a2=8a4C.x2y﹣2xy2=﹣xy2D.3mn﹣2mn=mn4.在等式1﹣a2+2ab﹣b2=1﹣()中,括号里应填()A.a2﹣2ab+b2B.a2﹣2ab﹣b2C.﹣a2﹣2ab+b2D.﹣a2+2ab﹣b25.若a<0,则|a﹣(﹣a)|等于()A.﹣a B.0C.2a D.﹣2a6.如图是小明完成的线上作业,他的得分是()判断题(每小题2分,共10分)①1是单项式.(×)②非负有理数不包括零.(×)③绝对值不相等的两个数的和一定不为零.(√)④单项式﹣a的系数与次数都是1.(√)⑤将34.945精确到十分位为34.95.(×)A.4分B.6分C.8分D.10分7.在下列各整式中,次数为5的是()A.8x3y B.m+n2+q2C.52c3D.x2y38.若代数式2(mx2+x﹣1)﹣(x2﹣nx+1)的值与x的取值无关,则m2023n2025的值为()A.﹣4B.4C.D.二.填空题(共8小题,满分24分)9.有一道题:﹣3x(﹣2x2+3x﹣1)=6x3﹣9x2+□,“□”的地方被墨水弄污了,你认为“□”内应填写.10.已知关于x的整式x3﹣x2+x a﹣2x﹣2bx中不含有x的一次项和二次项,则a+b=.11.若关于x,y,z的单项式﹣mx3y n与单项式的次数相同,系数互为倒数,则该单项式是.12.多项式x2+x+1的次数是.13.若2a m+1b2与﹣3a3b n是同类项,则m+n的值为.14.若一个四位自然数M各个数位上的数字均不为0,且前两位数字之和为5,后两位数字之和为8,则称M为“幸福数”.把四位数M的前两位数字和后两位数字整体交换得到新的四位自然数N.规定.例如:M=2344,∵2+3=5,4+4=8,∴2344是“幸福数”,则.若P是最大的“幸福数”,则F(P)=;若S是“幸福数”,且F(S)恰好能被8整除,则所有满足题意的S的值共有个.15.如果a2﹣3a﹣7=0,那么代数式(a﹣1)2+a(a﹣4)﹣2的值为.16.设x、y互为相反数,且xy≠0.m的绝对值为8,则的值为.三.解答题(共6小题,满分52分)17.已知单项式﹣3xy2的系数和次数分别是a,b,求ab+a b的值.18.已知A=3x2+xy+y,B=2x2﹣xy+2y.(1)化简2A﹣3B.(2)当x=2,y=﹣3,求2A﹣3B的值.19.【问题呈现】(1)已知代数式mx﹣y﹣3x+4y﹣1的值与x的值无关,求m的值;【类比应用】(2)将7张长为a,宽为b的小长方形纸片(如图①),按如图②的方式不重叠地放在长方形ABCD 内,未被覆盖的两部分的面积分别记为S1,S2,当AB的长度变化时,S1﹣S2的值始终不变,求a与b 的数量关系.20.已知多项式A=(m﹣3)2﹣(2﹣m)(2+m)+6m.(1)化简多项式A;(2)若m2﹣4=5,求多项式A的值.21.类比同类项的概念,我们规定:所含字母相同,并且相同字母的指数之差的绝对值等于0或1的项是“强同类项”,例如:﹣x3y4与2x4y3是“强同类项”.(1)给出下列四个单项式:①5x2y5,②﹣x5y5,③4x4y4,④﹣2x3y6.其中与x4y5是“强同类项”的是(填写序号);(2)若x3y4z m﹣2与﹣2x2y3z6是“强同类项”,求m的值;(3)若C为关于x、y的多项式,C=(n﹣5)x5y6+3x4y5﹣7x4y n,当C的任意两项都是“强同类项”,求n的值;(4)已知2a2b s、3a t b4均为关于a,b的单项式,其中s=|x﹣1|+k,t=2k,如果2a2b s、3a t b4是“强同类项”,那么x的最大值是,最小值是.22.定义:若非零实数a,b,c满足,则称c是a和b的“协调数”.如4是3和6的“协调数”.(1)问:是不是﹣2和﹣3的“协调数”?(2)若2m是p和q的“协调数”,用m,q的代数式表示q.参考答案与试题解析一.选择题(共8小题,满分24分)1.B2.B3.D4.A5.D6.B7.D8.A二.填空题(共8小题,满分24分)9.3x.10.1.11.﹣3x3y2.12.2.13.4.14.30,3.15.13.16.16或﹣16.三.解答题(共6小题,满分52分)17.﹣36.18.解:(1)2A﹣3B=2(3x2+xy+y)﹣3(2x2﹣xy+2y)=6x2+2xy+2y﹣6x2+3xy﹣6y=5xy﹣4y;(2)当x=2,y=﹣3时,2A﹣3B=5xy﹣4y=5×2×(﹣3)﹣4×(﹣3)=﹣18.19.(1)3;(2)a﹣2b=0.20.(1)2m2+5;(2)23.21.(1)②③④;(2)m=7,8,9;(3)n=5或n=6;(4),.22.(1)是;(2).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册数学第四章测试卷
七年级上册数学第四章测试卷
1.几何体上半部为正三棱柱,下半部为圆柱,其俯视图是()
A.B.C.D.
2.某几何体的三视图如图所示,这个几何体是()
A.圆锥
B.圆柱
C.三棱柱
D.三棱锥
3.如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为()
A.4
B.6
C.8
D.12
4.如图所示,∠BAC=90°,AD⊥BC,垂足为D,则下列结论中,正确的个数为()
①AB⊥AC;
②AD与AC互相垂直;
③点C到AB的垂线段是线段AB;
④点A到BC的距离是线段AD;
⑤线段AB的长度是点B到AC的距离.
A.1个
B.2个
C.3个
D.4个
5.如图,平面内有公共端点的'、OB、OC、OD、OE、OF,从射线OA开始按逆时针依次在射线上写出数字1、2、3、4、5、6、7…,则数字“2015”在()
A.射线OA上
B.射线OB上
C.射线OD上
D.射线OE上
6.下列说法中,不正确的是()
A.若点C在线段BA的延长线上,则BA=AC-BC
B.若点C在线段AB上,则AB=AC+BC
C.若AC+BC>AB,则点C一定在线段BA外
D.若A、B、C三点不在一直线上,则AB
7.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()
A、15°
B、28°
C、29°
D、34°
8.如图,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°30′,则下列结论中不正确的是()
A.∠2=45°
B.∠1=∠3
C.∠AOD与∠1互为补角
D.∠1的余角等于75°30′
9.如图,QQ软件里的“礼盒”图标是一个表面印有黑色实线,
顶端有图示箭头的正方体.下列图形中,是该几何体的表面展开图的
是()
10.如图所示,把一张矩形纸片AB,在把以AB的中点O为顶点
的平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪
出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开
平铺后得到的平面图形一定是()
A.正三角形
B.正方形
C.正五边形
D.正六边形。