江苏省泰州市小学数学小学奥数系列8-2-1抽屉原理(二)
小学奥数之抽屉原理
小学奥数之抽屉原理在小学奥数中,抽屉原理是一个非常重要的概念。
它是数学中的一种思维方法,能够帮助我们解决一些看似很难的问题。
抽屉原理也被称为鸽巢原理,它的具体含义是:如果有n+1个物体放进n个抽屉,那么必定有一个抽屉里会放至少两个物体。
抽屉原理常常在解决一些排列组合和概率问题中应用。
下面我们一起来了解一下抽屉原理在小学奥数中的具体应用吧。
首先,我们来看一个经典的例子。
假设有10个苹果放在9个抽屉里,那么根据抽屉原理,必定有一个抽屉里会放至少两个苹果。
为什么会这样呢?我们可以这样来理解,假设每个抽屉最多只放一个苹果,那么最多只能放9个苹果,而实际上有10个苹果,所以必定会有一个抽屉里放至少两个苹果。
接下来,我们来看一个稍微复杂一些的例子。
假设有5个红球和4个蓝球,需要将它们放进4个抽屉里。
根据抽屉原理,必定有一个抽屉里会放至少两个球。
为什么会这样呢?我们可以这样来理解,在最坏的情况下,每个抽屉最多只能放一个球,那么最多只能放4个球,而实际上有9个球,所以必定会有一个抽屉里放至少两个球。
抽屉原理的应用并不仅限于上面两个例子,它在解决一些看似很难的问题时往往能起到关键的作用。
比如,我们可以用抽屉原理解决下面的问题:假设有9个整数,它们的和是10,那么必定存在至少一对数的和是2、我们可以将这个问题转化成将9个整数放进8个抽屉的问题,根据抽屉原理,必定会有一个抽屉里放至少两个整数,它们的和就是2除了上述的应用外,抽屉原理还可以帮助我们解决一些类似的问题。
比如,假设有12个整数,它们的和是31,那么必定存在至少一对数的和是7、我们可以将这个问题转化成将12个整数放进11个抽屉的问题,根据抽屉原理,必定会有一个抽屉里放至少两个整数,它们的和就是7从以上的例子可以看出,抽屉原理在解决一些看似很难的问题时可以起到非常关键的作用。
通过运用抽屉原理,我们能够将一个复杂的问题简化为一个更简单的问题,从而更好地解决问题。
小学数学《抽屉原理》课件
验证数学定理
抽屉原理可以用于验证一 些数学定理,例如鸽巢原 理和韦达定理等。
抽屉原理的扩展
1 二项式系数与抽屉原理
二项式系数与抽屉原理之间存在着密切的关联,可以互相解释和证明。
2 概率与抽屉原理
抽屉原理可以与概率相结合,帮助我们解决一些涉及随机性和选择性的问题。
3 抽屉原理的数学证明
虽然抽屉原理是直观的,但也可以通过数学方法进行证明和推导。
教育领域
抽屉原理可以帮助教师理解学 生在学习和理解数学概念方面 可能遇到的困难。
数据分析
在数据分析过程中,抽屉原理 可以帮助我们发现数据之间可 能存在的关联和规律。
博弈论
在博弈论中,抽屉原理可以用 于分析玩家行为和策略。
抽屉原理与概率
1 使用抽屉原理计算概率
抽屉原理可以帮助我们计算复杂事件的概率,尤其是在考虑到互斥事件和独立事件时。
2 抽屉原理在概率推理中的应用
抽屉原理可以帮助我们在概率推理问题中确定可能性和不可能性。
3 概率问题的抽屉原理方法
抽屉原理为解决一些复杂的概率问题提供了一种简明直观的方法。
抽屉原理的实际应用举例
3
抽屉原理在球队比赛中的应用
一支球队有11名队员,但只有10个球衣可供分配。根据抽屉原理,至少有一个 球员没有得到自己的球衣。
抽屉原理在数学问题中的应用
分析排列组合问题
抽屉原理可以帮助我们分 析排列组合问题,找到隐 藏的规律和限制条件。
解决鸽巢原理问题
鸽巢原理是抽屉原理的一 个推论,用于解决包含抽 象对象的随机分配问题。
小学数学《抽屉原理》课 件
欢迎大家来到今天的课程!在本课程中,我们将学习抽屉原理的定义、应用、 示例以及其在数学问题中的应用。让我们一起开始这个有趣的学习之旅吧!
小学数学抽屉原理例题
小学数学抽屉原理例题篇一:抽屉原理公式及例题抽屉原理公式及例题“至少??才能保证(一定)?最不利原则抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:抽屉原则二:如果把n个物体放在m个抽屉里,其中nm,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
例1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。
例2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。
这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。
15+1=16 例3:从一副完整的扑克牌中,至少抽出()张牌,才能保证至少6张牌的花色相同? A.21 B.22 C.23 D.24 解:完整的扑克牌有54张,看成54个“苹果”,抽屉就是6个(黑桃、红桃、梅花、方块、大王、小王),为保证有6张花色一样,我们假设现在前4个“抽屉”里各放了5张,后两个“抽屉”里各放了1张,这时候再任意抽取1张牌,那么前4个“抽屉”里必然有1个“抽屉”里有6张花色一样。
答案选C.例4:2013年国考:某单位组织4项培训A、B、C、D,要求每人参加且只参加两项,无论如何安排,都有5人参加培训完全相同,问该单位有多少人?每人一共有6种参加方法(4个里面选2个)相当于6个抽屉,最差情况6种情况都有4个人选了,所以4*6=1=25 例5:有300名求职者参加高端人才专场招聘会,其中软件设计类、市场营销类、财务管理类和人力资源管理类分别有100、80、70和50人。
小学奥数抽屉原理
小学奥数抽屉原理小学奥数是小学生学习数学的一项重要内容,其中抽屉原理是一个非常有趣且实用的数学概念。
抽屉原理是指如果有n+1个物品放入n个抽屉中,那么至少有一个抽屉中至少有两个物品。
这个简单的原理在解决一些实际问题时非常有用,下面我们就来详细了解一下小学奥数中的抽屉原理。
首先,我们来看一个简单的例子。
假设有5个苹果和4个篮子,我们要把这些苹果放进篮子里,那么根据抽屉原理,至少有一个篮子里会有至少两个苹果。
这是因为5个苹果分别放入4个篮子,必然会有至少一个篮子里有两个或以上的苹果。
抽屉原理在解决实际问题时非常有用。
比如,在一个班级里,学生们的生日是随机分布的,如果班级有31个学生,那么根据抽屉原理,至少有两个学生会有相同的生日。
这是因为一年有365天,而学生的数量只有31个,必然会有至少两个学生生日在同一天。
除了生日问题,抽屉原理还可以应用在许多其它实际问题中。
比如在一副扑克牌中,如果抽出了5张牌,那么根据抽屉原理,至少会有一种花色的牌有两张或以上。
这是因为一副扑克牌只有4种花色,而抽出的牌有5张,必然会有至少一种花色的牌有两张或以上。
在小学奥数中,抽屉原理可以帮助学生更好地理解和解决一些问题。
通过抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力。
同时,抽屉原理也可以帮助学生更好地理解数学知识,为他们打下坚实的数学基础。
总之,抽屉原理是小学奥数中非常重要的一个概念,它不仅能够帮助学生更好地理解数学知识,还能够在解决实际问题时发挥重要作用。
通过学习抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力,为将来的学习打下坚实的基础。
希望学生们能够认真学习抽屉原理,将其运用到实际生活中,发挥出更大的作用。
小学奥数:抽屉原理(含答案)
教案【1】抽屉原理1、概念解析把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到:抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。
如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。
比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。
应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。
2、例题讲解例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
例 2 一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?例3从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。
例4从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。
(小学奥数讲座)抽屉原理(二)
抽屉原理(二)导言:这里介绍除最不巧原则之外的另一种思维来解答抽屉原理问题。
先让我们来做个试验,把4个苹果放在3个抽屉里,会出现什么情况?我们把这几种情况分别表示出来:4=4+0+0;4=3+1+0;4=2+2+0;4=2+1+1。
观察上面放苹果的各种情况,我们发现,不管怎么放,总有一个抽屉里至少有2个苹果。
像这种现象,我们称之为抽屉原理。
它是由德国数学家狄利克雷最早发现的,也称之为狄利克雷原理。
我们利用这一原理,可以解决生活中很多有趣但又觉得无从入手的问题。
抽屉原理一把n+1个苹果放入n个抽屉中,则至少有一个抽屉至少放了两个苹果例1.任意13名同学中,必有2名同学出生在同一个月份,为什么?解析:把13名同学当作13个苹果,把一年12个月看作12个抽屉,13=12+1,根据抽屉原理一,至少有2名同学出生在同一个月份。
这题我们也可以用最不巧原理来解答。
出生月份只有1、2、、、、12月这12种情况,最不巧的是这13名同学中的12名同学的出生月份,分别是这12种情况,互不相同。
但第13名同学肯定是12种情况中的一种,这样,至少有2名同学出生在同一个月份中。
例2.有红、黄、蓝、白4色的小球各10个,混合放在一个布袋里。
一次摸出8个小球,其中至少有几个小球的颜色是相同的。
解析:把红、黄、蓝、白4色小球看作成4个抽屉,8个小球看作8个苹果,因为8=4+4,根据抽屉原理一,至少有2个小球的颜色是相同的。
例3.在长度是10厘米的线段上任意取11个点,试说明至少有2个点间的距离不大于1厘米?解析:把长度10厘米的线段分成10等份,那么每段长都是1厘米,我们把这样的每段看成一个抽屉,共有10个抽屉。
把11个点放入10个抽屉中,根据抽屉原理一,必有2个点放在同一个抽屉中,所以,至少有2个点间的距离不大于1厘米。
例4.用红、黄两种颜色将下图中的小方块随意涂色,每个小方格涂一种颜色,那么,必有两列方格中所涂颜色完全相同。
2024最新小学奥数抽屉原理
2024最新小学奥数抽屉原理小学生奥数中的抽屉原理是指一种将物品分配到有限的空间中的方法。
这个原理是由数学家所提出的,因为它的应用广泛,并且在解决问题中非常有用。
抽屉原理简单来说就是:如果你有独立的n个抽屉,并且有n+1个物品要放入这些抽屉中,那么必然存在一个抽屉里至少放了两个物品。
这个原理的证明也很简单。
假设每个抽屉里最多只能放一个物品,那么最多只能放n个物品,因为有n个抽屉。
但是题目中说有n+1个物品要放入这些抽屉,所以最少会有一个抽屉里放了两个物品。
抽屉原理的应用非常广泛,包括组合数学、概率论等领域。
在小学奥数中,它通常用于解决物品分配、排列组合等问题。
以下是一些抽屉原理在小学奥数中的具体应用举例:1.分配问题:假设有10个苹果要分给5个人吃,那么必然有至少一个人吃到的苹果数量大于等于2个。
这是因为10个苹果无法平均分给5个人,所以必然有人会多吃一些。
2.字母出现次数问题:假设一个字符串中有11个字母,那么至少有两个字母出现的次数相同。
这是因为只有26个字母,无论如何排列,最多只能给每个字母分配到一个位置,所以肯定有至少两个字母分配到了同一个位置。
3.图形排列问题:假设有10个正方形图案要排列在5个位置上,那么必然有至少一个位置上排列了两个图案。
这是因为10个图案无法完全填满5个位置,所以必然会有至少一个位置上放置了两个图案。
总结起来,抽屉原理告诉我们,在一些有限的情况下,物品的分配不可能完全均匀,必然会有一些位置或者人会多分配到一些物品。
这个原理在解决问题时可以帮助我们快速找到可能的解答,避免不必要的计算和尝试。
所以,在小学奥数中,掌握抽屉原理可以帮助学生更好地理解和解决各种问题,提高问题解决能力和思维逻辑能力。
希望以上内容对您有所帮助。
小学奥数—抽屉原理讲解
小学奥数-抽屉原理(一)抽屉原理1将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
抽屉原理2将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。
例1五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。
已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。
问:至少有几名学生的成绩相同?【分析与解答】关键是构造合适的抽屉。
既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。
除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。
44÷21= 2……2,根据抽屉原理2,至少有1个抽屉至少有3件物品,即这47名学生中至少有3名学生的成绩是相同的。
例2夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。
规定每人必须参加一项或两项活动。
那么至少有几名营员参加的活动项目完全相同?【分析与解答】本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。
营员数已经有了,现在的问题是应当搞清有多少个抽屉。
因为“每人必须参加一项或两项活动”,共有3项活动,所以只参加一项活动的有3种情况,参加两项活动的有爬山与参观、爬山与海滩游玩、参观与海滩游玩3种情况,所以共有3+3=6(个)抽屉。
2000÷6=333……2,根据抽屉原理2,至少有一个抽屉中有333+1=334(件)物品,即至少有334名营员参加的活动项目是相同的。
例3把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人?【分析与解答】这道题一下子不容易理解,我们将它变变形式。
因为是把书分给学生,所以学生是抽屉,书是物品。
小学奥数关于抽屉原理的知识点讲解
【导语】数学给予⼈们的不仅是知识,更重要的是能⼒,这种能⼒包括观察实验、收集信息、归纳类⽐、直觉判断、逻辑推理、建⽴模型和精确计算。
这些能⼒和培养,将使⼈终⾝受益。
以下是整理的相关资料,希望对您有所帮助。
抽屉原理 抽屉原则⼀:如果把(n+1)个物体放在n个抽屉⾥,那么必有⼀个抽屉中⾄少放有2个物体。
例:把4个物体放在3个抽屉⾥,也就是把4分解成三个整数的和,那么就有以下四种情况: ①4=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1 观察上⾯四种放物体的⽅式,我们会发现⼀个共同特点:总有那么⼀个抽屉⾥有2个或多于2个物体,也就是说必有⼀个抽屉中⾄少放有2个物体。
抽屉原则⼆:如果把n个物体放在m个抽屉⾥,其中n>m,那么必有⼀个抽屉⾄少有: ①k=[n/m]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:[X]表⽰不超过X的整数。
例[4.351]=4;[0.321]=0;[2.9999]=2; 关键问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,⽽后依据抽屉原则进⾏运算。
1、有红、黄、蓝、绿四种颜⾊⼩旗各⼀⾯,取其中⼀⾯⼩旗,或者多⾯⼩旗由上⽽下挂在旗杆上作为信号(挂多⾯⼩旗时,不同顺序表⽰不同信号,如:挂出红、黄颜⾊⼩旗时,顺序为红黄与顺序为黄红表⽰不同的信号)。
问:⼀共有()多少种信号?如果某天⼀共发出信号323次,那么这⼀天必定出现某种相同的信号⾄少有()次? 2、⼀副*牌⼀共有54张,最少要抽取⼏张牌,⽅能保证其中⾄少有2张牌有相同的点数? 3、⾃制的⼀副玩具牌⼀共计52张(含有四种颜⾊的牌:红桃、红⽅、⿊桃、⿊梅。
每种牌都有1点、2点….13点)。
洗好后背⾯朝上放好,⼀次⾄少抽取⼏张牌,才能保证其中必定有2张牌点数和颜⾊都相同。
如果要求⼀次抽出的牌中必定有3张牌的点数是相邻的(不计颜⾊的),那么⾄少需要取多少张牌? 4、在8*8的⽅格纸中,每个⽅格内可以填上1-4四个⾃然数中的任意⼀个,填满以后,对每个2%2的⽥字形内的4个⾃然数求和。
奥数抽屉原理ppt课件
什么是抽屉原理和鸽巢原理呢?
❖ 桌上有十个苹果,要把这十个苹果放到九个抽屉里, 无论怎样放,我们会发现至少会有一个抽屉里面放 两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个 集合,每一个苹果就可以代表一个元素,假如有n +1或多于n+1个元素放到n个集合中去,其中必定 至少有一个集合里有两个元素。” 抽屉原理有时也 被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养 了6只鸽子,那么当鸽子飞回笼中后,至少有一个 笼子中装有2只鸽子”)。它是组合数学中一个重 要的原理。
还可以用极端原理考虑,最倒霉是每样 抓到5粒,再抓一个就可以了5×4+1=21
.
练习4、一付扑克牌共有54张(包括 大、小王),问至少要取多少张,才 能保证其中必有4种花色?
4种抽屉,每个抽屉里有13个物体;从最不利 的极端考虑,假设取出3种花色的全部和大、 小王,共13×3+2=41张,再从剩下的任意取 一张,保证必有4中花色。
如果有9个抽屉,19个苹果(多于9×2),
那么至少有一个抽屉的苹果是3个或3个以上。
如果有9个抽屉,苹果多于9×3个,那么 至少有一个抽屉苹果是4个,或4个以上。
如果把多于n×k个物体任意分成n类,那么 至少有一类的物体有(k+1)个或(k+1)
个以上。
苹果数÷抽屉(n)=商(k)……余数,只要余数不是0, 无论余数是几,都将余数看成1,商+1=最小数
.
把3枝铅笔放在2个文具盒里,可以 怎么放,有几种方法?你有什么发现?
不管怎么放, 总有一个文具盒 里至少放进了2枝铅笔.
.
把4枝铅笔放在3个文具盒里,可以 怎么放,有几种方法?你有什么发现?
小学奥数之抽屉原理
小学奥数之抽屉原理抽屉原理,又称为鸽巢原理,是一种数学思维方法,它指出:如果有n+1个物体放进n个抽屉中,那么必定有一个抽屉中至少有两个物体。
抽屉原理最早由德国数学家德尔·凡登布洛赫(Dirichlet)在19世纪中提出,用于解决组合数学中一类关于集合和计数问题的问题。
它的一个直观的解释是:如果将 n 个物体放入 n-1 个以上的容器中,那么至少有一个容器中会放有两个或更多个物体。
这个原理在很多领域都有广泛的应用,尤其在概率论、图论、计算机科学等领域。
那么,如何应用抽屉原理呢?首先,要明确问题的背景和条件。
通常,抽屉原理可用来寻找在一定条件下的必然性结果,例如:有多少个物体、有多少个容器、存在什么样的关联关系等。
举个例子来说明抽屉原理的应用。
假设有一间教室,有n个学生同时参加一次抽奖活动,每个学生只能获得一个奖品。
同时,教室里还放有n-1个抽屉,每个抽屉里放有一个奖品。
那么根据抽屉原理,必然会有至少一个抽屉中放有两个以上的奖品。
要证明这个命题,假设所有抽屉中放置的奖品数目都不超过一个。
那么,每个抽屉中都放置了一个奖品,也就是说教室中最多会有n-1个奖品。
但是,根据题设,教室中的学生有n个,每个学生都要获得一个奖品,所以至少有一个学生没有获得奖品。
因此,我们得出矛盾,证明了至少有一个抽屉中放有两个以上的奖品。
这个问题虽然看似简单,但是却展示了抽屉原理的本质。
我们只需要根据问题的条件来分配物体和容器,然后通过逻辑推理得出必然的结论。
当然,抽屉原理也可以有更复杂的应用。
例如,假设有100个学生参加数学竞赛,每个学生会得到一张分数排名。
现在我们想要证明,至少有两个学生的分数排名差不超过10名。
根据题设,学生的分数排名是1到100之间的整数。
我们将这100个学生分为10组,每组包含10个学生,第一组包含1到10名的学生,第二组包含11到20名的学生,以此类推。
根据抽屉原理,至少有两个学生分别来自同一组,他们的分数排名差不超过10名。
小学六年级奥数-抽屉原理(含答案)
抽屉原理学问要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必定有一个抽屉中至少有2个苹果。
它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。
(2)若把3个苹果放入4个抽屉中,则必定有一个抽屉空着。
它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。
2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。
例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后反面朝上放。
一次至少抽取张牌,才能保证其中必定有2张牌的点数与颜色都一样。
假如要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。
点拨对于第一问,最不利的状况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都一样。
点拨对于第二问,最不利的状况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。
解(1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相一样;(2)要保证有5人属相一样,但不保证有6人属相一样,那么人的总数应在什么范围内?点拨可以把12个属相看做12个抽屉,依据第一抽屉原理即可解决。
解(1)因为37÷12=3……1,所以,依据第一抽屉原理,至少有3+1=4(人)属相一样。
(2)要保证有5人的属相一样的最少人数为4×12+1=49(人)不保证有6人属相一样的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。
例3有一副扑克牌共54张,问:至少摸出多少张才能保证:(1)其中有4张花色一样?(2)四种花色都有?点拨首先我们要弄清晰一副扑克牌有2张王牌,四种花色,每种有13张。
【精品】通用版2022年六年级奥数精品讲义易错专项高频计算题-抽屉原理(含答案)
通用版六年级奥数专项精品讲义及常考易错题汇编计数问题:抽屉原理【知识点归纳】抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体.例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体.抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:]+1个物体:当n不能被m整除时.①k=[nm个物体:当n能被m整除时.②k=nm理解知识点:[X]表示不超过X的最大整数.例:[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉.也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算.【经典题型】例1:在任意的37个人中,至少有()人属于同一种属相.A、3B、4C、6分析:把12个属相看做12个抽屉,37人看做37个元素,利用抽屉原理最差情况:要使属相相同的人数最少,只要使每个抽屉的元素数尽量平均,即可解答解:37÷12=3 (1)3+1=4(人)答:至少有4人的属相相同.故选:B点评:此题考查了利用抽屉原理解决实际问题的灵活应用,关键是从最差情况考虑例2:在一个不透明的箱子里放了大小相同的红、黄、蓝三种颜色的玻璃珠各5粒.要保证每次摸出的玻璃珠中一定有3粒是同颜色的,则每次至少要摸()粒玻璃珠.A、3B、5C、7D、无法确定分析:把红、黄、蓝三种颜色看做3个抽屉,考虑最差情况:每种颜色都摸出2粒,则一共摸出2×3=6粒玻璃珠,此时再任意摸出一粒,必定能出现3粒玻璃珠颜色相同,据此即可解答解:根据题干分析可得:2×3+1=7(粒),答:至少摸出7粒玻璃珠,可以保证取到3粒颜色相同的玻璃珠.故选:C点评:此题考查了利用抽屉原理解决实际问题的灵活应用.一.选择题1.把红、黄、蓝、白、黑五种颜色的球各8个放到一个袋子里,至少取()个球,就能保证取到两个颜色相同的球.A.2B.6C.92.把红、黄、蓝、绿四种同样大小的小球各5个放在同一箱子里,一次至少要摸出()个球才能保证摸出2个红球.A.5B.20C.173.李叔叔给正方体的六个面涂上不同的颜色,结果至少有两个面的颜色一致,颜料的颜色至少有()种.A.3B.4C.54.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中一定有两个球的颜色相同,则至少要取出()个球.A.2B.3C.4D.75.某小学有61名学生在4月份出生,至少有()名学生在同一天过生日.A.2B.3C.4D.56.25个8岁的小朋友中至少有()个小朋友是同一个月出生.A.2B.3C.4D.57.20本书放在6层的书架上,总有一层至少放()本书.A.3B.4C.5D.28.一个盒子里装有同样大小的红球、黄球、白球各3个.至少取出()个球,才能保证取到两个颜色相同的球.A.3B.4C.5二.填空题9.在一次数学考试中,有10道选择题,评分办法是:答对一题得4分,答错一题倒扣1分,不答得0分,已知参加考试的学生中,至少有4人得分相同.那么,参加考试的学生至少有人.10.据推测,四(1)班学生中,至少有4人生日一定是在同一个月,那么这个班的学生人数至少有人.11.13本书放进3个抽屉,不管怎么放,总有一个抽屉至少放进本书.12.希望小学共有368名学生,其中六年级有48名.希望小学至少有名学生的生日是同一天,六年级中至少有名学生是同一个月出生的.13.把7个梨放进5个盘子里,总有一个盘子至少放进个梨;把28个梨放进5个盘子里,总有一个盘子至少放进个梨.14.盒子里有3个红球和2个黄球,至少摸出个球,才能确保摸出的球中两种颜色都有;任意摸出一个球,摸出球的可能性比较大.15.把红、黄、蓝三种颜色的球各8个放在一个袋子里,至少取个球可以保证取到两个颜色相同的球.16.一个袋子中装有红、白、蓝三种球各10个,至少拿出个球才能保证有2个球的颜色是同色.三.判断题17.()把7支钢笔放进2个笔盒中,总有一个笔盒至少要放进4支钢笔.18.()老师把36副羽毛球拍分给5个班,至少有7副羽毛球拍分给同一个班.19.()5只小鸡装入4个笼子,至少有一个笼子放小鸡3只.20.()盒子里有同样大小的红、黄、蓝三种颜色的球各5个,要想摸出的球一定有2个是同色的,至少要摸出4个球.21.()367人中必有2人的生日相同.22.()在366人当中,一定有2人是同一天出生的.23.()36只鸽子飞进5个鸽笼,总有一个笼子至少飞进了8只鸽子.24.()11只鸽子飞进了5个鸽笼,总有一个鸽笼至少飞进了3只鸽子.四.应用题25.老师要把12朵小红花奖励给11位同学,总有一位同学至少得到几朵小红花?26.三年级二班有43名同学,班上的“图书角”至少要准备多少本课外书,才能保证有的同学可以同时借两本书?27.现有一堆桃子,分给6只猴,总有一只猴至少分到了5个桃.这堆桃子至少有多少个?28.在一个直径为2m的圆形花坛周围放上7盆花,那么至少有2盆花之间的距离不超过1米,为什么?(提示:可以通过计算后画图说明)29.有5050张数字卡片,其中1张上面写着数字“1”,2张上面写着数字“2”,3张上面写着数字“3”, ,99张上面写着数字“99”,100张上面写着数字“100”.现在要从中任意取出若干张,为了确保抽出的卡片中至少有10张完全相同的数字,至少要抽出多少张卡片?30.六(1)班有45名同学,把他们分成6个学习小组.不管怎么分,总有一个学习小组至少有8人,为什么?31.盒子里有同样大小的5个红球和6个黄球.(1)要想摸出的球一定有2个是同色的,至少要摸出几个球?(2)要想摸出的球一定有3个是同色的,至少要摸出几个球?(3)要想摸出的球一定有5个是同色的,至少要摸出几个球?(4)要想摸出的球一定有不同颜色的,至少要摸出几个球?32.作文比赛中,六年级共有7名选手获奖,已知六年级有6个班,你能不能肯定选手至少有2名来自同一个班?为什么?五.解答题33.7只鸽子飞回3个鸽舍,至少有只鸽子飞回同一个鸽舍里.34.把4个苹果放在3个盘子里,总有一个盘子里至少有个苹果.35.7个小朋友乘6只小船游玩,至少要有多少个小朋友坐在同一只小船里,为什么?36.6个小组的同学栽树.37.一个袋子中有20只绿袜子、30只蓝袜子,40只白袜子,大小都一样.不用眼睛看,至少摸出只袜子,才能保证摸出的袜子中至少有1双袜子.(颜色相同的两只袜子为一双)38.红、黄、蓝三种颜色的球各6个,混合后放在一个布袋里,一次至少摸出几个,才能保证有两个是同色的?39.黄色卡片6张,红色卡片4张,蓝色卡片5张放在袋子里,至少要摸出4张,就可以保证摸出两张颜色相同的卡片..40.26个小朋友乘6只小船游玩,至少要有一只小船里要坐6个小朋友..参考答案一.选择题1.解:根据分析可得,+=(个)516答:至少取6个球,就能保证取到两个颜色相同的球.答案:B.2.解:532⨯+=+152=(个)17答:一次至少要摸出17个球才能保证摸出2个红球.答案:C.3.解:根据分析可得,623÷=(种)答:颜料的颜色至少有3种.答案:A.4.解:314+=(个);答:为保证取出的球中一定有两个球的颜色相同,则至少要取出4个球.答案:C.5.解:61302⋯⋯(名)÷=(名)1+=(名)213答:至少有3名学生在同一天过生日.答案:B.6.解:根据分析可得,÷=(个)1⋯(人),25122+=(人);213答:至少有3个小朋友在同一个月出生.答案:B.7.解:2063⋯(本)÷=(本)2+=(本)314所以把20本书放进6层的书架上,总有一层至少要放4本。
抽屉原理小学奥数
抽屉原理小学奥数抽屉原理是数学中的一个重要概念,也是小学奥数中的常见考点。
它的基本思想是,如果要把10个苹果放进9个抽屉里,那么至少有一个抽屉里会有两个苹果。
在日常生活中,我们也可以通过抽屉原理来解决一些问题,比如在一群人中找出至少两个生日相同的人。
本文将从小学生的角度出发,简单介绍抽屉原理的概念和应用。
首先,我们来了解一下抽屉原理的基本概念。
抽屉原理又称鸽巢原理,它是由意大利数学家拉蒙·罗利在19世纪提出的。
抽屉原理的内容很简单,如果有n+1个物品要放到n个抽屉里,那么至少有一个抽屉里会有两个或两个以上的物品。
这个原理听起来可能有些抽象,但实际上它非常容易理解和应用。
接下来,我们来看一个具体的例子,以便更好地理解抽屉原理。
假设有10个苹果要放到9个抽屉里,按照抽屉原理,至少会有一个抽屉里有两个苹果。
这是因为如果每个抽屉里最多放一个苹果,那么只能放进去9个苹果,而剩下的一个苹果无处可放。
因此,至少会有一个抽屉里有两个苹果。
这个例子很好地说明了抽屉原理的基本原理和应用方法。
除了上面的例子,抽屉原理在日常生活中还有很多应用。
比如,在一群人中找出至少两个生日相同的人,这就是一个典型的抽屉原理问题。
假设有365个人,每个人的生日都在不同的日子,那么按照抽屉原理,至少会有一个抽屉里有两个人,他们的生日相同。
这是因为365个人要放到365天里,必然会有至少一个抽屉里有两个人。
这个例子也很好地说明了抽屉原理在实际问题中的应用。
综上所述,抽屉原理是数学中的一个重要概念,也是小学奥数中的常见考点。
它的基本思想是,如果要把n+1个物品放进n个抽屉里,那么至少会有一个抽屉里有两个或两个以上的物品。
通过简单的例子,我们可以更好地理解和应用抽屉原理,从而在解决实际问题时更加得心应手。
希望本文对大家理解抽屉原理有所帮助,也希望大家能在学习和生活中灵活运用抽屉原理,解决各种有趣的问题。
江苏省淮安市小学数学小学奥数系列8-2-1抽屉原理(一)
江苏省淮安市小学数学小学奥数系列8-2-1抽屉原理(一)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共34题;共175分)1. (5分)某校六年级有367名学生,有没有两名学生的生日是同一天?为什么?2. (5分)一次测验共有10道问答题,每题的评分标准是:回答完全正确,得5分;回答不完全正确,得3分,回答完全错误或不回答,得0分.至少________人参加这次测验,才能保证至少有3人得得分相同.3. (5分)清江外校是小班额教学,每班人数是40多,在新学期开始该校7年级1班共有43人投票选举班长,每人只能选1人,候选人是乐乐、喜喜、欢欢,得票最多的当选。
开票中途票数统计如图,乐乐至少还要得多少票,才能保证一定当选?候选人乐乐喜喜欢欢票数121084. (5分)在边长为3的正三角形内,任意放入10个点,求证:必有两个点的距离不大于1.5. (5分) 9条直线的每一条都把一个正方形分成两个梯形,而且它们的面积之比为2∶3。
证明:这9 条直线中至少有3 条通过同一个点。
6. (5分)在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?7. (5分)有苹果和桔子若干个,任意分成堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶数?8. (5分)一些孩子在沙滩上玩耍,他们把石子堆成许多堆,其中有一个孩子发现从石子堆中任意选出六堆,其中至少有两堆石子数之差是5的倍数,你能说一说他的结论对吗?为什么?9. (5分)给下面每个格子涂上黑色或红色.观察每一列,你有什么发现?能说出其中的道理吗?10. (5分)有5050张数字卡片,其中1张上面写着数字“1”,2张上面写着数字“2”,3张上面写着数字“3”…,99张上面写着数字“99”,100张上面写着数字“100”.现在要从中任意取出若干张,为了确保抽出的卡片中至少有10张完全相同的数字,至少要抽出多少张卡片?11. (5分)幼儿园买来很多玩具小汽车、小火车、小飞机,每个小朋友任意选择两件不同的,那么至少要有几个小朋友才能保证有两人选的玩具是相同的?12. (5分)六(1)班40名学生到图书室借书,图书室有科技、历史和文艺三种书。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省泰州市小学数学小学奥数系列8-2-1抽屉原理(二)
姓名:________ 班级:________ 成绩:________
亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!
一、 (共35题;共160分)
1. (10分)在张卡片上不重复地编上 ~ ,至少要随意抽出几张卡片才能保证所抽出的卡片上的数之乘积可被整除?
2. (5分)把1、2、3、…、10这十个数按任意顺序排成一圈,求证在这一圈数中一定有相邻的三个数之和不小于17.
3. (5分)一个口袋里分别有4个红球,7个黄球,8个黑球,为保证取出的球中有6个球颜色相同,则至少要取多少个小球?
4. (5分)把黑、白、蓝、灰四种颜色的袜子各12只混在一起。
如果让你闭上眼睛,每次最少拿出几只才能保证一定有一双同色的袜子?如果要保证有两双同色的袜子呢?
5. (5分)从1,2,3,……49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数?
6. (5分)黑、白、黄三种颜色的筷子各有很多根,在黑暗处至少拿出几根筷子就能保证有一双是相同颜色的筷子?
7. (5分)任意4个整数中,必存在两个数,它们被3整除的余数相同.你能说出其中的道理吗?
8. (5分)一副扑克有4种花色,每种花色13张,从中任意抽牌,最少要抽多少张才能保证有4张牌是同一花色?为什么?
9. (5分)图书馆有A,B,C,D四种图书若干本,每人借一本书,至少要有多少个人借书,才能保证一定有3人借的书相同?
10. (5分)黑色、白色、黄色的筷子各有8根,混杂地放在一起,黑暗中想从这些筷子中取出颜色不同的两双筷子。
问至少要取多少根才能保证达到要求?
11. (5分)将400本书随意分给若干同学,但是每个人不许超过11本,问:至少有多少个同学分到的书的本数相同?
12. (5分)在1m长的线段上任意点7个点,不管怎样点,至少有两点之间的距离小于17cm.在纸上画一画,并和同桌同学说一说.
13. (5分)在一个矩形内任意放五点,其中任意三点不在一条直线上。
证明:在以这五点为顶点的三角形中,至少有一个的面积小于矩形面积的四分之一。
14. (1分)从1到20这20个数中,任取11个不同的数,必有两个数其中一个是另一个数的倍数.
15. (5分)只鸽子要飞进个笼子,每个笼子里都必须有只,一定有一个笼子里有只鸽子.对吗?
16. (5分)张老师说北京市的所有人中一定有两个人头发根数一样多.你觉得张老师说的话有道理吗?为什么?(人的头发约有十万根)
17. (5分)给下面每个格子涂上黑色或红色.观察每一列,你有什么发现?
能说出其中的道理吗?
18. (5分)在长度是厘米的线段上任意取个点,是否至少有两个点,它们之间的距离不大于厘米?
19. (5分)某次数学竞赛有6个同学参加,总分是547分,则至少有一个同学的得分不低于92分.为什么?
20. (5分)在一个直径为2厘米的圆内放入七个点,请证明一定有两个点的距离不大于1厘米。
21. (5分)证明:任给12个不同的两位数,其中一定存在着这样的两个数,它们的差是个位与十位数字相同的两位数.
22. (5分)任给11个数,其中必有6个数,它们的和是6的倍数.
23. (5分)用红、黄两种颜色给2×5的长方形小格中随意涂色,每个小格中涂一种颜色。
看一看,总有几列小格中涂的颜色的完全相同?
24. (5分)把12个乒乓球放入5个盒子,至少有3个乒乓球要放人同一个盒子。
为什么?
25. (5分)有黑、红、蓝三种颜色的手套各10只混在了一起,这些手套只要两只颜色相同,即可配成一双。
(1)把眼睛蒙上,至少要拿出几只才能保证能配成1双?
(2)至少要拿出几只,才能保证能配成2双?
(3)至少要拿出几只,才能保证有2双是相同颜色的?
26. (5分)从42个鸽舍中飞出211只鸽子,总有一个鸽舍中至少飞出6只鸽子。
为什么?
27. (5分)在米长的水泥阳台上放盆花,随便怎样摆放,至少有几盆花之间的距离不超过米.
28. (5分) (2018六下·云南月考) 把若干个苹果放进9个抽屉里。
不管怎么放,要保证总有一个抽屉里至少放进4个苹果。
那么至少应该有多少个苹果?
29. (5分)把5本书放进2个抽屉里,不管怎么放,总有一个抽屉至少放进3本书,为什么?
30. (5分)某校六年级有367名学生,有没有两名学生的生日是同一天?为什么?
31. (1分)制作这样10张卡片,想一想,至少要抽出________张卡片才能保证既有偶数又有奇数?试一试
32. (5分) 20道复习题,小明在两周内做完,每天至少做一道题.证明:小明一定在连续的若干天内恰好做了7道题目.
33. (1分)将9个苹果放到8个抽屉里,总有一个抽屉至少放进了________个苹果,将25个苹果放到8个抽屉里,总有一个抽屉至少放进了________个苹果.
34. (1分)把红、黄、黑、白、绿五种颜色大小相同的球各10个放到一个袋子里,若要保证取到两个颜色相同的球,至少需取________个球?
35. (1分) 7只鸽子飞回3个鸽舍,至少有________只鸽子要飞进同一鸽舍里.
参考答案
一、 (共35题;共160分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
19-1、
20-1、
21-1、
22-1、
23-1、
24-1、
25-1、
25-2、
25-3、
26-1、
27-1、
28-1、
29-1、
30-1、
31-1、
32-1、
33-1、34-1、35-1、。