中小学数学概率与统计中的抽屉原理
三年级奥数之抽屉原理
抽屉原理是在集合中对元素分配的原则和方法之一,它在数学中有着重要的应用。
下面将从什么是抽屉原理、抽屉原理的应用以及抽屉原理的实例等方面进行介绍。
一、什么是抽屉原理抽屉原理(也称为鸽巢原理)是指当把若干个物品放入若干个抽屉中时,无论如何放,总有一个抽屉中要放至少两个物品。
这是因为如果有n+1个物品放入n个抽屉中,那么至少有一个抽屉里面放了两个物品。
抽屉原理的数学概念是一种常用的思考方法,它的核心是基于“物品数大于抽屉数”。
二、抽屉原理的应用抽屉原理在数学中有广泛的应用,特别是在组合数学、概率论和数论等领域。
它常常用来解决组合问题、分配问题以及概率问题等。
1.解决组合问题:例如,若有n+1个元素放入n个抽屉中,那么必然存在至少一个抽屉中有至少两个元素,这对于解决组合问题非常有用。
2.解决分配问题:例如,如果有n+1个待分配的任务和n个人来分配任务,那么必然存在至少一个人分配到了两个任务。
这对于资源的合理分配具有指导意义。
3.解决概率问题:例如,当从一个有限的集合中随机选择元素时,当元素的数目大于选择次数时,抽屉原理可以帮助我们理解为什么在多次实验中,一些结果出现的概率较高。
三、抽屉原理的实例以下是一些经典的抽屉原理的实例,以帮助大家更好地理解抽屉原理的应用。
1.生日原理:假设一个教室里有365个学生,那么他们中间有至少两个人的生日相同的概率是多少?根据抽屉原理,我们可以知道只要有366个学生,那么必然存在至少两个人的生日是相同的。
2.快乐数:快乐数是指一个正整数,将该数的每个数位上的数字的平方相加,再对得到的结果重复进行相同的操作,最终结果为1、根据抽屉原理,如果不是快乐数,那么一定存在循环的结果。
3.鸽巢原理:在一群鸽子和若干个鸽巢之间进行配对,如果鸽子的个数大于鸽巢的个数,那么至少有一个鸽巢中有两只以上的鸽子。
这个例子非常形象地展示了抽屉原理。
总之,抽屉原理作为一种思考方法和解决问题的原则,可以在数学问题中发挥重要的作用。
《抽屉原理》(PPT课件
在算法分析中,抽屉原理可以用于分析算法的时间复杂度和空间复杂度,以及确 定算法的最坏情况下的性能。
在日常生活中的应用
资源分配
在资源分配问题中,可以将资源视为抽屉,将待分配的物品 或任务视为物体,根据抽屉原理得出最优的分配方案。
排队理论
在排队理论中,抽屉原理可以用于分析排队系统的性能和稳 定性,以及确定最优的排队策略。
有限制的抽屉原理的证明
有限制的抽屉原理是指
如果 n+1 个物体要放入 n 个容器中,且每个容器最多只能容纳 k 个物体(k < n),那么至少有一个容器包含两个或以上的物体。
证明方法
假设 n+1 个物体放入 n 个容器中,且每个容器最多只能容纳 k 个物体(k < n)。如果存在一个容器只包含一个物体,那么我们可以将这个物体放入另一个 容器中,从而证明了至少有一个容器包含两个或以上的物体。
在数论中的应用
质数分布
根据抽屉原理,如果将自然数按 照质数和非质数进行分类,则质 数在自然数中的比例趋近于 $frac{1}{2}$。
同余方程
在解同余方程时,可以将模数视 为抽屉,方程的解为物体,根据 抽屉原理得出解的存在性和个数 。
在计算机科学中的应用
数据结构
在计算机科学中,抽屉原理可以应用于各种数据结构的设计和分析,如数组、链 表、哈希表等。
现代研究
现代数学研究中对抽屉原理进行了深入的探讨和研究,不断拓展其 应用范围和理论体系。
02
抽屉原理的证明特殊形式,其基本思想是
如果 n 个物体要放入 n-1 个容器中,且每个容器至少有一个物体,则至少有一个容器包含两个或以上的物体。
证明方法
假设 n 个物体放入 n-1 个容器中,且每个容器至少有一个物体。如果存在一个容器只包含一个物体,那么我们 可以将这个物体放入另一个容器中,从而证明了至少有一个容器包含两个或以上的物体。
抽屉原理十个例题
抽屉原理十个例题抽屉原理,又称鸽巢原理,是数学中一个非常重要的概念。
它指的是如果有n+1个或更多的物体放入n个抽屉中,那么至少有一个抽屉中会有两个或更多的物体。
这个原理在数学证明和计算概率等领域中有着广泛的应用。
下面我们来看看抽屉原理在实际问题中的应用,通过十个例题来深入理解这一概念。
例题1,班上有30名学生,其中有29名学生的生日不在同一天,那么至少有两名学生的生日在同一天。
例题2,某个班级有25名学生,其中有23名学生的身高不相同,那么至少有两名学生的身高相同。
例题3,在一个班级里,有10名男生和9名女生,那么至少有一个班级有两名同性别的学生。
例题4,某公司有36名员工,其中每个员工的年龄都不相同,那么至少有两名员工的年龄相差不超过1岁。
例题5,一家商店有40件商品,其中有39件商品的价格都不相同,那么至少有两件商品的价格相同。
例题6,在一个班级里,有15名学生,每个学生都选修了2门不同的课程,那么至少有一门课程有两名学生选修。
例题7,某个班级有20名学生,他们每个人的体重都不相同,那么至少有两名学生的体重相差不超过1千克。
例题8,某个班级的学生参加了一次考试,考试成绩都不相同,那么至少有两名学生的成绩相差不超过5分。
例题9,在一个班级里,有12名男生和13名女生,那么至少有一名学生和另一名学生同性别并且同年龄。
例题10,某公司的40名员工中,每个员工的工作经验都不相同,那么至少有两名员工的工作经验相差不超过1年。
通过以上十个例题的分析,我们可以看到抽屉原理在实际问题中的应用。
无论是生日、身高、性别、价格还是其他属性,只要物体的数量超过抽屉的数量,就一定会存在重复的情况。
这个原理在解决排列组合、概率统计等问题时都有着重要的作用,希望通过这些例题的学习,大家能更加深入地理解抽屉原理的应用。
抽屉原理的三个公式
抽屉原理的三个公式引言抽屉原理,又称鸽笼原理,是数学中常用的一个基本原理。
它是由德国数学家伊尔迈尔提出来的,用来解决集合论问题。
抽屉原理的应用非常广泛,特别在计算机科学、密码学和概率论中有着重要的地位。
本文将介绍抽屉原理的三个公式,并探讨其在实际问题中的应用。
第一个公式:抽屉原理抽屉原理的首个公式是:对于任意的正整数n和正整数m,如果n个物体放入m个抽屉中(n>m),则至少有一个抽屉中至少有两个物体。
这个公式的直观意义是,如果我们有n个物体需要分配到m个抽屉中,而n 大于m,那么至少有一个抽屉中必然会装有至少两个物体。
这个公式的证明非常简单。
假设每个抽屉中最多只能放置一个物体,那么n个物体最多只能分配到n个抽屉中。
由于n大于m,所以至少有n-m个物体不能放置在抽屉中,这与假设矛盾。
因此,至少有一个抽屉中必然会装有至少两个物体。
第二个公式:广义抽屉原理广义抽屉原理是抽屉原理在更一般情况下的推广。
它的表述如下:如果将n个物体分配到m+1个抽屉中(n > m),则至少有一个抽屉中至少有⌈n/m⌉个物体。
其中,⌈n/m⌉表示不小于n/m的最小整数。
这个公式的证明可以通过数学归纳法来完成。
当n=1时,结论显然成立。
假设当n=k时,结论成立,即将k个物体分配到m+1个抽屉中至少有⌈k/m⌉个物体在某个抽屉中。
当n=k+1时,根据归纳假设,k个物体分配到m+1个抽屉中至少有⌈k/m⌉个物体在某个抽屉中。
如果将第k+1个物体分配到这个抽屉中,那么该抽屉中至少有⌈k/m⌉+1个物体。
如果将第k+1个物体分配到其他抽屉中,根据抽屉原理,至少有一个抽屉中至少有两个物体。
综合起来,将k+1个物体分配到m+1个抽屉中至少有⌈(k+1)/m⌉个物体在某个抽屉中。
第三个公式:生日悖论生日悖论是抽屉原理在概率论中的一个应用。
它的表述如下:在一个房间里,如果有至少两个人,他们的生日相同的概率至少为50%,当房间里的人数超过23人时,这个概率将超过50%。
小学数学公式大全抽屉原理
小学数学公式大全抽屉原理抽屉原理是数学中一个重要的定理,也称为鸽巢原理。
它是指如果有n个物品放入m个抽屉中,其中n>m,那么至少有一个抽屉中会放多于一个物品。
抽屉原理的应用非常广泛,特别是在组合数学、概率论和计算机科学等领域中。
以下是一些与抽屉原理相关的例子和公式:1.投票原理(多数派原理):如果n个选项中,超过一半的选项选择了同一个选项,那么这个选项将成为多数派。
2.求余定理:对于任意整数a和b,其中b不等于0,存在唯一的整数q和r,使得a = bq + r,其中q是商,r是余数,并且0 <= r < ,b。
3.相反数的乘积:如果a和b是两个整数,那么-a和-b的乘积等于ab。
4.加法逆元:对于任意整数a,存在唯一的整数-b,使得a+b=0。
这个整数-b被称为a的加法逆元。
5.乘法逆元:对于任意非零整数a,存在唯一的倒数-b,使得a*b=1、这个倒数-b被称为a的乘法逆元。
6.平方差公式(差平方公式):对于任意两个数a和b,有(a+b)(a-b)=a^2-b^27.同底数幂的乘法:对于任意三个数a、b和c,且a不等于0和1,有a^b*a^c=a^(b+c)。
8.同底数幂的除法:对于任意三个数a、b和c,且a不等于0和1,有a^b/a^c=a^(b-c)。
9.幂的乘法:对于任意三个数a、b和c,有(a^b)^c=a^(b*c)。
10.幂的除法:对于任意三个数a、b和c,有(a^b)/(a^c)=a^(b-c)。
11.幂的幂:对于任意四个数a、b、c和d,有(a^b)^(c^d)=a^(b*c^d)。
12.组合公式(二项式定理):对于任意两个数a和b,有(a+b)^n=C(n,0)*a^n+C(n,1)*a^(n-1)*b+...+C(n,n)*b^n,其中C(n,k)表示从n个物品中选取k个的组合数。
13.分配律:对于任意三个数a、b和c,有a*(b+c)=a*b+a*c;(a+b)*c=a*c+b*c。
《抽屉原理例》课件
计算几何
计算几何是计算机科学中的一个重要分支,它涉及到图形处理、计算机图形学等领域。抽 屉原理在计算几何中也有着重要的应用,例如在处理几何形状的交、并、差等运算时,抽 屉原理可以帮助我们理解和分析问题。
03
抽屉原理的实例
生活中的实例
鸽巢原理
如果$n$个鸽子飞进$m$个鸽巢 中,且$n > m$,那么至少有一 个鸽巢里有两只或以上的鸽子。
生日悖论
在不到33人的房间里,存在至少 两个人生日相同的概率大于50% 。
数学中的实例
整数划分问题
给定整数$n$,求证存在至少两个正 整数,它们的和等于$n$。
与组合数学的联系
抽屉原理是组合数学中的基本原理之 一,与其他组合数学原理存在密切联 系。
与概率论的关系
与其他数学分支的交叉
抽屉原理可以应用于其他数学分支中 ,如代数、几何、离散概率等。
在概率论中,抽屉原理常被用于证明 一些概率性质和结论。
06
抽屉原理的应用前景和 展望
在数学领域的应用前景
01 02
从整数到实数的推广
在整数上成立的抽屉原理可以推广到实数上。例如,如果无穷多的实数被放入有限个区间中,那么至少有一个区间包含无穷 多的实数。这个结论被称为巴拿赫定理。
另一个推广是将抽屉原理应用到测度理论中。在测度论中,一个集合的测度可以被视为“体积”,而集合的子集可以被视为 “物品”。在这种情况下,抽屉原理表明:如果无穷多的子集被放入有限个测度不为零的集合中,那么至少有一个集合包含 无穷多的子集。
组合数学
抽屉原理是组合数学中的基础原理之一,在计数、排列组合等领域有广 泛的应用。通过抽屉原理,可以解决一些经典的数学问题,如鸽巢原理 问题。
概率:抽屉原理和六人集会问题
抽屉原理和六人集会问题“任意367个人中,必有生日相同的人。
” “从任意5双手套中任取6只,其中至少有2只恰为一双手套。
” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。
” ... ... 大家都会认为上面所述结论是正确的。
这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。
它的内容可以用形象的语言表述为:“把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。
”在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。
这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。
在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。
任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。
这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。
抽屉原理的一种更一般的表述为:“把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。
” 利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。
”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。
如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。
” 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。
许多有关存在性的证明都可用它来解决。
1958年6/7月号的《美国数学月刊》上有这样一道题目:“证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。
” 这个问题可以用如下方法简单明了地证出:在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。
抽屉原理是什么意思
抽屉原理是什么意思抽屉原理(也称为鸽巢原理)是数学中的一个重要原理,它描述的是一种概率现象。
抽屉原理可以简单地概括为:如果有n+1个物体要放进n个抽屉中,那么无论如何放置,至少有一个抽屉中必然会有两个或更多物体。
抽屉原理最早可以追溯到古希腊数学家彼得·建设者(Peter C. D)在1939年提出的鸽巢定理,后来由是美国数学家罗森(R. R*) 在1964年将其普及并以抽屉原理的名字命名。
这个原理的简单解释是很容易理解的。
假设有5个苹果和4个抽屉,我们需要将这些苹果放入抽屉中去。
无论如何摆放,必然会有至少一个抽屉中放入了两个或更多的苹果。
这是因为若将5个苹果放入4个抽屉,我们只能在某一个抽屉中放2个苹果,而按照抽屉原理的规定,至少会有一个抽屉中放入了两个或更多的物体。
抽屉原理的应用非常广泛,不仅仅局限于数学领域。
它可以应用于各个领域,如计算机科学、生物学、物理学等。
在计算机科学中,抽屉原理可以用于解决许多问题。
例如,在散列函数中,如果我们将 n个关键字映射到 m个槽位中(假设 n>m),那么至少会有一个槽位中有多个关键字映射。
这是因为抽屉原理告诉我们,无论以何种方式映射,始终会有两个关键字映射到同一个槽位上。
生物学中,抽屉原理可以用于解释遗传学中的基因频率。
在一个种群中,如果有 n 个个体,而有 m 种不同的基因,则至少会有个体携带相同的基因,而原因也是抽屉原理的应用。
物理学中,抽屉原理可以类比于波动理论。
例如,如果我们在一条线上有 n 个波峰,而只有 m 个波谷(n>m),则必然会有至少两个波峰在同一个波谷之间。
抽屉原理指导我们认识到,波动现象中特定的波峰和波谷的存在不能无限地隔离。
在生活中,我们也可以看到抽屉原理的应用。
例如,如果我们参加一个聚会,那么如果参与人数超过了场地的容纳能力,那么至少会有两个人被安排坐在同一张桌子上。
总结一下,抽屉原理是一种重要的概率现象,可以简单地概括为:在一定条件下,将多个物体放置到较少的容器中,必然会出现某个容器放入了两个或更多物体。
抽屉原理的定义是什么
抽屉原理的定义是什么1. 引言抽屉原理(也被称为鸽笼原理)是一种基本的数学原理,它在各个领域都有广泛的应用。
在数学、计算机科学和其他一些领域,抽屉原理用于解决众多问题,特别是计数和概率问题。
本文将讨论抽屉原理的定义、原理以及其应用。
2. 抽屉原理的定义抽屉原理是指,当将n+1个物体放入n个抽屉中时,至少有一个抽屉里面会放有两个或两个以上的物体。
换句话说,如果有更多的物体要放入比抽屉数更少的抽屉中,那么至少会有一个抽屉中会有多个物体。
具体来说,假设有n个抽屉和m个物体,如果m > n,那么至少会有一个抽屉中有两个或两个以上的物体。
3. 抽屉原理的证明为了证明抽屉原理,我们可以采用反证法。
假设没有任何一个抽屉中放有两个或两个以上的物体,那么每个抽屉最多只能放一个物体。
如果有n个抽屉,那么最多只能放n个物体。
但是,假设我们有m > n个物体,这与前提矛盾。
因此,我们可以得出结论,至少会有一个抽屉中放有两个或两个以上的物体。
4. 抽屉原理的例子4.1 学生选择课程考虑一个学生选择课程的例子。
假设有10门课程和8名学生。
每个学生选择了至少一门课程。
根据抽屉原理,至少有一个学生选择了两门或两门以上的课程。
这是因为学生数(8)大于课程数(10)。
4.2 双生子生日问题另一个例子是双生子生日问题。
假设有365天,365个抽屉代表每一天,而抽屉里放置的是人的出生日期。
根据抽屉原理,当我们有至少366个人时,至少会有两个人在同一天出生。
这个问题揭示了在很小的数量下,会有出现概率较高的事件。
5. 抽屉原理的应用抽屉原理在计算机科学和数学中有广泛的应用。
以下是一些常见的应用:•密码学:在密码学中,抽屉原理用于解释概率分布和碰撞的概念。
它帮助我们理解两个不同的消息可能具有相同哈希值的概率。
•图论:在图论中,抽屉原理有助于解决图的着色问题。
根据抽屉原理,当要给少于或等于n个节点的图着色时,至少需要n种颜色。
•计算机算法:抽屉原理还用于处理算法设计中的情况,例如哈希冲突。
抽屉原理在中小学解题中的应用
抽屉原理在中小学解题中的应用
抽屉原理是数学上的基本定理之一,它可用于许多领域,包括
中小学解题。
在中小学的解题中,抽屉原理通常用于解决如下问题:
1. 分配问题:有m个物品要放到n个盒子中,其中m>n,证明
存在至少一个盒子中含有两个或以上的物品。
这可以用抽屉原理来
证明,即将n个盒子看作n个抽屉,将m个物品看作n+1个球,必
定有至少一个抽屉中至少有两个球。
2. 证明问题:对于一些具有特定特征的对象,总个数为m,每
个对象至少有一个特征,证明其中至少有n个对象共享相同的特征。
这可以通过把每个特征看成一个抽屉,每个对象看成一张卡片,然
后把卡片放进相应的抽屉中,以证明必有至少n张卡片放到同一个
抽屉里。
3. 比较问题:如果有n+1个数,其中每个数都不大于n,那么
必须有两个数相等。
这可以理解为有n个抽屉,n+1个苹果,显然
必须有至少有两个苹果放在同一个抽屉里。
除此之外,抽屉原理也可用于解决关于排列组合、分组问题等,对学生的数理思维有很大的促进作用。
数学中的抽屉原理
数学中的抽屉原理先看简单的事实:把3本书放到两个抽屉里,只有两种情形:一个一本一个二本,或一个三本一个没有。
不管哪种情形,都至少有一个抽屉里有两本或两本以上的书。
更一样地说,只要被放置的书数比抽屉数目大,就一定会有两本或两本以上的书放进同一抽屉。
(一)抽屉原理的常见式【原理一】:假如把n个东西放进n(mn)只抽屉里,则至少有一只抽屉要放进两个或两个以上的东西。
【例1】求证:在任意选取的n+1个整数中,至少存在两个整数,它们的差能被n整除。
证明:关于n+1个整数,被除所得的余数为0,1,…,n-1共n类,按余数的不同分成的n类中,至少有两个在同一类里,即这两个数被n除时所得的余数相同,那么它们的差就一定能被n整除。
【例2】幼儿园有三种塑料玩具(白兔、熊猫、长颈鹿)各若干个,每个小朋友任意选择两件。
证明:不管如何样选择,在七个小朋友中总有两个人选的玩具相同。
证明:从三种玩具中选择两件,搭配方式共有下列六种:(兔、兔)、(兔、熊猫)、(兔、长颈鹿)、(熊猫、熊猫)、(熊猫、长颈鹿)、(长颈鹿、长颈鹿),每一种能够看作一个抽屉,七人的7种选法中,只有6种不同的搭配,由抽屉原理,七人中至少有两人选择玩具时搭配方式相同。
【原理二】:假如把多于m×n件东西,任意放进n个抽屉,那么至少有一个抽屉里有许多于m+1件东西。
【例3】在口袋里有红色、蓝色和黄色的小球若干个,21个人轮番从袋中取球,每人每次取3个球。
求证:这21个人中至少有3个人取出的颜色相同。
证明:取出的三个球颜色是同一色的(即全红、全蓝或全黄)有三种不同的情形,是两色的(如两红一蓝等)有6种情形,是三色的(即红、蓝、黄三色小球各一个)只有一种情形,故共可分成10类。
由抽屉原理二明白,把21个人所取出的球按颜色可归为这10类中,则必有一类至少有(个)。
因此,21个人中至少有3人取出的球的颜色相同。
运用抽屉原理只是确信了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少。
抽屉原理和最不利原则
抽屉原理和最不利原则一、抽屉原理抽屉原理(也被称为鸽笼原理)是数学中一种基本原理,它是由鸽笼和抽屉的类比而得名。
根据抽屉原理,如果n+1个物体被放置到n个容器之中,那么至少有一个容器内含有两个或者更多的物体。
换句话说,抽屉原理表明,当物体数量超过容器数量时,至少有一个容器将会装有多个物体。
这个原理可以应用于各种场景,例如,如果有11个学生坐在一排座位上,而只有10个座位,那么至少有一个学生将会没有座位坐。
抽屉原理在数学和计算机科学中有广泛的应用。
例如,在计算机科学中,抽屉原理可以用来证明哈希函数的碰撞概率、证明图的着色问题等等。
最不利原则是指在做决策时,应该假设每一项决策都是以对自己最不利的方式进行的。
也就是说,在进行决策时,应该考虑最不利的情况,并希望能够在最不利的情况下找到最好的解决方案。
最不利原则在决策分析和优化问题中具有重要作用。
通过考虑最不利的情况,可以防止决策者产生过于乐观或者主观的判断,从而更好地制定决策方案。
最不利原则可以应用于各种领域,例如商业决策、政治决策和战略决策等。
在商业决策中,经营者应该考虑到市场环境变化和竞争对手的行动,以保持企业的竞争力。
在政治决策中,政府领导者应该考虑到各种社会和经济因素,以制定合理的政策。
在战略决策中,军事指挥官应该考虑到敌方的最强势和最危险的行动,以便做出战略部署。
最不利原则帮助我们克服幻觉和假设,从而更加客观地进行决策。
通过考虑最不利的情况,我们能够更好地准备好应对各种风险和挑战,并找到最佳的解决方案。
总结:抽屉原理和最不利原则都是数学领域中的重要原则,它们在不同的背景下有着不同的应用。
抽屉原理通过简单的类比,帮助我们理解当物体数量超过容器数量时,必然会有一些容器装有多个物体的情况。
最不利原则则在决策分析和优化问题中起着重要的作用,通过考虑最不利的情况,可以制定出最佳的决策方案。
这两个原则都帮助我们在面对不同的问题和情境时,能够更加准确地进行分析和决策。
小学抽屉原理公式
小学抽屉原理公式
抽屉原理,又称鸽巢原理,是离散数学中的一个重要概念,它指出如果有n个
物体要放到m个箱子中,那么至少有一个箱子里至少有两个物体。
这个原理在日
常生活中也有很多应用,比如在抽屉里放衣服的时候,如果抽屉的数量少于衣服的数量,那么必然会有至少一个抽屉里放了两件或两件以上的衣服。
在小学阶段,抽屉原理虽然不会以公式的形式出现,但是它的概念却贯穿了很
多数学问题的解决过程。
下面就让我们来看看小学阶段的抽屉原理公式。
首先,我们来看一个简单的例子,小明有5双袜子,但是他的抽屉只有3个,
那么根据抽屉原理,至少有一个抽屉里有两双及以上的袜子。
这个例子可以用数学公式表示为,n > m,则至少有一个抽屉里有两个及以上的物体。
其中,n代表物
体的数量,m代表抽屉的数量。
再举一个例子,小红有7本书,但是她的书架只有4层,那么根据抽屉原理,
至少有一层书架上有两本及以上的书。
这个例子同样可以用数学公式表示为,n > m,则至少有一层书架上有两本及以上的书。
在解决实际问题的时候,我们可以利用抽屉原理公式来快速判断是否存在某种
情况。
比如在排队的时候,如果人数大于座位数,那么必然会有至少一个座位上有两个人;在分糖果的时候,如果糖果的数量大于盒子的数量,那么必然会有至少一个盒子里有两个糖果。
总的来说,小学抽屉原理公式虽然简单,却贯穿了很多数学问题的解决过程,
它不仅可以帮助我们快速判断某种情况是否存在,还可以培养我们的逻辑思维能力。
希望同学们能够在日常生活中多加利用抽屉原理,让数学变得更加有趣和生动。
小升初数学知识手册:抽屉原理知识点总结
小升初数学知识手册:抽屉原理知识点总结
为您编辑了小升初数学知识手册:抽屉原理,希望您阅读愉快!
抽屉原理
抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:如果把n个物体放在m个抽屉里,其中nm,那么必有一个抽屉至少有:
①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:[_]表示不超过_的最大整数。
例[4.351]=4;[0.321]=0;[2.9999]=2;
关键问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
抽屉原理的三个公式
抽屉原理的三个公式抽屉原理,又称鸽巢原理,是数学中的一条基本原理,它描述了一种常见的现象,如果将若干物品放入比物品数量少的盒子中,则必定有至少一个盒子内含有多个物品。
这一原理在数学证明和计算概率等领域有着重要的应用。
在本文中,我们将介绍抽屉原理的三个公式,以及它们在实际问题中的应用。
首先,我们来看抽屉原理的第一个公式,如果有n+1个物品放入n个抽屉,则至少有一个抽屉中至少有两个物品。
这个公式直观地说明了抽屉原理的基本概念,即将物品放入抽屉时,必然会有抽屉中含有多个物品的情况发生。
这个公式在实际问题中有着广泛的应用,比如在密码学中,我们可以利用这个公式来证明存在重复的密码,从而加强密码的安全性。
接下来,我们来看抽屉原理的第二个公式,如果有n个物品放入m个抽屉,且n>m,则至少有一个抽屉中含有多于⌈n/m⌉个物品。
这个公式进一步拓展了抽屉原理的应用范围,它告诉我们,当物品数量大于抽屉数量时,至少会有一个抽屉中含有多于平均分配物品数量的情况发生。
这个公式在分配资源、任务调度等实际问题中有着重要的应用,可以帮助我们合理分配资源,提高效率。
最后,我们来看抽屉原理的第三个公式,如果有n个物品放入m个抽屉,且n<m,则至少有一个抽屉是空的。
这个公式给出了当物品数量小于抽屉数量时的情况,它告诉我们,必定会有一个抽屉是空的。
这个公式在排列组合、概率计算等领域有着重要的应用,可以帮助我们计算出某些事件发生的概率,从而做出合理的决策。
总结起来,抽屉原理的三个公式分别描述了在不同情况下,放置物品到抽屉中必然会出现的一些情况。
这些公式在数学证明、概率计算、密码学等领域有着广泛的应用,可以帮助我们解决各种实际问题。
通过深入理解抽屉原理的三个公式,我们可以更好地利用它们解决现实生活中的各种问题,提高我们的分析和计算能力。
中小学数学概率与统计中的抽屉原理
中小学数学概率与统计中的抽屉原理第一篇:中小学数学概率与统计中的抽屉原理中小学数学概率与统计中的抽屉原理基本介绍抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。
许多有关存在性的证明都可用它来解决。
抽屉原理-表述抽屉原理的一种更一般的表述为:“把多于kn+1个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。
”利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。
”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。
如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。
”抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。
许多有关存在性的证明都可用它来解决。
应用抽屉原理解题例1:同年出生的400人中至少有2个人的生日相同。
解:将一年中的365天视为365个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有2人的生日相同.400/365=1…35,1+1=2 又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同。
“从任意5双手套中任取6只,其中至少有2只恰为一双手套。
” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。
”例2:幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理.解:从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。
把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同.上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.(需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少.抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。
抽屉原理讲义
抽屉原理讲义什么是抽屉原理?在数学领域中,抽屉原理是一种简单而常用的证明方法。
其核心思想是,如果将 n+1 个物品放到 n 个桶中,那么至少有一个桶中必定包含两个及以上的物品。
这个原理在组合数学、计算机科学等诸多领域都有广泛应用。
具体而言,抽屉原理包括两个基本概念:抽屉和物品。
如果将 n 个物品放到 m 个抽屉中,如果 n > m,那么至少有一个抽屉中会有两个或两个以上的物品。
抽屉原理的证明对于抽屉原理的证明,有一种简单而直观的方法。
我们可以将 n+1 个物品任意分成 m 组,其中 m = n。
假设每一组最多只有一个物品,那么总共只能分成 n 组。
由于有 n+1 个物品,所以至少有一组中包含了两个物品。
因此,根据这个假设的前提,我们可以得到一个矛盾,即最多只能将 n+1 个物品分成 n 组,每组最多只有一个物品,但又至少有两个物品在同一组中。
因此,假设不成立,抽屉原理成立。
抽屉原理应用抽屉原理有很多应用,下面我们介绍其中的两个例子。
例子1:生日悖论假设我们有一个房间里有 23 个人,那么至少有两个人生日相同的概率有多大呢?根据抽屉原理,我们将每个人的生日看做一个物品,日期看做一个抽屉,因为一年中只有 365 天,所以只有 365 个抽屉,但有 23 个生日需要放到这些抽屉中。
根据计算可知,概率公式为 P = 1 –(365 * 364 * 363 …… (365-22)) / (365 ^ 23) ≈ 0.5因此,当有 23 个人在同一个房间中时,至少有两个人生日相同的概率几乎是50%。
例子2:计算机算法在计算机算法中,抽屉原理有广泛应用。
其中一个例子是哈希表。
哈希表是一种高效的数据结构,它基于抽屉原理,使用哈希函数将每个数据项映射到不同的桶中。
在哈希表中,桶的数量通常比数据项的数量多,因此会有多个数据项映射到同一个桶中。
例如,如果我们在一个大小为 10 的哈希表中存储 11 个数据项,其中有两个数据项会映射到同一个桶中。
六年级抽屉问题知识点总结
六年级抽屉问题知识点总结抽屉问题是数学中的经典问题之一,它涉及到概率、排列组合等内容。
在六年级的学习中,我们也接触到了一些与抽屉问题相关的知识点。
下面,我将对这些知识点进行总结,希望能够帮助大家更好地理解和应用抽屉问题。
一、抽屉原理抽屉原理是指:如果有n+1个物品要放到n个抽屉里,那么至少有一个抽屉里会放有两个或者两个以上的物品。
也就是说,当物品的数量比抽屉的数量多时,必然存在至少一个抽屉中放有多个物品。
二、鸽笼原理鸽笼原理和抽屉原理非常类似,它是说:如果有m个鸽子要放到n个笼子里,且m>n,那么至少有一个笼子里将会放有两个或两个以上的鸽子。
这个原理可以用来解决一些与抽屉问题相似的计数问题。
三、排列组合在解决抽屉问题时,排列组合是一个非常重要的数学工具。
排列是指对一组元素进行顺序排列,组合是指从一组元素中取出一部分元素的集合。
在抽屉问题中,我们常常需要计算不同的情况下的排列或组合个数。
四、概率抽屉问题与概率密切相关。
概率是用来描述事件发生的可能性的数值。
在解决抽屉问题时,我们常常需要计算某个事件发生的概率。
在计算概率时,我们可以使用等可能原理和频率公式等方法。
五、应用举例下面通过几个例子来展示抽屉问题的应用:例1:班级里有10个男生和15个女生,我们从班级中随机抽取3个人,求至少有2个男生的概率。
解:首先,我们需要求出男生和女生分别被选中的组合数。
男生被选中的组合数为C(10,2),女生被选中的组合数为C(15,1)。
然后,我们需要求出总的抽取组合数C(25,3)。
最后,通过计算得出概率为(P1+P2)/P,其中P1为2个男生被选中的概率,P2为3个男生被选中的概率,P为总的抽取概率。
例2:面试时,一个公司有10个职位和15个应聘者,每个应聘者只能申请一个职位,求至少有一个职位没有人申请的概率。
解:如果所有的职位都被申请了,那么必然会有至少一个职位没有人申请。
因此,我们需要计算所有职位都被申请的概率,然后用1减去这个概率即可得到答案。
《抽屉原理》教学课件
鸽巢原理的变种
VS
应用在概率论中的抽屉原理是指将抽屉原理与概率论相结合,以解决概率论中的一些问题。
详细描述
在概率论中,抽屉原理可以应用于解决一些概率分布的问题。例如,可以将抽屉原理应用于计算概率密度函数或者概率分布函数的性质。通过将抽屉原理与概率论相结合,可以更好地理解概率分布的性质和特点,并解决一些概率论中的难题。
整数划分问题
应用抽屉原理解析
总结词
整数划分问题是指将一个正整数拆分成若干个正整数之和。抽屉原理在这个问题中发挥了关键作用,通过巧妙地将各个整数视为“抽屉”,而将划分方式视为“物品”,利用抽屉原理证明了某些特定划分的不可能性。
详细描述
04
CHAPTER
抽屉原理的变种与推广
总结词
有限制的鸽巢原理的推广是指将有限制的鸽巢原理应用到更广泛的场景中,以解决更为复杂的问题。
抽屉原理的定义
19世纪中叶,德国数学家鲁布里奇正式提出了抽屉原理这一名称,并进行了系统的研究和发展。
随着组合数学的发展,抽屉原理在数学、计算机科学、信息科学等领域得到了广泛的应用和推广。
抽屉原理的起源可以追溯到古希腊数学家欧几里得,他在《几何原本》中提出了类似的原理。
抽屉原理的起源与发展
实例分析
提供多种形式的练习题,让学生通过变式训练加深对抽屉原理的理解和应用。
变式训练
组织小组讨论,让学生互相交流思路和方法,拓展解决问题的思路和途径。
小组讨论
如何引导学生应用抽屉原理解决问题
THANKS
感谢您的观看。
总结词
应用在概率论中的抽屉原理
05
CHAPTER
抽屉原理的教学建议
通过日常生活中的实例,如“四个苹果放入三个抽屉,至少有一个抽屉有两个苹果”来引入抽屉原理的概念。
数学运算之概率问题和抽屉原理
数学运算之概率问题和抽屉原理一、概率问题(一)概率问题基本知识点:1、单独概率=满足条件的情况数/总的情况数。
2、总体概率=满足条件的各种情况概率之和。
3、分步概率=满足条件的每个不同概率之积。
(二)例题和解析1、有一个摆地摊的摊主,他拿出3个白球,3个黑球,放在一个袋子里,让人们摸球中奖。
只需2元就可以从袋子里摸3个球,如果摸到的3个球都是黑球,可得10元回扣,那么中奖率是多少?如果一天有300人摸奖,摊主能骗走多少元?A 1/40 ,350B 1/20 ,450C 1/30 , 420D 1/10 ,450解析:方法一:摸出三个球的可能性一共是C36=20种,而摸到的3个球都是黑球的可能性只有一种,所以中奖率是1/20。
300人摸奖,平均中奖的人数是300/20=15人,摊主能骗走300*2-15*10=450元。
方法二:袋子里有3个白球,3个黑球,第一个球摸出来是黑球的概率是:3/6=1/2随后袋子里有3个白球,2个黑球,第二个球摸出来是黑球的概率是2/5袋子里剩3个白球,1个黑球。
第三个球摸出来是黑球的概率是1/4因此全部都是黑球的概率是1/2*2/5*1/4=1/202、盒中有4个白球6个红球,无放回地每次抽取1个,则第2次取到白球的概率是多少?A 2/15B 4/15C 2/5D 4/5解析:第二次取到白球的情况分为2种。
(1)第一次取到白球,第二次又取到白球:4/10*3/9=2/15(2)第一次取到红球,第二次取到白球:6/10*4/9=4/15因此第二次取到白球的概率为4/15+2/15=2/5其实,细心点可以发现,第一次取到白球的概率是2/5.第2次取到白球的概率也是2/5.再往下推算,其实本题的结果与第几次取到白球是无关的。
就和我们平时抽签一样,无论是先抽还是后抽,抽到好签的机会是一样的。
^_^3、乒乓球比赛的规则是五局三胜制。
甲、乙两球员的胜率分别是60%和40%,在一次比赛中,若甲先连胜了前两局,则甲最后获胜的概率:A、为60%B、在81%—85%之间C、在86%—90%之D、在91%以上解析:乙如果想要获胜的话,则以后的三场都要获胜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中小学数学概率与统计中的抽屉原理基本介绍抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。
许多有关存在性的证明都可用它来解决。
抽屉原理- 表述抽屉原理的一种更一般的表述为:“把多于kn+1个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。
”利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。
”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。
如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。
”抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。
许多有关存在性的证明都可用它来解决。
应用抽屉原理解题例1:同年出生的400人中至少有2个人的生日相同。
解:将一年中的365天视为365个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有2人的生日相同. 400/365=1…35,1+1=2又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同。
“从任意5双手套中任取6只,其中至少有2只恰为一双手套。
”“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。
”例2:幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理.解:从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。
把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同.上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.(需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少.抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。
下面我们来研究有关的一些问题。
制造抽屉是运用原则的一大关键例1 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。
分析与解答我们用题目中的15个偶数制造8个抽屉:此抽屉特点:凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。
现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数可以在同一个抽屉中(符合上述特点).由制造的抽屉的特点,这两个数的和是34。
例2:从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。
分析与解答在这20个自然数中,差是12的有以下8对:{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。
另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,…,12),那么这12个数中任意两个数的差必不等于12)。
例3:从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。
分析与解答根据题目所要求证的问题,应考虑按照同一抽屉中,任意两数都具有倍数关系的原则制造抽屉.把这20个数按奇数及其倍数分成以下十组,看成10个抽屉(显然,它们具有上述性质):{1,2,4,8,16},{3,6,12},{5,10,20},{7,14},{9,18},{11},{13},{15},{17},{19}。
从这10个数组的20个数中任取11个数,根据抽屉原理,至少有两个数取自同一个抽屉.由于凡在同一抽屉中的两个数都具有倍数关系,所以这两个数中,其中一个数一定是另一个数的倍数。
例4:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。
分析与解答共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、…、n-2,还是后一种状态1、2、3、…、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。
在有些问题中,“抽屉”和“物体”不是很明显的,需要精心制造“抽屉”和“物体”.如何制造“抽屉”和“物体”可能是很困难的,一方面需要认真地分析题目中的条件和问题,另一方面需要多做一些题积累经验。
例5:15个网球分成数量不同的4堆,数量最多的一堆至少有多少个球?分析与解答此题实际是求出15可分拆多少种4个互不相同的整数之和,而15=1+2+3+9=1+2+4+8=1+2+5+7=1+3+4+7=1+3+5+6=2+3+4+6,所以最多一堆的球数可能是9、8、7、6,其中至少有6个。
[1]整除问题把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],…,[m-1]表示.每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,….在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n+1个自然数中,总有两个自然数的差是n的倍数。
(证明:n+1个自然数被n整除余数至少有两个相等(抽屉原理),不妨记为m=a1*n+b n=a2*n+b,则m-n整除n)。
例1 证明:任取8个自然数,必有两个数的差是7的倍数。
分析与解答在与整除有关的问题中有这样的性质,如果两个整数a、b,它们除以自然数m 的余数相同,那么它们的差a-b是m的倍数.根据这个性质,本题只需证明这8个自然数中有2个自然数,它们除以7的余数相同.我们可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是7个抽屉.任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数。
例2:对于任意的五个自然数,证明其中必有3个数的和能被3整除.证明∵任何数除以3所得余数只能是0,1,2,不妨分别构造为3个抽屉:[0],[1],[2]①若这五个自然数除以3后所得余数分别分布在这3个抽屉中(即抽屉中分别为含有余数为0,1,2的数),我们从这三个抽屉中各取1个(如1~5中取3,4,5),其和(3+4+5=12)必能被3整除.②若这5个余数分布在其中的两个抽屉中,则其中必有一个抽屉至少包含有3个余数(抽屉原理),即一个抽屉包含1个余数,另一个包含4个,或者一个包含2个余数另一个抽屉包含3个。
从余数多的那个抽屉里选出三个余数,其代数和或为0,或为3,或为6,均为3的倍数,故所对应的3个自然数之和是3的倍数.③若这5个余数分布在其中的一个抽屉中,很显然,从此抽屉中任意取出三个余数,同情况②,余数之和可被3整除,故其对应的3个自然数之和能被3整除.例2′:对于任意的11个整数,证明其中一定有6个数,它们的和能被6整除.证明:设这11个整数为:a1,a2,a3……a11 又6=2×3①先考虑被3整除的情形由例2知,在11个任意整数中,必存在:3|a1+a2+a3,不妨设a1+a2+a3=b1;同理,剩下的8个任意整数中,由例2,必存在:3 | a4+a5+a6.设a4+a5+a6=b2;同理,其余的5个任意整数中,有:3|a7+a8+a9,设:a7+a8+a9=b3②再考虑b1、b2、b3被2整除.依据抽屉原理,b1、b2、b3这三个整数中,至少有两个是同奇或同偶,这两个同奇(或同偶)的整数之和必为偶数.不妨设2|b1+b2则:6|b1+b2,即:6|a1+a2+a3+a4+a5+a6∴任意11个整数,其中必有6个数的和是6的倍数.例3:任意给定7个不同的自然数,求证其中必有两个整数,其和或差是10的倍数.分析:注意到这些数除以10的余数即个位数字,以0,1,…,9为标准制造10个抽屉,标以[0],[1],…,[9].若有两数落入同一抽屉,其差是10的倍数,只是仅有7个自然数,似不便运用抽屉原则,再作调整:[6],[7],[8],[9]四个抽屉分别与[4],[3],[2],[1]合并,则可保证至少有一个抽屉里有两个数,它们的和或差是10的倍数.面积问题例:九条直线中的每一条直线都将正方形分成面积比为2:3的梯形,证明:这九条直线中至少有三条经过同一点.证明:如图,设直线EF将正方形分成两个梯形,作中位线MN。
由于这两个梯形的高相等,故它们的面积之比等于中位线长的比,即|MH|:|NH| 。
于是点H有确定的位置(它在正方形一对对边中点的连线上,且|MH|:|NH|=2:3). 由几何上的对称性,这种点共有四个(即图中的H、J、I、K).已知的九条适合条件的分割直线中的每一条必须经过H、J、I、K这四点中的一点.把H、J、I、K看成四个抽屉,九条直线当成9个物体,即可得出必定有3条分割线经过同一点.应该是[(物体数-1)÷抽屉数]+1染色问题例1正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同.证明:正方形有6个面由最多[(m-1)÷n]+1 得出[(6-1)÷2]+1=[2.5]+1=3例2 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
分析与解答首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.根据抽屉原理,至少有两个小朋友摸出的棋子的颜色在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
例3:假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色?解:首先可以从这六个点中任意选择一点,然后把这一点到其他五点间连五条线段,如图,在这五条线段中,至少有三条线段是同一种颜色,假定是红色,现在我们再单独来研究这三条红色的线。