统计学中的基本概念

合集下载

统计学中的基本概念

统计学中的基本概念

1 - 14

四、指标与指标体系
指标是说明总体综合数量特征的变量,简称指标。
一个科学、完整的指标都是由指标名称、所属时间、所属空间、 指标数值、计量单位等构成。例如:
2019年我国GDP的总量是达到了99.1万亿元,接近100万亿元人民币。 按平均汇率折算,人均达到了10276美元。 2019年全国居民人均可支配收入突破30000元。 2019年全国粮食总产量6.6亿吨,是世界第一大产粮国,也是中国历史 上最高的粮食产量。 2019年末高速铁路营业总里程达3.5万公里,占全球高铁里程超过2/3; 高速公路里程超过14万公里,居世界第一;电力装机容量接近2032千瓦, 居世界第一;互联网上网人数8.6亿人。
总体中抽取的一部分元素(个体)的集合,称 为样本。样本中个体的数目,称为样本容量 (sample size),或样本单位数。
从总体中抽取一部分元素作为样本,目的在于用样 本提供的有关信息去推断总体的特征。例如,从某 地区随机抽取100名消费者,被抽中的100名消费者 就构成了一个样本。然后再根据这100名消费对某种 家电产品的满意程度去推断该地区全部消费者对该 种家电产品的满意程度。
1-5

二、参数与统计量
(二)统计量(statistic)
统计量是关于样本的函数,是随机量。根据样本 数据计算的用于推断总体参数的测度量。
计算样本统计量的目的在于推断总体参数,所以相应 的样本统计量有:样本统计量有样本均值(x )、样本 标准差( s )、样本比例( p )等。 样本统计量通常用英文字母来表示。
1 - 11

(二)变量种类
(按取值方式及建构方式)
3、变量按取值特征。 (1)随机变量。 (2)非随机变量。 4、变量按构建方式。 (1)经验变量(empirical variables)

统计学的三组基本概念

统计学的三组基本概念

统计学的三组基本概念统计学是一门研究数据收集、整理、分析和解释的学科,它在各个领域中广泛应用,并发展出了许多基本概念和方法。

下面我将介绍统计学的三组基本概念。

第一组基本概念是描述统计学概念。

描述统计学是统计学的一个分支,它关注的是对数据进行总结和描述。

在描述统计学中,我们常用的基本概念包括变量、测量尺度、频率分布和图表等。

变量是描述研究现象或对象不同特征的属性。

根据其性质,变量可分为定性变量和定量变量。

定性变量是指描述对象属性或特征的变量,如性别、种族、学历等;定量变量是指可以进行数值比较的变量,如身高、体重、成绩等。

测量尺度是用来度量变量的属性的一种方法。

常见的测量尺度包括名义尺度、顺序尺度、间隔尺度和比例尺度。

名义尺度用来测量定性变量,它只能用来区分对象之间是否具有某种属性;顺序尺度除了可以区分对象是否具有某种属性,还可以表达对象之间的关系;间隔尺度在顺序尺度的基础上增加了单位间隔的概念,可以进行比较和加减运算;比例尺度在间隔尺度的基础上增加了零点的概念,可以进行除法运算。

频率分布是对变量在不同取值上出现的次数或占比进行总结和描述。

一般情况下,频率分布包括表格形式和图表形式两种。

表格形式将变量的不同取值列在一起,记录其频数和频率;图表形式将频率分布以图形的方式展示,如直方图、饼图和线图等。

第二组基本概念是统计推断概念。

统计推断是统计学的另一个分支,它关注的是基于样本数据对总体性质进行推断的方法。

在统计推断中,我们常用的基本概念包括概率、抽样、估计和假设检验等。

概率是描述随机事件发生可能性的一种度量。

统计学中的概率可以用来描述随机变量的分布、事件的发生概率等。

概率的计算基于一些基本规则,如加法规则和乘法规则等。

抽样是从总体中选取一部分个体作为样本进行研究的过程。

抽样的目的是通过样本的统计量来推断总体的参数。

常见的抽样方法包括简单随机抽样、分层抽样和系统抽样等。

估计是根据样本数据对总体参数进行推断的过程。

统计学原理的基本概念

统计学原理的基本概念

统计学原理的基本概念统计学原理是统计学的基本理论和概念的总称,包括以下几个基本概念:1. 总体(Population): 研究对象在统计学中被称为总体,是指具有共同特征的所有个体的集合。

2. 样本(Sample): 从总体中取出的一部分个体被称为样本,通过对样本进行研究来推断总体的特征。

3. 参数(Parameter): 描述总体特征的数值被称为参数,如总体的平均值、方差等。

4. 统计量(Statistic): 描述样本特征的数值被称为统计量,如样本的平均值、方差等。

通过统计量可以对总体的参数进行估计。

5. 随机变量(Random Variable): 描述随机现象的数值可变的量被称为随机变量,它可以表示样本的某个特征,如随机变量X表示样本的身高。

6. 概率分布(Probability Distribution): 随机变量的取值及其对应的概率构成的表格或方程式被称为概率分布,如正态分布、泊松分布等。

7. 抽样分布(Sampling Distribution): 某个统计量的所有可能取值及其对应的概率构成的分布被称为抽样分布,如样本均值的抽样分布。

8. 假设检验(Hypothesis Testing): 通过对样本数据进行统计推断来对总体的假设进行检验的方法。

根据假设检验的结果可以判断总体参数是否与某个假设相符。

9. 置信区间(Confidence Interval): 对总体参数的一个区间估计,是对总体参数可能取值的一个范围的估计。

10. 统计模型(Statistical Model): 用来描述随机变量与概率分布之间关系的数学模型。

统计模型可以用来解释和预测观察数据。

这些基本概念构成了统计学的基础,通过对它们的研究和应用,可以对数据进行分析、推断和预测,从而得出科学有效的结论。

统计学的几个基本概念汇总

统计学的几个基本概念汇总

统计学的几个基本概念总体(population)nbsp;nbsp;指同质的研究对象中所有观察单位研究指标变量值的集合。

总体通常限定于特定的时间与空间范围之内,且为有限数量的观察单位,称为有限总体;有时总体是假设的,没有时间和空间限制,观察Ø 总体(population)指同质的研究对象中所有观察单位研究指标变量值的集合。

总体通常限定于特定的时间与空间范围之内,且为有限数量的观察单位,称为有限总体;有时总体是假设的,没有时间和空间限制,观察单位数是无限的,称为无限总体。

Ø样本(sample)医学实践与研究中,要直接研究无限总体通常是不可能的,即使是有限总体,由于人力、物力、时间、条件等限制,要对其中每个观察单位进行研究或观察,有时也是不可能的,也不必要。

而只是从总体中随机抽取部分观察单位,其变量实测值构成样本,目的用样本指标推断总体特征。

这种推断不要经过严谨的实验设计,以样本的可靠性和代表性为基础。

样本的可靠性:主要是使样本中每一观察单位确属同质总体。

样本的代表性:使样本能充分反映总体的实际情况,要求抽样遵循随机化原则,目的是使每个观察单位被抽得的机会相等,避免主观取舍及偏性;还要保证足够的样本量,即保证足够的观察单位个数。

Ø参数(parameter)统计学上描述总体变量的特征称为参数。

如总体均数、描述总体的中心位置或集中趋势;总体标准差、极差等描述总体的离散趋势等。

Ø误差(error)泛指实测值与真值之差,按其产生的原因和性质可粗分为随机误差(random error)与非随机误差(nonrandom error)两大类,后者又可分为系统误差(systematic error)与非系统误差(nonsystematic error)两类。

Ø随机误差是一类不恒定的、随机变化的误差,由多种尚无法控制的因素引起。

例如,在实验过程中,在同一条件下对同一对象反复进行测量,虽极力控制或消除系统误差后,每次测量结果仍会出现一些随机变化即随机测量误差,以及在抽样过程中由于抽样的偶然性而出现的抽样误差。

统计学中的基本概念

统计学中的基本概念

1.2统计学的几个基本概念1.2.1总体和总体单位1.总体(1)总体的概念:总体是指客观存在的、具有某种共同性质的许多个别事物组成的整体;在统计研究过程当中,统计研究的目的和任务居于支配和主导的地位,有什么样的研究目的就应该有什么样的统计总体与之相适应。

例如:要研究我们学院教师的工资情况,那么全体教师就是研究的总体,其中的每一位教师就是总体单位;如果要了解某班50个学生的学习情况,则总体就是该班的50名学生,每一名学生是总体单位。

根据我们研究目的的不同,我们要选取的研究对象也就是研究总体相应地要发生变化。

(2)总体的分类:总体根据总体单位是否可以计量分为有限总体和无限总体:★有限总体:指所包含的单位数是有限的总体。

如一个企业的全体职工、一个国家的全部人口等都是有限总体;★无限总体:指所包含的单位数目是无限的,或准确度量它的单位数是不经济或没有必要的,这样的总体称为无限总体。

如企业生产中连续生产的大量产品,江河湖海中生长的鱼的尾数等等。

划分有限总体和无限总体对于统计工作的意义就在于可以帮助我们设计统计调查方法。

很显然,对于有限总体,可以进行全面调查,也可以进行非全面调查,但对于无限总体不能进行全面调查,只能抽取一部分单位进行非全面调查,据以推断总体。

(3)总体的特征:★大量性:是指构成总体的单位数要足够的多,总体应由大量的单位所构成。

大量性是对统计总体的基本要求。

个别单位的现象或表现有很大的偶然性,而大量单位的现象综合则相对稳定。

因此,现象的规律性只能在大量个别单位的汇总综合中才能表现出来。

只有数量足够的多,才能准确地反应我们要研究的总体的特征,达到我们的研究目的。

★同质性:指总体中各单位至少在某一个方面性质相同,使它们可以结合起来构成总体。

同质性是构成统计总体的前提条件。

★变异性:即构成总体的各个单位除了至少在某一方面具有共同性质外,在其他方面具有一定的差异。

差异性是统计研究的主要内容。

如以一个班级的所有学生作为一个总体,则“专业”是该总体的同质性,而“性别”、“籍贯”等则是个体之间的变异性;以我院全体教师为一个总体,则“工作单位”是其同质性,而“学历”、“月工资”等则是它的变异性。

统计学的基本概念

统计学的基本概念

第二部分数据的整理与抽样一、统计学的基本概念1、统计资料定义:凡是可以推导出某项论断的事实或数字均称为统计资料。

统计资料是进行分析、推断、预测的基础。

要根据研究的目的、要求,有计划地收集统计资料。

统计资料原始资料(初级):未经过加工处理的第一手统计调查资料。

次级资料:经过加工处理的数据(有权威性的公开发表的:统计年鉴、行业协会公布的报告等等)。

统计数据度量数据:用数量尺度测量的数据,如年龄、成绩。

品质数据:不用数量尺度测量的数据,如性别,企业类型。

称关于特定问题的统计资料为一个资料集合,其主要特征有:元素:统计资料由各个元素组成。

变量:元素的特征。

有定量的变量与定性的变量。

观测:一次观测指对统计资料中某一元素的所有变量表述的记录。

xxx xxx xxx xxx xxx xxx王五xxx xxx xxx xxx xxx Xxx李四xxx xxx xxx xxx xxx xxx张三…..…..….班级专业学号姓名2、统计资料收集的方法与途径方法间接引用直接收集实验式:设计统计实验,控制某些因素以研究其对变量的影响。

例如确定产品的价格弹性观察式:对变量的影响因素不加任何限制。

根据统计研究的目的和要求收集统计资料。

所收集的资料必须满足准确性、及时性和完整性的要求。

统计报表组织方式专门调查普查重点调查抽样调查典型调查途径直接观察:通过观察对象的活动进行记录获得资料。

优点:资料全面生动,避免由于理解偏差造成的误差。

缺点:耗时、人力,对观察者素质要求高。

访问:与被调查对象直接接触,获得资料问卷调查:设计并发放调查表。

优点:避免调查人对调查对象的直接影响,缺点:返回率低,无法保证调查表的质量。

3、总体与个体(1)定义:凡是客观存在的、具有统一性质的由个别事物组成的集合体,称为统计总体。

构成总体的个别事物称为个体(总体单位)。

(2)总体与个体必须具备的条件客观性:特定的非一般意义上;大量性:包含足够多的个体以避免偶然性;同质性:构成总体的个体在性质上必须是相同的,否则无法反映总体的特征;差异性:构成总体的个体之间存在差异。

统计分析学基础知识点总结

统计分析学基础知识点总结

统计分析学基础知识点总结一、统计学的基本概念1.总体和样本总体是指研究对象的全部个体或事物的集合,样本是从总体中抽取的部分个体或事物的集合。

在统计学中,我们通常通过对样本进行分析来进行总体的推断。

2.变量和数据类型变量是指在研究中所测量的特定属性或属性,它可以是数量变量(比如身高、体重)也可以是分类变量(比如性别、职业)。

数据类型包括定量数据和定性数据,定量数据是指其取值可以进行数值运算,定性数据是指其取值为某种类别或符号。

3.测度尺度在统计学中,我们通常将变量分为不同的测度尺度,包括名义尺度(仅仅表示事物标识的意义)、顺序尺度(表示顺序关系)、区间尺度(表示等距关系)和比率尺度(表示等比关系),不同的尺度对于统计分析的方法和技术有重要的影响。

4.概率概率是描述不确定事件发生可能性的一种数值。

在统计学中,我们通过概率来对随机事件进行描述和预测,并且使用统计概率来进行统计推断。

5.统计量统计量是指从样本数据中计算得到的数值指标,比如均值、方差、标准差等。

统计量可以帮助我们从样本数据中获取总体特征的信息,并且在假设检验、参数估计等统计推断中起到重要的作用。

6.概率分布在统计学中,我们通常通过概率分布来描述随机变量的取值概率规律。

常见的概率分布包括正态分布、均匀分布、指数分布等,它们在统计分析中都有重要的应用。

7.统计推断统计推断是指根据样本数据对总体特征进行推断的一种方法。

它包括参数估计和假设检验两种基本方法,通过这些方法,我们可以对总体参数进行估计和推断。

8.统计学的应用统计学在科学研究、社会调查、市场调查、生物医学等领域都有重要的应用,它可以帮助我们从数据中获取信息,揭示事物规律,为决策提供依据。

二、常用的统计方法和分析技术1.描述统计描述统计是指通过对数据的整理和描述来获取数据特征的一种方法。

常见的描述统计方法包括均值、中位数、众数、标准差、方差等指标,它们可以帮助我们了解数据的集中趋势和离散程度。

统计的基本概念与性质总结

统计的基本概念与性质总结

统计的基本概念与性质总结统计学是一门研究数据收集、分析和解释的学科,它在各个领域都发挥着重要的作用。

在统计学中,有许多基本概念和性质,对于我们理解统计学的原理和应用非常重要。

本文将对统计学的基本概念与性质进行总结。

一、总体和样本在统计学中,总体是指研究对象的全体,样本是从总体中选取的一部分个体。

总体和样本是统计学中的基本概念。

在实际应用中,由于获取总体数据困难或成本过高,我们常常会从总体中随机抽取样本进行研究。

二、参数和统计量参数是用来描述总体特征的数值,统计量是用来描述样本特征的数值。

参数和统计量是统计学中的重要概念。

参数可以通过样本统计量的估计得到。

三、测量尺度测量尺度是指用于度量和描述变量特性的标准或方法。

常见的测量尺度包括名义尺度、顺序尺度、间隔尺度和比率尺度。

不同的测量尺度适用于不同类型的变量,对于统计分析的正确性有重要影响。

四、频数和频率频数是某一数值在样本或总体中出现的次数,频率则是频数除以总体或样本的大小。

频数和频率可以帮助我们理解数据的分布情况,对于描述和比较数据具有重要作用。

五、平均数、中位数和众数平均数是一组数据的算术平均值,中位数是数据按大小顺序排列后中间的数值,众数是数据中出现次数最多的数值。

这三个统计量可以帮助我们了解数据的集中趋势,是常用的描述性统计量。

六、标准差和方差标准差和方差是衡量数据离散程度的统计量。

标准差是方差的正平方根,它们表示了数据的分散程度。

标准差和方差越大,数据越分散;反之,数据越集中。

七、相关性和回归分析相关性和回归分析是用于研究变量之间关系的统计方法。

相关性分析可以衡量两个变量之间的线性关系强度,回归分析则可以通过建立数学模型预测一个变量对另一个变量的影响。

八、假设检验假设检验是用于检验统计推断的方法。

它通过对样本数据进行统计推断,判断总体参数是否与某个预先设定的值相符。

假设检验可以帮助我们做出对总体的推断和决策。

九、抽样误差与置信区间抽样误差是由于样本数量有限而引入的误差,置信区间则是对总体参数取值范围进行估计。

统计学的几个基本概念

统计学的几个基本概念

1.统计总体与总体单位
统计总体是根据统计研究的任务⽬的所确定的研究事物的全体,是客观存在的具有共同性质的个体所构成的整体。

构成统计总体的个体单位称总体单位。

随着统计研究任务、⽬的及范围的变化,统计总体和总体单位可以相互转化。

2.标志与标志表现
标志是说明总体单位所共同具有的属性和特征的名称。

标志有品质标志和数量标志之分。

标志表现即标志特征在各单位的具体表现。

如果说标志是统计所要调查的项⽬,那么标志表现是调查所得结果,标志的实际体现。

标志表现有品质标志表现和数量标志表现之分。

3.变异与变量
可变标志的标志表现由⼀种状态变到另⼀种状态,统计上把这种现象或过程称变异。

不变的数量标志称常量或参数。

可变的数量标志和所有的统计指标称变量。

变量的数值表现称变量值,即标志值或指标值。

变量按其数值是否连续可分为连续性变量和离散性变量。

4.统计指标和指标体系
统计指标是反映社会经济现象总体综合数量特征的科学概念或范畴。

统计指标按其反映的数量特点不同可分为数量指标和质量指标。

统计指标体系是各种互相联系的指标群构成的整体,⽤以说明所研究的社会经济现象各⽅⾯互相依从和互相制约的关系。

指标和统计标志的主要区别是:
①指标是说明总体特征的,标志是说明总体单位特征的;②指标具有可量性,⽽标志不⼀定。

标志和指标的主要联系表现在:
①指标值往往由数量标志值汇总⽽来;②在⼀定条件下,数量标志和指标存在着变换关系。

统计学的基本概念和原理

统计学的基本概念和原理

统计学的基本概念和原理统计学是一门研究数据收集、分析和解释的学科。

通过运用数学和统计方法,统计学帮助我们理解和描述数据,揭示数据之间的关系,并从数据中获取有关现象和问题的信息。

本文将介绍统计学的基本概念和原理,帮助读者了解其核心内容。

一、统计学的定义和作用统计学可以被定义为一种通过数据的收集、整理、分析和解释来研究和描述现象的科学方法。

它对于我们理解和解释现实生活中的问题和现象至关重要。

统计学通过量化和总结数据,帮助我们从海量信息中提取有意义的结论。

二、统计学的基本概念1. 总体和样本:在统计学中,总体是指我们要研究的整体群体,而样本则是从总体中抽取出的一部分个体。

通过从样本中收集数据并进行分析,我们可以对整体总体进行推断。

2. 变量:变量是指在研究中可能会发生变化的属性或特征。

变量可以分为定性变量和定量变量。

定性变量是具有类别或标签的变量,例如性别、颜色等。

定量变量则是可以进行数值化衡量的变量,例如年龄、身高等。

3. 观测和测量:观测和测量是指对变量进行数据收集的过程。

观测是指直接观察并记录数据,例如观察某人的行为。

测量是指使用测量工具对变量进行量化,例如使用尺子测量身高。

4. 描述统计学和推论统计学:描述统计学是指通过对数据进行整理、总结和描述,来了解数据的特征和结构。

推论统计学是指通过从样本推断总体特征的过程,通过利用样本的信息来推断总体的参数。

三、统计学的原理1. 概率:概率是统计学中一个重要的概念,它描述了事件发生的可能性。

概率可以帮助我们理解和预测事件的结果,并在统计推断中起到重要的作用。

2. 样本的代表性:在统计学中,样本的代表性是指样本能够准确地反映总体的特征。

为了保证样本的代表性,我们需要进行随机抽样,并确保样本的大小足够大。

3. 统计推断:统计推断是指通过从样本中获得的信息,对总体进行统计学上的推断。

统计推断的核心方法是利用概率和抽样理论来进行参数估计和假设检验。

4. 假设检验:假设检验是统计学中的一种方法,用于检验关于总体参数的假设是否成立。

什么是统计学?

什么是统计学?

什么是统计学?统计学是一门研究如何收集、分类、分析和解释数据的科学。

它的诞生可以追溯到19世纪初,最初目的是在天文学和管理学领域中支持决策制定。

随着科技的发展和数据的大量产生,统计学逐渐被应用于更广泛的领域,如医学、经济学、社会学、心理学等。

下面,我们将逐一揭开统计学的奥秘。

一、基本概念统计学的基本概念包括总体、样本、变量、统计量和假设检验等。

1. 总体和样本总体是指研究对象的全体,而样本是从总体中随机抽取的一部分。

样本可以代表总体,但不一定完全准确。

研究中,我们经常需要对总体进行推断,但由于无法对总体进行直接观察和测量,因此必须通过样本进行推断。

2. 变量变量是指研究对象的某些属性或特征,可以是数值型或非数值型。

数值型变量可以进一步分为离散型和连续型,非数值型变量可以分为名义型和有序型。

变量是统计学中最基本的概念之一,因为所有的统计分析都依赖于变量。

3. 统计量和假设检验统计量是对样本数据加以计算后得出的指标,如均值、标准差、相关系数等。

假设检验是一种统计方法,用于检查一个假设是否成立。

通常会设立一个零假设和一个备择假设,然后通过检验统计量与临界值的大小关系,来判断零假设是否成立。

二、统计学的方法统计学的方法可以分为描述统计和推论统计。

1. 描述统计描述统计是对数据进行描述、总结和展示的方法,主要包括频数分布表、直方图、饼图、条形图、箱线图等。

这些图表可以直观地反映数据的分布情况、中心位置和离散程度等。

2. 推论统计推论统计是从小样本数据中推断总体参数的方法,主要包括参数估计和假设检验。

在参数估计中,通过样本数据对总体某个参数的取值进行估计,并给出相应的置信区间。

在假设检验中,通过样本数据对某个假设的真伪进行检验。

三、应用领域统计学广泛应用于各个领域,下面我们来看看其中几个典型的应用领域。

1. 医学在医学研究中,统计学的应用非常广泛。

例如,通过对临床试验数据进行分析,可以确定药物的疗效和副作用;通过对流行病学数据进行分析,可以揭示疾病的流行规律和影响因素。

统计学 基本概念

统计学 基本概念

1.3 基本概念(4)
总体和样本
样本(sample)是指在研究总体中随机抽出一部分 个体进行观察或测量,这些个体的测量值构成 的集合。 A sample is a part of the population that we actually examine in order to gather information.
伯努利(Jacob Bernoulli,1654-1705),道德确定性(moral certainty)
1.3 基本概念(15)
随机
总体
抽样
同质、个体变异
样本
代表性、抽样误差
总体参数
未知
样本统计量已
统计 推断

风险
1.4资料的分类(1)
(1) 定量资料(quantitative data) (2) 定性资料(qualitative data) (3) 等级资料(ranked data)
1.3 基本概念(8)
抽样误差(sampling error)
由抽样引起的样本统计量与总体参数间的 差别。
原因:个体变异+抽样 表现:
样本统计量与总体参数间的差别 不同样本统计量间的差别
抽样误差是有规律的!
1.3 基本概念(9)
概率
1.随机事件 :随机现象的某个可能观察结果称 为一个随机事件 。
描述总体特征的有关指标,称为参数 (parameter) 反映样本特性的有关指标,称为统计量 (statistics)
总体 样本
平均身高μ 总体参数
平均身高 x 样本统计量
1.3 基本概念(7)
总体参数 未知的,固有的,不变的!
样本统计量 已知的,变化的,有误差的!

初步了解统计学基本概念

初步了解统计学基本概念

初步了解统计学基本概念统计学是一门研究数据收集、分析和解释的学科。

在现代社会中,统计学广泛应用于各个领域,包括科学研究、商业决策、社会调查等。

对于初学者来说,了解统计学的基本概念是非常重要的。

本文将介绍统计学的基本概念,包括样本和总体、变量、测量尺度以及常见的统计图表。

一、样本和总体统计学中的样本和总体是两个重要的概念。

总体是指研究对象的全体,而样本是从总体中选取的一部分。

通过对样本的研究和分析,我们可以推断出关于总体的信息。

例如,如果我们想要了解某个国家的人口平均年龄,我们可以选择一部分人口作为样本,通过对样本的调查和统计分析,推断出总体的平均年龄。

二、变量在统计学中,变量是指研究对象在某个属性上具有不同取值的特征。

变量可以分为两类:定性变量和定量变量。

定性变量是指在某个属性上只能分为几个类别,例如性别、学历等;定量变量是指在某个属性上可以进行具体数值的度量,例如身高、体重等。

了解变量的类型对于选择适当的统计方法和分析工具非常重要。

三、测量尺度测量尺度是衡量变量属性的方式。

常见的测量尺度包括名义尺度、顺序尺度、区间尺度和比率尺度。

名义尺度是最简单的一种尺度,用来表示分类变量之间的差异,例如性别、学历等。

顺序尺度表示变量之间有一种顺序关系,但不具备等距性质,例如教育程度高低的评级。

区间尺度表示变量之间有等距关系,并且可以进行加减运算,例如温度计。

比率尺度是最完备的一种尺度,除了具备区间尺度的特性外,还可以进行乘除运算,例如年龄、身高等。

四、统计图表统计图表是一种可视化的方式,用来展示数据的分布和关系。

常见的统计图表包括直方图、饼图、折线图和散点图。

直方图可以用来表示定量变量的分布情况,例如某地区人口年龄结构。

饼图则适用于表示分类变量的比例关系,例如某班级男生和女生比例。

折线图可以用来表示一段时间内变量的变化趋势,例如某公司销售额的月度变化。

而散点图则用于表示两个变量之间的相关关系,例如身高与体重之间的关系。

统计学中的一些基本概念和重要公式

统计学中的一些基本概念和重要公式

2
n
1S 2
2
49.两个总体方差的检验统计量 :
F
S12
S
2 2
50.拟合优度检验统计量: 2 k fi ei 2 , df k 1
i 1
ei
51.独立假设条件下列联表的期望频数:
eij
RTi CTj n
第i行之和 第j列之和 样本容量
独立性检验统计量:
2
fij
eij
2
, df
S n
34.估计时所需的样本容量:
n
Z2 2
2
2
35.总体比率P的区间估计p Z 2
p (1 p ) n
36. p的区间估计时所需的样本容量n
Z2
2
p (1 2
p )
37.大样本总体均值的检验统计量 :
方差已知: Z X , / n
方差未知: Z X
S/ n
38.小样本总体均值的检验统计量: t X , df n 1
p1 p 2
p1(1 p1) p 2 (1 p 2 )
n1
n2
45.两个总体比率之差的区间估计:
大样本n1 p1, n1(1 p1),n2 p2 , n2 (1 p2 ) 5时,
p1 p 2 Z S p1 p 2
2
46.两个总体比率之差的检验统计量:
Z p1 p 2 p1 p2
S/ n 39.总体比率检验统计量: Z p p0
p0 (1 p0 ) n
40.总体均值的单侧检验中所需样本容量:
n
Z
0
Z 2
1 2
2
, 用Z
2代替Z即为双侧检验的公式
41.独立样本时,两个总体均值之差的点估计量: X1 X 2

统计学的基本概念简介

统计学的基本概念简介

统计学的基本概念简介统计学是一门研究数据收集、分析和解释的学科,是现代科学和社会科学的基石之一。

统计学主要包括描述统计学和推断统计学两个方面,通过运用数学和概率论的方法,为我们提供了一种了解和解释现象、做出决策的有效工具。

统计学的基本概念包括如下几个方面:1. 总体和样本:统计学的研究对象是总体,即研究对象的全体;而样本是从总体中选取出来的一小部分,用来代表和推断总体的特征。

2. 变量:统计学关注的是可变动的特征,即变量。

变量可以是定量的,如身高、体重等;也可以是定性的,如性别、颜色等。

通过对变量进行测量和观察,我们可以得到有关总体的信息。

3. 数据收集:统计学的一个重要环节是数据的收集。

数据可以通过调查问卷、实验观察、统计报表等方式获得。

数据的质量和多样性对统计学的分析和结论的准确性至关重要。

4. 描述统计学:描述统计学是统计学的第一步,它通过图表、表格、平均值、方差等指标对数据进行整理、概括和描述。

描述统计学为我们提供了全面了解数据的手段,可以对数据的分布、中心趋势和变异程度等进行定量描述。

5. 参数和统计量:参数是总体特征的度量,统计量是样本特征的度量。

通过对样本进行分析和推断,我们可以估计出总体的参数,进而研究和理解总体的特征。

6. 概率:概率是统计学的重要概念之一,它用来描述事件发生的可能性。

概率可以从频率或主观信念等角度来定义。

概率论提供了统计学推断和决策的理论基础,可以帮助我们评估风险、做出合理的决策。

7. 推断统计学:推断统计学是在样本数据的基础上对总体进行推断的学科。

推断统计学通过抽样方法和概率理论,从样本的统计量出发,通过假设检验、置信区间等方法,对总体特征进行估计和推断,从而对总体做出有关性质、差异、关联等方面的推断。

统计学的应用广泛,几乎涉及到所有学科领域,如自然科学、社会科学、商业管理等。

在自然科学中,统计学可以帮助我们分析天气变化、疾病传播、物种分布等问题;在社会科学中,统计学可以帮助我们研究人口统计、调查数据、社会经济等问题;在商业管理中,统计学可以帮助我们分析市场需求、销售趋势、风险评估等问题。

统计学的基本概念

统计学的基本概念

统计学的基本概念
1. 数据:指收集到的一系列数值、文字、图像等信息。

2. 变量:是指研究对象在某个方面表现的特定属性或性质,其数值可以随时间、地点、人群等因素的不同而发生改变。

变量按照度量的方式可分为分类变量和数值变量。

3. 总体:指研究对象的全体,可以是个人、群体、物品等。

4. 样本:是总体的一个部分或代表,用来代表总体的特征。

通常用于分析和测试,以得出总体的性质。

5. 概率:指某一事件发生的可能性,通过计算概率可以得出准确的可信度。

6. 假设检验:是指利用样本数据推断总体数据的方法,通过统计学的方法来判断样本数据是否能代表总体数据,从而得出结论并进行验证。

7. 抽样:是指从总体中随机抽取一部分数据进行研究和分析,通常采用随机抽样或分层抽样等方法。

统计的三组基本概念

统计的三组基本概念

统计的三组基本概念统计学作为一门研究数据统计和分析的学科,涉及到许多基本概念。

在本文中,我将为您介绍统计学的三个基本概念:样本、总体和统计量。

首先,样本是从总体中选取的一部分观察对象的集合。

在统计学中,我们通常无法对整个总体进行研究,因此需要从总体中抽取样本进行研究和分析。

样本的选择需具有代表性,以使得研究结果能够推广到总体上。

例如,在研究某个城市的人口分布时,我们可以随机选取一部分居民作为样本,通过对样本的观察和调查来推断整个城市的人口分布情况。

其次,总体是指研究对象的全体,也称为统计总体。

总体可以是具体的个体、物品、事件或现象的集合,也可以是某种特征的所有可能取值的集合。

在实际统计研究中,总体往往是庞大且难以完全观察的,因此我们需要通过对样本的研究来推断总体的特征。

例如,如果我们想要了解全球人口的平均寿命,由于无法对全球所有人口进行调查,我们可以通过对一部分国家或地区的样本进行调查和分析,来推断全球人口的平均寿命。

最后,统计量是通过对样本数据的计算得到的一种数值特征。

统计量可以用来描述和度量总体的某个特征。

常见的统计量包括平均数、标准差、相关系数等。

通过对样本统计量的研究,我们可以对总体的特征进行推断。

例如,如果我们想要了解某个地区的平均收入水平,可以通过对该地区的一部分居民进行调查,计算得到样本的平均收入水平,从而推断整个地区的平均收入水平。

综上所述,样本、总体和统计量是统计学中的三个基本概念。

样本是从总体中选取的一部分观察对象的集合,总体是研究对象的全体,统计量是通过对样本数据的计算得到的一种数值特征。

通过对样本的研究和推断,我们可以了解和描述总体的特征。

统计学的应用十分广泛,对于科学研究、经济分析、社会调查等领域都具有重要意义。

统计学的基本概念

统计学的基本概念
质量的统计指标(用相对数和平
均数表示)
例如,粮食平均亩产、员工平均工资、 人口密度、出生率、死亡率、出勤率8等
按表 现形 式不
同分
绝对数指标——总量指标,反映现象总体规 模、总体水平的统计指标, 说明现象的广度
相对数指标——相对指标,两个相联系的指 标之比
平均数指标——平均指标,反映事物一般水 平
标志与指标 既有联系又有区别
区别: ①标志是说明总体单位特征的;指标是说明总体特 征的。 ②标志中的品质标志不能用数量表示;而所有的指 标都能用数量表示。
③标志(指数量标志)不一定经过汇总,可直接取得; 而指标(指数量指标)一定要经过汇总才能取得。
④标志一般不具备时间、地点等条件;但完整的统计 指标一定要讲明时间、地点、范围。
固定资产、存货、其他生产资产、土地和地下 资产、其他非生产资产、各种金融资产 各种金融负债 资产净值、国民财富 人口数、劳动适龄人口数、劳动力资源、就业 劳动力、失业劳动力

专家建议:构建循环经济统计 指标体系。
该套统计指标体系拟由国民生 产、国际贸易、产业结构、资 源利用、人民生活、生态修复 和和谐社会等7组共52项指标 组成。
补充——变量

确定性变量是受确定性因素影响的变量,即
影响变量值变化的因素是明确的,是可解释和可
控制的。

随机变量则是受许多微小的不确定因素(又
称随机因素)影响的变量。变量的取值无法事先
确定。


社会经济现象既有确定性变量也有随机变量。
统计学所研究的主要是随机变量。
5 统计指标体系
研究社会经济现象的一系列相互联系 的统计指标称为统计指标体系。
2.同质性:构成总体的各总体单位 必须在某一个方面具有相同的性质。

统计学基本概念

统计学基本概念

不同类型变量间关系
例:一组2040岁成年人的血压 <8 8 12 17 低血压 正常血压 轻度高血压 重度高血压
定量变量
定序变量
15 中度高血压
以12kPa为界分为正常与异常两组
定类变量
俱乐部: 休斯顿火箭 健康状况: 良好
分类 顺序 数值 数值
精 确

出生年份: 1980

体重: 134公斤
定序数据
定距数据
定比数据
定性数gorical
定量数据 定量变量 Numerical
(二)统计数据的类型
统计数据的类型
按测量尺度
定 类 数 据 定 序 数 据 数 值 型 数 据
按收集方法
观 测 数 据 实 验 数 据
按时间状况
截 面 数 据 序 时 数 据
二、变量(variable)
1、什么是变量? A VARIABLE is a characteristic of interest for the elements 说明研究对象某种特征的概 念; 我们给所要研究的事物起的名 字。
2、特点:



从一次观察到下一次 观察,该特征会呈现 出差别或变化; 从一个个体到另一个 个体,该特征会呈现 出差别或变化; 不能用一个常数来表 示。
(二)统计数据的类型



按测量尺度,数据可以分为定类/分类/名义数据 (nominal、 categorical data)、定序/顺序数据 (Ordinal、rank data)、数值型数据(metric data) ; 按数据的收集方法,可以将其分为观测数据 (observational data)和实验数据 (experimental data)。 按时间状况,统计数据可分为截面数据(crosssectional data)和时间序列数据(time series data)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变异
⏹同质~性质相同。

是指基本条件相同
变异~同质事物之间的差异。

是指不同的个体在相同的条件下,对外界环境因素的反应不同
⏹总体Population:根据研究目的所确定的同质观察单位的全体;
⏹个体Individual:是构成总体的最基本观察单位;
⏹根据随机化原则有总体中随机抽取部分个体组成总体的过程
⏹样本Sample:是从总体中按照一定的目的随机抽取的一部分个体。

为什么要抽样?
⏹样本含量Sample Size:样本中包含的个体个数。

抽样原则
一个样本应具有:
“代表性(representative)”
“随机性(randomization)”
“可靠性(reliability)”
如果进行两个或多个样本之间的比较,要求:每二个样本之间应具有:可比性(comparable) 可比性是指处理组(临床设计中称为治疗组)与对照组之间,除处理因素不同外,其他可能影响实验结果的因素要求基本齐同,也称为齐同对比原则。

误差(error)
⏹系统误差(system error)
⏹由于固定的原因(常见实验条件),影响资料的准确性。

可以克服。

⏹随机测量误差(random measurement error)
⏹由于偶然的因素造成同一对象多次测量结果的差异。

可控制但不可
消除。

应采取措施,尽最大可能在一定的允许范围内
抽样误差(sampling error)
抽样的原因造成统计量与总体参数或不同样本统计量之间的差异。

原因:①个体变异②抽样
抽样误差,对它要用统计方法进行正确分析
概率
⏹概率有古典概率与统计概率之分,
⏹医学上常用的是统计概率f/N
⏹必然事件,概率为1
⏹不可能事件,概率为0
⏹小概率事件,P≤0.05 或P≤0.01
⏹常把P≤0.05 作为事物差别有统计学意义的界限,。

相关文档
最新文档