材料力学第六章

合集下载

材料力学第六章 截面的几何性质惯性矩

材料力学第六章 截面的几何性质惯性矩

IP
2dA
A
(y2
A
z2 )dA
IZ
Iy.
返回 下一张 上一张 小结
第三节 惯性矩和惯性积的 y1dA (y a)2 dA A
y2dA 2a ydA a2 dA
I z1 z a2 A; y1 y b2 A;
2dA
A
(y2
A
z2 )dA
IZ
Iy.
Izy
z y dA;
A
五、平行移轴公式:
I z1 z a2 A; y1 y b2 A;
I z1y1 I zy abA;
返回 下一张 上一张 小结
六、主惯性轴和主惯性矩: 主惯性轴(主轴)—使 I zoyo 0 的这对正交坐标轴; 主惯性矩(主惯矩)—截面对主惯性轴的惯性矩; 形心主惯性轴(形心主轴)—通过形心的主惯性轴; 形心主惯性矩(形心主惯矩)—截面对形心主轴的惯性矩。
I z1y1 I zy abA;
注意: y、z轴必须是形心轴。
二、转轴公式:
Iz1
A y12dA
( y cos z sin)2 dA;
A
I z1
Iz
Iy 2
Iz
Iy 2
cos 2
I zy
sin 2;
I y1
Iz
2
Iy
Iz
2
Iy
cos 2
I zy
sin 2;
I z1y1
Iz
Iy 2
三、惯性积:
定义:平面图形内, 微面积dA与其两个坐 标z、y的乘积zydA在整个图形内的积分称为 该图形对z、y轴的惯性积。
Izy
z y dA;
A
特点: ①惯性积是截面对某两个正交

材料力学06(第六章 弯曲应力)分析

材料力学06(第六章 弯曲应力)分析

F / 4 2 103 mm 134 mm
30 MPa 5493104 mm4
F 24.6 kN
因此梁的强度由截面B上的最大拉应力控制
[F] 19.2 kN
§6-3 梁横截面上的切应力•梁的切应力强度条件
Ⅰ、梁横截面上的切应力
分离体的平衡
横截面上切应力 分布规律的假设
横截面上弯曲切 应力的计算公式
二.工字形截面梁 1、腹板上的切应力
h
d
y
d
O
y b
O
' A*
y dA
FS
S
* z
Izd
S
* z
bd
2
h
d
d 2
h 2
d
2
y2
腹板与翼缘交界处
max
min
FS Izd
bd

h d
max O
中性轴处
max
FS
S
* z,m
ax
Izd
y
min
FS
bd
h
d
d
h
d
2
I z d 2
160 MPa 148 MPa
2
Ⅲ 梁的正应力强度条件
max 材料的许用弯曲正应力
中性轴为横截面对称轴的等直梁
M max
Wz
拉、压强度不相等的铸铁等脆性材料制成的梁
为充分发挥材料的强度,最合理的设计为
t,max
M max yt,max Iz
[
t]
c,max
M max yc,max Iz
Myc,max Iz
典型截面的惯性矩与抗弯截面系数 ( d D)
b

材料力学第六章静不定

材料力学第六章静不定

FHale Waihona Puke 5、列补充方程将物理方程代入几何方程得补充方程
材料力学
.
6
FN2l2FN3l3FN1l1cos
E2A2 E3A3 E1A1
解得
FN1
1
F 2E2A2l1
cos2
E1 A1l2
FN2 FN3 2cosE F2A E21l1 Ac1lo2s
材料力学
.
7
OAB为刚性梁,写几何方程。
450


O
A
B
l
l1 l l2
l
OAB为刚性梁, ①、②两杆材料相同, 抗弯刚度相等,求两杆轴力之比。
F

F
O
B l1 C
bA
l2 sin 45o
2l1

l
l
l
EAsF in N 1 2 clos2EAsiF nN b2closb
FN1 sin 2 FN2 sin 2b
l1 2 l2
sin sin b
l1F E N A 1(co 2 sl), l2F E N A 2(colsb)
材料力学
.
8
OAB为刚性梁,①、②两杆材料相同,
EA2=2EA1。求②杆与①杆的应力之比。
解:变形协调关系
O
l2 sin 450
2l1
即 l2 2l1
450


a
A l1
a
l2
B
F
由物理关系建立补充方程,考虑对O取矩得平衡方程,联 立求出两杆轴力,再求应力后得结果。
小技巧
2
l2 l2
2l1 2l1
变形协调方程 。

材料力学第六章 弯曲变形

材料力学第六章 弯曲变形

4
2
C
B
)
=
A
( A)q C
l q
( B )q
(b)
B
( wC )q
l
θ B ( θ B )q ( θ B ) M e
+
Me
(c)
Mel ql 24 EI 6 EI
3
A
B
( B ) M e
( A ) MC ( wC ) M
e
e
l
例题3
AB梁的EI为已知,求梁中间C截面挠度.
F1l 2 F2 la 0.4 400 200 B ( ) 16 EI 3 EI 210 1880 16 3 +0.423 10-4 (rad)
F1l a F2a F2a l wC 5.19 106 m 16 EI 3 EI 3 EI wmax w (3)校核刚度: l l
x A
dx
F
x
C' dω

B
d tg dx
二、挠曲线的微分方程
1.纯弯曲时曲率与弯矩的关系
M EI
1
横力弯曲时, M 和 都是x的函数.略去剪力对梁的位移的影 响, 则
1 M ( x) ( x) EI
2.由数学得到平面曲线的曲率
F
1 | w | 3 2 2 ( x) (1 w )
q
A x B
w w F wq


+
w wF wq
例1 已知:EI, F,q .求C点挠度 F q
A
C a a
B
Fa 3 ( wC )F 6 EI

材料力学第6章弯曲变形

材料力学第6章弯曲变形
Fb M2 x2 F ( x2 a ) l
M1 EIw1
Fb x1 l
2 x1
" EIw2
Fb M2 x2 F ( x2 a ) l
2 x2 2
EIw1
Fb C1 l 2
x2 a Fb F C2 (i) EIw2 l 2 2
工学院
§6.2 挠曲线的微分方程
纯弯曲情况下,弯矩与曲率 间的关系(5.1):
M EI
1
--(a)
横力弯曲时,梁截面上有弯矩也有剪力,对于跨 度远大于截面高度的梁,剪力对弯曲变形的影响可以 省略,(a)式便可以作为横力弯曲变形的基本方程。其 中,M和1/ρ都是x的函数。
工学院
§6.2 挠曲线的微分方程




(o) (p)
CB段 (a x2 l )
Fb 2 3l 2 2 2 l b 3 x ( x a ) 2 2 6l b Fb 2 l 2 2 3 EIw2 l b x x ( x a ) 2 2 6l b 2 EIw2
车床主轴的变形过大会影响 齿轮的啮合和轴承的配合, 造成磨损不匀,产生噪音, 降低寿命以及影响加工精度。
工学院
§6.1 工程中的弯曲变形问题
吊车梁的变形过大,会 使梁上小车行走困难, 出现爬坡现象,还会引 起较严重的振动。
变形超过允许数值,即 使在弹性范围内,也被 认为是一种失效现象。
工学院
§6.1 工程中的弯曲变形问题
l
2
b
2

3
工学院
§6.3 用积分法求弯曲变形—实例3
7). 讨论
上面得到最大挠度表达式为: 3 1 Fb 2 2 wmax l b 9 3 EIl

材料力学-第六章

材料力学-第六章

第15单元第六章 弯曲变形§6-1 引言应用:梁的刚度问题,静不定梁,压杆稳定挠曲轴:变弯后的梁轴(当外力位于梁对称面内时,挠曲线为平面曲线)。

挠度()y x : 横截面形心的位移 转角()θx :横截面绕中性轴的转角挠曲轴方程:()y y x = (挠曲轴的解析表达式)()tg dy dxy x θ=='()θθ≈='tg y x(通常θ<︒1=0.01745弧度)§6-2 梁变形基本方程目的:求()y x ,()()[]θx y x =' 途径:建立微分方程求解 一、挠曲轴微分方程1.中性层曲率表示的弯曲变形公式()1ρ=M x EI(其中M 可以通过弯矩方程表示为x 的函数,ρ为曲率半径,它可由'y 和''y 表示) 2.由数学()11232ρ=±''+'y y3.挠曲轴微分方程()()±''+'=y y M x EI1232(1) 4.方程简化,挠曲轴近似微分方程 小变形,()'≈<y θ0.0175(弧度)'<<y 21112+'≈y ((1)式分母等于1)正负号确定——确定坐标系:y 向上''>y 0(从数学) ''<y 0M >0(本书规定) M <⇒选正号()∴''=y M x EI二、积分法计算梁的变形()θ='=+⎰y M x EI dx C()y M x EIdx Cx D =++⎰⎰C 、D 为积分常数,它由位移边界与连续条件确定。

三、位移边界与连续条件边界条件:固定端 y A A ==00,θ 固定铰,活动铰 0,0==F E y y 自由端:无位移边界条件 连续条件 y y C C C C 左右左右===00θθy y y y B BG G G G 左右左右左右===θθ例1:()M x M =0,()''=y x M EI 0()()θ='=+y x M EI x C 0()y x M EIx Cx D =++022由()()y D y C 00000=='==()()∴==y x M EIxx M EIx022θ例2:求挠曲轴微分方程AB 段: BC 段''=y M EI x l 10 ''=-⎛⎝ ⎫⎭⎪y M EI x l201y M EI x lC xD =++03116 y M EI x l x C x D =-⎛⎝ ⎫⎭⎪++0322262边界和连续条件()y 100= ()y l 20=y l y l 1222⎛⎝ ⎫⎭⎪=⎛⎝ ⎫⎭⎪(连续条件)'⎛⎝ ⎫⎭⎪='⎛⎝ ⎫⎭⎪y l y l 1222 (光滑条件)四个方程定4个常数()()y x M x lEI x l 1022244=- ()()y x M x l EIl2024=-例3:1.画剪力弯矩图2.列挠曲线的位移和连续条件3.画挠曲线大致形状(注明凹凸性与拐点) 位移与连续条件 A :()y 100= B:()()()()a y a y a y a y 2121'='=,C:()()020232==a y a y ,()()a y a y 2232'=' D:无挠曲线大致形状的画法 (1)根据弯矩图定凹凸性, +→⋃-→⋂,(2)弯矩图过零点处为拐点 (3)支座限定支座处的位移§6-3 计算梁位移的奇异函数法奇异函数法仍属积分法。

材料力学第六章

材料力学第六章

§6-1 一、多跨静定梁 3.求解变形:
其它平面弯曲构件的内力与变形
1)宜采用叠加法;
2)先求主梁的变形: 在自身载荷及中间铰处次梁作用力的共同作用 下变形。
3)再求次梁的变形: 主梁变形引起次梁的刚性转动;
简化成简支梁或外伸梁的次梁在自身载荷作用 下的变形;
§6-1
其它平面弯曲构件的内力与变形
a
Fz
B
a
Fy y
10
解:外力沿形心主轴分解: F F y F cosa A点最大拉应力(B点最大压应力) F F sina z F y l | y A | Fz l | z A | sA 60.7 MPa Iz Iy
§6-4
开口薄壁杆的弯曲切应力与弯曲中心
一、产生平面弯曲的条件
)
F
§6-1
a A
F B
其它平面弯曲构件的内力与变形
y
x Fa A B
b
C
F
C
例6-3 作图示刚架内力图,并求A截面的 转角、水平和铅垂位移(抗弯刚度为EI)。 2)求A点转角、水平和铅垂位移: 再将AB刚化,BC解除刚化,F由 A点简化到B点 Fab q B " ( ) EI 2 在B点产生qB"、 Fab xB"为 x B " ( ) 2 EI BC变形引 q A " q B " Fab ( ) EI 2 起A点刚性 Fab ( ) 转动产生的 x A " x B " 2 EI2 qA"、xA"、 Fa b y A " q B "a ( ) yA " EI
y、z为形心主轴,F平行y轴,通过弯心A; Fx 0 :FN 2 FN1 t 'tdx 0 * * * * F S M z dMM ( M d M ) S M S d M S z z z z zz z z z z Qy FN 2 y d A s d A y d A t t ' 1 A AA I z I z dx I z t I zII t zz

材料力学知识点

材料力学知识点

第六章弯曲变形知识要点1、弯曲变形的概念1)、挠曲线弯曲变形后梁的轴线变为挠曲线。

平面弯曲时,挠曲线为外力作用平面内的平面曲线。

2)、平面弯曲时的变形在小变形情况下,梁的任意二横截面绕各自的中性轴作相对转动,杆件的轴线变为平面曲线,其变形程度以挠曲线的曲率来度量。

1》纯弯曲时,弯矩—曲率的关系(由上式看出,若弯曲刚度EI为常数则曲率为常数,即挠曲线为圆弧线)2》横力弯曲时,弯矩—曲率的关系3)、平面弯曲时的位移1》挠度2》转角挠度和转角的正负号由所选坐标系的正方向来确定。

沿y轴正方向的挠度为正。

转角的正负号判定规则为,将x轴绕原点旋转90°而与y轴重合,若转角与它的转向相同,则为正,反之为负。

4)、挠曲线近似微分方程5)、受弯曲构件的刚度条件,2、积分法求梁的挠度和转角由积分常数C、D由边界条件和连续性条件确定。

对于梁上有突变载荷(集中力、集中力偶、间断性分布力)的情况,梁的弯矩M(x)不是光滑连续函数,应用上式时,应分段积分,每分一段就多出现两个积分常数。

因此除了用边界条件外,还要用连续性条件确定所有的积分常数。

边界条件:支座对梁的位移(挠度和转角)的约束条件。

连续条件:挠曲线的光滑连续条件。

悬臂梁边界条件:固定端挠度为0,转角为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等简支梁边界条件:固定绞支座或滑动绞支座处挠度为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等连接铰链处,左右两端挠度相等,转角不等3、叠加原理求梁的挠度和转角1)、叠加原理各载荷同时作用下梁任一截面的挠度和转角等于各个载荷单独作用时同一截面挠度和转角的代数和。

2)、叠加原理的限制叠加原理要求梁某个截面的挠度和转角与该截面的弯矩成线性关系,因此要求:1》弯矩M2》4、弯曲时的超静定问题——超静定梁1)、超静定梁约束反力数目多于可应用的独立的静力平衡方程数的梁称为超静定梁,它的未知力不能用静力平衡方程完全确定,必须由变形相容条件和力与变形间的物理关系建立补充方程,然后联立静力平衡方程与补充方程,求解所有的未知数。

材料力学第六章弯曲应力

材料力学第六章弯曲应力

但相应的最大弯矩值变为
Fl ql2
M max
4
8
375 kN m 13 kN m 388 kN m
而危险截面上的最大正应力变为
max
388103 N m 2342106 m3
165.7106
Pa
165.7
MPa
显然,梁的自重引起的最大正应力仅为
165.7 160 MPa 5.7 MPa
<2>. 相邻横向线mm和nn,在梁弯曲后仍为直线,只是
相对旋转了一个角度,且与弧线aa和bb保持正交。
根据表面变形情况,并设想梁的侧面上的横向线mm和 nn是梁的横截面与侧表面的交线,可作出如下推论(假设):
平面假设 梁在纯弯曲时,其原来的横截面仍保持为平面, 只是绕垂直于弯曲平面(纵向平面)的某一轴转动,转动后 的横截面与梁弯曲后的轴线保持正交。
力的值max为
max
M ym a x Iz
M
Iz ymax
M Wz
式中,Wz为截面的几何性质,称为弯曲截面系数(对Z轴)
(section modulus in bending),其单位为m3。
b
h d
o
z
o
z
y
y
中性轴 z 不是横截面的对称轴时(参见图c),其横截面 上最大拉应力值和最大压应力值为
A
r
(b)
M z
y d A E
A
r
y2 d A EI z M
A
r
(c)
由于式(a),(b)中的
E
r
不可能等于零,因而该两式要求:
1. 横截面对于中性轴 z 的静矩等于零,A y d A 0 ;显

材料力学第六章

材料力学第六章

极惯性矩: d r d d4 2dA=2d/2r2· ddr = z Ip= A r· 0 0 32 C 轴惯性矩: Ip=IZ+IY d4 IZ= IY = Ip/2= 64 2 sin· cos· ddr =0 12 r· r· 惯性积:IZY= AyzdA= 0 d/2 r· 0
z h 2
h1 2
C b 2 b 2
11
例6-4 圆形对其对称轴的几何性质
面积: A=AdA=d2/4 2 sin· ddr =0 静矩: SZ=AydA=0 d/2r· r· 0
2 SY=AzdA= 0 d/2r· cos· ddr =0 r· 0
dA=rddr y dr
计算主惯性矩的一般公式
由式: 2 IZY tg20 = IZ IY 2 IZY sin20 = ( IZ IY)2+4 I2ZY cos20 = 2 ( IZ IY) ( IZ IY)2+4 I2ZY
可得:
代入上节的IZ1、 IY1计算式便可得: IZ+ IY 1 + ( IZ IY)2+4 I2ZY IZ0= 2 2 IZ+ IY 1 – ( IZ IY)2+4 I2ZY IY0= 2 2
例6-5
23
a1 zO a2 z
截面对yO轴的惯性矩为两个矩形面积对yO轴的惯性矩之 和: 0.120.63 0.40.23 IZo= II + III = + =0.242 10-2m4 YO YO 12 12
24
求图示图形的形心主轴位置和形心主惯性矩。 6 解:该图形由I、II、III三个 y 矩形组成组合图形。显然组 合图形的形心与矩形II的形 I C1 心重合。 为计算形心主轴的位置及 b1 形心主惯性矩 ,过形心选择 一对便于计算惯性矩和惯性 C z 积的z、y轴如图示。 II 矩形I、III的形心坐标为: 2 a1=0.04m a3=-0.04m C3 III b1=-0.02m b3=0.02m b3 组合截面对z、y轴的惯性矩 尺寸单位 cm 6 和惯性积分别为

材料力学-第六章 简单的超静定问题

材料力学-第六章 简单的超静定问题

变形协调条件:
l1 l 3 cos
F N1
F N3
F N2
l3
l1
A

A
l2

例2.图示AB为刚性梁,1、2两杆的抗拉(压)
刚度均为EA,制造时1杆比原长l短,将1杆装
到横梁后,求两杆内力。
解: 装配后各杆变形 1杆伸长 l1 2杆缩短 l 2 变形协调条件
A
1

l1
4、联解方程
FN 1 F E3 A3 2 cos 2 E1 A 1 cos
FN 3
F E1 A 3 1 1 2 cos E3 A3
●装配应力的计算
装配应力:超静定结构中由于加工误差, 装 配产生的应力。 平衡方程:
FN 1 FN 2
1
3 2

A
l
FN 3 ( FN1 FN 2 ) cos
2、AC和BC材料相同,面积不同,外力作用在 连接界面处,在外力不变的情况下,要使AC上 轴力增加,错误的方法有( )。 A、 增加AC的横截面积 B、 减小BC的横截面积 C、 增加AC的长度 D、 增加BC的长度
A l1 C F B l2
3、AB为等截面杆,横截面面积为A,外力F作 用在中间,则AC和BC上应力分别( )。
2
l 2
B
2( l1 ) l 2
解: 分析AB
A
aF 1 2aF 2 0
F1l 物理方程 l1 EA 变形协调条件
FA
F1
F2
B
F2 l l 2 (缩短) EA
2( l1 ) l 2
4EA 2EA F1 (拉力) F2 (压力) 5l 5l

材料力学第六章静不定

材料力学第六章静不定

FN2
FN3
(c) F
材料力学
中南大学土木工程学院
13
静不定结构的特点(1)
内力按刚度比分配。 思考:静定结构是否也是这样?
B
C
D
B
刚度较大 内力较大

A
F
材料力学
中南大学土木工程学院
C
刚度增加 内力不变
A
F
14
静不定结构的特点(2) 配应力
——装
B
C
B
D
C
A
静定结构 ——无装配应力
A
中南大学土木工程学院
8
OAB为刚性梁,①、②两杆材料相同,
EA2=2EA1。求②杆与①杆的应力之比。
解:变形协调关系
O
l2 sin 450

2l1
即 l2 2l1
450


a
A l1
a
l2
B
F
由物理关系建立补充方程,考虑对O取矩得平衡方程,联
立求出两杆轴力,再求应力后得结果。
小技巧
l1

FN1
2 3
EA
l ,l2

1F.5NE2lA,l3

FN3
2 3
2EA
l
代入变形协调方程得补充方程
2FN2 2FN1 FN3
联立平衡方程求得
14 2 3 FN1 23 F 0.76F
FN2 3
3 2 F 0.14F 23
求拉压静 不定结构 注意事项
32 2 3 FN3 23 F 1.24F ()
材料力学
未知力:4个 平衡方程:2个 静不定次数 = 4-2 = 2 需要补充2个方程 此结构可称为2次静不定结构

材料力学第六章

材料力学第六章
EI
在横力弯曲时,梁横截面上除弯矩 M 外还有剪力 FS ,但工程上常用的 梁,当梁的长度大于横截面高度 10 倍时, FS 对梁的位移影响很小,可略去
不计,所以上式仍可应用。但此时, M 和 都是 x 的函数。即
M (x)
(x) EI
从高等数学可知,平面曲线的曲率可写成
d2 y
(x)
1
第六节 简单超静定梁的解法
对梁某方向的位移起限制作用的物体称为约束。在超静定梁中,超过了维持 梁的静力平衡所必需的约束,称为多余约束,相应的约束力(包括约束力偶), 称为多余约束力。
解超静定梁的方法较多,本书介绍变形比较法,步骤如下。 (1)判断超静定次数。梁上未知约束力的个数与独立的平衡方程数之差, 称为超静定次数。对于给定的梁,解题时首先应判断它是静定的,还是超静定的。 如果是超静定的,要确定超静定的次数。 (2)解除超静定梁的多余约束,并代之以多余约束力,所得系统称为静定 基。在多余约束处寻找变形协调条件。 (3)写出变形协调条件和物理条件,得到补充方程。 (4)将补充方程和平衡方程联立,即可求解。

FAy
ql
坐标为 x 的截面上的弯矩为
M (x) qlx 1 ql2 1 qx2 22
列挠曲线近似微分方程并积分,有
EI
d2 y dx2
qlx
1 2
ql 2
1 2
qx2
EI
dy dx
EI
ql
x2 2
1 ql2x 2
q 6
x3
C1
(a)
EIy
ql
x3 6
1 4
ql2 x2
1 qx4 24
C1x
该处的挠度 y 0 ,截面转角 0 ;铰支座处的边界条件,挠度 y 0 。

《材料力学》第六章-弯曲变形

《材料力学》第六章-弯曲变形

当载荷P处于梁中点,即b=l/2时,xl=0.5l;
当载荷P移至支座B,即b→0时
x1
l2 0.577l 3
即使在这种极端的情况下,最大挠度的位置距中 点只有0.077l,也就是说点的位置影响甚小,最大挠 度总是发生在梁跨中点的附近。可以认为在工程中 当有一集中力作用在简支梁上时,梁的最大挠度发 生在梁的中点,其结果误差不超过3%。
§6.1 工程中的弯曲变形问题
工程中有些受弯构件在载荷作用下虽能满足强度 要求,但由于弯曲变形过大,刚度不足,仍不能保证 构件的正常工作,成为弯曲变形问题。
出现“爬坡”现象
使齿轮啮合力沿齿宽分布极 不均匀,加速齿轮的磨损。
一、挠度和转角
构件的弯曲变形通常用截面的挠度和转角度量。
梁在横向力作用下发生弯曲变形, y
§6.3 用积分法求弯曲变形
一、积分法求弯曲变形 w Mx
EI
积分
挠曲线近似微分方程
w E 1IM xd x C
积分
转角方程
w E 1IM xd x CD x 挠曲线方程
式中C和D是待定的积分常数,可根据梁的具体条件来确定。
积分法计算梁的变形的步骤: 1.建立梁截面的弯矩方程式M(x); 2.代人挠曲线近似微分方程式,并积分; 3.确定积分常数,得到具体的挠度和转角方程式; 4.求梁任一截面的转角和挠度。

w1 10 F 2lx b12-F 6lb l2-b2 0
当a>b时,x1<a,wmax发生在AC段内。
得: x1
l2 -b2 3
wm若求最大转角,求θA、θB,比较大小,取其大者。

x1
l2 -b2 3
wmax-
Fb 9

材料力学性能第六章-金属的应力腐蚀和氢脆

材料力学性能第六章-金属的应力腐蚀和氢脆

a
18
1Cr18Ni9Ti:固溶处理 氯离子环境下应力腐蚀断口。用10%HCl水ቤተ መጻሕፍቲ ባይዱ液浸蚀后,用扫描电镜观察断口。 断口上有许多正方形腐蚀坑,图中间区域三角形晶面上有三角形腐蚀坑。 图中的两种形状蚀坑说明开裂主要沿{100}晶面和{111}晶面。
a
19
五、应力腐蚀抗力指标
➢①光滑试样 ➢应力腐蚀断裂是一种与时间有关的延滞断裂
当时正在谢菲尔德大学研究部工作的中国学者李熏通 过大量研究工作,在世界上首次提出钢中的“发裂” 是由于钢在冶炼过程中混进的氢原子引起的。
a
41
3.氢化物致脆
• 对于纯铁、α-钛合金、镍、钒、锆、铌及其合金,由于它们与氢 有较大的亲和力,极易生成脆性氢化物,使金属脆化。
• 例如,在室 温下,氢在α-钛合金中的溶解度较小,钛与氢又具有 较大的化学亲和力,因此容易形成氢化钛(TiHx)而产生氢脆。
a
33
氢在金属中的存在形式
a
34
• 在一般情况下,氢以间隙原子状态固溶在金属中,对于大多数工业 合金,氢的溶解度随温度降低而降低。
• 氢在金属中也可通过扩散聚集在较大的缺陷(如空洞、气泡、裂纹等) 处以氢分子状态存在。
• 氢还可能和一些过渡族、稀土或碱土金属元素作用生成氢化物,或 与金属中的第二相作用生成气体产物,如钢中的氢可以和渗碳体中 的碳原子作用形成甲烷等。
a
6
钢丝应力腐蚀与通常拉应力断裂比较
a
7
二、应力腐蚀产生的条件
• (1)只有在拉伸应力作用下才能引起应力腐蚀开裂(近年来,也发现 在不锈钢中可以有压应力引起)。 这种拉应力可以是外加载荷造成的应力,但主要是各种残余应 力,如焊接残余应力、热处理残余应力和装配应力等。 据统计,在应力腐蚀开裂事故中,由残余应力所引起的占80% 以上,而由工作应力引起的则不足20%。

材料力学第六章弯曲变形

材料力学第六章弯曲变形

以图示悬臂梁为例: x
A
w
q qy
2.梁的变形可以用以下两个位移度量:
F Bx
B1
① 挠度:梁横截面形心的竖向位移y,向下的挠度为正 ② 转角:梁横截面绕中性轴转动的角度q,顺时针转动为正
简支梁
挠度方程:挠度是轴线坐标x的函数
转角方程(小变形下):转角与挠度的关系
=tan =dy =f ´(xd)x
梁在简单荷载作用下的转 角和挠度可从表中查得。
例3 图示悬臂梁,其弯曲刚度EI为常数,求B点转角和挠度。
q
A
C
F
1.在F作用下:
查表: BF
Fl 2 2EI
,
yBF
Fl 3 3EI
B
2.在q作用下:
查表: Cq
q(l / 2)3 6EI
ql3 48 EI
A A
qBF
F
B
q(l / 2)4 ql4
M图 Fl / 4
Wz
M max
35 103 160 106
2.19 10 4 m3
3、梁的刚度条件为:
Fl3 l 48EIz 500
解得
Iz
500 Fl 2 48 E
500 35 103 42 48 200 109
2.92 10 5 m4
由型钢表中查得,22a工字钢的弯曲截面系数Wz=3.09×l0-4m3 ,惯性矩 Iz=3.40×10-5m4,可见.选择.22a工字钢作梁将同时满足强度和刚度要求。
提高梁刚度的措施:
y ln EI
1.增大梁的弯曲刚度 EI;主要增大截面惯性矩I值,在截面 面积不变的情况下,采用适当形状,尽量使面积分布在距中性轴 较远的地方。例如:工字形、箱形等。

材料力学第六章

材料力学第六章

解 1)将梁上的载荷分解
wC wC1 wC2 wC3
B B1 B2 B3
2)查表得3种情形下C截面的 挠度和B截面的转角。
wC1
5ql 4 384EI
wC 2
ql 4 48EI
ql 4 wC3 16EI
B1
ql 3 24EI
B1
ql 3 16EI
B3
ql 3 3EI
wC1
wC2 wC3
3)进行变形比较,列出变形协调
条件
wB 0
4)叠加法
wB (wB )F (wB )FBy 0
MA A
MFAAy A
FAy A
A
MA A FA y
MA A AA
MA A A
F
B
C
2a (a) B
aF C
2a
Ba C
((ba))
B B (b)
F C
C
(c)
FBy F
B
FF C
BB
(c)
FBy
CC
B12 a
Fa 2l 3EI
w1 wB11 wB12
w2
B2a
Fl 2a 16 EI
w w1 w2
用叠加法求跨度中点挠度
解: wc wc1 wc2
由于 wc wc2
=

wc
1 2
wc1
1 5q0l 4 5q0l 4 2 384EI 768EI
-
解: wc wc1 wc2
当 d w 0 时,w为极值
dx
EI1
Fb 2l
x2 1
Fb 6l
(l 2
b2 )
E I 2
Fb 2l
x22

材料力学第六章应力状态与强度理论

材料力学第六章应力状态与强度理论
(c)
e
xy
x
b
a
a
f
y
yx
第6章
应力状态与强度理论
斜截面应力
由图 d 所示体元上各面上的力的平衡,参考法 线n和切线t方向可得:
(d)
e
xy dA cosa xdA cosa
b yx dA sina
adA
n
adA
f t
n 0
y dA sina

a dA x dA cos a cosa xy dA cos a sin a
x y
2

x y
2
因此,C点坐标为应力圆圆心坐标,并且
B1B2 2 x y 2 CD1 B1D1 xy 2 2
该线段长度等于应力圆半径。从而证明上述 圆确为应力圆。
2
2
第6章
应力状态与强度理论
由图b可见,A1、A2两点的横坐标为:
OA1 OC CA1
OA2 OC CA2
第6章
应力状态与强度理论
主应力
由此可得两个主应力值为:
应力圆
2
1
x y
2
x y 2 2 xy
x y 2 2 xy

其中dA为斜截面ef的面积。 由此可得,任一斜截面上的应力分量为:
a
x y
2

x y
2
cos 2a xy sin 2a
a
x y
2
sin 2a xy cos 2a
第6章
应力状态与强度理论

材料力学 第六章 弯曲变形

材料力学 第六章 弯曲变形
Q A
M E F A 0 .5l M 0 解得: Q E 2 P , M E 0
FA Q 0
M A F A M 0
FA
(3)计算截面A+ 和D-的剪力和弯矩
Y 0 M 0
A
同理:
FA 0 P D D
M D Q D
Q D P
Q ( x ) FA qx ql qx 0 x l 2 2 1 M ( x ) FA x qx x qlx q x 2 2 2 2 0 xl
l /2 M
ql 2
x
M ( x) |x0 0
M ( x ) |x l 0
l /2
ql 2 8
求弯矩的极值点:
O
B 1
1 — 1截面:
Q1 FB
1
M1
m2 M 1 0
Q1
FB
M 1 FB ( l x1 ) m1 m 2
4. 剪力、弯矩的正负与横向外力偶的关系
Q2 FA P
a
M 2 F A x 2 P ( x 2 a ) m1 m 2
Q1 FB
一端为固定铰支座一端为活动铰支座。 2、外伸梁 一端或两端向外伸出的简支梁。
3、悬臂梁 一端固定支座一端自由。
§6-3 剪力与弯矩
一、剪力和弯矩
步骤: (1)先求约束反力FA 、FB ; y a P1
x
m
P2
P3
x
A y
m
B
(2)由截面法求横截面上的内力; FA (如:求 m — m 截面的内力)
说明:
Q向下假设为正; M逆时针假设为正。 Q向上假设为正; M顺时针假设为正。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学 第六章 弯曲变形
Page 12
例二(续)
分段列挠曲线近似微分方程 AC EIw1'' M1 分段积分
Fa 2 Fb 2 ' EIw x l 2 C2 EIw x1 C1 2 2l 2l BC AC Fa 3 Fb 3 EIw x l 2 C2 x2 l D2 EIw1 x1 C1 x1 D1 2 6l 6l
三 简单证明: 梁任意截面弯矩为 M Mi 每一弯矩单独引起的挠度为wi,根据挠曲线的近似 微分方程
EIwi" M i
" " EIw M EI w i i i M
EIw" M
w wi
材料力学 第六章 弯曲变形
Page 20
例一:求图示简支梁C点挠度
y A l/2 F C l/2 x B
=
y F C l/2 l/2 x B
y A l/2 C l/2 x B
+
A
wC wC q wC F
5ql 4 Fl 3 384 EI 48EI
材料力学 第六章 弯曲变形
Page 21
例二:求图示梁C点的挠度
l A F B a C
F A wB B C
B
w1
Fl 3 Fl 3 Fl 2 Fl 2 wC wB w1 B a a 2l 3a 3EI 3EI 2 EI 6 EI
' 1
'' EIw BC 2 M2
材料力学 第六章 弯曲变形
Page 13
例二(续)
y FRA A x1 x2 l a C F b FRB x B
代入边界条件
w1 x 0 0, w2
1
x2 l
0
求得积分常数
D1 D2 0
材料力学 第六章 弯曲变形
Page 14
例二(续)
y FRA A x1 x2 l
Page 2
§6.1 工程/生活中的弯曲变形
材料力学 第六章 弯曲变形
Page 3
§6.2 挠曲线微分方程
一 基本概念 挠曲线:变形后梁的轴线;

挠度:横截面形心沿y方向位移,向上为正;
y x θ w dx θ dw F
x

截面转角(θ):横截面对其原来位置转过的角度, 逆时针为正;等于挠曲线的倾角
Page 24
引例:求解超静定问题
q A l B
解:1)本例为一次超静定问题,解除B点约束,建立 相当系统
B A FRB
2)变形协调条件为 wB wBq wBR 0
B A
B A FRB
Page 25
材料力学 第六章 弯曲变形
例题(续)
B A
B A FRB
3)物理关系为
FRBl 3 ql 4 wBq , wBR 8EI 3EI ql 4 FRB l 3 0 补充方程 8EI 3EI
材料力学 第六章 弯曲变形
Page 23
§6.5简单超静定梁
一 基本概念 超静定梁:支反力只用静力 平衡方程不能全部确定 多余约束:多于维持平衡所必须的约束
F
超静定次数:多余约束或多余支反力数目 多余反力:与多余约束相 应的支反力或支反力偶矩
F
相当系统:用多余约束力代替多余约束的静定系统
材料力学 第六章 弯曲变形
材料力学 第六章 弯曲变形
Page 17
练习(续)
y a x b l
边界条件 w x0 0; x0 0 连续性条件
w xa w xa ; xa xa w xb w xb ; xb xb
Page 18
材料力学 第六章 弯曲变形
任意点的挠度均包含刚体位移和形变位移两部分
材料力学 第六章 弯曲变形
Page 22
例三:求图示梁C点的挠度
l A B
F A B C
a
F C
分段变形叠加法
=
F A B C
+
F A Fa B θB C w1
B
F C w2
Fal Fa3 Fa 2 wC w1 w2 a l a 3EI 3EI 3EI
4)求得
FRB 3ql 8
5 ql 2 其余支反力: FRA ql M RA (逆时针) (上) 8 8
材料力学 第六章 弯曲变形
Page 26
二 总结:超静定梁的求解方法
1 )解除多余约束,以多余约束力代替多余约束 (建立相当系统); 2 )列变形协调条件; 3 )由物理关系建立补充方程; 4 )求解多余反力、支反力; 5 )求解其他问题(内力、应力、应变等)
材料力学 Mechanics of Materials
苏文政 土木与安全工程学院 力学教研室 wzhsu@
第六章 弯曲变形
§6.1工程中的弯曲变形问题
§6.2挠曲线微分方程
§6.3用积分法求弯曲变形
§6.4用叠加法求梁的变形
§6.5简单超静定梁 §6.6提高弯曲刚度的一些措施
材料力学 第六章 弯曲变形
' ' wC w C , wC wC
F a C b FRB x B
代入连续性条件 求得积分常数
Fb 2 Fab 2 C1 l b , C2 l a 6l 6l
材料力学 第六章 弯曲变形
Page 15
四 积分法总结


优点:适用范围广、精确 缺点:计算繁琐
' 2 3 2
小变形
1
w
' 2
1

1
w"
高等数学
M EI
2 d w M '' w 2 dx EI
材料力学
2 d w M ——挠曲线近似微分方程 '' w 2 dx EI
材料力学 第六章 弯曲变形
Page 6
§6.3用积分法求弯曲变形
一 微分方程的积分
M dw dx C 2 EI d w M d dw M dx 2 M dx EI dx dx EI w dx dx Cx D EI
Page 11
例二
求图示简支梁的弯曲变形
y FRA A x1 x2 l a C F b FRB x B
解:1)求出梁的支反力 分段列出弯矩方程
Fb Fa FRA , FRB l l
Fb x1 0 x1 a AC段 M 1 l Fa BC段 M 2 l x2 a x2 l l
Page 8
三 解题步骤
1.
写出弯矩方程,若弯矩不能用一个函数给出,要 分段写出 由挠曲线近似微分方程,积分出转角、挠度函数 利用边界条件、连续性条件确定积分常数,如果 分n段写出弯矩方程,则有2n个积分常数
2.
3.
材料力学 第六章 弯曲变形
Page 9
例一
悬臂梁端部受载F=200N,圆形截面直径d=10mm,长度为 l=50mm,材料的杨氏模量为E=210GPa,试求外伸端的转 角和挠度。 解:任意横截面的弯矩为
例一(续)
F 2 故 EIw x Flx 2 F 3 Fl 2 EIw x x 6 2
'
y A x l θB B x wB
2 3 Fl Fl ' 从而在B端 B wB , wB 2 EI 3EI
代入数值,θB=-0.00242rad;wB=-0.0805mm
材料力学 第六章 弯曲变形
五 刚度条件
w max w max
练习:写边界条件和连续性条件
A B
C
D
边界条件 wA 0; wB 0
' ' w w ; 或 w w 连续性条件 C C C C C C ' ' wD wD ; D D 或wD w D
如何确定积分常数?
材料力学 第六章 弯曲变形
Page 7
二 积分常数的确定
1 边界条件
w0 w0
w 0, w' 0
w
2 连续性条件
F
' ' w w , w w
Hale Waihona Puke F' ' w w , w w
材料力学 第六章 弯曲变形
材料力学 第六章 弯曲变形
Page 4
基本概念(续)
y x

θ w dx
θ dw
F
x
挠曲线方程:w=f(x)

挠度与转角的关系:
dw 小变形 tan dx
dw tan w' dx
材料力学 第六章 弯曲变形
Page 5
二 挠曲线方程推导
1


w'' 1 w
y A x l θB B x wB
M F l x
挠曲线近似微分方程为
EIw'' M F l x
积分,得 EIw' F x 2 Flx C ; EIw F x 3 Fl x 2 Cx D 2 6 2 ' 代入边界条件 wA A 0, wA 0 求得积分常数 C 0, D 0
§6.4 用叠加法求梁的变形
一 叠加原理 当梁上同时作用几个载荷时,任一横截面的总位 移,等于各载荷单独作用时该截面位移的矢量和
相关文档
最新文档