第六章 聚合物基复合材料力学性能 (2)分解
聚合物复合材料结构与力学性能
聚合物复合材料结构与力学性能聚合物复合材料是一种应用非常广泛的材料,它能够满足各种不同的应用需求。
而聚合物复合材料的结构和力学性能是影响它使用效果的两个重要因素。
在本文中,我们将着重探讨聚合物复合材料的结构和力学性能,阐述它们之间的关系。
一、聚合物复合材料的结构聚合物复合材料主要由基体和增强材料两部分组成。
基体是复合材料中主要起粘合作用的材料,一般为聚合物或金属。
而增强材料则是提高复合材料机械性能的关键,常见的增强材料有玻璃纤维、碳纤维、芳纶纤维等。
在复合材料的制备过程中,需要将基体与增强材料均匀混合,并且对增强材料进行定向排列,以便在力学应用过程中发挥出最佳的机械性能。
不同的增强材料能够在材料内部形成不同的结构。
例如,采用碳纤维增强材料制备的复合材料具有独特的多向异性结构。
这种结构使得复合材料在机械应用过程中可以适应各个方向的应力,并且具有优异的强度和刚度。
而采用芳纶纤维增强材料制备的复合材料,则具有更为致密的结构,能够提供更高的耐腐蚀性和抗疲劳性。
聚合物复合材料的结构不仅与增强材料的类型有关,还与增强材料的含量及其排列方式有关。
通过对增强材料含量的调整,可以控制复合材料的密度、强度和刚度等材料性能。
此外,增强材料的排列方式也能够对复合材料的性能产生影响。
例如,制备过程中的拉伸、挤压等工艺会使得增强材料的排列方向与基体方向不同,从而产生复合材料的各向异性结构,使得其机械性能更加出色。
二、聚合物复合材料的力学性能聚合物复合材料的机械性能是其最为重要的性能之一,也是材料选择和应用的主要考虑因素。
复合材料的机械性能主要包括强度、刚度、韧性等。
其中,强度和刚度是复合材料的特色,而韧性是影响其应用范围和使用寿命的关键因素。
强度是复合材料的抗拉、抗压、抗弯等力学性能表现。
采用不同的增强材料和结构以及增强材料含量的不同,可以得到不同强度的复合材料。
碳纤维增强聚合物复合材料具有高强度、高刚度和低密度的优异性能,适用于飞机、汽车、船舶等领域。
聚合物基复合材料知识点
聚合物基复合材料知识点概述:聚合物基复合材料是由聚合物基质和填料或增强材料(如纤维)组成的材料。
由于其独特的性能和广泛的应用领域,聚合物基复合材料成为现代工程领域中的重要材料之一。
本文将介绍聚合物基复合材料的相关知识点。
1. 聚合物基质的选择:聚合物基复合材料的性能主要取决于聚合物基质的选择。
常见的聚合物基质包括聚烯烃、聚酰胺、环氧树脂等。
不同的聚合物基质具有不同的化学性质和力学性能,因此在选择聚合物基质时需要考虑材料的具体应用需求。
2. 填料的选择:填料在聚合物基质中起到增强材料性能的作用。
常见的填料包括纤维、颗粒和珠状材料等。
填料的选择影响着复合材料的力学性能、耐热性和阻燃性等方面。
纤维增强材料可提供更高的强度和刚度,而颗粒和珠状填料则可改善材料的摩擦特性和耐磨性。
3. 增强材料的选择:增强材料在聚合物基质中起到增强材料性能的作用。
常见的增强材料包括玻璃纤维、碳纤维和芳纶纤维等。
不同的增强材料具有不同的强度和刚度特性,在选择增强材料时需要考虑材料的具体应用环境和要求。
4. 复合界面的设计:复合材料中的界面是指填料和基质之间的相互作用界面。
复合界面的设计可以影响材料的耐热性、粘合强度和耐化学腐蚀性等方面的性能。
在复合材料的制备过程中,通常会采用表面粗糙化、化学处理和界面改性等方法来改善复合界面的性能。
5. 制备工艺:制备工艺对于聚合物基复合材料的性能和结构有着重要影响。
常见的制备工艺包括手工层叠法、注塑成型、挤出成型、压制成型等。
不同的制备工艺决定了材料的成型精度、力学性能和表面质量等方面的特性。
6. 应用领域:聚合物基复合材料广泛应用于航空航天、汽车制造、建筑材料、电子电气等领域。
其具有轻质高强度、耐腐蚀、隔热隔音等优势,在这些领域中发挥着重要作用。
例如,碳纤维增强复合材料在航空航天领域中被广泛应用于飞机结构件和卫星结构件等。
7. 未来发展趋势:随着科学技术的不断进步,聚合物基复合材料将继续得到发展和应用。
聚合物基复合材料
PLS
PLS
插层聚合
缩聚
加聚
聚合物 溶液分散
聚合物 熔融分散
聚合物/层状硅酸盐纳米复合物的结构和分类
从材料微观形态的角度,可以分成三种类型:
材料中粘土片层紧密堆积,分散相为大尺寸的颗粒状,粘土片层之间并无聚合物插入。
聚合物基体的分子链插层进入层状硅酸盐层间,层间距扩大,介于1-4nm,粘土颗粒在聚合物基体中保持“近程有序,远程无序”的层状堆积结构。可作为各向异性的功能材料
对相同尺寸和形状的梁进行振动试验的结果表明,对同一振动,轻合金梁需要9秒钟才能停止,而碳纤维复合材料梁只需2~3秒。
过载安全性
聚合物基复合材料的特性
在纤维复合材料中,由于有大量独立的纤维,在每平方厘米面积上的纤维数少至几千根,多达数万根。当过载时复合材料中即使有少量纤维断裂时,载荷就会迅速重新分配到未被破坏的纤维上,不至于造成构件在瞬间完全丧失承载能力而断裂,仍能安全使用一段时间。
.酚醛玻璃钢 耐热性最好, <350℃长期使用,短期可达1000℃;电学性能好,耐烧蚀材料,耐电弧。性脆,尺寸不稳定,收缩率大,对皮肤有刺激作用。
玻璃钢采光板
玻璃钢汽车保险杠
玻璃钢型材
透光型玻璃钢
体育馆采光
赛艇、帆船壳体
2、GF增强热塑性塑料 (FR-TP) 特点:
车用立体声音响喇叭
纳米材料是指含有纳米结构的材料。尺度为1nm-100nm范围内的物质即为纳米物质。
Why nano? Why nanocomposite?
01
从界面角度:
是两相在纳米尺寸范围内复合而成,界面间具有很强的相互作用,产生理想的粘接性能.
从增强体角度:强度大,模量高
聚合物基复合材料力学性能
3.1 正交复合材料单轴拉伸的应力-应变曲线
单向复合材料纵向 拉伸应力-应变曲线是 一条直线。用单向玻璃 纤维预浸料铺层的双向 正交复合材料的单轴拉 伸应力-应变曲线却是 一条折线。
36
原因:
①单向复合材料纵 向拉伸强度和模量取决 于纤维,而基体的影响 很小。所以单向纤维复 合材料的应力-应变体 现了玻璃纤维的力学特 征,呈现线性的应力- 应变关系。
复合材料应力-应变曲线的位置:
如果纤维的体积分数越高,复合材料应力-应变曲线越 接近纤维的应力-应变曲线; 反之,当基体体积分数高时,复合材料应力-应变曲线 则接近基体的应力-应变曲线。
24
了解载荷在复合材料的组分之间怎样分配和组分所承担的 应力是具有重要意义的。 载荷分配: Pf/Pm=(Ef/Em) × Vf/V m
第一点,基体材料本身力学性能较好,能满足复合材料力学性能 对基体的性能要求。这包括,有较高的内聚强度、弹性模量;与增 强纤维有相适应的断裂伸长率,满足使用要求的耐热性、韧性等。 第二点,对增强材料有较好的润湿能力和黏附力,保证良好的 界面粘接。
第三点,工艺性优良。成型和固化的方法与条件简单,固化收 缩率低,形成的内应力小。
L、拉伸模量EL
L fbV fb mVm
EL E fbV fb EmVm
(8-10) (8-11)
式(8-10)和(8-11)表明,纤维和基体对复合 材料的力学性能所做的贡献与它们的体积分数成正比, 这种关系称为混合定则(Rule of Mixtures)。显然,
V f Vm 1
14
②碳纤维的力学特性。
第一:具有脆性材料特征。
第二:碳纤维的拉伸强度和拉伸模量均较高。 Ⅱ型碳纤维或称高强型(HS)碳纤维的强度可达3GPa以上。模量 230~270GPa,断裂伸长率1%~1.5%。 Ⅰ型碳纤维或称高模型(HM)碳纤维的模量390~420GPa,强度2GPa左右, 断裂延伸率0.5%~1.0%。 碳纤维的缺点在于脆性比玻璃纤维大.与树脂基体的界面结合强度 比玻璃纤维差。
聚合物基复合材料的性能课件
聚合物基复合材料与其它材料具有 良好的相容性,能够通过粘合、复 合等方式与其它材料结合使用。
环境老化性能
01
抗老化性能
聚合物基复合材料具有良好的抗 老化性能,能够在各种环境条件 下保持较长的使用寿命。
02
03
耐紫外线性能
温度稳定性
聚合物基复合材料能够抵抗紫外 线的照射,不易变色、龟裂或失 去性能。
反射与吸收光谱特性
反射光谱特性
聚合物基复合材料的反射光谱特 性与材料的折射率和表面反射率 有关,不同波长的光在材料表面 反射的情况不同。
吸收光谱特性
聚合物基复合材料的吸收光谱特 性与材料中存在的杂质、缺陷、 链段运动等因素有关,不同波长 的光被吸收的情况不同。物基复合材料在激光的作用下, 可以产生光热、光化学、光物理等效 应,对激光的吸收和传输特性产生影 响。
耐候性
聚合物基复合材料能够承受各种气候条件, 包括紫外线、潮湿、高温和低温等,保持材 料的性能和外观。
化学稳定性与反应性
稳定性
聚合物基复合材料具有稳定的化 学性质,不易与其它物质发生反
应,适用于各种化学环境。
反应性
某些聚合物基复合材料具有一定的 反应性,能够参与化学反应或与其 它物质进行改性,拓展了材料的应 用范围。
聚合物基复合材料的性能课件
目录 CONTENTS
• 聚合物基复合材料的概述 • 聚合物基复合材料的力学性能 • 聚合物基复合材料的热性能 • 聚合物基复合材料的电性能 • 聚合物基复合材料的光性能 • 聚合物基复合材料的化学性能
01
聚合物基复合材料的概述
定义与分类
定义
聚合物基复合材料是由两种或两种以上材料组成,其中聚合物材料作为基体, 通过物理或化学方法与增强材料(如纤维、颗粒等)复合而成的新型材料。
第六章 纤维复合材料的力学性能2
第三节 纤维复合材料的疲劳行为
• 如图为不同结构形式层合板的S-N曲线。可 见,加入适量90°铺层或采用±5°对称铺 层结构的层合板较单向层合板的拉伸疲劳 特性能有所改进。等量的0°和90°铺层构 成的正交铺层层合板的疲劳强度明显高于 玻璃布铺层层合板。由于无纺材料中纤维 处于平行和舒直状态,不象编织物中纤维 那样弯曲,所以一般而言,无纺材料在抗 疲劳性方面优于编织材料。
第三节 纤维复合材料的疲劳行为
• 随着裂纹进一步发展,横向层在纵向 正应力较大的区域继续产生新的横向 裂纹,使裂纹密度逐渐趋于饱和。此 时,横向层失去了承载能力,仅依靠 界面将其与纵向层粘结在一起。但是, 横向层对纵向层泊松变形的抑制作用 又诱发了纵向层中的纵横向裂纹,出 现了纵横裂纹交叉现象。
第三节 纤维复合材料的疲劳行为
第三节 纤维复合材料的疲劳行为
• 在正交(0°/90°)层合复合材料中,横向 层(90)与纵向层(0°)的强度和模量相 差很大。通常,在交变载荷作用下,横向 层将首先出现裂纹,并往往同时伴随界面 脱前和基体开裂及分层。分层是因横向与 纵向两层的泊松比不同引起层间剪切应力 和层间正应力所致。裂纹出现后,裂纹附 近横向层内的纵向正应力为零,而离裂纹 稍远处应力较大。
第三节 纤维复合材料的疲劳行为
• 在复合材料疲劳过程中,一般不出现主裂 纹扩展现象,其损伤机理非常复杂,难以 用简单的数学模型加以描述,因此对疲劳 行为的检测是十分重要的。然而,由于复 合材料的非均质各向异性以及层合结构等 增大了疲劳试验的难度。目前,复合材料 疲劳损伤的测试主要有显微镜直接观察、 声性射、X-射线衍射及红外热像技术等无 损检验方法。以下简要介绍纤维复合材料 疲劳损伤的特点以及影响疲劳性能的因素。
第三节 纤维复合材料的疲劳行为
聚合物基复合材料-内容总结
2. 物理性能:密度小、耐热性好、热膨胀系数负效应、黏结性差 3. 化学性能
• 氧化性 易氧化成CO、CO2,空气中耐热性差,200-290℃开始氧化,比GF 差 • 耐腐蚀性 比GF更耐腐蚀,只能被强氧化剂氧化,耐水性好 • 耐热性 不与空气接触时,表现极好的耐热性,在高于1500℃时,强度才
开始下降
• 强度比湿纺原丝提高50%以上
碳纤维
b)PAN原丝的预氧化处理(2h) PAN原丝
二维有序结构
200-300℃
O2,张力
预氧化纤维
六元环梯形结构
① 预氧化作用 通过氧化反应使β碳原子部分氧化成羟基、羰基,在分子间和分子内形成氢键, 利用其诱导作用,使CN在较低的温度下环化形成带有六元共轭环的梯形结构,从 而提高PAN的热稳定性,经受住高温碳化处理。
组成
① 基体相:聚合物基体可分为塑料、橡胶两类 ② 增强相:是聚合物基复合材料的骨架,决定复合材料的强度和刚 度的主要因素 ③ 界面相:是聚合物基体与增强材料间形成的第三相,是产生复合
效果的主要因素
增强材料
增强材料:聚合物基复合材料的骨架,决定复合材料的强度和刚度的主
要因素,显著提高复合材料的机械性能,即赋予复合材料高强度和高模量 等力学性能。形态主要有微粒、薄片、纤维,其中纤维的效果最好。
结构特点-含活泼氢原子,反应过程中伴有氢原子转移
如多元伯胺、多元羧酸、多元硫醇和多元酚 催化型固化剂:引发树脂分子中的环氧基按阳离子或阴离子聚合的历程进行固化 结构特点-叔胺、三氟化硼络合物 交联剂:能与双酚A型环氧树脂的羟基进行交联
溶解脱泡 挤出纺丝
UHMWPE+溶剂+抗氧剂等
脱溶剂
UHMWPE溶液 UHMWPE纤维
第6章 聚合物复合材料的界面
重要性: 重要性: 第 6 章 复 合 材 料 的 界 面
1. 界面所占面积多: 界面所占面积多: 玻璃钢制品中30%纤维含量的制品与50%纤维含量制 玻璃钢制品中30%纤维含量的制品与50%纤维含量制 30%纤维含量的制品与50% 品的界面数量明显不同 2. 力的传递
基体与纤维之间连接桥梁, 基体与纤维之间连接桥梁,纤维与基体之间的应力 传递作用 3. 影响性能- 影响性能-增韧
提高浸润性的手段
第 6 章 复 合 材 料 的 界 面
界面设计基本原则:改善浸润性,提高界面的粘接强度。 界面设计基本原则:改善浸润性,提高界面的粘接强度。 提高PMC界面粘接强度的措施: 界面粘接强度的措施: 提高 界面粘接强度的措施 (1)使用偶联剂 ) 偶联剂:也称活性浸润剂, 偶联剂:也称活性浸润剂,它既与增强用玻璃纤维表面 形成化学键, 形成化学键,又与基体具有良好的相容性或与基体反应的化 学试剂。 学试剂。 常用的偶联剂:有机硅、有机铬、钛酸酯等。 常用的偶联剂:有机硅、有机铬、钛酸酯等。 有机硅偶联剂的结构通式为: 有机硅偶联剂的结构通式为:R-Si-(OR`)3
6.2 高聚物复合材料界面的形成及作用机理
第 6 章 复 合 材 料 的 界 面
3、机械结合: 当两个表面相互接触后,由于表面粗糙不 机械结合: 当两个表面相互接触后, 平将发生机械互锁。 平将发生机械互锁。 另一方面,尽管表面积随着粗糙度增大而增大, 另一方面,尽管表面积随着粗糙度增大而增大,但 其中有相当多的孔穴,粘稠的液体是无法流入的。 其中有相当多的孔穴,粘稠的液体是无法流入的。无 法流入液体的孔不仅造成界面脱粘的缺陷,而且也形 法流入液体的孔不仅造成界面脱粘的缺陷, 成了应力集中点。 成了应力集中点。
复合材料性能
第六章聚合物的力学性能ppt课件
B PV0 V
三种应变模量的关系
对于各向同性的材料有
E = 2G (1+ν) = 3B (1-2 ν)
ν(泊松比):横向形变与纵向形变之比
m m0 横向形变 纵向形变
t
t 0
0
一般材料ν约为0.2~0.5 注意!上述四个参数中只有两个是独立的
常用的几种力学强度
当材料所受的外力超过材料的承受能力时, 材料就发生破坏。机械强度是衡量材料抵抗外力 破坏的能力,是指在一定条件下材料所能承受的 最大应力。
根据外力作用方式不同,主要有以下三种:
(i)抗张强度
衡量材料抵抗拉伸破坏的能力,也称拉伸强度。
P
在规定试验温度、湿度和 实验速度下,在标准试样上 宽度b 厚度d 沿轴向施加拉伸负荷,直至 试样被拉断。
落后于应力 依赖 熵弹性
高弹性的特点
1、形变大 100~1000%;一般金属材料的 弹
性形变不超过1% 模量小 只有104N/m2左右,T↑,E↑
一般金属材料达109N/m2 , T↑,E↓
2、形变时伴有明显的热效应 拉伸时,橡胶会放出热量,T↑; 回缩时吸热
T↓。金属则相反。
3、高弹形变是一个松驰过程,具有时间依赖性, 通常需要一定时间才能达到平衡状态。
高弹态聚合物的力学性质
橡胶材料是重要的高分子材料之一,在Tg以上, 处于聚合物特有的高弹性力学状态。高弹性无疑是 这类材料显著的特征或说独特的性质,是材料中一 项十分难得的可贵性能,被广泛用于各个领域,其 作用是不可替代的。
橡胶的分子结构和高弹性的本质长期以来一直受 到人们的注视和研究;提高橡胶的耐寒性和耐热性 即扩大橡胶的使用范围,成了人们新的课题。
6.聚合物基复合材料的性能
钛
玻璃钢 碳纤维Ⅰ/ 环氧 碳纤维Ⅱ/ 环氧 有机纤维 / 环氧
硼纤维 / 环氧
7.8 2.8 4.5 2.0 1.45 1.6 1.4 2.1
1.03 0.47 0.96 1.06 1.5 1.07 1.4 1.38
2.1 0.75 1.14 0.4 1.4 2.4 0.8 2.1
0.13 0.17 0.21 0.53 1.03 0.7 1.0 0.66
直线上的两个力F作用时,发生简单剪切。 g = △l / l0 = tan q, s s = F/ A0 • 均匀压缩: gv = △V / V0
力学性能的基本指标—弹性模量
弹性模量(模量)
单位应变所需应力的大小,是材料刚性的表征。
三种形变对应三种模量 拉伸模量(杨氏模量):E = s / e 剪切模量 :G = ss / g 体积模量(本体模量):B = P / gv
应变
受到外力作用而又不产生惯性移动时,材料的几何形状和尺寸发生的变化
应力
定义为单位面积上的内力,内力是材料宏观变形时,其内部分子及原子间 发生相对位移,产生分子间及原子间对抗外力的附加内力。
材料的受力方式
• 简单拉伸:张应变e = △l / l0, 习用应力s = F/ A0.
• 简单剪切:材料受到与截面相平行、大小相等、方向相反且不在同一
会迅速重新分配到未破坏的纤维上,使整个构件在短期内不致于失去承 载能力。
聚合物基复合材料的总体性能(3)
可设计性强、成型工艺简单
通过改变纤维、基体的种类及相对含量、纤维集合形式及排列方式、 铺层结构等可满足材料结构和性能的各种设计要求。 整体成型,一般不需二次加工,可采用手糊成型、模压成型、缠绕成 型、注射成型和拉挤成型等各种方法制成各种形状的产品。
聚合物基复合材料2
19
四、袋压成型工艺 袋压成型是最早及最广泛应用于预浸料成型的工艺之一。 将纤维预制件铺放在模具中,盖上柔软的隔离膜,在热压 下固化,经过所需的固化周期后,材料形成具有一定结构 的构件。 袋压成型可分为三种:真空袋压成型、压力袋压成型和热 压罐成型
▼当沉积到一定厚度时,用辊轮压实,帮助纤维进一步浸 透树脂,排除气泡,
▼再进行加热或常温固化, ▼固化后脱模即获得制品。
17
喷射成型的工艺参数
☆喷射成型工艺参数主要有:
树脂含量:制品中树脂含量应控制在60%左右; 喷雾压力:当树脂黏度为0.2Pa·s,树脂罐压力为
0.05~0.15MPa时,雾化压力为0.3~0.35MPa;
(1)轮鼓缠绕法
适用于实验室的研究性工作或小批量生产
5
(2)陈列铺排法 湿法:许多平行排列的纤维束或织物同时进入胶槽,浸渍 树脂后由剂胶器除去多余胶液,经烘干除去溶剂后,加隔 离纸并经辊压整平,最后收卷。 干法:熔融态树脂从漏槽流到隔离纸上,通过刮刀后在隔 离纸上形成一层厚度均匀的薄膜,经导向辊与平行排列的 纤维或织物叠合,通过热鼓时树脂熔融并浸渍纤维,再经 过辊压使树脂充分浸渍纤维,冷去后收卷。
2.2 纤维增强复合材料的制备方法
2.2.1 聚合物基复合材料的工艺特点
聚合物基复合材料在性能方面有许多独到之处,其成型工
艺与其它材料加工工艺相比也有其特点: (1)材料的成型与制品的成型是同时完成的,复合材料的
聚合物基复合材料成型工艺
3. 固化(凝胶-----定型-----熟化)
固化方式
常温固化:温度>15℃ (25~30℃);湿度 ≤80% (15~30℃,8~24h)
加热固化:烘箱、固化炉、模具加热、红外 线加热 (60~80℃,1~2h)
固化度 丙酮萃取法 硬度法(巴氏硬度) >15
4. 脱模:气脱、顶脱、水脱
5. 后处理 修整:除去毛边、飞刺、修补表面及内部缺陷,钻孔 装配:机械连接、胶接 表面涂饰
四、手糊制品缺陷及原因
1. 胶衣起皱、龟裂、变色
原因: 起皱 ①胶衣层太薄;②固化剂不足;③气温太低; ④胶衣层厚度不均;⑤胶衣层固化不足
龟裂 ①胶衣层太厚;②固化时热量过大; ③固化剂用量过多;
变色 ①固化剂用量过多;②胶衣流挂; ③颜色分离;④胶衣层厚度不均
NaBO2 (5~8%) ),80℃溶于水; ⑦低熔点金属58%Bi+42%Sn,熔点135 ℃; ⑧玻璃钢 ⑨金属:钢材、铸铝,不能用铜(铜盐可妨碍树脂固化)
三、模具结构形式
单模 阴模(制品外表面光洁) 阳模(制品内表面光洁)
对合模 制品双面光洁 拼装模(组合模) 大型模具,由小块模具拼装而成
a.阴模示意图
4. 真空袋材料:气球步、橡胶袋、尼龙薄膜 5. 密封材料:胶条、胶带
图4-5 手糊玻璃钢制品举例
➢袋压成型
优点:仅用一个模具,就可得到形状复杂,尺寸较大,质量较好 的制件,也能制造夹层结构件
一、真空袋成型 1. 过程
制品毛坯 真空袋密封
抽真空
固化 制品
2. 特征 1)工艺简单,不需要专用设备;
3)预热和预成型
A. 预热作用:改善工艺性能,提高模压料温度,缩短固 化时间,降低成型压力;
聚合物基复合材料 (2)
聚合物基复合材料1. 引言聚合物基复合材料是一种由聚合物基质和填充物组成的复合材料。
它具有优异的物理和化学性质,被广泛应用于各个领域,如航空航天、汽车制造、建筑和电子行业等。
本文将介绍聚合物基复合材料的概念、制备方法、性能特点以及应用领域。
2. 聚合物基复合材料的概念聚合物基复合材料是指由聚合物基质和其中添加的填充物或增强剂共同构成的复合材料。
聚合物基质可以是热固性树脂或热塑性聚合物,填充物可以是纤维、颗粒或片状材料。
复合材料的制备过程中,通过改变基质和填充物的组成和结构,可以调节复合材料的性能,满足不同的工程应用需求。
3. 聚合物基复合材料的制备方法聚合物基复合材料的制备方法包括浸渍法、注塑法、挤出法和压延法等。
其中,浸渍法是最常用的制备方法之一。
它的基本过程是将填充物浸渍到聚合物基质中,然后通过热固化或化学固化使基质和填充物形成牢固的结合。
注塑法和挤出法适用于制备纤维增强的复合材料,通过将熔融的聚合物基质注塑或挤出到预定的模具中,再经过固化得到复合材料。
压延法适用于制备片状复合材料,通过将预先加热的聚合物基质和填充物经过辊压成型,再进行固化得到复合材料。
4. 聚合物基复合材料的性能特点聚合物基复合材料具有以下几个突出的性能特点:•轻质高强:由于复合材料中填充物的加入,能够明显降低材料的密度,同时保持较高的强度,从而达到轻质高强的特点。
这使得聚合物基复合材料在航空航天和汽车制造等领域中具有广泛应用的潜力。
•优异的机械性能:聚合物基复合材料的机械性能由聚合物基质和填充物的特性共同决定。
填充物可以增加复合材料的刚度和强度,提高其抗拉强度和冲击韧性等性能指标。
与传统材料相比,聚合物基复合材料在机械性能方面表现出色。
•良好的耐热性:聚合物基复合材料中的聚合物基质通常具有良好的耐热性。
这使得复合材料可以在高温环境下工作,例如航空发动机和火箭推进系统中的应用。
•耐腐蚀性好:聚合物基复合材料对大多数化学物质都具有较好的耐腐蚀性。
第六章 功能复合材料
压力-发光 电场-发光 (场致发光)
压电复合材料
• 压电陶瓷和聚合物基体按照一定的联接方 式、一定的体积比例和一定的空间几何分 布复合而成。
• 在电场的作用下,可以引起电介质中带电 粒子的相对位移而发生极化。但是,在某 些电介质晶体中,也可以通过纯粹的机械 作用(拉应力、压应力或切应力)而发生极化, 并导致介质两端表面内出现符号相反的束 缚电荷,其电荷密度与外力成比例。这种 由于机械力的作用而使电介质晶体产生极 化并形成表面荷电的效应,称为压电效应。 晶体的这一性质就叫压电性。
1-3型水泥基压电复合材料
• 1-3型水泥基压电复合材料是由一维的压电 陶瓷柱平行地排列于三维连通的水泥基体 中而构成的两相压电复合材料。这种复合 材料集中了各相材料的优点,互补了单相的 缺点,具有低声阻抗、高机电耦合系数和低 机械品质因数等优点,更重要的是通过调节 压电陶瓷柱的体积分数及形状参数便可使 复合材料的声阻抗与混凝土材料的声阻抗 相匹配,从而有效地解决智能材料在土木工 程中的相容性问题。
压电陶瓷弯曲变形器
压电陶瓷风扇和继电器
压电振动加速计
0-3型压电复合材料
• 由不连续的陶瓷颗粒分散于三维连通 的聚合体基体中形成的。 • 可以做成薄片、棒或线材。
• 浇注树脂是非常关键的步骤,为了使树脂与 PZT柱结合紧密,树脂与PZT柱的界面上不 能存在气孔,因为气孔的存在易使声波产生 全反射,而且会导致力的传递不连续。因此, 要求树脂的流动性好,固化时间长。
功能复合材料的主要类型
功能特征 磁功能 复合材料 主要类型 屏蔽复合材料 吸波复合材料 透波复合材料 聚合物基导电复合材料 本征导电聚合物材料 压电复合材料 陶瓷基导电复合材料 水泥基导电复合材料 金属基导电复合材料 导电纳米复合材料 超导复合材料 减少电磁波对信息 用途 系统的干扰、减弱 吸收或衰减入射的 柔韧磁体、磁记录 电磁波对人体健康 电磁波,使其因干 隐身材料 的损害。 涉而消失或将其电 雷达罩、天线罩 磁能转换为其他形 屏蔽 式的能量。 防静电、开关 压电传感器 高压绝缘 建筑物绝缘 高强、耐热导电材料 锂电池 医用核磁成像技术
聚合物基复合材料
4、3 纤维增强聚合物复合材料
玻璃纤维增强聚苯乙烯类塑料(FR-ABS)
基体树脂:丁二烯-苯乙烯共聚物(BS) 丙烯腈-苯乙烯共聚物(AS) 丙烯腈-丁二烯-苯乙烯共聚物(ABS)
性能改进:强度、弹性模量有成倍提高 耐高温、耐低温、尺寸稳定性等都有所改善
26
4、3 纤维增强聚合物复合材料
玻璃纤维增强聚碳酸酯(FR-PC)
Kevlar纤维增强树脂:良好压延性、耐冲击、 良好振动衰减性、优异得耐疲劳性
37
4、3 纤维增强聚合物复合材料
常见高性能纤维增强环氧树脂性能对比
增强纤维 相对密度 拉伸强度,MPa 弹性模量,GPa
碳纤维 1、6 1500 12
Kevl 2、0 1750 120
41
4、4 聚合物基复合材料得制备和加工
轮鼓缠绕法预浸料制备示意图
42
4、4 聚合物基复合材料得制备和加工
(2)预混料:
工艺对象:不连续纤维浸渍或混合树脂 制品特征:片状模塑料(Sheet molding pound,SMC)
块状模塑料( Bulk Molding pound,BMC) 注射模塑料(Injection molding pound,IMC)
高强度、高模量纤维增强塑料
基体树脂:环氧树脂 增强材料:碳、硼、芳香族纤维、晶须等高强、高模纤维
性能特点:密度小、强度模量高、热膨胀系数小; 制备工艺简单、成型方法多; 纤维价格昂贵,使用范围到限
36
4、3 纤维增强聚合物复合材料
碳纤维增强树脂: 强度、刚度、耐热性均好
硼纤维增强树脂: 刚性好(模量高于碳纤维增强)
聚合物基复合材料
4、1 概述
4、1 概述
4、1 概述
复合材料的力学性能复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理化学方法
复合材料的力学性质
形 变 % T, 5 4 3 2 1
增塑剂加入量对刚性高聚物形变增塑剂加入量对刚性高聚物形变-温度的影响 如图,适当加入后,玻璃化温度下降比黏温度下降 快,使高弹区加宽,材料使用范围加大。 实例: PVC只能作塑料,适当加入增塑剂 ▓实例:纯PVC只能作塑料,适当加入增塑剂 后,可以作人造革、鞋、薄膜等。
复合材料的力学性质
前 性能对比 静态强度 A 抗张强度 抗弯强度 动态强度 B 抗疲劳性能 冲击强度 C D E F G H 脆性材料 韧性材料 蠕变强度 热变形温度 线膨胀系数 成型收缩率 吸水率 (2~3)B 脆性材料(2~3)C 韧性材料变化不大 (2~3)D 10~200℃ <F <G <H 非晶偏小 结晶偏大 (2~4)A 后
PP/LDPE 0/100
形 变 %
40/60 60/40 100/0
0/100
形 50/50 变 % 80/20
100/0
PP/LDPE
T,℃ PP/LDPE共混材料 -机械
T,℃ PP/LDPE共混材料DTA
复合材料的力学性质
特例: 特例:以橡胶为改性剂,提高高聚物材料抗冲击性能。 对橡胶的要求: 对橡胶的要求:玻璃化温度必须远低于使用温度;橡胶不溶于刚性高聚物而形成二 相;两种高聚物溶解行为上相似,有利于相互黏着。若三条件达不到,加入第三组分。 效果:原脆性高聚物的冲击强度提高5 10倍。 效果:原脆性高聚物的冲击强度提高5~10倍。
三、高聚物材料的共混改性(blending modification) modification) 高聚物材料的共混改性(
▲本质 同于增强和填充,只是改性剂为其他聚合物。
复合材料的力学性质
●共混的方式
聚合物基复合材料(PMC)
05
PMC的制造设备与工具
预处理设备
混合设备
用于将各种组分(如树脂、填料、增强材料等) 混合均匀,形成预浸料或浆料。
切割和裁剪设备
用于将纤维材料切割成所需的尺寸和形状,以便 与树脂进行混合。
清洁和干燥设备
用于确保所有原材料在使用前都已清洁并干燥。
复合设备
热压成型机
用于将预浸料或浆料在高温和压力下固化,形成复合材料部件。
切割与加工
根据需要,对复合材料进行切割、 打磨、钻孔等加工,以满足实际应 用需求。
质量检测
对复合材料进行外观、尺寸、性能 等方面的检测,确保其符合设计要 求。
03
PMC的性能与优化
力学性能
1 2 3
高强度和刚度
聚合物基复合材料具有较高的抗拉、抗压和抗弯 强度,以及良好的刚性,能够满足各种复杂应力 条件下的应用需求。
复合工艺
层叠铺放
根据设计要求,将预浸料 层叠铺放在模具或制件上。
热压成型
在一定温度和压力下,使 预浸料熔融流动并均匀填 充模具或制件,形成致密 的复合材料。
固化
使聚合物基体在一定温度 和压力下进行固化反应, 形成稳定的复合材料。
后处理工艺
冷却
将热压成型的复合材料缓慢冷却 至室温,防止材料内部产生应力。
聚合物基复合材料 (PMC)
• PMC的概述 • PMC的制造工艺 • PMC的性能与优化 • PMC的设计与选材 • PMC的制造设备与工具 • PMC的市场与发展前景
目录
01
PMC的概述
PMC的定义与特性
定义
聚合物基复合材料(PMC)是由两种或两种以上材料组成的一种复合 材料,其中一种材料为聚合物基体,其他材料为增强剂或填料。
复合材料聚合物基复合材料
5.工艺性好。
制造工艺简单,过载时安全性好。
设计性强
由于纤维复合材料的各向异性,与之相关的是性 能的可设计性。由于控制其性能的因素很多,增强剂 类型、基体类型、纤维的排列方向、铺层次层、层数、 成型工艺等都可以根据使用目的和要求不同而进行选 择,因而易于对PMC结构进行最优化设计,做到安全 可靠,经济合理。
•复合材料的破坏有明显预兆,可以在事先检 测出来,而金属的疲劳破坏则是突发性的。
•复合材料中纤维与基体的界面能阻止裂纹的 扩展,其疲劳总是从纤维的薄弱环节开始, 裂纹扩展或损伤逐步进行,时间长,所以破 坏前有明显的预兆。
3.阻尼减振性好
受力结构的自振频率除了与结构本身形状 有关外,还同结构材料的比模量平方根成 正比。所以复合材料有较高的自振频率。
聚合物基复合材料在中国的发展
中国的复合材料起始于1958年,首先用于军工制 品,而后逐渐扩展到民用。
1958年以手糊工艺研制了玻璃钢艇,以层压 和卷制工艺研制玻璃钢板、管和火箭弹。 1961年研制成用于远程火箭的玻璃纤维-酚 醛树脂烧蚀防热弹头。 1962年引进不饱和聚酯树脂、喷射成型和蜂 窝夹层结构成型技术,并制造了玻璃钢的直 升机螺旋桨叶和风洞叶片,同年开始纤维缠 绕工艺研究并生产出一批氧气瓶等压力容器。
同时,复合材料基体与纤维的界面有较大 的吸收振动能量的能力,致使材料的振动 阻尼较高,一旦振起来,在短时间内也能 停下来。
第六章 聚合物基复合材料力学性能 (2)分解
(3)应力成核机制 认为成核是由于界面应力造成基体分子链在基质表面处的取向、 规则排列。并分析引起成核的应力有三种: (a)温差应力;适用于聚合物熔体表面。 (b)缩差应力;由基质、基体间热膨胀系数不同而引起。 (c)外界使加的作用力;对聚合物复合材料不适用。 这些理论对许多现象虽然能进行解释,但均存在反例,不具备普遍性。 3. “横穿晶”现象解释中存在的问题: (1)把Barriault等对聚合物熔体在空气、水浴或油浴中的表面结晶现象
1955年Barriault等采用偏光显微 镜和X-射线衍射实验证明:经空 气、水浴及油浴冷却的PA66熔体 表面所形成的横穿晶的分子链轴 平行于聚合物表面,而分子链间 的氢键方向垂直于聚合物表面。
注:聚酰胺的链构象受到分子间氢键的强烈影响,结果形成平面锯齿形的 分子链靠分子间氢键联系而平行排列成的片状结构。尼龙66的分子链平行 的排列(),建立分子间氢键;但尼龙6则不同,其分子链具有方向性, 只有取反平行的排列()时,才能建立全部分子链氢键。
我课题组的研究工作说明:把材料成型冷却过程中界面应力的松 弛与诱导基体结晶的关系统一起来考虑,对进一步深入研究聚合 物复合材料的界面作用机理具有重要意义。
复合材料基质和结晶温度对形 成横穿晶的影响:
(a) Row structure, with diameters of tens of µm, PP. (b) A transcrystalline layer of PP in contact with PTFE.
Crystalline morphology of PEEK in contact with carbon fiber melted at 420 ℃ for 10 min and then crystallized at
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
产生机理为:由于温差作用而引 起的熔体表面优先成核作用所致。 并且认为此结果也同样适用于聚 合物与金属等其他固体的界面之 间。
继此之后,大量研究者相继报导 了结晶型聚合物在金属、金属氧 化物和各种有机、无机薄膜或纤 维表面或界面上的结晶现象。并 把这些现象等同于Jenckel和 Barriault所描述的“横穿晶”现 象。即认为是由于基质表面成核 作用引起聚合物分子链在基质表 面行式生长,生成分子链轴平行 于基质表面的“横穿晶”结构。
我课题组的研究工作说明:把材料成型冷却过程中界面应力的松 弛与诱导基体结晶的关系统一起来考虑,对进一步深入研究聚合 物复合材料的界面作用机理具有重要意义。
6.4.2 聚合物基复合材料界面结晶效应
聚合物复合材料基质对基体结晶 的影响对复合材料性能极为重要, 也是决定其材料性能的关键因素。
1. 表面结晶现象
1952年Jenckel等首先描述了结晶 型聚合物熔体的表面结晶现象, 将其称之为“横穿晶” (Transcrystalline)。他们起初 只感到此横穿晶与球晶之间存在 联系。
2. 成核控制机理 根据此种成核能力的标准,有关成核能力的控制因素,各研究者也提出了
各自不同的观点: (1)基质、基体间晶胞参数相近原理 (2)基质、基体间化学组成相似原理 (3)基质表面能控制原理 (4)基质表面吸附杂质原理 (5)表面温度梯度控制原理 (6)应力诱导成核原理
…… 这些理论若按“横穿晶”的形成机制可大致区分为三种: (1)基质成核机制 认为成核由基质表面物理化学性质造成。 (2)杂质成核机制 认为是由于基质表面的极性力吸引了有成核能力的杂质而引起。
(a)280,(b)260,(c)323 ℃.
冷却速率变化 对形成横穿晶 的影响:
Twaron/PP cooled at 1 ℃/min. Twaron/PP cooled at 10 ℃/min.
Class P75/PP cooled at 10 ℃/min,Tc=130 ℃
Class P75/PP cooled at 280 ℃/min,Tc=130 ℃
Nylon610 as an inactive substrate (type 3) in the crystallization of PEO at 50℃ .
Morghology of PP crystalline in contact with Kel-F at 125 ℃,(聚三氟氯乙烯),type 2.
面相模量,提高了材料的强度或韧性。
我课题组于1992至2000年间也报导了一些这方面的研究工作,即 发现玻纤/聚烯烃复合材料成型冷却过程中的相变收缩应力可诱导 界面处微纤晶界面处的相变收缩应力,同时又加强了界面相的模量, 提高了复合材料的强度与韧性。
复合材料基质和结晶温度对形 成横穿晶的影响:
(a) Row structure, with diameters of tens of µm, PP. (b) A transcrystalline layer of PP in contact with PTFE.
Crystalline morphology of PEEK in contact with carbon fiber melted at 420 ℃ for 10 min and then crystallized at
高强度PE纤维增强PE复合材 料
* 其中Chatterjee等研究了43对聚合 物/基质间的结晶情况,并根据 所形成的横穿晶的厚薄情况将基 质区分为具有强、中、弱三种等 级的成核能力,以希望能寻找出 控制此种成核能力的影响因素。
Morghology of PP crystalline in contact with Penton at 125℃, (聚二氯甲基环丙烷)type 1.
外界应力作用的影响:
PP结晶试验中结晶 温度和纤维牵伸速 率的影响:
PP结晶试验中结晶温 度和纤维牵伸速率的 影响:
说明复合材料冷却过 程中的微小的应力-应 变作用就可引起表面 成核作用(即剪切诱 导成核作用),引起 界面处横穿晶的形成。
剪切诱导成核作用对 于解释由注射法成型 的玻纤增强塑料具有 实际意义。
的研究结论推广到复合材料界面上,认为横穿晶的本质就是球晶的变形, 即折叠链片晶,显然缺乏严密性。因这两种界面间的温度差和应力分布情 况极不相同。 (2)忽略了聚合物基复合材料在发生相转变时的体积收缩以及由此引起 的界面收缩应力。 (3)过分强调了成核作用对形成“横穿晶”的影响。
4. 界面结晶行为与复合材料性能的关系 诸多研究者报导:复合材料界面处的“横穿晶”的形成提高了界
(3)应力成核机制 认为成核是由于界面应力造成基体分子链在基质表面处的取向、 规则排列。并分析引起成核的应力有三种: (a)温差应力;适用于聚合物熔体表面。 (b)缩差应力;由基质、基体间热膨胀系数不同而引起。 (c)外界使加的作用力;对聚合物复合材料不适用。 这些理论对许多现象虽然能进行解释,但均存在反例,不具备普遍性。 3. “横穿晶”现象解释中存在的问题: (1)把Barriault等对聚合物熔体在空气、水浴或油浴中的表面结晶现象
1955年Barriault等采用偏光显微 镜和X-射线衍射实验证明:经空 气、水浴及油浴冷却的PA66熔体 表面所形成的横穿晶的分子链轴 平行于聚合物表面,而分子链间 的氢键方向垂直于聚合物表面。
注:聚酰胺的链构象受到分子间氢键的强烈影响,结果形成平面锯齿形的 分子链靠分子间氢键联系而平行排列成的片状结构。尼龙66的分子链平行 的排列(),建立分子间氢键;但尼龙6则不同,其分子链具有方向性, 只有取反平行的排列()时,才能建立全部分子链氢键。