第二章 材料力学性能

合集下载

工程材料力学性能第二章

工程材料力学性能第二章
❖ 6〕不仅适用于脆性也适用于塑性金属材料。
❖ 7〕 缺点 外表切应力大,心部小,变形不均匀。
二、扭转实验 扭转试样:圆柱形式〔d0=10mm,L0=50m或100mm〕 试验方法:对试样施加扭矩T,相对扭转角以Φ表示
弹性范围内外表的切应力和切应变
扭转试验可测定以下主要性能指标: (1) 切变模量G
在弹性范围内,Kt的数值决定于缺口的几何形状和 尺寸 与材料性质无关.
❖ 2.厚板: ❖ εz=0, σz≠0 ❖ 根部:两向拉伸力状态, ❖ 内侧:三向拉伸的立体应力平面应变状态, ❖ σz =ν〔σy+σx〕 ❖ σy>σz >σx
3.缺口效应: 1〕根部应力集中 2〕改变缺口的应力状态,由单向应力状态改变为两
思考题: ❖ 1 缺口效应及其产生原因; ❖ 2 缺口强化; ❖ 3 缺口敏感度。

第六节 硬度
前言 •古时,利用固体互相刻划来区分材料的软硬 •硬度仍用来表示材料的软硬程度。 •硬度值大小取决于材料的性质、成分和显微组织,测
量方法和条件不符合统一标准就不能反映真实硬度。 •目前还没有统一而确切的关于硬度的物理定义。 •硬度测定简便,造成的外表损伤小,根本上属于“无
可利用扭转试验研究或检验工件热处理的外表质量和各 种外表强化工艺的效果。
❖ 4)扭转时试样中的最大正应力与最大切应力在数值 上大体相等,而生产上所使用的大局部金属材料的 正断抗力 大于切断抗力 ,扭转试验是测定这些材 料切断抗力最可靠的方法。
❖ 5〕根据扭转试样的宏观断口特征,区分金属材料 最终断裂方式是正断还是切断。
油孔,台阶,螺纹,爆缝等对材料的性能影响有以下 四个方面: ❖ 1 缺口产生应力集中 ❖ 2 引起三向应力状态,使材料脆化 ❖ 3 由应力集中产生应变集中 ❖ 4 使缺口附近的应变速率增高

材料力学性能2

材料力学性能2
有所降低,故τb只是条件值(可作相对比较)而非真实
值,也称条件抗扭强度。
贵州大学
贵州正材邦料科力技学有性限能公:司金属在制其作它静载荷下的力学性能
§2-3 扭转
4. 扭转试验特点:
1. 应力状态:为轴类零件的工作受力状态:
最大正应力与力轴成450角,且σmax≈τmax,
应力状态系数α=0.8,大于单向拉伸,适于表现塑性形为 和评价脆性材料;
它是包含了材料的弹性、塑性、形变强化、强度、韧 性(含金属弹性变形功)等因素的综合指标,其中与强 度关系最为紧密。
测试方法分压入法、刻划法、回跳法 压入法:压入被测试材料表面,测表面压痕大小(压
痕面积或深度)
贵州大学
贵州正材邦料科力技学有性限能公:司金属在制其作它静载荷下的力学性能
§2-5 硬度
第二章:金属在其它静载
荷下的力学性能
压缩 弯曲(静) 扭转 硬度
贵州大学
贵州正材邦料科力技学有性限能公:司金属在制其作它静载荷下的力学性能
§2 - 1 应力状态
贵州大学
贵州正材邦料科力技学有性限能公:司金属在制其作它静载荷下的力学性能
§2-1 应力状态
一、强度理论:
三向应力状态: 主应力: σ1>σ2>σ3 最大切应力与主应力面成450角:τmax= (σ1-σ3)/2 广义虎克定律:ε= [σ1-μ(σ2+σ3)]/E
第一强度理论:最大拉应力理论: 第二强度理论:最大拉应变理论: 第三强度理论:最大剪应力理论: 第四强度理论:最大变形能理论:
贵州大学
贵州正材邦料科力技学有性限能公:司金属在制其作它静载荷下的力学性能
§2-1 应力状态

材料力学性能-第2章

材料力学性能-第2章


1.6 塑性材料的拉伸力学行为
当塑性材料所受的应力低于弹性极限, 其力学行为可近似地用虎克定律加以表述。 当材料所受的应力高于弹性极限,虎克定律 不再适用。此时,材料的变形既有弹性变形 又有塑性变形,进入弹塑性变形阶段,其力 学行为需要用弹-塑性变形阶段的数学表达 式,或称本构方程加以表述。
真应力—真应变的定义:


L dL
0
L
ln
L 1 ln(1 e) ln( ) Lo 1

在弹-塑性变形阶段,只有真应力-真 应变曲线才能描述材料的力学形为。 绝大多数金属材料在室温下屈服后, 要使塑性变形继续进行,必须不断增 大应力,所以在真应力-真应变曲线上 表现为流变应力不断上升。这种现象 称为形变强化。
第二章 材料在拉伸载荷下 的力学行为
例题
1、图示为四种材料的工程 应力-应变曲线,请根据该图 回答以下问题并简述原因 (1)弹性模量最高的材料 (2)伸长量最大的材料 (3)韧性最好的材料 (4)脆性断裂的材料 (5)出现“颈缩”的材料
2、某圆柱形金属拉伸试样的直径为10mm,标距为
2、典型的拉伸曲线
s= 0.2
s
e
e
e
b
e
e
e
E /e
1.4 拉伸性能 弹性模量E: 单纯弹性变形过程中应力与应变 的比值。
E e
屈服强度s:
对于拉伸曲线上有明显的屈服平台的材料,塑性 变形硬化不连续,屈服平台所对应的应力即为屈服强度, 记为s
s = Ps / A0
σb = Pmax/A0 延伸率:
材料的塑性常用延伸率表示。测定方法如下:拉伸 试验前测定试件的标距L0,拉伸断裂后测得标距为Lk, 然而按下式算出延伸率

03-材料的力学性能

03-材料的力学性能

其它塑性材料拉伸时的力学性能
σ /MPa
900 700 500 300 100 0 10 20 30 40 50 60
σ 锰钢
b a σ 0.2
镍钢
青铜 ε(%) 0.2 ε (%)
断裂破坏前产生很大塑性变形; 没有明显的屈服阶段。
名义屈服 极限σ 0.2
脆性材料拉伸时的力学性能
σ /MPa
500 400 300 200 100 0 0.2 0.6 1.0 1.4
ε(%)
铸铁压缩时的σ ~ ε 曲线
反映材料力学性能的主要指标
强度性能 反映材料抵抗破坏的能力,塑性材料: σs 和 σb ,脆性材料:σb ; 弹性性能 反映材料抵抗弹性变形的能力:E; 塑性性能 反映材料具有的塑性变形能力: δ和ψ 。
塑性材料在断裂时有明显的塑性变形;而脆性材料 在断裂时变形很小。 塑性材料在拉伸和压缩时的弹性极限、屈服极限和 弹性模量都相同,它的抗拉和抗压强度相同。而脆性 材料的抗压强度远高于抗拉强度。
b a
拉伸试验结果分析(低碳钢)
虎克定律: 虎克定律:当σ ≤ σp ( σe ) 时,应力与应变成直 线关系,即
σ = Eε σ E = = tgϑ ε
E称为材料的弹性模量, 单位:N/m2, Pa, MPa
拉伸试验结果分析(低碳钢)
E的物理意义 的物理意义 P ∆l σ= ε= 将 A0 l0 代入
现象:试件某个部位突然变细,出现局部收缩——颈缩。 现象
特点: 特点 a、df曲线开始下降,产生变形所需拉力P逐渐减小; b、实际应力继续增大,但σ 为名义应力,A变小没 有考虑,所以d点后σ ~ ε曲线向下弯曲; c、到达f点时,试件断裂。
拉伸试验结果分析(低碳钢)

材料力学第二章

材料力学第二章
圣维南原理Saint-Venaes
拉压杆横截面上的应力Stresses over the cross section 1.试验观察 Experimental observation
变形后横线仍为直线,仍垂直于杆件轴线,只是间距增大. Transversal line after deformation : straight; perpendicular to the axis.
E= tanα -elastic modulus 弹性模量
1.等直杆或小锥度杆Straight bar(or stepped bar) with uniform section, or with small taper ; 2.外力过轴线 The applied force P acts through the centroid of the cross section; 3.当外力均匀地加在截面上,此式对整个杆件都 适用,否则仅适用于离开外力作用处稍远的截面 The normal stress distribution in an axially loaded member is uniform, except in the near vicinity of the applied load (known as Saint-Venant's Principle) .
§4~5 Mechanical Properties of Materials
材料的力学性能 拉伸试验与应力-应变图Tensile Tests and Stress-Strain Diagram 低碳钢拉伸应力-应变曲线Tensile Stress-Strain Curve for Mild Steel 卸载与再加载路径Unloading and Reloading Path 名义屈服极限Conditional Yield Limit 脆性材料拉伸应力-应变曲线Stress-Strain Curves for Brittle Materials 复合与高分子材料的力学性能Strength Properties of Composite Materials

《材料力学》第二章

《材料力学》第二章

F
F
F
F
横截面上 正应力分
横截面间 的纤维变
斜截面间 的纤维变
斜截面上 应力均匀
布均匀
形相同
形相同
m
分布
F
m
p
Page24
第二章 轴向拉压应力与材料的力学性能 s t
n
F p
n p
FN FN p s 0 cos A A / cos
s p cos s 0 cos 2 s t p sin 0 sin 2
二、材料拉伸力学性能 低碳钢Q235
s
D E A
o
线弹性 屈服
硬化
缩颈
e
四个阶段:Linear, yielding, hardening, necking
Page32
第二章 轴向拉压应力与材料的力学性能
低碳钢Q235拉伸试验 线性阶段
s
B A
规律:
s Ee (OA段)
变形:变形很小,弹性 特征点:s p 200MPa (比例极限)
应力——应变曲线(低碳钢)
思考:颈缩阶段后,图中应力为什么会下降?
Page37
第二章 轴向拉压应力与材料的力学性能
名义应力与真实应力
真实应力曲线 名义应力曲线 名义应力
FN s A
变形前截面积
颈缩阶段载荷减小,截面积也减小,真实应力继续增加
Page38
第二章 轴向拉压应力与材料的力学性能
低碳钢试件在拉伸过程中的力学现象
材料力学应力分析的基本方法:
•试验观察
•几何方程
e const 变形关系
•提出假设
•物理方程
s Ee

材料力学-第二章

材料力学-第二章

第二单元第二章 杆件的轴向拉压应力与材料的力学性能§2-1 引言工程实例: 连杆、螺栓、桁架、房屋立柱、桥墩……等等。

力学特征: 构件:直杆外力:合力沿杆轴作用(偏离轴线、怎样处理?)内力:在轴向载荷作用下,杆件横截面上的唯一内力分量为轴力N ,它们在该截面的两部分的大小相等、方向相反。

规定拉力为正,压力为负。

变形:轴向伸缩§2-2 拉压杆的应力一、拉压杆横截面上的应力(可演示,杆件受拉,上面所划的横线和纵线仍保持直线,仅距离改变,表明横截面仍保持为平面)平面假设→应变均匀→应力均匀AN=σ或A P =σ(拉为正,压为负)二、Saint-Venant 原理(1797-1886,原理于1855年提出)问题:杆端作用均布力,横截面应力均布。

杆端作用集中力,横截面应力均布吗? 如图, 随距离增大迅速趋于均匀。

局部力系的等效代换只影响局部。

它已由大量试验和计算证实,但一百多年以来,无数数学力学家试图严格证明它,至今仍未成功。

这是固体力学中一颗难以采撷的明珠。

三、拉压杆斜截面上的应力(低碳钢拉伸,沿45°出现滑移线,为什么?)0cos =-P Ap αα ασ=α=αcos cos AP p ασ=α=σαα2cos cos pασ=α=ταα22sin sin p ()0=ασ=σm ax ()452=ασ=τmax方位角α:逆时针方向为正剪应力τ:使研究对象有顺时针转动趋势为正。

例1和例2,看书p17,18§2-3 材料拉伸时的力学性能(构件的强度、刚度和稳定性,不仅与构件的形状、尺寸和所受外力有关,而且与材料的力学性能有关。

拉伸试验是最基本、最常用的试验。

)一、拉伸试验P18: 试样 拉伸图绘图系统放大变形传感器力传感器--→→→→二、低碳钢拉伸时的力学性能材料分类:脆性材料(玻璃、陶瓷和铸铁)、塑性材料(低碳钢:典型塑性材料)四个阶段:线性阶段(应力应变成正比,符合胡克定律,正比阶段的结束点称为比例极限)、屈服阶段(滑移线)(可听见响声,屈服极限s σ)、强化阶段(b σ强度极限)、局部变形(颈缩)阶段(名义应力↓,实际应力↑) 三(四个)特征点:比例极限、(接近弹性极限)、屈服极限、强度极限(超过强度极限、名义应力下降、实际应力仍上升)。

第二章金属材料力学性能基本知识及钢材的脆化

第二章金属材料力学性能基本知识及钢材的脆化

金属材料力学性能基本知识及钢材的脆化金属材料是现代工业、农业、国防以及科学技术各个领域应用最广泛的工程材料,这不仅是由于其来源丰富,生产工艺简单、成熟,而且还因为它具有优良的性能。

通常所指的金属材料性能包括以下两个方面:1.使用性能即为了保证机械零件、设备、结构件等能正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等),化学性能(耐蚀性、热稳定性等)。

使用性能决定了材料的应用范围,使用安全可靠性和使用寿命。

2 工艺性能即材料在被制成机械零件、设备、结构件的过程中适应各种冷、热加工的性能,例如锻造,焊接,热处理,压力加工,切削加工等方面的性能。

工艺性能对制造成本、生成效率、产品质量有重要影响。

1.1材料力学基本知识金属材料在加工和使用过程中都要承受不同形式外力的作用,当外力达到或超过某一限度时,材料就会发生变形以至断裂。

材料在外力作用下所表现的一些性能称为材料的力学性能。

锅炉压力容器材料的力学性能指标主要有强度、硬度、塑性、韧性等这些性能指标可以通过力学性能试验测定。

1.1.1 强度金属的强度是指金属抵抗永久变形和断裂的能力。

材料强度指标可以通过拉伸试验测出。

把一定尺寸和形状的金属试样(图1~2)装夹在试验机上,然后对试样逐渐施加拉伸载荷,直至把试样拉断为止。

根据试样在拉伸过程中承受的载荷和产生的变形量之间的关系,可绘出该金属的拉伸曲线(图1—3)。

在拉伸曲线上可以得到该材料强度性能的一些数据。

图1—3所示的曲线,其纵坐标是载荷P(也可换算为应力d),横坐标是伸长量AL(也可换算为应变e)。

所以曲线称为P—AL曲线或一一s曲线。

图中曲线A是低碳钢的拉伸曲线,分析曲线A,可以将拉伸过程分为四个阶段:1.弹性阶段即曲线的o-e段,在此段若加载不超过e点的应力值,卸载后试件的变形可全部消失,故e点的应力值为材料只产生弹性变形时应力的最高限,称为弹性极限,曲线的o~e’段为直线,在此段内应力与应变成正比,即材料符合虎克定律,该段称为线弹性阶段。

第二章 轴向拉压应力与材料的力学性能

第二章 轴向拉压应力与材料的力学性能

Page
40
第二章 轴向拉压应力与材料的力学性能
大厦受撞击后,为什么沿铅垂方向塌毁?
据分析,由于大量飞机燃油燃烧,温度高达1200℃,组成 大楼结构的钢材强度急剧降低,致使大厦铅垂塌毁
Page 41
第二章 轴向拉压应力与材料的力学性能
§2-6 应力集中与材料疲劳 灾难性事故
1954年,英国海外航空 公司的两架“彗星”号 大型喷气式客机接连失 事,通过对飞机残骸的 打捞分析发现,失事的 原因是由于气密舱窗口 处的柳钉孔边缘的微小 裂纹发展所致,而这个 柳钉孔的直径仅为 3.175mm
例:画轴力图。 解: 分段计算轴力 由平衡方程: AB段 FN1 = qx BC段 CD段 FN3 = F 画轴力图
FN 2 = F x F a
q q=F a
2F
g
A
x a
B
a
C
a
D
FN1
x FN 2 2F
g
FN3
F F
+
F
Page 9
• 轴力图:表示轴力沿杆轴 变化的图。 • 设正法(为什么要用设正法?) • 作图要求:图与杆轴线对齐,用工具作图
材料力学
北方民族大学 土木工程学院 傅博
第一章回顾
构建设计基本要求:强度,刚度和稳定性 材料力学的任务: 材料力学研究对象:杆(杆、轴、梁),简单板壳 基本假设:连续、均匀、各向同性 内力计算:截面法 应力、应变、胡克定律(剪切胡克定律)
u u u u u u
第二章 轴向拉压应力与材料的力学性能
低碳钢
(压缩)
s p
(拉伸)
o
愈压愈扁 Et Ec
ts
cs
Page 38

材料力学性能——第二章

材料力学性能——第二章
材料力学性能
一、缺口效应
(一)缺口试样在弹性状态下的应力分布(厚板)
理论应力集中系数
Kt max
与薄板相比, 厚板在垂直于板厚方向的收缩变形受到 约束,即:
z 0
z
1 E
[ z
(
x
y )]
z ( x y )
y> z> x
材料力学性能
一、缺口效应
(二)缺口试样在塑性状态下的应力分布(厚板)
一、应力状态软性系数α
(1)较硬的应力状态试验,主要用于塑性金属材料力学性能的测定。 (2)较软的应力状态试验,主要用于脆性金属材料力学性能的测定。
材料力学性能
第二节 压缩
一、压缩试验的特点
(1) 单向压缩试验的应力状态软性系数α=2,所以 主要用于拉伸时呈脆性的金属材料力学性能的测定。
(2) 拉伸时塑性很好的材料,在压缩时只发生压缩 变形而不断裂。
原因:
切应力:引起金属材料产生塑性变形以及韧性断裂。 正应力:引起金属材料产生脆性断裂。
反之亦然
1
材料力学性能
第一节 应力状态软性系数
材料在受到载荷作用时(单向拉伸), max s
max k
产生屈服 产生断裂
在复杂的应力状态下(用三个主应力表示成σ1、σ2、 σ3 )
最大切应力理论: max
一、缺口效应 定义
在静载荷作用下,由于缺口的存在,而使其尖端出现应力、应变集中; 并改变了缺口前方的应力状态,由原来的单向应力状态变为两向或三向 应力状态; 并使塑性材料的强度增加,塑性降低。
材料力学性能
一、缺口效应
(一)缺口试样在弹性状态下的应力分布(薄板)
在拉应力σ的作用下,缺口的存在使 横截面上的应力分布不均匀: 轴向应力σy分布:σy在缺口根部最大, 随着距离x↑ ,σy ↓ ,所以在缺口根部 产生了应力集中的现象。 横向应力σx分布:缺口根部可自由变形, σx=0,远离x轴,变形阻力增大, σx↑, 达到一定距离后,由于σy↓导致σx ↓。

材料力学性能复习

材料力学性能复习

材料⼒学性能复习第⼆章材料在静载荷下的⼒学性能1.连续塑性变形强化材料和⾮连续塑性形变强化材料曲线、变形过程、屈服强度。

2.指出以下应⼒应变曲线与哪些典型材料相对应,并对其经历的变形过程做出说明。

3.拉伸断裂前,发⽣少量塑性变形,⽆颈缩,在最⾼载荷点处断裂;4.断裂前先发⽣弹性变形,然后进⼊屈服阶段,之后发⽣形变强化+均匀塑性变形,有颈缩现象,再发⽣⾮均匀塑性变形直⾄断裂;5.应⼒状态软性系数的定义及其意义、应⼒状态图的应⽤。

6.画出低碳钢的应⼒应变曲线,并说明获得该材料的强度和塑性指标?⽐例极限弹性极限屈服极限强度极限断裂强度延伸率断⾯收缩率7.⼯程应⼒、⼯程应变、真应⼒和真应变之间有什么关系?8.为什么灰⼝铸铁的拉伸断⼝与拉伸轴垂直,⽽压缩断⼝却与压缩⼒轴成45o⾓?9.材料为灰铸铁,其试样直径d=30mm,原标距长度h。

=45mm。

在压缩试验时,当试样承受到485kN压⼒时发⽣破坏,试验后长度h=40mm。

试求其抗压强度和相对收缩率。

10.布⽒、洛⽒、维⽒硬度的试验原理、特点、应⽤。

11.现有如下⼯件需测定硬度,选⽤何种硬度试验⽅法为宜? (1) 渗碳层的硬度分布;(2)灰铸铁;(3)淬⽕钢件;(4)氮化层;(5)双相钢中的铁素体和马⽒体;(6)⾼速钢⼑具;(7)硬质合⾦;(8)退⽕态下的软钢。

第三章材料的变形12.⾦属的弹性模量主要取决于什么?材料的弹性模量可以通过材料热处理等⽅式进⾏有效改变的吗?为什么说它是⼀个对结构不敏感的⼒学性能?弹性也称之为刚度,都是表征材料变形的能⼒?特点:单值性,可逆性,变形量⼩;物理本质:克服原⼦间⼒(双原⼦模型)组织不敏感:E主要取决于材料的本性,与晶格类型和原⼦间距有关,合⾦中固溶原⼦、热处理⼯艺、冷塑性变形,温度、加载⽅式等都对弹性模量影响不⼤;刚度:弹性与刚度是不同的,弹性表征材料弹性变形的能⼒,刚度表征材料弹性变形的抗⼒。

13.弹性变形的不完整性?灰⼝铸铁可以⽤作机床机⾝,为什么?对理想弹性体,在应⼒作⽤下产⽣的应变,与应⼒间存在三个关系:线性、瞬时和唯⼀性。

材料力学性能第二章

材料力学性能第二章

4/17/2014
安徽工业大学 材料科学与工程学院
20

缺口引起的应力集中程度通常用应力集中系 数Kt来表示
max Kt
与材料性质无关,只由缺口的 几何形状决定,可在手册中查 到
4/17/2014
安徽工业大学 材料科学与工程学院
21

缺口的第一个效应是引起应力集中,并改变了缺口前方的 应力状态,使缺口试样或机件中所受的应力,由原来的单 向应力状态改变为两向或三向应力状态,这种状态由板厚 或直径决定。 两向或三向不等拉伸的应力状态软性系数α<0.5,使金属难 以产生塑性变形。 对于脆性材料或低塑性材料进行缺口试样拉伸时,很难通 过缺口根部极为有限的塑性变形使应力重新分布,往往直 接由弹性变形过渡到断裂,所以缺口试样的抗拉强度必然 比光滑试样的低。
安徽工业大学 材料科学与工程学院

压头直径D有四种: 10 mm、5 mm、2.5 mm和1 mm 主要根据试样厚度选择,应使压痕深度h小于试样厚 度的1/8,当试样厚度足够时,应尽可能选直径10 mm 的压头
4/17/2014
安徽工业大学 材料科学与工程学院
33
布氏硬度试验的优点:


1. 由于压头的直径较大,所以压痕面积较大,其硬度值能 反映各组成相的平均性能,适合于测定灰铸铁、轴承合金 的硬度; 2. 试验数据稳定,重复性强。
布氏硬度试验的缺点:

1. 对不同材料需要更换压头直径和改变试验力,压痕直径 的测量较麻烦,所以不宜用于自动检测; 2. 压痕较大时不宜在成品上实验。

4/17/2014
安徽工业大学 材料科学与工程学院
10
根据扭转试验时试样所受的应力状态与应力分布,扭转 试验具有如下 特点:

材料力学性能-第二章-压缩、弯曲、扭转

材料力学性能-第二章-压缩、弯曲、扭转
宽度为b,长度为h的矩形板状试 样,W=(bh2)/6;
0
f fbb
图2-5 弯曲力-挠度曲线
2022年1月1日星 第二章 其他静载荷下材料的力学性能 期六
一、特点
第四节 扭转
当试样承受扭矩T进行扭转时,试样表面的应
力状态如图2-6(a)所示。弹、塑性变形后横截面上
的应力和应变分布如图2-6(b)和2-6(c)所示。
Ls
三点弯曲
图2-4 弯曲试验加载方式
四点弯曲
2022年1月1日星 第二章 其他静载荷下材料的力学性能 期六
试样在弹性范围内弯曲时,受拉侧表面
的最大弯曲应力(抗弯强度):
M
F
W
Fbb
M-最大弯矩。三点弯曲M=FLs/4, 四点弯曲M=Fl/2; W-试样抗弯截面系数。直径为d
的圆柱试样,W=(d3)/32;
2022年1月1日星 第二章 其他静载荷下材料的力学性能 期六
任何复杂应力状 态都可以用受力点 单元六面体的六个 应力分量表示。正 应力导致脆性断裂, 切应力导致韧性断 Y 裂。
Z
3
τ
1
2
X
123
图2-1 单元六面体上的应力分量
2022年1月1日星 第二章 其他静载荷下材料的力学性能 期六
根据材料力学理论:
的塑性行为。 2、圆柱形扭转试样时,整个长度上塑性变形是均匀 的,无缩颈现象,可实现大塑性变形量下的试验。 3、可敏感地反映金属表面缺陷及表面硬化层的性能。 4、扭转最大切应力和最大正应力在数值上大致相等。
2022年1月1日星 第二章 其他静载荷下材料的力学性能 期六
5、根据扭转试样的宏观断口 特征,可明显区分金属材料 最终断裂方式:塑性材料的 断裂面与试样轴线垂直,有 回旋状塑性变形痕迹,这是 由切应力造成的;脆性材料 的 断 裂 面 与 试 样 轴 线 成 45º, 呈螺旋状,这是在正应力作 用下产生的。

材料力学性能(第二章)

材料力学性能(第二章)

三、缺口敏感性与敏感度 1、缺口脆化效应:缺口根部的应力集中 缺口脆化效应: 会促使萌生裂纹, 会促使萌生裂纹,加上根部较硬的应力状 态使构件趋于脆性状态, 态使构件趋于脆性状态,从而使缺口构件 脆性断裂的危险性增大。 脆性断裂的危险性增大。 2、缺口敏感性:金属材料因存在缺口造 缺口敏感性: 成三向应力状态和应力应变集中而变脆的 倾向。 倾向。
2、近缺口顶端区产生两向应力状态(薄 近缺口顶端区产生两向应力状态( 或三向应力状态(厚板)。 板)或三向应力状态(厚板)。 (1)自缺口根部向内侧, (1)自缺口根部向内侧,横向拉应力由零 自缺口根部向内侧 逐渐增大,达到一定数值后逐渐减小, 逐渐增大,达到一定数值后逐渐减小,薄 板缺口内侧是两向拉伸的平面应力状态。 板缺口内侧是两向拉伸的平面应力状态。 (2)厚板由于在板厚方向的收缩变形受到 (2)厚板由于在板厚方向的收缩变形受到 约束,也存在拉应力, 约束,也存在拉应力,厚板缺口内侧是三 向拉伸是平面应力状态。 σy>σx> 向拉伸是平面应力状态。 (σy>σx> σz) σz)
3、脆性材料和低塑性材料进行缺口试样 拉伸时,往往由弹性变形过度到断裂, 拉伸时,往往由弹性变形过度到断裂,且 其抗拉强度比光滑试样低。 其抗拉强度比光滑试样低。 此时应力状态软性系数α 0.5, 此时应力状态软性系数α<0.5,很 难通过缺口根部塑性变形使应力重新分布, 难通过缺口根部塑性变形使应力重新分布, 往往发生断裂。 往往发生断裂。 由于断裂是在试样缺口根部的最大纵 向应力作用下产生的, 向应力作用下产生的,其抗拉强度必然低 于光滑试样。 于光滑试样。
缺口内侧σx≠0 必须增加σy σx≠0, σy才能产 ② 缺口内侧σx≠0,必须增加σy才能产 生屈服。如果不断增加σy σy, 生屈服。如果不断增加σy,塑性变形将 自表面向心部扩展。 自表面向心部扩展。 (2)缺口强化:塑性较好的材料, (2)缺口强化:塑性较好的材料,由于缺 缺口强化 口的存在,出现了三向应力状态, 口的存在,出现了三向应力状态,并产生 了应力集中, 了应力集中,使得试样的屈服应力比单向 拉伸时高。 拉伸时高。 缺口使塑性下降,脆性上升。 缺口使塑性下降,脆性上升。不是强 化金属材料的手段。 化金属材料的手段。

材料力学02(第二章 轴向拉压应力与材料的力学性能)

材料力学02(第二章 轴向拉压应力与材料的力学性能)
F 1= A1 sin F 2=A2 tan
FN 2
A
F
1.校核强度
已知F, ,A1,A2, t , c
校核结构是否安全? 解:
F 1= t ? A1 sin F 2 = c ? A2 tan
2
L
FN ,max max [ ] (1)强度校核 A FN ,max A (2)截面选择 [ ] (3)计算许可荷载 FN,max A[ ]
强度条件的应用举例
1 2
L
(1) 求内力(节点A平衡) FN1= F sin

A
FN2= - F tan
FN1
F
(2) 求应力(A1,A2横截面积)
C 1m
B
A F
C y 1m
FN1
B A F
A F
x
FN2
解: (1)节点 A 的受力如图,其平衡方程为:
F F
x y
0 0
FN2 FN1 cos 30 0 FN1 sin 30 F 0
得 FN1 2F (拉) FN 2 1.732F (压)
(2)查型钢表得两杆的面积 杆AC 杆AB
例题2 . 钢板冲孔,已知t=5mm,d=18mm,剪切极限应力 τ0=400MPa,求冲力P的大小。
• 解:(1)内力分析: • 剪力: Fs=P • 剪切面面积:A=πd t
• (2)应力分析与强度计算: • τ= Fs/ A ≥τ0 • 由上解得: P ≥ τ0 πd t =113kN
例3 、一铆钉接头如图所示,铆钉和板用同一种材料制成, 铆钉的直径d=18mm,板厚t=10mm,其[τ]=80MPa, [σbs]=200MPa,[σ]=120MPa,试校核此接头部分的强度。

工程材料力学性能2

工程材料力学性能2

第二章 金属在其他静载荷下的力学性能实际应用过程中,金属材料在常温静载荷下的的力学性能不仅包括静拉伸, 还有压缩、弯曲、扭转、剪切等加载方式,在这些加载方式下金属材料的力学性 能与拉伸加载会有明显的差别, 研究其他静载荷下的力学性能的意义在于: 准 ① 确把握金属材料在实际工程应用中的力学性能指标, 为材料设计和选择材料提供 参考依据;② 不同加载方式在试件中产生不同的应力状态,所以金属表现出的 力学行为不完全相同,研究不同应力状态下的力学性能指标,可以全面地了解金 属材料的使用性能,为工程应用提供理论指导。

第一节 应力状态软性系数 塑性变形和断裂是金属材料在静载荷下失效的主要形式。

不同的加载方式在 金属内部所能产生的最大正应力 σ m 和最大切应力 τ m 是不同的,实际上影响到同 一种金属材料在不同加载方式下可能出现不同的断裂方式和类型。

τ m 与 σ m 的比 值称为应力状态软性系数 α :α=τm σ1 σ 3 = σ m 2[σ 1 ν (σ 2 + σ 3 )]其中 σ 1 , σ 2 , σ 3 为应力 σ 的三个主应力分量。

不同加载方式对应的 α 值在 0.1-4 之间,最低的是三向不等拉伸( α = 0.1 ) ,最高的三向不等压缩( α = 4 ) 。

加载方式、材料变形和断裂类型之间的关系: (1)α 值大, 最大切应力 τ m 大, 容易出现塑性变形和韧性断裂——软应力状态; (2)α 值小,最大正应力 σ m 大,不容易产生塑性变形,容易出现脆性断裂—— 硬应力状态。

金属在轴向压缩载荷下的力学行为 第二节 金属在轴向压缩载荷下的力学行为 一、压缩试验的特点 压缩试1、单向压缩的应力状态软性系数等于 2,高于拉伸、扭转和弯曲,容易出现塑性变形,所以应用于测量脆性金属材料的塑性力学行为和力学性能指标; (压缩可以看作反向拉伸,所以拉伸实验中的各个力学性能指标和计算公式适用 于压缩! )2、塑性金属材料在压缩时只发生压缩变形而不断裂,即使进行压缩实验也是为了考察材料加工性能。

第二章材料力学特性

第二章材料力学特性

1. 拉伸实验
实验用试件
(1)材料类型: 低碳钢: 塑性材料的典型代表; 灰铸铁: 脆性材料的典型代表;
(2)标准试件:
L0 d0
标点
尺寸符合国标的试件; 标距: 用于测试的等截面部分长度; 圆截面试件标距:L0=10d0或5d0
# 低碳钢拉伸实验曲线
P Pe Ps Pb
强化阶段 屈服阶段 颈缩阶段
2.2.2. 硬度


硬度是材料抵抗局部塑性变形的能力 硬度也反映材料抵抗其它物体压入的能力 通常材料的强度越高,硬度也越高 工程上常用的硬度指标有布氏硬度、洛氏 硬度和维氏硬度等
1. 布氏硬度HBS(W)


布氏硬度的测量方法如图所示。 用一定载荷P,将直径为D的球体 (淬火钢球或硬质合金球),压 入被测材料的表面,保持一定时 间后卸去载荷,测量被测试表面 上所形成的压痕直径d,由此计 算压痕的球缺面积F,其单位面 积所受载荷称为布氏硬度。布氏 硬度值HB=P / F 布氏硬度的单位为kgf/mm2
低碳钢拉伸 应力应变曲线
g
E=tga
a
O
e
0.1 0.2

by
灰铸铁的 压缩曲线
a
bL
灰铸铁的 拉伸曲线
a = 45o~55o
剪应力引起断裂
O
e
2.2.1 强度和塑性
2 . 强度 材料在外力作用下,抵抗破坏的能力称 之为强度。 材料在外力作用下,抵抗变形的能力 称之为刚度。
弹性极限和比例极限


试验时,冲击功的数值可从冲击试验机的 刻度标盘上直接读出 冲击吸收功除以试样缺口底部处横截面积F 获得冲击韧性值ak ,即a k =Ak/ F,单位 为J/cm2。有些国家(如美、英、日等国) 直接用冲击吸收功 Ak作为冲击韧性指标
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b为屈服上限upper yield strength c为屈服下限,即屈服强度 fy lower yield strength
e
cd为屈服台阶yield plateau de为强化段strain hardening stage e为极限抗拉强度 fu ultimate tensile strength
2.1 钢材
第二章 工程结构材料的物理力学性能
在钢筋混凝土结构中,受力钢筋强度不宜太高,受正常使用
极限状态控制,预应力结构钢筋强度不宜太低,否则建立的有 效预应力值很小。

纵向受力普通钢筋宜采用 HRB400 、 HRB500、HRBF500、 HRBF400 钢 筋 , 亦 可 用 HPB300 、 HRB335 、 HRBF335 、 RRB400。 梁 、 柱 纵 向 受 力 普 通 钢 筋 应 采 用 HRB400 、 HRB500 、 HRBF400、HRBF500钢筋。HRB335级和 HRB400级。 箍 筋 宜 采 用 HRB400 、 HRBF400 、 HPB300 、 HRB500 、 HRBF500钢筋,亦可用HRB335、HRBF335钢筋。 预应力筋宜采用预应力钢丝、钢绞线和预应力螺纹钢筋。
2.1 钢材
第二章 工程结构材料的物理力学性能
几个指标(Index): 屈服强度yield strength:是钢筋强度的设计依据,因为钢筋屈服 后将很大的塑性变形,且卸载时这部分变形不可恢复,这会使钢 筋混凝土构件产生很大的变形和不可闭合的裂缝。屈服上限与加 载速度有关,不太稳定,一般取屈服下限作为屈服强度。
2.1 钢 材
第二章 工程结构材料的物理力学性能
HPB300级(Ⅰ级)钢筋多为光面钢筋(Plain
Bar),
多作为现浇楼板的受力钢筋和箍筋
HRB335
级 (Ⅱ 级 ) 、 HRB400 级 (Ⅲ 级 ) 、 HRB500( Ⅳ级)钢筋强度较高,多作为钢筋混凝土 构件的受力钢筋。
RRB400:是钢筋热轧后快速冷却,利用钢筋内温


特别注意,为了节约合金资源,降低价格,列入靠控温轧 制而具有一定延性的HRBF系列细晶粒热轧带肋钢筋。
2.1 钢 材
第二章 工程结构材料的物理力学性能
HPB300级、HRB335级、HRB400级、RRB400级
HRBF335级、HRBF400级、HRB500级、HRBF500级 HPB
Bar Plain Hot rolled
度自行回火而成,淬火钢筋强度提高,但塑性降低, 可焊性降低。不宜作为重要部位的受力钢筋,不应用 于直接承受疲劳荷载的构件。
HRBF335/
HRBF400 /HRBF500:延性、可焊性、机 械连接性能较好,推广使用。
2.1 钢 材
第二章 工程结构材料的物理力学性能
2、中、高强钢丝和钢绞线
钢丝 Wire:中强钢丝的强度为 800~1230MPa,高强钢丝、 钢绞线(Strand or Tendon)的强度为 1570 ~1960MPa;延伸率 d10=6% , d100=3.5~4% ;钢丝的直径 5~9mm ;外形有光面和 螺旋肋两种,另有三股和七股钢绞线,外接圆直径 8.6~21.6 mm。中高强钢丝和钢绞线均用于预应力混凝土结构。
目前多采用均匀延伸率来反映钢筋的变形能力
HRB
Bar
RRB Ribbed
Hot rolled Bar Ribbed Remained
屈服强度 fyk(标准值=钢材废品限值,保证率97.73%)
HPB300级: fyk = 300 N/mm2 HRB335级: fyk = 335 N/mm2 HRB400级、HRBF400、RRB400级: fyk = 400 N/mm2
屈 强 比反映钢筋的强度储备,fy/fu=0.7~0.8。
延 伸 率elongation strain:钢筋拉断时的应变, 是反映钢筋塑性性能的指标。延伸率大的钢筋, 在拉断前有足够预兆,延性较好
5 or 10

l l0 l0
3.1 钢材
第二章 钢筋和混凝土的材料性能
钢筋标距通常取为5d或10d,标距范围包括了钢筋的颈缩 区域,而该区域的变形占试件变形的绝大部分且与试件 标距的大小关系不大,所以导致不同标距的试件测得的 延伸率不同。
2.1 钢 材



第二章 工程结构材料的物理力学性能
二、钢筋的应力-应变关系 Stress-Strain Relation
◆ 有明显屈服点的钢筋 Rebar with yield point
fu
s
b c d
e f
a’为比例极限proportional limit
s =Ese
fy a a’
a为弹性极限elastic limit
第二章 主要内容:
混凝土结构材料 的物理力学性能
混凝土的物理力学性能
钢筋的物理力学性能
钢筋与混凝土的粘结
材料的力学性能
钢 筋 强 度
混 凝 土
变 形
两者间的粘结
粘结破坏的 过程和机理
第二章 工程结构材料的物理力学性能
2.1 钢 筋 Steel Reinforcement
一、钢筋的品种(Reinforcement types) 热轧钢筋、中高强钢丝和钢绞线、冷加工钢筋三大系列。
3、冷加工钢筋 Cold working rebar
冷加工钢筋:是指在常温下采用某种工艺(冷拉、冷拔、冷 轧、冷扭)对热轧钢筋进行加工得到的钢筋。冷加工的目的 是为了提高钢筋的强度,节约钢材。但经冷加工后,钢筋的 延伸率降低。近年来,冷加工钢筋的品种很多,应根据专门 规程使用。在非预应力结构构件中是否采用冷加工钢筋,应 进行性价比等比较。冷加工钢筋已经禁止使用,是一种误解。
2.1 钢材
第二章 工程结构材料的物理力学性能
1、热轧钢筋 Hot Rolled Steel Reinforcing Bar 热轧钢筋:是指钢厂用熔化的钢水直接轧制而成的 钢筋。它属于普通低碳钢钢筋和普通低合金钢钢筋。

与世界上许多国家相比,我国建筑用钢筋的强度偏低。根据 节材、减耗及对性能的要求,本次规范修订淘汰低强钢筋, 强调应用高强高性能钢筋。 规范根据钢筋产品标准的修改,不再限制钢筋材料的化学 成分,而按性能确定钢筋的牌号和强度级别。
相关文档
最新文档