八年级数学上册2.1认识无理数教案新版北师大版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章实数
2.1 认识无理数(一)
教学目标
(一)知识目标:
1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.
2.能判断给出的数是否为有理数;并能说出现由.
(二)能力训练目标:
1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.
2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.
(三)情感与价值观目标:
1.激励学生积极参与教学活动,提高大家学习数学的热情.
2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.
3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.
教学重点
1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.
2.会判断一个数是否为有理数.
教学难点
1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.
2.判断一个数是否为有理数.
教学方法
教师引导,主要由学生分组讨论得出结果.
教学过程
一、创设问题情境,引入新课
[师]同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?
[生]在小学我们学过自然数、小数、分数.
[生]在初一我们还学过负数.
[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.
二、讲授新课
1.问题的提出
[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?
[生]好.(学生非常高兴地投入活动中).
[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下.
同学们非常踊跃地呈现自己的作品给老师.
[师]现在我们一齐把大家的做法总结一下:
下面请大家思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?
[生甲]a是正方形的边长,所以a肯定是正数.
[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2. [生丙]由a2=2可判断a应是1点几.
[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a 是整数吗?a 是分数吗?请大家分组讨论后回答.
[生甲]我们组的结论是:因为12=1,22=4,32
=9,…整数的平方越来越大,所以a 应在1和2之间,故a 不可能是整数. [生乙]因为
9
1
3131,943232,412121=⨯=⨯=⨯,…两个相同因数的乘积都为分数,所以a 不可能是分数.
[师]经过大家的讨论可知,在等式a 2
=2中,a 既不是整数,也不是分数,所以a 不是有理数,但在现实生活中确实存在像a 这样的数,由此看来,数又不够用了. 2.做一做
投影片§2.1.1 A
(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少? (2)设该正方形的边长为b ,则b 应满足什么条件?b 是有理数吗? [师]请大家先回忆一下勾股定理的内容.
[生]在直角三角形中,若两条直角边长为a ,b ,斜边为c ,则有a 2+b 2=c 2
.
[师]在这题中,两条直角边分别为1和2,斜边为b ,根据勾股定理得b 2=12+22,即b 2
=5,则b 是有理数吗?请举手回答.
[生甲]因为22=4,32
=9,4<5<9,所以b 不可能是整数. [生乙]没有两个相同的分数相乘得5,故b 不可能是分数.
[生丙]因为没有一个整数或分数的平方为5,所以5不是有理数.
[师]大家分析得很准确,像上面讨论的数a ,b 都不是有理数,而是另一类数——无理数.关于无理数的发现是付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正
视了希伯索斯的发现.也就是我们前面谈过的a 2
=2中的a 不是有理数. 我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神. 三、课堂练习
(一)课本P 35随堂练习
如图,正三角形ABC 的边长为2,高为h ,h 可能是整数吗?可能是分数吗?
解:由正三角形的性质可知BD =1,在Rt △ABD 中,由勾股定理得h 2
=3.h 不可能是整数,也不可能是分数. (二)补充练习
为了加固一个高2米、宽1米的大门,需要在对角线位置加固一条木板,设木板长为a 米,
则由勾股定理得a 2=12+22,即a 2
=5,a 的值大约是多少?这个值可能是分数吗? 解:a 的值大约是2.2,这个值不可能是分数. 四、课堂小结
1.通过拼图活动,经历无理数产生的实际背景,让学生感受有理数又不够用了.
2.能判断一个数是否为有理数. 五、课后作业:见作业本。 §2.1认识无理数(二)