高炉内型设计
年产值刚生铁450吨的高炉车间中高炉内型设计
课程设计说明书题目名称:年产值钢生铁450吨的高炉车间中高炉内型设计系部:机械系工程系专业班级:学生:学号:指导教师:完成日期:新疆工程学院课程设计评定意见设计题目系部_________________ 专业班级学生_________________ 学生学号评定意见:评定成绩:指导教师〔签名〕:年月日新疆工程学院____________系(部)课程设计任务书学年学期年月日教研室主任〔签名〕系〔部〕主任〔签名〕目录前言 (1)配料计算方法 (3)配料计算原始条件 (3)吨铁简易配料计算 (5)物料平衡计算方法 (10)物料平衡计算的原始条件 (10)吨铁物料平衡计算 (10)高炉内型设计方法 (15)炉缸 (15)炉腹 (16)炉身 (17)炉腰 (17)炉喉 (17)死铁层厚度 (18)高炉内型计算 (18)高炉内型图 (20)参考资料 (21)一、前言近年来,随着我国经济的快速发展,在基础设施建设,,比上年度增长15.19%,占世界总产量的49.74%,08年全国生铁产量4.7067亿t,炼铁生产能力超过6亿t,09年全国生铁产量达5.4375亿t,但有6000万t/年的生产能力居于淘汰之列〔主要是300m³以下容积小高炉〕。
在产量不断增长的同时,我国的高炉炼铁技术也取得了较大的进步,入炉焦比和炼铁工序能耗不断下降,喷煤比、热风温度和利用系数也不断提高,高炉操作技术也日趋成熟,各项技术经济指标得到进一步改善。
我国现有高炉1300多座,大于1000m3以上容积的高炉有150多座。
近年来,高炉大型化的步伐加快,宝钢建成三座4 000m³级的高炉,另外已建成和在建的7 座4000m³级高炉以及首钢曹妃甸2座5500 m³高炉。
大型高炉均采用了先进的技术装备,一大批成熟高新技术和装备的应用大大降低了生产成本和劳动强度,自动化程度也进一步提升,生产环境有了很大改善,企业生产效率和经济效益得到明显提高。
高炉炉型设计
4、炉腹高度h2 ;炉腰直径D;炉腹角α
• 选取炉腹角α : 一般取值79o~83o h2 =
1 2 ( D d ) tg
选取 D/d 炉型 D/d 小型高炉 1.25~1.5 中型高炉 1.15~1.25 大型高炉 1.09~1.15
5、选取炉身角β; 炉身高度 h4 ; 炉喉直径 d1
世界高炉之王——沙钢5860立方米炼铁高炉
日本第二大钢铁集团——日本JFE钢铁福山厂 。
(左起)第2高炉、第3高炉、第4高炉、第5高炉,4号高炉 2006年5月扩容到5000立方米,5号高炉扩容到5500立方米
全世界共有9座5500m³ 以上特大型炼铁高炉
• 1、沙钢的5860m³ 高炉;
• 2、日本新日铁大分厂1号、2号高炉(容积均为5775m³ ) • 3、俄罗斯北方钢铁切列波维茨厂5号高炉(容积5580m³ ) 4、日本新日铁君津厂4号高炉(容积5555m³ ) • 5、德国蒂森钢铁斯韦尔根厂2号高炉(容积5513m³ ), • 6、日本JFE福山厂5号高炉(容积5500m³ ) • 7、韩国浦项光阳钢厂4号高炉(容积5500m³ )
h z 1 . 27
0 . 45
bP ' Nc d 铁
2
hf
hz k
― 渣口高度与风口高度之比
k = 0.5~0.6 ; k
炉缸高度: h =h + a ; 1 f
a―风口结构尺寸,一般取值0.35~0.5m
hz― 渣口与铁口中心线的距离称为渣口高度 P ― 生铁日产量,t b ― 生铁产量波动系数,一般取值1.2 N ― 昼夜出铁次数,8~12次/d (大高炉取大值)
• 通过对高炉炉型的大量研究和探索,人们 逐步认识了高炉炉型与原燃料和鼓风制度 的适应关系,即炉型与炉料运动和煤气流 运动规律的适应性。炉型是随着原燃料条 件的改善,操作技术水平的提高,科学技 术的进步而不断发展变化的,逐步形成了 现代的五段式高炉炉型。
第六章 高炉设备(一)PPT课件
4 炉缸 影响因素:铁液之流出、炉内渣铁液面升降,大
喷的煤气流等高温流体对炉衬的冲刷是主要的破坏 因素,特别是渣口、铁口附近的炉衬更是冲刷厉害 的关键部位;高炉炉渣偏于碱性而常用的硅酸铝质 耐火砖则偏于酸性,故在高温下化学性渣化,对炉 缸砖衬也是一个重要的破坏因素;炉缸的风口带炉 衬内受到表面温度常达1300-1900℃,影响砖衬的耐 高温性能
我国粘土砖的Al2O3含量较高,质量好,基本上能满足高 炉炉衬的要求。
2 高铝砖 高铝砖是含氧化铝48%以上的耐火制品。 优缺点:它的耐火度及荷重软化温度比粘土砖
高,抗渣性能也较好,随着Al2O3含量的增加,这 些性质也随着提高。不足之处是高铝砖的热稳定 性较差,成本较高,又因为耐磨性好加工困难, 所以加工费用高。
第六章 高炉及附属设备
2023最新整理收集 do something
§6.1
一、高炉炉型(高炉内型) 高炉内部工作空间的形状为高炉炉型,近代高炉
炉型由炉缸、炉腹、炉腰、炉身和炉喉五部分组成。 (王平. 炼铁设备.北京: 冶金工业出版社. 2006:10)
矿槽 料车
煤气除尘设备
装料 设备
净 煤
气
中速磨
7 炉喉
影响因素:它受到炉料从大钟上落下时的打击作用 (故都用金属板加以保护),温度分布不均匀产生的 热变形作用;炉内煤气流夹带的粉尘逸出时的磨损作 用。 对于大中型高炉来说,炉身部分是整个高炉的薄弱 环节,这里的工作条件虽然比下部好,但由于没有渣 皮的保护作用,寿命反而较短,往往在两次大修之间 还需要一次小修,以修补炉衬。对于小型高炉来说, 炉缸是薄弱环书,常因炉缸冷却不良、堵门泥炮能力 小而发生烧穿事故。
高炉有效高度设计考虑因素: 1)对煤气热能和化学能的利用。增加高度能延长煤气和炉
炼铁原理与工艺6(高炉炉体与维护)
6. 2高炉炉衬的选择与砌筑
② 高炉炉腹、炉腰和炉身耐火材料用陶瓷质耐火 材料的要求: A. 化学成分中AL2O3要高,Fe2O3含量要少。 B. 耐火度要高。测温锥测定 C. 荷重软化点要高。0.2Mpa载荷下的软化温度 D. 重烧收缩率要小。残余收缩,是表示耐火材料 升到高温后产生的裂纹可能性大小的一种性质。 E. 气孔率要低。
6. 2高炉炉衬的选择与砌筑
B. 从从传热学角度讲分为: 综合炉底结构和全碳砖炉底结构两大 流派。综合炉底是绝热和导热的结合,全 碳砖炉底则是完全的导热基理。目前国内 外炉底、炉缸结构主要有以下几种: a. 大块炭砖砌筑,炉底设陶瓷垫。 b. 热压小块炭砖砌筑,炉底设陶瓷垫。 c. 大块或小块炭砖砌筑,炉底和炉缸设陶瓷 杯。
炉型尺寸各符号表示的意义
• • • • • • • • • • • • • • Hu---有效高度 Vu---有效容积 D---炉腰直径 d---炉缸直径 d1---炉喉直径 h0---死铁层高度 h1--炉缸高度 h2---炉腹高度 h3---炉腰高度 h4---炉身高度 h5---炉喉高度 hf---风口高度 α---炉腹角 β---炉身角
NMA
3层大块炭砖
2层刚玉砖
NMD
刚玉砖
炉缸侧壁:
NMA和NMD小块炭砖
NMA
大块炭砖
石墨砖
6. 2高炉炉衬的选择与砌筑
2. 炉腹、炉腰和炉身 ① 破损机理: 炉身、炉腰部位主要是考虑抗热应力 破坏性能,和炉料、煤气的冲刷。一般以 黏土质和高铝质耐火砖,但是在高炉大型 化和强化后也对砖衬材质提高了要求。
6.1高炉本体结构
③ 美国料式高炉的零位是取大钟开启时底 面以下915mm处。零料线位置到风口中 心线之间的容积为工作容积。 欧美也有用高炉全容积的。全容积 是指零料线到炉底砖衬表面之间(包括 死铁层)的容积。
高炉炉内大型部件的优化设计
高炉炉内大型部件的优化设计钢铁行业是国民经济的重要支柱之一,高炉是钢铁生产中最为核心的设备之一。
高炉炉内的大型部件是高炉正常生产的关键装备,其优化设计对高炉的性能和效益有着重要的影响。
本文将从高炉炉内大型部件的现状分析、优化设计的方法和效果等方面来探讨该问题。
一、现状分析随着我国钢铁行业的不断发展,高炉设计和制造技术也得到了长足的进步。
目前,国内高炉的建设规模和性能已经达到世界先进水平,但是在炉内大型部件的设计和制造方面还存在一些问题。
首先是材料的选择和质量问题。
炉内大型部件一般要求使用高强度、高耐磨、高温抗氧化等特殊材料,这些材料的生产和加工技术相对较为复杂,并且对原材料的质量要求非常高。
目前国内对这些材料的生产和加工还存在一定的技术瓶颈和质量不稳定的问题。
其次是部件结构和设计存在问题。
炉内大型部件的结构和设计直接关系到高炉的稳定运行和维护保养难度。
对于现有的一些高炉,部件的结构和设计存在一些不合理之处,例如连接方式不合理、零部件不充分等问题,这会导致部件易于损坏、维修难度大,进而影响高炉的连续生产率和稳定性。
二、优化设计方法针对上述问题,我们可以从以下几方面进行优化设计:1、材料的选择和质量管控。
生产高质量的特殊材料需要具备一定的技术实力和标准化的生产制造流程,对于材料的选取,需要考虑其特性、性能和成本等多方面因素。
在材料的生产和加工过程中,还需要保证质量的稳定性和可追溯性,以便对部件的质量进行管控。
2、结构的优化与改进。
对于结构存在不合理之处的部件,需要进行针对性的设计改进,调整其零部件的分布方式、连接方式等,增强其耐用性、抗损性和维修性。
对于结构不确定或者存在预测问题的部件,可以借助现代的工程仿真技术,来对其进行设计和求解,提高设计参数的合理性和优化效益。
3、生产流程的改良与优化。
生产规模的不断扩大和重量的增加,使得大型部件的生产和加工成本不断攀升。
在生产过程中,需要从原材料加工、转炉熔炼、精整吊装、现场焊接等多个方面进行管控和优化,以确保生产流程的高效稳定和部件的质量安全。
高炉炉型选择以及炉容计算
3600高炉本体设计原始数据:高炉有效容积:Vu=3600高炉年工作日:355天高炉利用系数:设计内容:1.高炉炉型的选择;2.高炉内型尺寸的计算(包括风口、铁口、渣口数量,大型高炉一般不设渣口);3.高炉耐火材料的选用;4.高炉冷却方式和冷却器的确定;5.高炉炉壳厚度的确定。
高炉本体包括高炉基础、炉衬、冷却装置、以及高炉炉型设计计算等。
高炉的大小以高炉有效容积()表示,本设计高炉有效容积为3600,按我国规定,属于大型高炉;高炉炉衬用耐火材料,是由陶瓷质和砖质耐火材料构成的综合结构;有些高炉也采用高纯度的刚玉砖和碳化硅砖;高炉冷却设备器件结构也在不断更新,软水冷却、纯水冷却都得到了广泛的应用。
1.高炉炉型选择高炉是竖炉。
高炉内部工作剖面的形状称为高炉炉型或称高炉内型。
高炉冶炼的实质是上升的煤气流和下降的炉料之间所进行的传热传质过程,因此必须提供燃料燃烧的空间,提供高温煤气流与炉料进行传热传质的空间。
炉型要适合原料的条件,保证冶炼过程的顺行。
近代高炉炉型为圆断面五段式,是两头小中间大的准圆筒形。
高炉内型如图1。
高炉有效高度(炉腰直径(D)与有效高度()之比值是表示高炉“细长”或“矮胖”的一个重要指标,在我国大型高炉Hu/D =—,随着有效容积的增加,这一比值在逐渐降低。
在该设计中,。
炉缸高炉炉型下部圆筒部分为炉缸,炉缸的上、中、下部位分别装有风口、渣口、铁口。
炉缸下部容积盛液态渣铁,图1 高炉内型上部空间为风口燃烧带。
铁口位于炉缸下水平面,铁口数目依炉容或产量而定,对于3000的高炉,设置3—4个铁口,以每个铁口日出铁量1500—3000t设置铁口数目。
在该设计中,设置4个铁口。
渣口与铁口中心线的距离称为渣口高度(),它取决于原料条件,即渣量的大小。
渣口高度的确定参照下式计算:= =式中:P——生铁日产量,t;B——生铁产量波动系数,取;N——昼夜出铁次数,取9;——铁水密度,取;C——渣口以下炉缸容积利用系数,一般为,在该设计中,取;d——炉缸直径m。
128高炉炼铁工艺方案
序号12 工程高炉有效容积年平均利用系数单位m3t/m3d指标1283.5备注128高炉炼铁工艺方案1.炼铁系统概述建128m3高炉,主体车间包括车间内部原、燃料贮运、上料系统、炉顶装料设备、热风炉系统、炉体系统、风口平台、出铁场、粗煤气处理等。
还设有鼓风机站、煤气干法除尘、槽上和地沟除尘等关心工段。
炉渣实行轮法或水冲渣处理。
本次设计的指导思想是:依据的生产条件和技术上的可能,力求到达较好的技术效果,实现高产、优质、低耗、长寿的目的。
设计中本着先进、牢靠、有用的原则,认真地吸取承受国内128m3高炉上行之有效、有用的技术工艺等。
为了到达高炉“高产、优质、低耗、长寿”的目的,工艺设计主要围绕“精、灵、高、准、长、净”等方向进展工作。
即精料,入炉原料含粉率≤5%,入炉原料重量误差<1%;炉顶装料设备布料机敏;较高的炉顶压力,较高的风温水平;准确的计量、必要的检测手段;较长的炉体寿命,稳定的热风炉构造,确保高炉炉龄6年以上;“三废”综合治理,较干净的环境条件。
为到达上述要求,相应实行的主要技术措施和选用的主要工艺设备是:烧结矿、原块矿、焦炭全部筛分入炉,承受双钟炉顶空转螺旋布料器或谢式炉顶。
假设承受双钟炉顶,为提高大小钟、斗的耐磨性,大小料钟、斗的接触面承受浸润碳化钨处理。
供料、上料和炉顶装料设备全系统承受计算机把握。
热风炉型式为球式热风炉,助燃空气预热到200℃,热风炉承受自动把握,实现自动换炉等。
高炉炉体承受工业水冷却,冷却设备的材质和构造型式均相应实行一系列措施。
炉缸、炉底承受自焙炭块-一级高铝复合炉衬,水冷炉底,并对各局部温度分布埋热电偶检测。
高炉、热风炉承受两级计算机集散系统,取消常规仪表,实现数据自动处理,自动打印。
槽上原料系统和槽下、上料系统设置布袋除尘设施,高炉冷风放风阀设置消音器,使排放气体的含尘量和噪音值把握在国家标准以内。
1.1.128m3高炉设计主要技术经济指标128m3 高炉设计主要经济技术指标5:210 11 12 风温水平 年工作日 高炉一代寿命℃日 年1100~1150350 6~8年3 年平均冶炼强度 t/m 3d 1.9254 入炉焦比 kg/t-Fe 5505 烧结矿使用率 % 90~956 渣铁比 kg/t 4607 综合矿入炉品位 % 608 炉顶煤气压力 kPa 609 混合煤气CO 含量% 181.2. 规模及物料平衡烧结矿 球团熔剂焦炭 7.48煤气铁水 3.56~ 3.9×10415 Nm 3/h水渣 7.821×128m 3高炉年产炼钢生铁17万t/年,主要物料平衡如下计算单位:万t/年 1.3. 产品及副产品 1.3.1. 生铁高炉炉容128m 3,设计利用系数3.5t/m 3.d ,年产炼钢生铁15万吨。
高炉炉体内型参数表
m2/m3 103.13 12 单位风量加热面积
m2/m3/min 16.46 13 单位炉容占有球量
t/m3 3.77 14 单位风量占有球量
t/m3/min 0.301 15 煤气消耗量
m3/h 46000 16 煤气压力
kPa 10~15 17 助燃空气消耗量
高炉有效容积
m3 544 620 230 炉缸直径 mm 6000 6200 4200 炉喉直径 mm
4900 5100 3100 炉腰直径 mm 6800 7100 4900 高炉有效高度 mm 19450 21100 16900 炉缸高度 mm 2600 炉腹高度 mm 2600 炉腰高度 mm 1600 炉身高度 mm 8300 炉喉高度 mm 1800 2100 1800 炉腹角 82.19.20 炉身角 83.48.43 死铁层高度 mm 708 有效高度/炉腰直径Hu/D 3.449 风口个数 10 铁口个数 1
1370 格子砖高度 m 17.040 热风温度
1250 蓄热室断面积 m2 26.4 冷风温度
150 加热面积 m2 21593 助燃风空气温度
220 格子砖重量 t 540 高炉煤气温度
220 煤气热值 kJ/m3 3203 烟气温度 平均 348 最大 500 空气过剩系数
1.1 高热值附加 % 0.00 格子砖 mm 19孔?30 热效率 % 76.1 格子砖加热面积 m2/m3 48 蓄热室采用自下而上:RN—42、HRN—42、YHRS三种不同材质的19 孔格子砖。 烘炉操作及改进 1 烘炉准备工作 青钢两座500m3高炉采用卡鲁金顶燃式热风炉均采用天津热能设 备厂专用内燃式烘炉器进行烘炉。烘烤器安装在热风炉顶部燃烧器的 下部点火孔上。改设备用柴油作燃料 产生的热气体 经配风系统调 节送风温度。送风系统出口风速达到
高炉炉型计算
高炉炉型计算高炉炉型是指高炉内部耐火材料构成的几何空间,近代高炉炉型由炉缸、炉腹、炉腰、炉身和炉喉五部分组成。
炉型的设计要适应原燃料条件,保证冶炼过程的顺行。
高炉炉型设计的依据是单座高炉的生铁产量,由产量确定高炉有效容积,以高炉有效容积为基础,计算其它尺寸。
一、确定容积1、确定年工作日高炉的工作日是指高炉一代寿命中,扣除大、中、小修时间后,平均每年的实际生产时间。
根据国内经验,不分炉容大小,年工作日均可定为355天。
2、确定高炉日出铁量年工作日年产量高炉日出铁量=t/d3、确定高炉的有效容积V uUu PV η高炉有效容积利用系数高炉日出铁量=二、高炉缸尺寸1、炉缸直径d炉缸直径的计算可参考下述经验公式:大型高炉 45.032.0u V d =3620m 以下高炉 37.0564.0u V d = 计算后取整2、炉缸高度'hA 渣口高度h 渣 m 式中:b ——生铁产量波动函数,一般取值1.2 N ——昼夜出铁次数,取9铁γ——铁水密度,取值7.1t/m3C ——渣口以下炉缸容积利用系数,取值055一般小高炉设一个渣口,大中型高炉设两个渣口,高低渣口标高差一般为100~200mm ,2000m 3以上高炉渣口数目应和铁口数目一起考虑,如有两个铁口,可以设二个渣口。
B 、风口高度h 风k ——渣口高度与风口高度的比,一般k 二0.5~0.6(渣量大取低值)。
C 、炉缸高度h 1h 1=h 风+a式中a ——风口结构尺寸,一般a=0.35~0.5m ,中小高炉取下限,大高炉取上限。
227.1d c N bp h 铁渣γ⋅=kh h 渣风=三、死铁层厚度h 0死铁层的作用在于防止炉底炉渣,煤气侵蚀和冲刷,使炉底温度均匀稳定。
通常死铁层厚度为450~600mm ,新设计的大型高炉多在1000mm 左右或更高。
四、炉腰直径D 1、炉腰直径D大型高炉D/d=1.10~1.15 中型高炉D/d=1.15~1.25 小型高炉D/d=1.25~1.5 2、炉腹角α炉腹角α一般为79°~82°。
高炉设计的基础概念
高炉设计的基础概念(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--文献综述高炉炉型概述高炉炉型的发展高炉是一种竖炉型的冶炼炉,它由炉体内耐火材料砌成的工作空间、炉体设备、炉体冷却设备、炉体钢结构等组成。
高炉生产实践表明:合理的炉体结构,对高炉一代炉龄的高产、优质、低耗和长寿起到保证作用,由此可以看出高炉的炉型应该有炉型和炉龄两个方面阐述。
近代高炉,由于鼓风机能力进一步提高,原料燃料处理更加精细,高炉炉型向着“大型横向”发展。
对于炉型而言,从20世纪60年代开始,高炉逐步大型化,大型高炉的容积由当时的1000~1500m3逐步发展到现在的4000~5500m3。
随着炉容的扩大,炉型的变化出现以下特征:高炉的H/D即高径比缩U小,大型高炉的比值已降到,1000m3级高炉降到,300m3级高炉也降到左右。
和大小同步的还有高炉矮胖炉型发展,矮胖高炉的特征是炉子下部容积扩大,在适当的配合条件下利于增加产量,提高利用系数.但如矮胖得过分,易导致上部煤气利用差,使燃料比升高.此外,从全国节能要求出发,在高炉建设和炼铁生产经营管理中,应既抓产量,又抓消耗、质量和寿命的优秀实例进行总结推广,提倡全面贯彻“高产、优质、低耗、长寿,”八字方针。
与盛高炉型相比,矮胖炉型的主要优点是:与炉料性能相适应,料柱阻力减小;风口增多,利于接受风量;高护更易顺行稳定。
这些优点,给高炉带来了多产生铁,改进生铁质量,降低燃料消耗和延长寿命的综合效果。
通过研究发现,当今用于炼铁的高炉炉喉直径均偏小,其炉喉直径与炉缸直径的比值均小于。
通过研究发现,炉喉直径偏小影响炉身的间接还原效率,致使高炉能耗较高,影响高炉经济效益,因此,为了提高高炉炉身的间接还原效率,改善高炉产生技术指标和进行节能减排,特别推出一种扩大炉喉直径的新炉型高炉。
采用的技术方案是:它包含炉缸、炉腹、炉腰、炉身、炉喉五部分,其中炉缸在炉腹的下面,炉缸上面连接炉腹,炉腹上面连接炉腰,炉腰上面连接炉身,炉身上面连接炉喉;由上述5部分组成的高炉内型,5个部分的横截面均呈圆形,其中炉缸直径用d表示,炉腰直径用D表示,炉喉直径用d表示,炉喉直径d与炉缸直径d之比1在~之间。
国内大型高炉内型变化及生产指标
Metallurgical Engineering 冶金工程, 2018, 5(2), 107-113Published Online June 2018 in Hans. /journal/menghttps:///10.12677/meng.2018.52015Analysis on the Variation of Domestic Large Blast Furnace and Production IndexJinlin Lu1,2, Xiaolei Zhou1,2*, Guofeng Gao1,2, Zhe Shi1,2, Bangfu Huang1,2, Weisai Liu1,2,Lei Liu1,2, Yingtao Meng1,21Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, KunmingYunnan2Clean Metallurgy Key Laboratory of Complex Iron Resources, Kunming University of Science and Technology, Kunming YunnanReceived: May 25th, 2018; accepted: Jun. 11th, 2018; published: Jun. 25nd, 2018AbstractBlast furnace is a large-scale high-temperature reactor. The size of the effective volume of blast furnace is the most important parameter of the blast furnace, and a reasonable understanding of the inside of the blast furnace is conducive to the realization of the goal of large blast furnace. At the same time, a reasonable inner type of blast furnace is very important for economic and technical index of blast furnace. The inner type of blast furnace is affected by the effective volume of blast furnace, the condition of production and the development of technology. Through the comparison of a large number of blast furnace design parameters, the following development trends are obtained: firstly, the volume of blast furnace is getting larger and larger, and secondly, the ratio of height to diameter is increasing. The smaller the fuel is, the greater the proportion of injected fuel is.KeywordsBig Blast Furnace, BF Iron-Making, Development Trend国内大型高炉内型变化及生产指标卢金霖1,2,周晓雷1,2*,高国峰1,2,施哲1,2,黄帮福1,2,刘维赛1,2,刘磊1,2,孟颖涛1,21昆明理工大学,冶金与能源工程学院,云南昆明2昆明理工大学,复杂铁资源洁净冶金重点实验室,云南昆明*通讯作者。
高炉炉型选择以及炉容计算
3600m3高炉本体设计原始数据:高炉有效容积:Vu=3600 m3高炉年工作日:355天⁄ )高炉利用系数:h v=2.0t ( d. m3设计内容:1.高炉炉型的选择;2.高炉内型尺寸的计算(包括风口、铁口、渣口数量,大型高炉一般不设渣口);3.高炉耐火材料的选用;4.高炉冷却方式和冷却器的确定;5.高炉炉壳厚度的确定。
高炉本体包括高炉基础、炉衬、冷却装置、以及高炉炉型设计计算等。
高炉的大小以高炉有效容积(V u)表示,本设计高炉有效容积为3600 m3,按我国规定,属于大型高炉;高炉炉衬用耐火材料,是由陶瓷质和砖质耐火材料构成的综合结构;有些高炉也采用高纯度 Al2O3的刚玉砖和碳化硅砖;高炉冷却设备器件结构也在不断更新,软水冷却、纯水冷却都得到了广泛的应用。
1.高炉炉型选择高炉是竖炉。
高炉内部工作剖面的形状称为高炉炉型或称高炉内型。
高炉冶炼的实质是上升的煤气流和下降的炉料之间所进行的传热传质过程,因此必须提供燃料燃烧的空间,提供高温煤气流与炉料进行传热传质的空间。
炉型要适合原料的条件,保证冶炼过程的顺行。
近代高炉炉型为圆断面五段式,是两头小中间大的准圆筒形。
高炉内型如图1。
1.1高炉有效高度(H u)炉腰直径(D)与有效高度(H u)⁄是表示高炉“细长”或之比值(H u D)“矮胖”的一个重要指标,在我国大型高炉Hu/D =2.5—3.1,随着有效容积的增加,这一比值在逐渐降低。
在该设计⁄ 2.23。
中,H u D=1.2炉缸高炉炉型下部圆筒部分为炉缸,炉缸的上、中、下部位分别装有风口、渣口、铁口。
炉缸下部容积盛液态渣铁,图1 高炉内型上部空间为风口燃烧带。
铁口位于炉缸下水平面,铁口数目依炉容或产量而定,对于3000m3以上的高炉,设置3—4个铁口,以每个铁口日出铁量1500—3000t设置铁口数目。
在该设计中,设置4个铁口。
渣口与铁口中心线的距离称为渣口高度(H Z),它取决于原料条件,即渣量的大小。
(第 四 章)高炉本体及附属设备
内部冷却:将冷却介质通入冷却设备内 部进行冷却。包括冷却壁、冷却板、板 壁结合冷却结构、炉身冷却模块及炉底 冷却等。 冷却壁设臵于炉壳与炉衬之间,有光 面冷却壁和镶砖冷却壁两种 。光面冷 却壁用于炉底和炉缸,镶砖冷却壁用 于炉镶砖冷却壁;c-上部带凸 台镶砖冷却壁;d-中间带凸台镶砖冷却壁
3) 合理炉型:促进改善高炉冶炼指标, 并利于长寿的炉型。
Hu——有效高度; h0——死铁层厚度;
d1
h1——炉缸高度; h2——炉腹高度; h3——炉腰高度; h4——炉身高度; h5——炉喉高度;
Hu
h4
h5
hf——风口高度; hz——渣口高度; d——炉缸直径; D——炉腰直径; d1——炉喉直径; α——炉腹角; β——炉身角;
高炉本体及附属设备
The Blast Furnace Facility and Equipment
李杰
学习目的:
高炉结构
高炉附属设备
高炉 本体结构
1、高炉本体介绍
高炉炉型
冷却设施
风口装置
铁口装置
炉顶装料装置
炉型:高炉的内部工作空间是由炉墙砖砌 成的,这个空间的几何形状就是炉型或内 型。 1) 设计炉型:设计时通过高炉中心线绘 在图纸上的炉型; 2) 操作炉型:投产后,炉墙内表面受损 所形成的炉型;
3)冷却水箱(冷却板):这是埋设在高炉砖衬
中的冷却器。其材质以铸铁为主,也有用铸钢和 钢板焊接的。从外形上可分为扁平卧式和支梁 式.
风口装臵:从热风炉来的热风先通过呈环状围
绕着高炉的围管中,再经风口装臵进入高炉。风 口装臵由热风围管以下的送风支管、弯管、直吹 管、风口水套等组成。
1、热风围管; 2、送风支管; 3、弯管;4、直吹管; 5、风口水套;
高炉工艺参数
高炉工艺参数炼铁厂高炉内型尺寸 m³1280m³三、1800m³高炉内型尺寸工长常用调剂参数原燃料质量要求一、焦炭质量要求二、烧结矿化学成份:球团矿质量要求块矿质量要求喷吹煤粉质量要求看水工艺参数一、450m³高炉1、450m³要求2、各部位冷却器水温差规定:四、1280 m³高炉和1800 m³高炉冷却系统参数规定煤气工艺参数一、煤气系统指标1、煤气净化指标:净煤气含尘量≤5mg/m3温度:100℃≤T≤280℃2、煤气压力控制:450m³、1280m³净煤气支管压力不小于3KPa,1800m³净煤气支管压力不小于4KPa3、热风炉部分二、1280 m³高炉热风炉1、各部分工艺设计参数2、1280m³操作参数3、1280m³换热器设计参数三、1800m³高炉1、1800m³煤气系统控制要求2、1800m³煤气系统设计参数3、1800m³煤气系统操作参数上料系统一、450m3上料二、1280m3高炉三、1800m3高炉上料操作参数炉前操作参数规定1、铁口深度参数2、打泥量的规定3、液压参数的规定4、耐材浇注规定水泵房操作参数一、高炉对软水要求二、、密闭系统运行控制指标风机房一、450高炉二、汽拖风机正常运行指标三、汽拖风机报警值一、空压机工艺参数及报警、停机参数表:TRT 一、1280m³高炉TRT工艺参数二、1280m³高炉TRT润滑系统各调整项目与联锁报警##。
高炉炉体系统设计
高炉炉体系统设计(blast furnace proper system design)高炉炉体系统的范围是从基础至炉顶圈(也叫炉顶法兰盘)(图1)。
设计内容包括高炉内型、高炉内衬、高炉钢结构型式、炉体设备和长寿技术等。
高炉内型高炉内部工作空间的形状和主要尺寸必须适合炉料和煤气在炉内运动的规律。
合理的内型有利于高炉操作顺行,高产低耗。
高炉内型(图2)从下往上分为炉缸、炉腹、炉腰、炉身和炉喉五部分。
各国对高炉容积的表示方法不尽相同。
在中国,对于钟式炉顶高炉,有效容积通常是指从铁口中心线至大钟全开位置下沿所包括的容积;对于无钟炉顶高炉,有效容积是指从铁口中心线至炉喉上沿之间的容积。
欧美诸国把从风口中心线至料线之间的容积称为工作容积。
日本把从铁口底端至料线之间的容积称为内容积。
料线位置,日本定在大钟全开位置底面以下一米的水平面上,美国一般定在炉喉高度的一半处。
对于高炉内型各部尺寸的合理比例及算法,是雷得布尔(A.jejeyp)在他1878年出版的著作里首次提出的。
巴甫洛夫(M.A.ПaBJoB)提出用下式表示全高(H)与有效容积(V u)的关系:H= n (V u )1/3。
式中n是大于2.85的数字,并且H:D的比值愈高,n的数值愈大。
有效容积按要求的生铁日产量和利用系数求出后,用上式可求出全高H。
炉腰直径D可按公式D =(V u/0.54H) 1/2求出,然后再决定内型其它尺寸。
巴氏建议选择炉缸直径应以燃烧强度(每小时每m2炉缸面积燃烧的焦炭量,用kg表示)为出发点。
美国莱斯(Owen Rice)在计算燃烧强度时所指的炉缸面积是从风口前端起6f t 环状带的面积。
拉姆(A.H.Pamm)内型每个尺寸都是与有效容积成一定方次的函数,建议用经验公式x=cV n u 计算内型各部分尺寸x,式中n和c对内型各部分尺寸是固定的系数。
高炉内型主要与原、燃料条件和操作制度有关。
合适的内型来源于生产实践,实际上高炉内型的设计大都是根据冶炼条件类似的同级高炉的生产实践进行分析和比较确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Key words Blast furnace smelting, high strength, high oxygen enrichment
Ⅰ
攀枝花学院本科课程设计(论文)
摘要
目录
摘 要………………………………………………………………………………………… ABSTRACT………………………………………………………………………………
Ⅰ
攀枝花学院本科课程设计(论文)
摘要
大、原料透气性好、燃料可燃性好的燃烧强度可选大些,否则选低值。 (2)炉缸高度 炉缸高度的确定,包括渣口高度、风口高度以及风口安装尺
寸的确定。 铁口位于炉缸下水平面,铁口数目根据高炉炉容或高炉产量而定,一 般 1000m3 以下高炉设一个铁口,1500~3000m3 高炉设 2~3 个铁口,3000m3 以上高 炉设 3~4 个铁口,或以每个铁口日出铁量 1500—3000t 设铁口数目。原则上出铁 口数目取上限,有利于强化高炉冶炼。 渣口中心线与铁口中心线间距离称为渣口 高度,它取决于原料条件,即渣量的大小。渣口过高,下渣量增加,对铁口的维 护不利;渣口过低,易出现渣中带铁事故,从而损坏渣口,大、中型高炉渣口高 度多为 1.5~1.7m。
课题背景
我国高炉大型化的发展模式与国外基本相近,主要是采取新建大型高炉、以 多座旧小高炉合并成大型高炉和高炉大修扩容等形式来推动着高炉的大型化发 展。据不完全统计,我国自 2004 年以来相继建成投产的 3200m3 级 15 座,4000m3 级 8 座,5000m3 级 3 座,且有越来越大的趋势。目前,河北迁钢和山东济钢等企 业也正在建设 4000m3 级高炉,近来宝钢湛江和武钢防城港项目也在规划筹建 5500m3 级超大型高炉。
Ⅰ
攀枝花学院本科课程设计(论文)
摘要
1.1 炉型的发展过程
炉型的发展过程主要受当时的技术条件和原燃料条件的限制。随着原燃料条 件的改善以及鼓风能力的提高,高炉炉型也在不断地演变和发展,炉型演变过程 大体可分为 3 个阶段。
(1)无型阶段-又称生吹法。在土坡挖洞,四周砌行块,以木炭冶炼,这是 原始的方法。
②炉缸 高炉炉型下部的圆筒部分为炉缸,炉缸的上、中、下部位分别没有 风口、渣口与铁口,现代大型高炉多不设渣口。炉缸下部容积盛装液态渣铁,上 部空间为风口的燃烧带。
(1)炉缸直径 炉缸直径过大和过小都直接影响高炉生产。直径过大将导致炉 腹角过大,边缘气流过分发展,中心气流不活跃而引起炉缸堆积,同时加速对炉 衬的侵蚀;炉缸直径过小限制焦炭的燃烧.影响产员的提高。炉缸截面积应保证 一定数量的焦炭和喷吹燃料的燃烧,炉缸截面燃烧强度是高炉冶炼的一个重要指 标,它是指每 1h 每 1m3 炉缸截面积所烧侥的焦炭的数量,一般为 1.00~1.25t/(m 2·h)。炉缸截面燃烧强度的选择,应与风机能力和原燃料条件相适应,风机能力
高冶炼强度、高富氧喷煤比和长寿命化作为大型高炉操作的主要优势受到大家 越来越高的关注和青睐,但是高炉大型化作为一项系统工程,它在立足自身条件的 基础上仍须匹配的炼钢、烧结和炼焦能力。我国近年推出的《钢铁产业发展政策》 中规定高炉炉容在 300m3 以下归并为淘汰落后产能项目,且仍存在扩大小高炉容积 的淘汰范围的趋势。同时国内钢铁产业的快速发展均加速了世界和我国高炉大型 化的发展进程。由于大型化高炉具备的单位投资省、效能高和成本低等特点,从 而有效地增强了其竞争力。
(3)炉腹 炉腹在炉缸上部,呈倒截圆锥形。炉腹的形状适应了炉料熔化滴 落后体积的收缩,稳定下料速度。同时,可使高温煤气流离开炉墙,既不烧坏炉 墙又有利于渣皮的稳定,对上部料柱而言,使燃烧带处于炉喉边缘的下方,有利 于松动炉料,促进冶炼顺行。燃烧带产生的煤气量为鼓风量的 1.4 倍左右,理论 燃烧温度 1800~2000℃,气体体积剧烈膨胀,炉腹的存在适应这一变化。 炉腹的 结构尺寸是炉腹高度 h2 和炉腹角α。炉腹过高,有可能炉料尚未熔融就进人收缩 段,易造成难行和悬料;炉腹过低则减弱炉腹的作用。
(2)大腰阶段-炉腰尺寸过大的炉型。出于当工业不发达,高炉冶炼以人力、 蓄力、风力、水力鼓风,鼓风能力很弱,为了保证整个炉缸截面获得高温,炉缸 直径很小,冶炼以木炭或无烟煤为燃料,机械强度很低,为了避免高炉下部燃料 被压碎,从而影响料柱透气性,故有效高度很低;为了人工装料方便并能够将炉 料装到炉喉中心.炉喉直径也很小,而大的炉腰直径减小了烟气流速度,延长了 烟气在炉内停留时间,起到焖住炉内热量的作用。因此,炉缸和炉喉直径小,有 效高度低,而炉腰直径很大。这类高炉生产率很低,一座 28m3 高炉日产量只有 1.5 t 左右。
攀枝花学院 本科课程设计
设计题目:高炉内型设计---1800 炉型设计
二〇一摘要
摘要
本设计要求建 1800 高炉。设计主要内容包括高炉炉型设计计算及高炉本体 立剖图,同时对所设计高炉的特点进行简述。设计高炉有效容积为 1800 径比取 2.3, 高炉利用系数取值为 2.0,据此设计高炉炉型。设计本着优质、高产、低耗和对环 境污染小的宗旨,为日产生铁 4000t 的高炉提供高炉内型设计。设计说明书对 1800 内型进行了的详细的计算,并结合国内外相同炉容高炉的先进生产操作经验及相 关的数据,力求设计的高炉达到高度机械化、自动化和大型化,达到最佳的生产 效益。
Ⅰ
攀枝花学院本科课程设计(论文)
摘要
绪论
最近二十年来,日本和欧盟区的在役高炉座数由 1990 年的 65 座和 92 座下降 到 28 座和 58 座,下降幅度分别为 56.9%和 37%,但是高炉的平均容积却分别由 1558m3 和 1690m3 上升到 4157m3 和 2063m3,上升幅度为 166.8%和 22%,这基本代表 了国外高炉大型化的发展状况。
绪论……………………………………………………………………………………… 课题背景…………………………………………………………………………………… 1 高炉炉型…………………………………………………………………………………
1.1 炉型的发展过程……………………………………………………………… 1.2 五段式高炉………………………………………………………………
关键字 高炉内型,高冶炼强度,高富氧喷煤
ABSTRACT
The design requirements, construction of 1800 blast furnace. Design of the main content includes: Design of high furnace calculation and the blast furnace body profile in elevation, and the characteristics of the design of blast furnace. Design of effective volume of blast furnace is 1800 diameter ratio is 2.3, blast furnace utilization coefficient was 2, type design of blast furnace accordingly. Design in line with high quality, high yield, low energy consumption and little pollution to the environment efficiency, provide the blast furnace pig iron blast furnace design for the Nissan 4000t. Detailed design specifications of 1800 type, and combined with the advanced experience in production operations at home and abroad, the same volume of furnace blast furnace and related data, and strive to design blast furnace to achieve a high degree of mechanization, automation and large-scale production, achieve the best benefit.
(3)近代高炉-由于鼓风机能力进一步提高.原燃料处理更加精细, 高炉 炉型向着“大型横向”发展。 高炉内型合理与否对高炉冶炼过程有很大影响。炉 型设计合理是获得良好技术经济指标,保证高炉操作顺行的基础。
1.2 五段式高炉
①高炉有效客积和有效高度 高炉大钟下降位置的下沿到铁口中心线间的距 离称为高炉有效高度,对于无钟炉顶为旋转溜槽最低位置的下缘到铁口中心线之 间的趴离。在有效高度范围内,炉型所包括的容积称为高炉有效容积。高炉的有 效高度,对高炉内煤气与炉料之间传热传质过程行很大影响。在相同炉窖和冶炼 强度条件下,增大有效高度,炉料与煤气流接触机会增多,有利于改善传热传质 过程、降低燃料消耗;仅过分增加有效高度,料校对煤气的阻力增大.容易形成 料供,对炉科下降不利。高炉有效高度应适应原燃料条件,如原燃料强度、粒度 及均匀性等。生产实践证明,高炉有效高度与有效容积有一定关系,但不是直线 关系,当有效容积增加到—定值后,有效高度的增加则不显著。
我国高炉大型化的标准主要是依据高炉容积的大小来划分的,且衡量标准也 由过去的 1000m3 提高到 2000m3,甚至更大。虽然大型化高炉相对于小高炉存在着 生产率高、生产稳定、指标先进和成本低等显著的优点,但是对于我国高炉大型 化的发展状况,我们仍然需要科学客观地看待。
高炉炉型
高炉是竖炉,高炉内部工作空间剖面的形状称为高炉炉型或高炉内型。高炉 冶炼的实质是上升的煤气流和下降的炉料之间进行传热传质的过程,因此必须提 供燃料燃烧的空间,提供高温煤气流与炉料进行传热传质的空问。高炉炉型要适 应原燃料条件的要求,保证冶炼过程的顺利。