七年级期末检测数学试卷

合集下载

人教七年级数学期末试卷

人教七年级数学期末试卷

一、选择题(每题3分,共30分)1. 下列各数中,是正数的是()A. -3B. 0C. 2D. -52. 若a > b,则下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 < b - 1C. a + 1 < b + 1D. a - 1 > b - 13. 下列图形中,是轴对称图形的是()A. 矩形B. 正方形C. 三角形D. 梯形4. 在一次函数y = kx + b中,k和b的值分别为()A. 斜率和截距B. 截距和斜率C. 斜率和y轴截距D. x轴截距和斜率5. 下列各式中,完全平方公式正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^26. 下列各数中,是有理数的是()A. √2B. πC. 0.1010010001...D. 37. 若一个等腰三角形的底边长为8cm,腰长为6cm,则该三角形的周长为()A. 20cmB. 22cmC. 24cmD. 26cm8. 下列各式中,正确表示圆的面积公式的是()A. S = πr^2B. S = 2πrC. S = πrD. S = πr^2 + 2πr9. 若一个长方体的长、宽、高分别为4cm、3cm、2cm,则该长方体的体积为()A. 24cm^3B. 26cm^3C. 28cm^3D. 30cm^310. 下列各式中,正确表示正方体的体积公式的是()A. V = a^3B. V = a^2C. V = 2a^2D. V = a二、填空题(每题5分,共25分)11. 若a < b,则a - b < 0。

12. 一个圆的半径为5cm,则该圆的直径为______cm。

13. 若一次函数y = kx + b的图像经过点(2, 3),则k + b = ______。

人教版七年级数学下册期末测试题+答案解析(共四套)

人教版七年级数学下册期末测试题+答案解析(共四套)

⼈教版七年级数学下册期末测试题+答案解析(共四套)B ′C ′D ′O ′A ′O DC BA(第8题图)⼀、选择题(每⼩题3分,计24分,请把各⼩题答案填到表格内)题号 1 2 3 4 5 6 78 总分答案1.如图所⽰,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业⽣的中考数学成绩,从中抽取500名学⽣的数学成绩进⾏统计分析,那么样本是 A .某市5万名初中毕业⽣的中考数学成绩 B .被抽取500名学⽣(第1题图)C .被抽取500名学⽣的数学成绩D .5万名初中毕业⽣ 5.有⼀个两位数,它的⼗位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个D .⽆数个 7.下列事件属于不确定事件的是A .太阳从东⽅升起B .2010年世博会在上海举⾏C .在标准⼤⽓压下,温度低于0摄⽒度时冰会融化D .某班级⾥有2⼈⽣⽇相同 8.请仔细观察⽤直尺和圆规.....作⼀个⾓∠A ′O ′B ′等于已知⾓∠AOB 的⽰意图,请你根据所学的图形的全等这⼀章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AASD .SSS⼆、填空题(每⼩题3分,计24分)9.⽣物具有遗传多样性,遗传信息⼤多储存在DNA 分⼦上.⼀个DNA 分⼦的直径约为0.0000002cm .这个数量⽤科学记数法可表⽰为 cm . 10.将⽅程2x+y=25写成⽤含x 的代数式表⽰y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的⼤⼩是 °. 12.三⾓形的三个内⾓的⽐是1:2:3,则其中最⼤⼀个内⾓的度数是 °.13.掷⼀枚硬币30次,有12次正⾯朝上,则正⾯朝上的频率为 .14.不透明的袋⼦中装有4个红球、3个黄球和5个蓝球,每个球除颜⾊不同外其它都相同,从中任意摸出⼀个球,则摸出球的可能性最⼩. 15.下表是⾃18世纪以来⼀些统计学家进⾏抛硬币试验所得的数据:试验者试验次数n 正⾯朝上的次数m正⾯朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正⾯朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某⼀个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出⼀个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,⽅格纸中的△ABC 的三个顶点分别在⼩正⽅形的顶点(格点)上,称为格点三⾓形.请在⽅格纸上按下列要求画图.在图①中画出与△ABC 全等且有⼀个公共顶点的格点△C B A ''';在图②中画出与△ABC 全等且有⼀条公共边的格点△C B A ''''''.20.解⽅程组:(每⼩题5分,本题共10分)(1)=+-=300342150y x yx (2)=+=+300%25%53%5300y x y x 21.(本题共8分)已知关于x 、y 的⽅程组=+=+73ay bx by ax 的解是==12y x ,求a b +的值.OAC P P′(第16题图)(第16题图)22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)⼩王某⽉⼿机话费中的各项费⽤统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整. (3)扇形统计图中,表⽰短信费的扇形的圆⼼⾓是多少度?24.(本题4+8=12分)上海世博会会期为2010年5⽉1⽇⾄2010年10⽉31⽇。

七年级数学下册期末测试题及答案共五套

七年级数学下册期末测试题及答案共五套

七下期期末姓名: 学号 班级一、选择题:本大题共10个小题,每小题3分,共30分1.若m >-1,则下列各式中错误的...是 A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是A.±4B.=-4 3.已知a >b >0,那么下列不等式组中无解..的是 A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为A 先右转50°,后右转40°B 先右转50°,后左转40°C 先右转50°,后左转130°D 先右转50°,后左转50°5.解为12xy=⎧⎨=⎩的方程组是A.135x yx y-=⎧⎨+=⎩B.135x yx y-=-⎧⎨+=-⎩C.331x yx y-=⎧⎨-=⎩D.2335x yx y-=-⎧⎨+=⎩6.如图,在△ABC中,∠ABC=500,∠ACB=800,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是A.1000 B.1100 C.1150 D.1200PCBA小刚小军小华1 2 37.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是A .4B .3C .2D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用•0,0表示,小军的位置用2,1表示,那么你的位置可以表示成A.5,4B.4,5C.3,4D.4,3二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.的平方根是________,算术平方根是______,-8的立方根是_____.12.不等式5x-9≤3x+1的解集是________. 13.如果点Pa,2在第二象限,那么点Q-3,a 在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便即距离最近,请你在铁路旁选一点来建火车站位置已选好,说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.将所有答案的序号都填上 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.C BAD19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩ 21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗请说明理由;22.如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,•∠D=42°,求∠ACD 的度数.23.如图, 已知A-4,-1,B-5,-4,C-1,-3,△ABC 经过平移得到的△A′B′C′,△ABC 中任意一点Px 1,y 1平移后的对应点为P′x 1+6,y 1+4;1请在图中作出△A′B′C′;2写出点A′、B′、C′的坐标.24.某校九年级甲、乙两个班共100•多人去该公园举行毕业联欢活动,•其中甲班有50多人,乙班不足50人,如果以班为单位分别买门票,两个班一共应付920元;•如果两个班联合起来作为一个团体购票,一共要付515元,问甲、乙两班分别有多少人25、某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A,B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A,B 两种货厢的节数,有哪几种运输方案请设计出来.答案:一、选择题:共30分BCCDD,CBBCD二、填空题:共24分11.±7,7,-2 12. x≤613.三 14.垂线段最短;15. 40 16. 40017. ①②③ 18. x=±5,y=3三、解答题:共46分19. 解:第一个不等式可化为x-3x+6≥4,其解集为x≤1.第二个不等式可化为22x-1<5x+1,有 4x-2<5x+5,其解集为x>-7.∴原不等式组的解集为-7<x≤1.把解集表示在数轴上为:20. 解:原方程可化为896 27170 x yx y-=⎧⎨++=⎩∴8960 828680 x yx y--=⎧⎨++=⎩两方程相减,可得 37y+74=0,∴ y=-2.从而32x=-.因此,原方程组的解为322 xy⎧=-⎪⎨⎪=-⎩21. ∠B=∠C; 理由:∵AD∥BC∴∠1=∠B,∠2=∠C∵∠1=∠2∴∠B=∠C22. 解:因为∠AFE=90°,所以∠AEF=90°-∠A=90°-35°=55°.所以∠CED=•∠AEF=55°,所以∠ACD=180°-∠CED-∠D=180°-55°-42=83°.23. A′2,3,B′1,0,C′5,1.24. 解:设甲、乙两班分别有x、y人.根据题意得810920 55515 x yx y+=⎧⎨+=⎩解得5548 xy=⎧⎨=⎩故甲班有55人,乙班有48人.25. 解:设用A型货厢x节,则用B型货厢50-x节,由题意,得解得28≤x≤30.因为x为整数,所以x只能取28,29,30.相应地5O-x的值为22,21,20.所以共有三种调运方案.第一种调运方案:用 A型货厢 28节,B型货厢22节;第二种调运方案:用A型货厢29节,B型货厢21节;第三种调运方案:用A型货厢30节,用B型货厢20节.人人教版七年级第二学期综合测试题二班别姓名成绩一、填空题:每题3分,共15分的算术平方根是2.如果1<x<2,化简│x-1│+│x-2│=________.3.在△ABC中,已知两条边a=3,b=4,则第三边c的取值范围是_________.4.若三角形三个内角度数的比为2:3:4,则相应的外角比是_______.5.已知两边相等的三角形一边等于5cm,另一边等于11cm,则周长是________.二、选择题:每题3分,共15分6.点Pa,b在第四象限,则点P到x轴的距离是FDCBH EG A C.│a │ D.│b │ 7.已知a<b,则下列式子正确的是+5>b+5 B.3a>3b; C.-5a>-5b D.3a >3b8.如图,不能作为判断AB ∥CD 的条件是A.∠FEB=∠ECDB.∠AEC=∠ECD;C.∠BEC+∠ECD=180°D.∠AEG=∠DCH9.以下说法正确的是A.有公共顶点,并且相等的两个角是对顶角B.两条直线相交,任意两个角都是对顶角C.两角的两边互为反向延长线的两个角是对顶角D.两角的两边分别在同一直线上,这两个角互为对顶角 10.下列各式中,正确的是A.±34 B.34; C.±38±34三、解答题: 每题6分,共18分11.解下列方程组: 12.解不等式组,并在数轴表示:2525,4315.x y x y +=⎧⎨+=⎩ 236,145 2.x x x x -<-⎧⎨-≤-⎩13.若A2x-5,6-2x 在第四象限,求a 的取值范围. 四,作图题:6分① 作BC 边上的高② 作AC 边上的中线;五.有两块试验田,原来可产花生470千克,改用良种后共产花生532千克,已知第一块田的产量比原来增加16%,第二块田的产量比原来增加10%,问这两块试验田改用良种后,各增产花生多少千克8分六,已知a 、b 、c 是三角形的三边长,化简:|a -b +c|+|a -b -c|6分FDC B EA 八,填空、如图1,已知∠1 =∠2,∠B =∠C,可推得AB ∥CD;理由如下:10分∵∠1 =∠2已知,且∠1 =∠4 ∴∠2 =∠4等量代换∴CE ∥BF ∴∠ =∠3 又∵∠B =∠C 已知 ∴∠3 =∠B 等量代换 ∴AB∥CDFEDCBA2143图1 图2九.如图2,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,∠D=42°,求∠ACD 的度数.8分十、14分某城市为开发旅游景点,需要对古运河重新设计,加以改造,现需要A、B两种花砖共50万块,全部由某砖瓦厂完成此项任务;该厂现有甲种原料180万千克,乙种原料145万千克,已知生产1万块A砖,用甲种原料万千克,乙种原料万千克,造价万元;生产1万块B砖,用甲种原料2万千克,乙种原料5万千克,造价万元;1利用现有原料,该厂能否按要求完成任务若能,按A、B两种花砖的生产块数,有哪几种生产方案请你设计出来以万块为单位且取整数;2试分析你设计的哪种生产方案总造价最低最低造价是多少人都版七年级数学下学期末模拟试题三1.若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为A、()3,3B、()3,3-C、()3,3-- D、()3,3-2.△ABC中,∠A=13∠B=14∠C,则△ABC是 A.锐角三角形B.直角三角形 C.钝角三角形 D.都有可能3.商店出售下列形状的地砖:①正方形;②长方形;③正五边形;正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有. A1种 B2种 C3种 D4种4. 用代入法解方程组⎩⎨⎧-=-=-)2(122)1(327y x y x 有以下步骤: ①:由⑴,得237-=x y ⑶ ②:由⑶代入⑴,得323727=-⨯-x x ③:整理得 3=3 ④:∴x 可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是 A 、① B 、② C 、③ D 、④5. 地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x 千米,黄河长为y 千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小东列的方程组可能是A 、⎩⎨⎧=-=+128465836y x y x B 、⎩⎨⎧=-=-128456836y x y x C 、⎩⎨⎧=-=+128456836x y y x D 、⎩⎨⎧=-=-128456836x y y x 6. 若x m-n -2y m+n-2=2007,是关于x,y 的二元一次方程,则m,n 的值分别是=1,n=0B. m =0,n=1C. m =2,n=1D. m =2,n=354D3E21C BA7. 一个四边形,截一刀后得到的新多边形的内角和将A 、增加180oB 、减少180oC 、不变D 、以上三种情况都有可能8. 如右图,下列能判定AB ∥CD 的条件有 个.1 ︒=∠+∠180BCD B ;221∠=∠;3 43∠=∠;4 5∠=∠B . .2 C9. 下列调查:1为了检测一批电视机的使用寿命;2为了调查全国平均几人拥有一部手机;3为了解本班学生的平均上网时间;4 为了解中央电视台春节联欢晚会的收视率;其中适合用抽样调查的个数有 A 、1个 B 、2个 C 、3个 D 、4个10. 某人从一鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条2ba +元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是 A .a >b B .a <b C .a =b D .与ab 大小无关11. 如果不等式⎩⎨⎧-b y x <>2无解,则b 的取值范围是A .b >-2B . b <-2C .b ≥-2D .b ≤-212. 某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果见上图.根据此条形图估计这一天该校学生平均课外阅读时为 A 时 B 时 C 时 D 时13. 两边分别长4cm 和10cm 的等腰三角形的周长是________cm 14. 内角和与外角和之比是1∶5的多边形是______边形15. 有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种四边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直;请把你认为是真命题的命题的序号填在横线上___________________16. 不等式-3≤5-2x <3 的正整数解是_________________.17. 如图.小亮解方程组 ⎩⎨⎧=-=+1222y x y x ●的解为 ⎩⎨⎧==★y x 5,由于不小心,滴上了两滴墨水, 刚好遮住了两个数●和★,请你帮他找回★这个数★= 18. 数学解密:若第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8…,观察以上规律并猜想第六个数是_______.19. 解方程组和解不等式组并把解集表示在数轴上8分 132522(32)28x y x x y x +=+⎧⎨+=+⎩ .2()4321213x x xx -<-⎧⎪⎨++>⎪⎩ 20. 如图,EF 1∠2∠明:∠DGA+∠BAC=180°.请将说明过程填写完成.5分解:∵EF 2∠_____________________________.又∵1∠=2∠,______∴1∠=3∠,________________________. ∴AB_____________________________21. 如图,在3×3的方格内,填写了一些代数式和数6分1在图中各行、各列及对角线上三个数之和都相等,请你求出x ,y 的值.2把满足1的其它6个数填入图2中的方格内.A2x y 4y32-332-3图(1)图(2)22.如图,AD为△ABC的中线,BE为△ABD的中线;81∠ABE=15°,∠BAD=40°,求∠BED的度数;2在△BED中作BD边上的高;3若△ABC的面积为40,BD=5,则点E到BC边的距离为多少23.小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况. 他从中随机调查了40户居民家庭收入情况收入取整数,单位:元,并绘制了如下的频数分布表和频数分布直方图.8分分组频数百分比600≤x<80025%800≤x<1000615%1000≤x<120045%9%1补全频数分布表.2补全频数分布直方图.3绘制相应的频数分布折线图.4请你估计该居民小区家庭属于中等收入大于1000不足1600元的大约有多少户24.四川5·12大地震中,一批灾民要住进“过渡安置”房,如果每个房间住3人,则多8人,如果每个房间住5人,则有一个房间不足5人,问这次为灾民安置的有多少个房间这批灾民有多少人7分25.学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:8分娃”和微章前,了解到如下信息:1求一盒“福娃”和一枚徽章各多少元2若本次活动设一等奖2名,则二等奖和三等奖应各设多少名26..情系灾区. 5月12日我国四川汶川县发生里氏级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套, 一辆乙货车可装床架10个和课桌凳10套.10分1学校如何安排甲、乙两种货车可一次性把这些物资运到灾区有几种方案2若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少最少运费是多少。

7年级数学期末考试试卷

7年级数学期末考试试卷

7年级数学期末考试试卷一、选择题(本题共10小题,每题3分,共30分。

每小题只有一个正确答案,请将正确答案的字母填在题后的括号内。

)1. 下列哪个数是负数?A. 0B. 5C. -3D. 12. 一个数的相反数是-7,这个数是?A. 7B. -7C. 0D. 143. 如果一个角的补角是120°,那么这个角的度数是?A. 60°B. 120°C. 180°D. 240°4. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 05. 以下哪个表达式的结果是一个整数?A. 2.5 × 3B. 4 ÷ 0.5C. 0.75 × 4D. 3.2 - 1.96. 一个三角形的两边长分别为3cm和4cm,第三边的长度可能是?A. 1cmB. 2cmC. 5cmD. 7cm7. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 不规则多边形8. 一个数的平方是36,这个数是?A. 6B. -6C. 6或-6D. 369. 一个数除以-2的结果是-3,这个数是?A. 6B. -6C. 3D. -310. 如果一个数的立方是-8,那么这个数是?A. -2B. 2C. -8D. 8二、填空题(本题共5小题,每题4分,共20分。

请将答案直接写在题后的横线上。

)11. 一个数的绝对值是它本身,这个数是______。

12. 一个角的余角是30°,那么这个角的度数是______。

13. 如果一个数的平方根是2,那么这个数是______。

14. 一个三角形的周长是18cm,其中两边的长度分别是5cm和7cm,那么第三边的长度是______。

15. 一个数的立方根是-2,那么这个数是______。

三、解答题(本题共4小题,共50分。

请在答题纸上写出完整的解答过程。

)16.(10分)解方程:2x - 3 = 7。

2023-2024学年浙江省杭州市观成教育集团七年级上学期期末数学试卷

2023-2024学年浙江省杭州市观成教育集团七年级上学期期末数学试卷

杭州观成教育集团2023-2024学年第一学期初一年级期末质量检测数学试题卷一、仔细选一选 (本题有10小题,每小题3分,共30分.) 1.把0.7094精确到千分位是( ▲ ) A .0.709 B .0.710C .0.71D .0.70952.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是( ▲ ) A .24.70千克 B .24.80千克 C .25.30千克 D .25.51千克 3.在实数∙∙31.0、π、2-、722、327-、0.1010010001…中,无理数的个( ▲ ) A .1个 B .2个 C .3个 D .4个4.如图,∠AOB =130°,射线OC 是∠AOB 内部任意一条射线,OD 、OE 分别是∠AOC 、∠BOC 的平分线,下列叙述正确的是( ▲ )A .∠DOE 的度数不能确定B .∠AOD +∠BOE =∠EOC +∠COD =∠DOE =65° C .∠BOE =2∠COD D .∠AOD =∠EOC5.《孙子算经》中记载这样一个问题:“用绳子去量一根木材的长,绳子还余4.5尺;将绳子对折再量木材的长,木材还余1尺,问木材的长为多少尺?”若设木材的长为x 尺,根据题意可列出方程为( ▲ )A.x+4.5=2x-1B.x+4.5= 2(x-1)C.x +4.5 = 2x+1D.2(x-4.5)=x-16.有下列说法:①任何无理数都是无限小数;②数轴上的点与有理数一一对应; ③有平方根的数必有立方根;④到线段两个端点距离相等的点叫线段的中点. 其中正确的个数是( ▲ )A .1B .2C .3D .47.已知有理数b a 、在数轴上表示的点如图所示,则下列式子中正确的是( ▲ )A .0>+b aB .0<-b aC .0)1)(1(>++b aD .01<+b218.如图,在三角形ABC 中,∠ACB=90°,D 是 AB 边上的一个动点(点D 不与A ,B 重合),过点D, C 作射线DE ,与边CB ,CA 形成的夹角分别为∠1, ∠2,则∠l 与∠2满足数量关系( ▲ ).A.∠2=2∠1B.∠2+∠1= 180°C.∠2+2∠1= 180°D.∠2-∠1=90°9.已知如图,观察数表,横排为行,竖排为列,根据前五行所表达的规律,说明711这个分数,位于( ▲ )A .第18行,第7列B .第17行,第7列C .第17行,第11列D .第18行,第11列10.如图,用三个同图①的长方形和两个同图②的长方形以两种方式去覆盖一个大的长方形ABCD ,两种方式未覆盖的部分(阴影部分)的周长相等,那么图①中长方形的面积S1与图②中长方形的面积S2的比为( ▲ )A .2:3B .1:2C .3:4D .1:1二、认真填一填 (本题有6小题,每小题4分,共24分) 11.()=-⨯-20162015)2(5.0 .12.若∠1+∠2=90°,∠3+ ∠2=90°,则∠1和∠3的关系是 ;理由是 .13.关于x 、y 的单项式y ax 2,2bxy ,y x 221,y x 23的和,合并同类项后结果是26xy -,则a = ,b = .14.老王把5000元按一年期定期储蓄存入银行,到期支取时,扣去利息税后实得本利和为5080元.已知利息税的税率为20%,则当时一年期定期储蓄的年利率为 . 15.如图,C 是线段AB 的中点,D 是线段AC 的中点,已知图中所有线段的 长度之和为26,则线段AC 的长度为 .16.操场上有一群人,其中一部分人坐在地上,其余的人站着.如果站着的人中的25%坐下,同时原先坐着的人中的25%站起来,那么站着的人数占总人数的70%.问原先站着的人总人数的 %.A111221123321123443211234554321第一列 第二列 第三列 第四列 第五列第一行: ;第二行: , ;第三行: , , ;第四行: , , , ;第五行: , , , , ;(第10题)三.解答题(本题有7小题,共66分.)17.(本小题12分)计算:(1)()4352-1511.5-⨯⎪⎭⎫ ⎝⎛÷⎪⎭⎫ ⎝⎛-⨯ (2)()232)3(25168641-⨯⎪⎪⎭⎫ ⎝⎛÷+-+- (3)o o 4.56'18105-(结果用度分秒表示) (4)3335---18.(本小题6分)解方程:(1)42131x x --=- (2)xxx =--5.05.01519.(本小题6分)解答下列各题:(1)求()()22222723y xy x y xy x -----的值,其中4=x ,32-=y .(2)已知A -2B =7a 2-7ab ,且B =-4a 2+6ab +7,求A .20.(本小题6分)某车间有技工85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?21.(本小题8分)如图,已知∠BOC -∠AOB =14°,∠BOC ∶∠COD ∶∠DOA =2∶3∶4,OF 是∠AOB 的角平分线,过点O 在∠BOC 内部作射线OE ,将∠BOC 分成两个角的度数之比为1∶3,求∠EOF .22. (本小题满分8分=4+4)甲,乙两人从A, B 两地同时出发,沿同一条路线相向匀速行驶,已知出发后经3小时两人相遇,相遇时乙比甲多行驶了60千米,相遇后再经1小时乙到达A 地.(1)甲,乙两人的速度分别是多少?(2)两人从A ,B 两地同时出发后,经过多少时间后两人相距20千米?23. (本小题满分10分=3+3+4)如图,将一幅三角板按照如图1所示的位置放置在直线EF 上,现将含30°角的三角板OCD 绕点0逆时针旋转180°,在这个过程中.(1)如图2,当0D 平分∠AOB 时,试问OC 是否也平分∠AOE ,请说明理由; (2)当OC 所在的直线平分∠AOB 时,求∠AOD 的度数;(3)试探究∠BOC 与∠AOD 之间满足怎样的数量关系,并说明理由.24.(本小题10分=3+3+4)将长方形①,正方形②,正方形③以及长方形④按如图所示放入长方形ABCD 中(相邻的长方形,正方形之间既无重叠,又无空隙),已知AB= m(m 为常数),BE= DN. (1)若DN=1.①求AM ,BC 的长(用含m 的代数式表示); ②若长方形①的周长是正方形③的周长的23倍,求m 的值。

湖北省武汉市洪山区2023-2024学年七年级下学期期末数学试题(含答案)

湖北省武汉市洪山区2023-2024学年七年级下学期期末数学试题(含答案)

洪山区2023—2024学年度第二学期期末质量检测七年级数学试卷洪山区教育科学研究院命制 2024.06.27亲爱的同学:在你答题前,请认真阅读下面的注意事项.1.本卷共6页,24题,满分120分.考试用时120分钟.2.答题前,请将你的学校、班级、姓名、考号填在试卷和答题卡相应的位置,并核对条码上的信息.3.答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后再选涂其他答案.答在“试卷”上无效.4.认真阅读答题卡上的注意事项.预祝你取得优异成绩!第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.16的算数平方根为( )A .B .4C .D .2.下列调查中,最适合采用抽样调查的是( )A .全国人口普查B .高铁站对上车旅客进行安检C .企业招聘,对应聘人员进行面试D .了解湖北省居民的日平均用电量3.如图,点E 在的延长线上,下列条件中能判断的是()A .B .C .D .4.下列说法不正确的是( )A .若,则B .若,则C .若,则D .若,则5.在平面直角坐标系中,若点位于第三象限,则m 、n 的取值范围分别是()A .B .C .D .6.己知,若点B 位于第二象限,且直线轴,则( )A .B .C .4D .57.关于x 的不等式组的解集为,则a 、b 的值是()4-4±8±AC AB CD ∥24∠=∠D DCE ∠=∠180D DCA ∠+∠=︒13∠=∠a b <22a b -<-a b >a c b c ->-22a b ->-a b <22ac bc <a b<(4,3)A m n -+00m n <⎧⎨<⎩43m n <⎧⎨<-⎩40m n >⎧⎨<⎩43m n >⎧⎨>-⎩(,3),(2,)A a B b -3AB =AB y ∥a b +=5-2-23237x a bx a b>+⎧⎨<+⎩45x <<A .B .C .D .8.中国古代数学著作《算法统宗》中记载了这样一个题目,其大意是:用一千八百文钱共买了三百个陶罐和铁罐,其中十六文钱可以买陶罐三个,二十五文钱可以买铁罐四个,问:陶、铁罐各有几个?设陶罐有x 个,铁罐有y 个,则可列方程组为()A .B .C .D .9.用现代高等代数的符号可以将方程组的系数排成一个表,这种由数列排成的表叫做矩阵.矩阵表示三元一次方程组,若为定值,则t 与m 关系( )A .B .C .D .10.小明同学在一次数学探究活动中,将小正方形放置在如图所示的平面直角坐标系中,使得小正方形的中心(即正方形对角线的交点)位于原点,各顶点在坐标轴上,若各顶点到原点的距离为1.接下来,按如图方式作新正方形,即从第二个正方形开始,以前一个正方形的一条对角线为边作正方形,则第十个正方形中心的坐标为()A .B .C .D .第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上.11有意义,则x 的取值范围是____________.21a b =⎧⎨=⎩21a b =⎧⎨=-⎩21a b =-⎧⎨=⎩21a b =-⎧⎨=-⎩16251800300x y x y +=⎧⎨+=⎩341800300x y x y +=⎧⎨+=⎩1625180034300x y x y ⎧+=⎪⎨⎪+=⎩3418001625300x y x y ⎧+=⎪⎨⎪+=⎩524x y x y +=⎧⎨-=⎩115214⎛⎫ ⎪-⎝⎭11321 2t m ⎛⎫⎪-⎝⎭,,x y z 4x y z +-21m t -=-21m t +=21m t -=21t m +=-10O ()8,16()8,20()15,46()15,4812.在不久前结束的体育中考中,某校902班体育委员统计了本班52名同学一分钟跳绳的次数,最多197次,最少63次,若取组距为20,则可以分为____________组.13.如图,直线,直线l 与直线a 相交于点P ,直线l 与直线b 相交于点Q ,且垂直于l ,若,则____________°14.如图,在矩形中,放入六个形状大小相同的长方形,若,则图中空白部分的总面积是____________.15.如图,的角平分线交的角平分线的反向延长线于点P ,直线交于点N ,若,则____________°16,且,则;③若关于x 的不等式组无解,则;④若关于x 的不等式组有解且每个解都不在的范围内,.其中正确说法是____________.(填正确a b ∥PM 138∠=︒2∠=ABCD 10cm,2cm AD FG ==2cm ,AB CD ABM ∠∥BP HCD ∠PB CD 224HCD BNC ∠-∠=︒P H ∠+∠= 1.77≈17.7≈314x ≈-2352x a x b ≥-⎧⎨≤-⎩4a b +≥213243x a x a ≥+⎧⎨-≤+⎩13x -<≤5a >结论的序号)三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程.17.(本题满分8分)(1)计算:(2)解方程组:18.(本题满分8分)解不等式组请按下列步骤完成解答:(1)解不等式①,得____________;(2)解不等式②,得____________;(3)将不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为____________.19.(本题满分8分)武汉是一座英雄的城市,亦是一座文明之城.为迎接2024年全国文明城市评选活动,武汉市政府召开专题会议,动员部署全国文明城市创建工作.洪山区某中学积极响应政府的号召,组织全校学生进行了“文明校园专项知识”竞赛活动,满分100分,每名学生的成绩记作x 分,教务处从中抽取了m 名学生的答题成绩,分成A ,B ,C ,D 四组(;;;),得到如下不完整的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)m 的值为____________,C 组的学生占被抽取学生总数的____________%;(2)请补全频数分布直方图并计算扇形统计图中“D ”组的扇形圆心角度数为____________°;(3)本次竞赛成绩90分以上(包含90分)的学生被评为校园“文明之星”,请你估计全校2400名学生中被评为“文明之星”的学生有多少?20.(本题满分8分)如图,,.||π-4237x y x y +=⎧⎨+=⎩314123x x x +>⎧⎨-≤+⎩①②:6070A x ≤<:7080B x ≤<:8090C x ≤<:90100D x ≤≤180CHG DFH ∠+∠=︒180AEG BFD ∠+∠=︒(1)试判断与之间的数量关系,并说明理由;(2)若比的一半大,求的度数.21.(本题满分8分)已知.(1)平移线段,使A 的对应点刚好落在y 轴上,B 的对应点刚好落在x 轴上,在图上画出四边形,并写出以下两点坐标________________________(2)在(1)的条件下,求出线段扫过的面积____________;(3)P 点为直线上一动点,写出的最小值____________.22.(本题满分10分)四季莫负春光日,人生不负少年时!为了体验成长,收获快乐,学校计划组织8名老师和392名学生开展以“欢乐嘉年华,挑战致青春”为主题的研学活动.租车公司有A 、B 两种型号的客车可以租用,已知1辆A 型车可以载乘客55人,1辆B 型车可以载乘客40人.其中租用3辆A 型车和2辆B 型车需要1800元,租用4辆A 型车和1辆B 型车需要1900元,根据相关要求每辆客车上至少需要一名老师.(1)求租用一辆A 型车和一辆B 型车的费用分别是多少?(2)在保证将全部师生送达目的地的前提下租车费用不超过3150元,学校可以选择几种租车方案?最少租车费用是多少?(3)为响应国家重视教育的号召,租车公司决定降价出租,每辆A 型车降价元,每辆B 型车降价m 元,在(2)的租车方案的前提下,若学校的最少租车费用为2650元,直接写出m 的值.23.(本题满分10分)已知分别在上.G ∠CFG ∠,DF FG G ⊥∠C ∠15︒C ∠()()1,45,1,5A B AB =、AB 1A 1B 11AA B B 1A 1B AB AB OP 2m ,,AB CD M N ∥,AB CD(1) (2)(3) 备用图(1)如图(1),求证:;(2)如图(2),若F 在之间,平分,若,求与的数量关系;(3)如图(3),射线从开始,绕M 点以每秒的速度逆时针旋转,同时射线从开始,绕N 点以每秒的速度逆时针旋转,直线与直线交于P ,若直线与直线相交所夹的锐角为,直接写出运动时间t 秒的值.24.(本题满分12分)在平面直角坐标系中,,若x ,y 满足,(1)写出点A ,B 的坐标;(2)过y 轴上点作直线l 交直线于点P ,若,求点P 的坐标; (3)过y 轴上点作直线,点为直线t 上一动点,己知点,若,求出m的取值范围.MEN AME CNE ∠=∠+∠,AB CD 3,EMF BMF NF ∠=∠END ∠2F E ∠=∠AME ∠CNE ∠ME MA 10︒NF ND 25︒ME NF ME NF 30︒()014t ≤≤()(),0,0,A x By |2|0x +=(0,3)C AB 12BCP ABC S S =△△(0,3)C t AB ∥(,)P m n (2,0)D ADP ACP S S ≤△△参考答案一、选择题题号12345678910答案BDDABCACDC二、填空题题号111213141516答案7523236②④(16题对一个得两分,对两个得三分)三、解答题17.(8分)(若结果错误,酌情给步骤分)(1) 4分(2)8分18.(8分)解:(1) 2分(2)4分(3)6分(4)8分19.(8分)(1)60;402分(2)4分726分(3)(人)答:全校2400名学生中被评为“文明之星”的学生约有480名 8分20.(8分)解:(1),理由如下:1x ≥3π-51x y =⎧⎨=-⎩2x >-2x ≤22x -<≤240020%480⨯=G CFG ∠=∠180CHG DFH ∠+∠=︒ 180CHG EHG ∠+∠=︒DFH EHG ∴∠=∠DF AC∴∥又4分(其他证明方法,酌情给分)(2),,又,.设,则,,,又,, 8分21.(8分)(1) 2分4分BFD C∴∠=∠180AEG BFD ∠+∠=︒AEG DEC∠=∠180DEC C ∴∠+∠=︒DG BC∴∥G CFG ∴∠=∠DF FG ⊥ 90DFG ∴∠=︒DG BC ∥G CFH ∴∠=∠C x ∠=1152G x ∠=+︒1152CFH x ∴∠=+︒DF AC ∥180DFG CFH C ∠+∠+∠=︒115901802x x ∴+︒++︒=︒50x ∴=︒50C ∴∠=︒()()10,314,0A B(2)7 6分(3)8分22.(10分,第一问3分,第二问4分,第三问3分,结果正确的酌情给步骤分)(1)解:设租用一辆A 型客车需x 元,租用一辆B 型客车需y 元,则1分解得:,2分客:租用一辆A 型客车需400元,租用一辆B 型客车需300元 3分(2)设总租车数量为a ,由题意得,又,即,又a 为整数,,4分设租用A 型客车b 辆,B 型客车辆,由题意得5分解得,又为整数,或7, 6分①当时,②当时,答:学校可以选择2种租车方案.最少租车费用是3000元 7分(3) 10分23.(10分)解:(1)如图1过E 作,,①又.②得,,3分图1(2)如图2,由已知,设,则,设,则,19532180041900x y x y +=⎧⎨+=⎩400300x y =⎧⎨=⎩8a ≤40055a ≥8080,81111a a ≥∴≤≤8a ∴=()8b -5540(8)400400300(8)3150b b b b +-≥⎧⎨+-≤⎩157.53b ≤≤b 6b ∴=6b =82,400630023000b -=∴⨯+⨯=7b =81,400730013100b -=∴⨯+⨯=31003000∴>25m =ET AB ∥MET AME ∴∠=∠,,,AB CD ET CD TEN CNE ∴∠=∠∥∥+①②MET TEN AME CNE ∠+∠=∠+∠MEN AME CNE ∴∠=∠+∠BMF y ∠=3EMF y ∠=ENF x ∠=DNF x ∠=由(1)可知,同理可得又,则,(8)由,得,③由,得④将③④代入(8)可得7分图2(3)或10或1410分24.(12分,第一问3分,第二问5分,第三问4分)解:(1) 1分2分点A 的坐标为,点B 的标为3分(2)如图(1),过点P 作,轴于点E ,过点P 作轴于点F ,由,则或,.,6分如图(2),过点P 作轴于点轴于点,同理可得,()()18041802E AME CNE y x ∠=∠+∠=︒-+︒-36042y x=︒--F x y∠=+()2,236042F E x y y x ∠=∠∴+=︒--95720y x +=︒1804AME y ∠=︒-1804AMEy ︒-∠=1802CNE x ∠=︒-1802CNEx ︒-∠=910540AME CNE ∠+∠=︒2t =40,440y y y -≥⎧∴=⎨-≥⎩ 0,2x =∴=-(2,0)-(0,4)PE y ⊥PF x ⊥1111121,2222ABC BCP S BC OA S BC PE =⨯=⨯⨯=∴==⨯△△1,1p PE x ==-1p x =11111,()22222ACP PFOC APF ACO S S S S PF CO PE AF PF AO CO =+-=∴+⨯+⨯-⨯= △△△1111(3)1123,22222PF PF PF ∴+⨯+⨯⨯-⨯⨯==(1,2)P ∴-PF x '⊥,F PE y ''⊥E '32ACP APF PCOF ACO S S S S ''-=-=△△△1,6,(1,6)PE PF P ''==∴综上所述,点P 得到坐标为. 8分(1)(3)或.(对一个得2分)如图(2),由直线,且过点C ,可得直线t 的方程:,又在直线t 上,①当在第一象限,,得,,又,无解.②当在第二象限,,得,,又,.③当在第三象限,得,同理可得;又;(1,2),(1,6)P -12372m -≤<-3423m -<≤-t AB ∥23y x =+(,)P m n 23n m ∴=+(,)P m n 0230m m >⎧⎨+>⎩0m >1246,22ADP P ACP AOP AOC CPO m S AD y n m S S S S =⋅==+=--=△△△△△12,46,27ADP ACP m S S m m ≤∴+≤≤-△△m ∴(,)P m n 0230m m <⎧⎨+>⎩302m -<<1246,22ADP P ACP AOP AOC CPO m S AD y n m S S S S =⋅==+=--=-△△△△△4,46,23AOP ACP m S S m m ≤∴+≤-≤-△△3423m ∴-<≤-(,)P m n 0230m m <⎧⎨+<⎩32m <-46,2ADP ACP m S m S =--=-△△12,46,27AOP ACP m S S m m ≤--≤-≥-△△.综上所述:或. 12分(2)12372m ∴-≤<-12372m -≤<-3423m -<≤-。

安徽省合肥市蜀山区2023-2024学年七年级下学期期末数学试题(无答案)

安徽省合肥市蜀山区2023-2024学年七年级下学期期末数学试题(无答案)

2023/2024学年度第二学期七年级期末质量检测数学试卷温馨提示:1.数学试卷4页,三大题,共23小题,满分100分,考试时间100分钟,请合理分配时间。

2.请你仔细核对每页试卷下方页码和题数,核实无误后再答题.3.请将答案写在答题卷上,在试卷上答题无效,考试结束只收答题卷.4.请你仔细思考,认真答题,不要过于紧张,祝考试顺利!一、选择题(本大题共10小题,每小题3分,满分30分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.下列实数中,是无理数的是( )A .0.1B .C .2πD2.石墨烯是碳的同素异形体,具有优异的光学、电学、力学特性,在材料学、能源、生物医学等方面具有重要的应用前景.单层石墨烯的厚度为0.0000000335cm ,将0.0000000335这个数用科学记数法表示为( )A .B .C .D .3.下列运算中,正确的是( )A .B .C .D .4.已知a <b ,下列结论中,错误的是()A .B .a +c <b +cC .-3a >-3bD .5.如图,立定跳远是安徽省初中学生体育中考的选考项目,测量立定跳远成绩的依据是()A .两点之间,线段最短B .垂线段最短C .两点确定一条直线D .两直线相交有且只有一个交点6.将分式中的x ,y 的值都扩大为原来的3倍,则分式的值( )A .不变B .扩大为原来的6倍C .缩小为原来的D .扩大为原来的3倍7.下列图形中,由∠1=∠2,能得到的是()A .B .67-93.3510-⨯83.3510-⨯933.510-⨯70.33510-⨯111-=-0=321a a ÷=()2224ab a b -=33a b<22ac bc >2xx y-13AB CD ∥C .D .8.如图为商场某品牌椅子的侧面图,椅面DE 与地面AB 平行,椅背AF 与BD 相交于点C ,其中∠DEF =120°,∠ABD =55°,则∠ACB 的度数是()A .70°B .65°C .60°D .50°9.若关于x 的一元一次不等式组有3个整数解,则m 的取值范围是( )A .0≤m <1B .0<m <1C .-4≤m <-3D .0<m ≤110.已知实数a 、b 、c 满足c -a -b =ab ,下列结论一定正确的是( )A .若a =3,b =-1,则c =1B .若a +b =0,则c >0C .若,则D.若,则二、填空题(本大题共6小题,每小题3分,满分18分)11.若分式有意义,则x 的取值范围为______.12.因式分解:______.13.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,即三角形的三边长分别为a ,b ,c ,记,那么其面积.如果某个三角形的三边长分别为2,3,3,其面积S介于整数n 和n +1之间,那么n 的值是______.14.如图,直线AB 、CD 相交于点O ,∠AOC =25°,EO ⊥CD ,垂足为O ,OF 平分∠BOE ,则∠DOF =______°.15.凸透镜成像是自然界中的一个基本现象,其中物距记为u ,像距记为v ,透镜焦距记为f ,三者满足关系式:,若已知u 、f ,则v =_____.16.如图,,点E ,F 分别在直线AB ,CD 上,点P 在AB ,CD 之间,若,∠EPF =150°,∠PFC =120°,那么∠AEP =______°.242x m x ->⎧⎨-≤⎩221,32ab a b =+=52c =()241110,m m c m a b+=-≠=2ab m =21x -2xy x -=2a b cp ++=S =111u v f+=AB CD ∥三、解答题(本大题共7小题,满分52分)17.(6分)计算:18.(6分)解不等式:,并把它的解集在数轴上表示出来.19.(7分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点A ,B ,C 都在格点(网格线的交点)上,现将△ABC 平移,使点A 平移到点D ,点E ,F 分别是B ,C 的对应点.(1)请在图中画出平移后的△DEF ;(2)△DEF 的面积为______.20.(7分)先化简,再求值:,其中x =4.21.(8分)观察下列等式:第1个等式:第2个等式:第3个等式:第4个等式:……(1)写出符合以上规律的第5个等式:______;(2)已知n 为正整数,写出符合以上规律的第n 个等式,并说明等式成立的理由.22.(8分)如图,CE 平分∠ACD ,AE 平分∠CAB 交AD 于F ,且∠1+∠2=90°.()()()2115x x x --+-7132x x +-≤222121124x x x x x +-+⎛⎫-÷ ⎪+-⎝⎭()()()22221122122⨯+=⨯+-⨯()()()22222134134⨯+=⨯+-⨯()()()22223146146⨯+=⨯+-⨯()()()22224158158⨯+=⨯+-⨯(1)试说明:;(2)若∠3-∠4=20°,求∠AFC 的度数.23.(10分)某科技协会为迎接科技活动月,准备购进若干台A 、B 两种型号的无人机进行开幕式表演.已知每个A 型号的无人机进价比每个B 型号进价多500元,且用28000元购进A 型号无人机的数量与用24000元购进B 型号的数量相同.(1)求A 、B 型号的无人机每个进价分别是多少元?(2)若该协会购进B 型号无人机数量比A 型号的数量的2倍还少3个,且购进A 、B 两种型号无人机的总数量不超过10个,现两种无人机都要购买且预算经费是3万元,请判断预算经费是否够用?并说明理由.AB CD ∥。

北京市房山区2023-2024学年七年级上学期期末数学试题 (含解析)

北京市房山区2023-2024学年七年级上学期期末数学试题 (含解析)

A .B .3.下面几何体中,左视图是圆的是(....上有天堂,下有苏杭,凭借独特的自然风光,杭州一直都是旅游热门目的地.尤其是年亚运会的到来,让这座城市更加热门.相关数据显示,“十一”黄金周期间杭州市接待游客1300万人次.将13000000用科学记数法表示为(AOB ∠AOC ∠....A .B .月的日历表,用形如的框架框住日历表中的某五个数,对于框架A .. . . 9.我国古代数学著作《增删算法统宗》记载了绳索量竿”问题一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.其大意为:现有一根竿和一条绳索,用绳AD CD AB BC=+-AC --A .①④⑤B .①②④15.如图,,16.如图,用剪刀沿直线将一个正方形剪掉一部分,发现正方形剩余部分(阴影部分)的周长比原正方形的周长要小,能正确解释这一现象的数学依据是17.已知,那么90AOC BOD ∠=∠=︒∠21a b -=(1)画射线,直线(2)在射线上取一点(3)过点作的垂线段度最短,最短距离为 BA CB BA D A BC cm故选:C .4.A【分析】本题考查科学记数法表示较大的数.将一个数表示成的形式,其中,为整数,这种记数方法叫做科学记数法,据此即可求得答案.【详解】解:将13000000用科学记数法表示为,故选:A .5.B【分析】根据角的表示方法和图形逐个进行判断即可.【详解】A 选项:不能用∠1、∠AOB 、∠O 三种方法表示同一个角,故错误;B 选项:能用∠1、∠AOB 、∠O 三种方法表示同一个角,故正确;C 选项:不能用∠1、∠AOB 、∠O 三种方法表示同一个角,故错误;D 选项:不能用∠1、∠AOB 、∠O 三种方法表示同一个角,故错误;故选:B .【点睛】考查了角的表示方法,解题关键是理解角的表示方法.6.B【分析】本题主要考查线段之间的和差关系,灵活运用线段的和、差、倍、分转化是解题的关键.根据线段之间的和差关系依次进行判断即可得出正确答案.【详解】解:A .∵ ,,∴,故A 选项不符合题意;B .∵ ,,∴,故B 符合题意;C .∵ ,,∴,故C 选项不符合题意;D .∵,,∴ , 故D 选项不符合题意.故选:B .7.D【分析】本题考查的是列代数式,代数式的值,设阴影十字框中间的数为x ,得到其余个数的代数式,把这个数相加,可得和为,再逐一分析各选项中的数即可.【详解】设阴影十字框中间的数为x ,x 为正整数,则十字框中的五个数的和:10n a ⨯1||10a ≤<n 71.310⨯AD CD AC -=AB BC AC +=AD CD AB BC -=+AC BC AB -=AC BD AB BC BD +=++AC BC AC BD ≠+-AC BC AB -=AD BD AB -=AC BC AD BD -=-AD AC CD -=BD BC CD -=AD AC BD BC -=-455x线段最短,经测量可得:24.见解析.【分析】根据已知条件和角平分线的性质据此逐项填空即可.【详解】解:因为OD 是∠AOC 的平分线,所以∠COD=∠AOC .(角平分线定义)AE AE 12(2)解:①如图1所示,,,10AB = 15BC AB ==是的角平分线,(2)解:①当在②当在内部时,BOC AOC AOB ∴∠=∠+∠=OD BOC ∠1502BOD BOC ∴∠=∠=︒OC ∠OC AOB ∠BOC ∠综上所述,或24.28.(1)(2)C 对应的数为:或或或(3),8α=2C 719-17-53∴,当时,3CB CA =3CB CA =。

河北省保定市唐县2023-2024学年七年级上学期期末数学试题(含答案)

河北省保定市唐县2023-2024学年七年级上学期期末数学试题(含答案)

2023-2024学年第一学期学业质量检测七年级数学试卷注意事项:1.本试卷共8页,总分120分,考试时间120分钟。

2.答题前,考生务必将姓名、准考证号填写在答题卡的相应位置。

3.所有答案均在答题卡上作答,在本试卷或草稿纸上作答无效。

答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题。

4.答选择题时,用2B 铅笔将答题卡上对应题目的标准答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题一、选择题(本大题有16小题,共42分。

1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合要求的)1.把写成省略括号的代数和的形式,正确的是( )A .B .C .D .2.“力箭一号”()运载火箭在酒泉卫星发射中心采用“一箭六星”的方式,成功将六颗卫星送入预定轨道,首次飞行任务取得圆满成功.把卫星看成点,则卫星在预定轨道飞行留下的痕迹体现了( )A .点动成线B .线动成面C .面动成体D .面面相交成线3.武老师在实验室里检测了A 、B 、C 、D 四个湿敏电阻器的质量(单位:克),超过标准质量的记为正数,不足标准质量的记为负数,结果如图所示,其中最接近标准质量的是()A .B .C .D .4.算式的值最小时,中填入的运算符号是()A .B .C .D .5.对于下列各数:,0,,,,8,其中说法错误的是( )A .,0,8都是整数B .分数有,,C .正数有,,8D .是负有理数,但不是分数6.“多少事,从来急;天地转,光阴迫.一万年太久,只争朝夕.”伟人毛泽东通过这首《满江红·和郭沫若同志》告诉我们青年学生:要珍惜每分每秒,努力工作,努力学习.一天时间为86400秒,用科学记数法表示这一数字是( )A .B .C .D .7.下列四个图中,能用、、三种方法表示同一个角的是()()()345---+-345--345---345-+345--+ZK 1A -21-□□+-⨯÷5-920.2-10%5-920.2-10%9210%0.2-286410⨯58.6410⨯48.6410⨯50.86410⨯1∠AOB ∠O ∠A .B .C .D .8.下列说法正确的是()A .与是同类项B .单项式的系数是5C .一个两位数,十位上的数字是,个位上的数字是,则这个两位数是D .用四舍五入法把25.395精确到0.01的近似数是25.49.为加快唐县城市更新改造,全面推进全县基础设施建设,提升城市档次和品位,2023年10月起,唐尧路开始封闭施工工程.其中某条地下管线如果由甲工程队单独铺设需要20天,由乙工程队单独铺设需要30天,现计划由乙工程队先从一端铺设5天,然后增加甲工程队从另一端和乙工程队同时铺设.设甲乙工程队共同铺设x 天后,恰好完成这条地下管线的铺设,则下列方程正确的是( )A.B .C .D .10.一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中与“学”字相对的字是()A .考B .试C .加D .油11.下列各式中不能表示图中阴影部分面积的是()A .B .C .D .12.随着科技的发展,在公共区域内安装“智能全景摄像头”成为保护人民生命财产安全的有效手段.如图1所示,这是某仓库的平面图,点Q 是图形内任意一点,点是图形内的点,连接,若线段总是在图形内或图形上,则称是“完美观测点”,此处便可安装摄像头,而不是“完美观测点”.233x y 32x y -5ab -a b 10a b +512030x+=513020x +=51202030x x ++=51302030x x ++=()232x x++25x x+()()322x x x ++-()36x x ++360︒1P 1PQ 1PQ 1P 2P图1 图2如图2,以下各点是完美观测点的是( )A .B .C .D .13.在数轴上,点在原点O 的同侧,分别表示数a ,1,将点向左平移3个单位长度,得到点C .若点C 与点B 互为相反数,则a 的值为( )A .3B .2C .D .014.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方-九宫格,把1-9这9个数填入方格中,使每一横行,每一竖列以及两条斜对角线上的数之和都相等.如图是一个未完成的“幻方”,则其中x 的值是()14题图A .3B .4C .5D .615.为全力推进农村公路快速发展,解决农村出行难问题,现将三村连通的公路进行硬化改造,如图,铺设成水泥路面.已知B 村在A 村的北偏东方向上,.则村在村的( )方向上.15题图A .北偏东B .北偏西C .西偏东D .南偏西16.已知三条射线,若其中一条射线平分另两条射线所组成的角时,我们称组成的图形为“角分图形”.如图(1),当平分时,图(1)为角分图形.1M 2M 3M 4M ,A B A 1-33⨯A B C 、、65︒100ABC ∠=︒C B 15︒15︒45︒15︒OA OB OC 、、OA OB OC 、、OB AOC ∠如图(2),点O 是直线MN 上一点,,射线OM 绕点O 以每秒的速度顺时针旋转至,设时间为,当为何值时,图中存在角分图形.小明认为,小亮认为.你认为正确的答案为()图(1) 图(2)A .小明B .小亮C .两人合在一起才正确D .两人合在一起也不正确二、填空题(本大题共3小题,17~18题每空2分,第19题3分,共11分.)17.(1)如图,O 是直线上一点,,则的度数等于______.(2)一件工艺品按成本价提高后,以108元售出,则这件工艺品的成本是______元.18.“这么近,那么美,周末到河北。

七年级数学期末试卷及答案

七年级数学期末试卷及答案

【导语】虽然在学习的过程中会遇到许多不顺⼼的事,但古⼈说得好——吃⼀堑,长⼀智。

多了⼀次失败,就多了⼀次教训;多了⼀次挫折,就多了⼀次经验。

没有失败和挫折的⼈,是永远不会成功的。

本篇⽂章是©⽆忧考⽹为您整理的《七年级数学期末试卷及答案》,供⼤家借鉴。

【篇⼀】 ⼀、选择题(每⼩题4分,共40分) 1.﹣4的绝对值是() A.B.C.4D.﹣4 考点:绝对值. 分析:根据⼀个负数的绝对值是它的相反数即可求解. 解答:解:﹣4的绝对值是4. 故选C. 点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运⽤到实际运算当中. 绝对值规律总结:⼀个正数的绝对值是它本⾝;⼀个负数的绝对值是它的相反数;0的绝对值是0. 2.下列各数中,数值相等的是()A.32与23B.﹣23与(﹣2)3C.3×22与(3×2)2D.﹣32与(﹣3)2 考点:有理数的乘⽅. 分析:根据乘⽅的意义,可得答案. 解答:解:A32=9,23=8,故A的数值不相等; B﹣23=﹣8,(﹣2)3=﹣8,故B的数值相等; C3×22=12,(3×2)2=36,故C的数值不相等; D﹣32=﹣9,(﹣3)2=9,故D的数值不相等; 故选:B. 点评:本题考查了有理数的乘⽅,注意负数的偶次幂是正数,负数的奇次幂是负数. 3.0.3998四舍五⼊到百分位,约等于()A.0.39B.0.40C.0.4D.0.400 考点:近似数和有效数字. 分析:把0.3998四舍五⼊到百分位就是对这个数百分位以后的数进⾏四舍五⼊. 解答:解:0.3998四舍五⼊到百分位,约等于0.40. 故选B. 点评:本题考查了四舍五⼊的⽅法,是需要识记的内容. 4.如果是三次⼆项式,则a的值为()A.2B.﹣3C.±2D.±3 考点:多项式. 专题:计算题. 分析:明⽩三次⼆项式是多项式⾥⾯次数的项3次,有两个单项式的和.所以可得结果. 解答:解:因为次数要有3次得单项式, 所以|a|=2 a=±2. 因为是两项式,所以a﹣2=0 a=2 所以a=﹣2(舍去). 故选A. 点评:本题考查对三次⼆项式概念的理解,关键知道多项式的次数是3,含有两项. 5.化简p﹣[q﹣2p﹣(p﹣q)]的结果为()A.2pB.4p﹣2qC.﹣2pD.2p﹣2q 考点:整式的加减. 专题:计算题. 分析:根据整式的加减混合运算法则,利⽤去括号法则有括号先去⼩括号,再去中括号,最后合并同类项即可求出答案. 解答:解:原式=p﹣[q﹣2p﹣p+q], =p﹣q+2p+p﹣q, =﹣2q+4p, =4p﹣2q. 故选B. 点评:本题主要考查了整式的加减运算,解此题的关键是根据去括号法则正确去括号(括号前是﹣号,去括号时,各项都变号). 6.若x=2是关于x的⽅程2x+3m﹣1=0的解,则m的值为()A.﹣1B.0C.1D. 考点:⼀元⼀次⽅程的解. 专题:计算题. 分析:根据⽅程的解的定义,把x=2代⼊⽅程2x+3m﹣1=0即可求出m的值. 解答:解:∵x=2是关于x的⽅程2x+3m﹣1=0的解, ∴2×2+3m﹣1=0, 解得:m=﹣1. 故选:A. 点评:本题的关键是理解⽅程的解的定义,⽅程的解就是能够使⽅程左右两边相等的未知数的值. 7.某校春季运动会⽐赛中,⼋年级(1)班、(5)班的竞技实⼒相当,关于⽐赛结果,甲同学说:(1)班与(5)班得分⽐为6:5;⼄同学说:(1)班得分⽐(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的⽅程组应为() A.B. C.D. 考点:由实际问题抽象出⼆元⼀次⽅程组. 分析:此题的等量关系有:(1)班得分:(5)班得分=6:5;(1)班得分=(5)班得分×2﹣40. 解答:根据(1)班与(5)班得分⽐为6:5,有: x:y=6:5,得5x=6y; 根据(1)班得分⽐(5)班得分的2倍少40分,得x=2y﹣40. 可列⽅程组为. 故选:D. 点评:列⽅程组的关键是找准等量关系.同时能够根据⽐例的基本性质对等量关系①把⽐例式转化为等积式. 8.下⾯的平⾯图形中,是正⽅体的平⾯展开图的是() A.B.C.D. 考点:⼏何体的展开图. 分析:由平⾯图形的折叠及正⽅体的展开图解题. 解答:解:选项A、B、D中折叠后有⼀⾏两个⾯⽆法折起来,⽽且缺少⼀个底⾯,不能折成正⽅体. 故选C. 点评:熟练掌握正⽅体的表⾯展开图是解题的关键. 9.如图,已知∠AOB=∠COD=90°,⼜∠AOD=170°,则∠BOC的度数为()A.40°B.30°C.20°D.10° 考点:⾓的计算. 专题:计算题. 分析:先设∠BOC=x,由于∠AOB=∠COD=90°,即∠AOC+x=∠BOD+x=90°,从⽽易求∠AOB+∠COD﹣∠AOD,即可得x=10°. 解答:解:设∠BOC=x, ∵∠AOB=∠COD=90°, ∴∠AOC+x=∠BOD+x=90°, ∴∠AOB+∠COD﹣∠AOD=∠AOC+x+∠BOD+x﹣(∠AOC+∠BOD+x)=10°, 即x=10°. 故选D. 点评:本题考查了⾓的计算、垂直定义.关键是把∠AOD和∠AOB+∠COD表⽰成⼏个⾓和的形式. 10.⼩明把⾃⼰⼀周的⽀出情况⽤如图所⽰的统计图来表⽰,则从图中可以看出() A.⼀周⽀出的总⾦额 B.⼀周内各项⽀出⾦额占总⽀出的百分⽐ C.⼀周各项⽀出的⾦额 D.各项⽀出⾦额在⼀周中的变化情况 考点:扇形统计图. 分析:根据扇形统计图的特点进⾏解答即可. 解答:解:∵扇形统计图是⽤整个圆表⽰总数⽤圆内各个扇形的⼤⼩表⽰各部分数量占总数的百分数.通过扇形统计图可以很清楚地表⽰出各部分数量同总数之间的关系, ∴从图中可以看出⼀周内各项⽀出⾦额占总⽀出的百分⽐. 故选B. 点评:本题考查的是扇形统计图,熟知从扇形图上可以清楚地看出各部分数量和总数量之间的关系是解答此题的关键. ⼆、填空题(每⼩题5分,共20分) 11.在(﹣1)2010,(﹣1)2011,﹣23,(﹣3)2这四个数中,的数与最⼩的数的差等于17. 考点:有理数⼤⼩⽐较;有理数的减法;有理数的乘⽅. 分析:根据有理数的乘⽅法则算出各数,找出的数与最⼩的数,再进⾏计算即可. 解答:解:∵(﹣1)2010=1,(﹣1)2011=﹣1,﹣23=﹣8,(﹣3)2=9, ∴的数是(﹣3)2,最⼩的数是﹣23, ∴的数与最⼩的数的差等于=9﹣(﹣8)=17. 故答案为:17. 点评:此题考查了有理数的⼤⼩⽐较,根据有理数的乘⽅法则算出各数,找出这组数据的值与最⼩值是本题的关键. 12.已知m+n=1,则代数式﹣m+2﹣n=1. 考点:代数式求值. 专题:计算题. 分析:分析已知问题,此题可⽤整体代⼊法求代数式的值,把代数式﹣m+2﹣n化为含m+n的代数式,然后把m+n=1代⼊求值. 解答:解:﹣m+2﹣n=﹣(m+n)+2, 已知m+n=1代⼊上式得: ﹣1+2=1. 故答案为:1. 点评:此题考查了学⽣对数学整体思想的掌握运⽤及代数式求值问题.关键是把代数式﹣m+2﹣n化为含m+n的代数式. 13.已知单项式与﹣3x2n﹣3y8是同类项,则3m﹣5n的值为﹣7. 考点:同类项. 专题:计算题. 分析:由单项式与﹣3x2n﹣3y8是同类项,可得m=2n﹣3,2m+3n=8,分别求得m、n的值,即可求出3m﹣5n的值. 解答:解:由题意可知,m=2n﹣3,2m+3n=8, 将m=2n﹣3代⼊2m+3n=8得, 2(2n﹣3)+3n=8, 解得n=2, 将n=2代⼊m=2n﹣3得, m=1, 所以3m﹣5n=3×1﹣5×2=﹣7. 故答案为:﹣7. 点评:此题主要考查学⽣对同类项得理解和掌握,解答此题的关键是由单项式与﹣3x2n﹣3y8是同类项,得出m=2n﹣3,2m+3n=8. 14.已知线段AB=8cm,在直线AB上有⼀点C,且BC=4cm,M是线段AC的中点,则线段AM的长为2cm或6cm. 考点:两点间的距离. 专题:计算题. 分析:应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB的延长线上或点C在线段AB上. 解答:解:①当点C在线段AB的延长线上时,此时AC=AB+BC=12cm,∵M是线段AC的中点,则AM=AC=6cm; ②当点C在线段AB上时,AC=AB﹣BC=4cm,∵M是线段AC的中点,则AM=AC=2cm. 故答案为6cm或2cm. 点评:本题主要考查两点间的距离的知识点,利⽤中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选⽤它的不同表⽰⽅法,有利于解题的简洁性.同时,灵活运⽤线段的和、差、倍、分转化线段之间的数量关系也是⼗分关键的⼀点. 三、计算题(本题共2⼩题,每⼩题8分,共16分) 15. 考点:有理数的混合运算. 专题:计算题. 分析:在进⾏有理数的混合运算时,⼀是要注意运算顺序,先算⾼⼀级的运算,再算低⼀级的运算,即先乘⽅,后乘除,再加减.同级运算按从左到右的顺序进⾏.有括号先算括号内的运算.⼆是要注意观察,灵活运⽤运算律进⾏简便计算,以提⾼运算速度及运算能⼒. 解答:解:, =﹣9﹣125×﹣18÷9, =﹣9﹣20﹣2, =﹣31. 点评:本题考查了有理数的综合运算能⼒,解题时还应注意如何去绝对值. 16.解⽅程组:. 考点:解⼆元⼀次⽅程组. 专题:计算题. 分析:根据等式的性质把⽅程组中的⽅程化简为,再解即可. 解答:解:原⽅程组化简得 ①+②得:20a=60, ∴a=3, 代⼊①得:8×3+15b=54, ∴b=2, 即. 点评:此题是考查等式的性质和解⼆元⼀次⽅程组时的加减消元法. 四、(本题共2⼩题,每⼩题8分,共16分) 17.已知∠α与∠β互为补⾓,且∠β的⽐∠α⼤15°,求∠α的余⾓. 考点:余⾓和补⾓. 专题:应⽤题. 分析:根据补⾓的定义,互补两⾓的和为180°,根据题意列出⽅程组即可求出∠α,再根据余⾓的定义即可得出结果. 解答:解:根据题意及补⾓的定义, ∴, 解得, ∴∠α的余⾓为90°﹣∠α=90°﹣63°=27°. 故答案为:27°. 点评:本题主要考查了补⾓、余⾓的定义及解⼆元⼀次⽅程组,难度适中. 18.如图,C为线段AB的中点,D是线段CB的中点,CD=1cm,求图中AC+AD+AB的长度和. 考点:两点间的距离. 分析:先根据D是线段CB的中点,CD=1cm求出BC的长,再由C是AB的中点得出AC及AB的长,故可得出AD的长,进⽽可得出结论. 解答:解:∵CD=1cm,D是CB中点, ∴BC=2cm, ⼜∵C是AB的中点, ∴AC=2cm,AB=4cm, ∴AD=AC+CD=3cm, ∴AC+AD+AB=9cm. 点评:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键. 五、(本题共2⼩题,每⼩题10分,共20分) 19.已知,A=a3﹣a2﹣a,B=a﹣a2﹣a3,C=2a2﹣a,求A﹣2B+3C的值. 考点:整式的加减. 专题:计算题. 分析:将A、B、C的值代⼊A﹣2B+3C去括号,再合并同类项,从⽽得出答案. 解答:解:A﹣2B+3C=(a3﹣a2﹣a)﹣2(a﹣a2﹣a3)+3(2a2﹣a), =a3﹣a2﹣a﹣2a+2a2+2a3+6a2﹣3a, =3a3+7a2﹣6a. 点评:本题考查了整式的加减,解决此类题⽬的关键是熟记去括号法则,熟练运⽤合并同类项的法则,这是各地中考的常考点. 20.⼀个两位数的⼗位数字和个位数字之和是7,如果这个两位数加上45,则恰好成为个位数字与⼗位数字对调之后组成的两位数.求这个两位数. 考点:⼀元⼀次⽅程的应⽤. 专题:数字问题;⽅程思想. 分析:先设这个两位数的⼗位数字和个位数字分别为x,7﹣x,根据题意列出⽅程,求出这个两位数. 解答:解:设这个两位数的⼗位数字为x,则个位数字为7﹣x, 由题意列⽅程得,10x+7﹣x+45=10(7﹣x)+x, 解得x=1, ∴7﹣x=7﹣1=6, ∴这个两位数为16. 点评:本题考查了数字问题,⽅程思想是很重要的数学思想. 六.(本题满分12分) 21.取⼀张长⽅形的纸⽚,如图①所⽰,折叠⼀个⾓,记顶点A落下的位置为A′,折痕为CD,如图②所⽰再折叠另⼀个⾓,使DB沿DA′⽅向落下,折痕为DE,试判断∠CDE的⼤⼩,并说明你的理由. 考点:⾓的计算;翻折变换(折叠问题). 专题:⼏何图形问题. 分析:根据折叠的原理,可知∠BDE=∠A′DE,∠A′DC=∠ADC.再利⽤平⾓为180°,易求得∠CDE=90°. 解答:解:∠CDE=90°. 理由:∵∠BDE=∠A′DE,∠A′DC=∠ADC, ∴∠CDA′=∠ADA′,∠A′DE=∠BDA, ∴∠CDE=∠CDA′+∠A′DE, =∠ADA′+∠BDA, =(∠ADA′+∠BDA′), =×180°, =90°. 点评:本题考查⾓的计算、翻折变换.解决本题⼀定明⽩对折的两个⾓相等,再就是运⽤平⾓的度数为180°这⼀隐含条件. 七.(本题满分12分) 22.为了“让所有的孩⼦都能上得起学,都能上好学”,国家⾃2007年起出台了⼀系列“资助贫困学⽣”的政策,其中包括向经济困难的学⽣免费提供教科书的政策.为确保这项⼯作顺利实施,学校需要调查学⽣的家庭情况.以下是某市城郊⼀所中学甲、⼄两个班的调查结果,整理成表(⼀)和图(⼀): 类型班级城镇⾮低保 户⼝⼈数农村户⼝⼈数城镇户⼝ 低保⼈数总⼈数 甲班20550 ⼄班28224 (1)将表(⼀)和图(⼀)中的空缺部分补全. (2)现要预定2009年下学期的教科书,全额100元.若农村户⼝学⽣可全免,城镇低保的学⽣可减免,城镇户⼝(⾮低保)学⽣全额交费.求⼄班应交书费多少元?甲班受到国家资助教科书的学⽣占全班⼈数的百分⽐是多少? (3)五四青年节时,校团委免费赠送给甲、⼄两班若⼲册科普类、⽂学类及艺术类三种图书,其中⽂学类图书有15册,三种图书所占⽐例如图(⼆)所⽰,求艺术类图书共有多少册? 考点:条形统计图. 分析:(1)由统计表可知:甲班农村户⼝的⼈数为50﹣20﹣5=25⼈;⼄班的总⼈数为28+22+4=54⼈; (2)由题意可知:⼄班有22个农村户⼝,28个城镇户⼝,4个城镇低保户⼝,根据收费标准即可求解; 甲班的农村户⼝的学⽣和城镇低保户⼝的学⽣都可以受到国家资助教科书,可以受到国家资助教科书的总⼈数为25+5=30⼈,全班总⼈数是50⼈,即可求得; (3)由扇形统计图可知:⽂学类图书有15册,占30%,即可求得总册数,则求出艺术类图书所占的百分⽐即可求解. 解答:解: (1)补充后的图如下: (2)⼄班应交费:28×100+4×100×(1﹣)=2900元; 甲班受到国家资助教科书的学⽣占全班⼈数的百分⽐:×100%=60%; (3)总册数:15÷30%=50(册), 艺术类图书共有:50×(1﹣30%﹣44%)=13(册). 点评:本题考查的是条形统计图和扇形统计图的综合运⽤.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表⽰出每个项⽬的数据;扇形统计图直接反映部分占总体的百分⽐⼤⼩. ⼋、(本题满分14分) 23.如图所⽰,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数. (2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数. (3)如果(1)中∠BOC=β(β为锐⾓),其他条件不变,求∠MON的度数. (4)从(1)(2)(3)的结果你能看出什么规律? (5)线段的计算与⾓的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4),设计⼀道以线段为背景的计算题,并写出其中的规律来? 考点:⾓的计算. 专题:规律型. 分析:(1)⾸先根据题中已知的两个⾓度数,求出⾓AOC的度数,然后根据⾓平分线的定义可知⾓平分线分成的两个⾓都等于其⼤⾓的⼀半,分别求出⾓MOC和⾓NOC,两者之差即为⾓MON的度数; (2)(3)的计算⽅法与(1)⼀样. (4)通过前三问求出的⾓MON的度数可发现其都等于⾓AOB度数的⼀半. (5)模仿线段的计算与⾓的计算存在着紧密的联系,也在已知条件中设计两条线段的长,设计两个中点,求中点间的线段长. 解答:解:(1)∵∠AOB=90°,∠BOC=30°, ∴∠AOC=90°+30°=120°, ⼜OM平分∠AOC, ∴∠MOC=∠AOC=60°, ⼜∵ON平分∠BOC, ∴∠NOC=∠BOC=15° ∴∠MON=∠MOC﹣∠NOC=45°; (2)∵∠AOB=α,∠BOC=30°, ∴∠AOC=α+30°, ⼜OM平分∠AOC, ∴∠MOC=∠AOC=+15°, ⼜∵ON平分∠BOC, ∴∠NOC=∠BOC=15° ∴∠MON=∠MOC﹣∠NOC=; (3)∵∠AOB=90°,∠BOC=β, ∴∠AOC=90°+β, ⼜OM平分∠AOC, ∴∠MOC=∠AOC=+45°, ⼜∵ON平分∠BOC, ∴∠NOC=∠BOC= ∴∠MON=∠MOC﹣∠NOC=45°; (4)从(1)(2)(3)的结果可知∠MON=∠AOB; (5) ①已知线段AB的长为20,线段BC的长为10,点M是线段AC的中点,点N是线段BC的中点,求线段MN的长; ②若把线段AB的长改为a,其余条件不变,求线段MN的长; ③若把线段BC的长改为b,其余条件不变,求线段MN的长; ④从①②③你能发现什么规律. 规律为:MN=AB. 点评:本题考查了学会对⾓平分线概念的理解,会求⾓的度数,同时考查了学会归纳总结规律的能⼒,以及会根据⾓和线段的紧密联系设计实验的能⼒. 【篇⼆】 ⼀、选择题(每题3分,共30分) 1.﹣2的相反数是()A.﹣B.﹣2C.D.2 2.据平凉市旅游局统计,2015年⼗⼀黄⾦周期间,平凉市接待游客38万⼈,实现旅游收⼊16000000元.将16000000⽤科学记数法表⽰应为()A.0.16×108B.1.6×107C.16×106D.1.6×106 3.数轴上与原点距离为5的点表⽰的是()A.5B.﹣5C.±5D.6 4.下列关于单项式的说法中,正确的是()A.系数、次数都是3B.系数是,次数是3C.系数是,次数是2D.系数是,次数是3 5.如果x=6是⽅程2x+3a=6x的解,那么a的值是()A.4B.8C.9D.﹣8 6.绝对值不⼤于4的所有整数的和是()A.16B.0C.576D.﹣1 7.下列各图中,可以是⼀个正⽅体的平⾯展开图的是() A.B.C.D. 8.“⼀个数⽐它的相反数⼤﹣4”,若设这数是x,则可列出关于x的⽅程为()A.x=﹣x+(﹣4)B.x=﹣x+4C.x=﹣x﹣(﹣4)D.x﹣(﹣x)=4 9.⽤⼀个平⾯去截:①圆锥;②圆柱;③球;④五棱柱,能得到截⾯是圆的图形是()A.①②③B.①②④C.②③④D.①③④ 10.某商店有两个进价不同的计算器都卖了64元,其中⼀个盈利60%,另⼀个亏损20%,在这次买卖中,这家商店()A.不赔不赚B.赚了32元C.赔了8元D.赚了8元 ⼆、填空题(每题3分,共30分) 11.﹣3的倒数的绝对值是. 12.若a、b互为倒数,则2ab﹣5=. 13.若a2mb3和﹣7a2b3是同类项,则m值为. 14.若|y﹣5|+(x+2)2=0,则xy的值为. 15.两点之间,最短;在墙上固定⼀根⽊条⾄少要两个钉⼦,这是因为. 16.时钟的分针每分钟转度,时针每分钟转度. 17.如果∠A=30°,则∠A的余⾓是度;如果∠1+∠2=90°,∠1+∠3=90°,那么∠2与∠3的⼤⼩关系是. 18.如果代数式2y2+3y+5的值是6,求代数式4y2+6y﹣3的值是. 19.若规定“*”的运算法则为:a*b=ab﹣1,则2*3=. 20.有⼀列数,前五个数依次为,﹣,,﹣,,则这列数的第20个数是. 三、计算和解⽅程(16分) 21.计算题(8分) (1) (2)(2a2﹣5a)﹣2(﹣3a+5+a2) 22.解⽅程(8分) (1)4x﹣1.5x=﹣0.5x﹣9(2)1﹣=2﹣. 四、解答题(44分) 23.(6分)先化简,再求值:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3),其中. 24.(7分)⼀个⾓的余⾓⽐它的补⾓的⼤15°,求这个⾓的度数. 25.(7分)如图,∠AOB为直⾓,∠AOC为锐⾓,且OM平分∠BOC,ON平分∠AOC,求∠MON的度数. 26.(7分)⼀项⼯程由甲单独做需12天完成,由⼄单独做需8天完成,若两⼈合作3天后,剩下部分由⼄单独完成,⼄还需做多少天? 27.(7分)今年春节,⼩明到奶奶家拜年,奶奶说过年了,⼤家都长了⼀岁,⼩明问奶奶多⼤岁了.奶奶说:“我现在的年龄是你年龄的5倍,再过5年,我的年龄是你年龄的4倍,你算算我现在的年龄是多少?”聪明的同学,请你帮帮⼩明,算出奶奶的岁数. 28.(10分)某市电话拨号上⽹有两种收费⽅式,⽤户可以任选其⼀:A、计时制:0.05元/分钟;B、⽉租制:50元/⽉(限⼀部个⼈住宅电话上⽹).此外,每种上⽹⽅式都得加收通信费0.02元/分钟. (1)⼩玲说:两种计费⽅式的收费对她来说是⼀样的.⼩玲每⽉上⽹多少⼩时? (2)某⽤户估计⼀个⽉内上⽹的时间为65⼩时,你认为采⽤哪种⽅式较为合算?为什么? 参考答案 ⼀、选择题(每题3分,共30分) 题号12345678910 答案DBCDBBCAAD ⼆、填空题(每题3分,共30分) 11.1/3;12.﹣3;13.1;14.﹣32;15.线段;两点确定⼀条直线; 16.6度;0.5度;17.60度;∠2=∠3;18.﹣1;19.5;20.﹣20/21. 三、计算和解⽅程(16分) 21.(1)1/12;(2)a-10;22.(1)x=-3;(2)x=1 四、解答题(44分) 23.解:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3) =-6x+9x2﹣3﹣9x2+x﹣3 =-5x﹣6----------------------------------------------------------------------------4分 当时,-5x﹣6=-5×(-1/3)-6=-13/3---------------------------------------2分 24.解:设这个⾓的度数为x,则它的余⾓为(90°﹣x),补⾓为(180°﹣x),--------2分 依题意,得:(90°﹣x)﹣(180°﹣x)=15°,-------------------------------------------4分 解得x=40°.--------------------------------------------------------------------------------------6分 答:这个⾓是40°.----------------------------------------------------------------------------7分 25.解:∵OM平分∠BOC,ON平分∠AOC, ∴∠MOC=∠BOC,∠NOC=∠AOC,------------------------------------------------------2分 ∴∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)-----------------------------------------4分 =(∠BOA+∠AOC﹣∠AOC) =∠BOA =45°.----------------------------------------------------------------------------------------------6分 故∠MON的度数为45°.-------------------------------------------------------------------------7分 26.解:设⼄还需做x天.-----------------------------------------------------------------------1分 由题意得:++=1,-------------------------------------------------------------------------4分 解之得:x=3.------------------------------------------------------------------------------------6分 答:⼄还需做3天.------------------------------------------------------------------------------7分 27.解:设⼩明现在的年龄为x岁,则奶奶现在的年龄为5x岁,根据题得,--------------1分 4(x+5)=5x+5,---------------------------------------------------------------------------------3分 解得:x=15,-------------------------------------------------------------------------------------5分 经检验,符合题意,5x=15×5=75(岁).------------------------------------------------------6分 答:奶奶现在的年龄为75岁.------------------------------------==--------------------------7分 28.解:(1)设⼩玲每⽉上⽹x⼩时,根据题意得------------------------------------------1分 (0.05+0.02)×60x=50+0.02×60x,--------------------------------------------------------------2分 解得x=.-----------------------------------------------------------------------------------------5分 答:⼩玲每⽉上⽹⼩时;--------------------------------------------------------------------6分 (2)如果⼀个⽉内上⽹的时间为65⼩时, 选择A、计时制费⽤:(0.05+0.02)×60×65=273(元),----------------------------------8分 选择B、⽉租制费⽤:50+0.02×60×65=128(元). 所以⼀个⽉内上⽹的时间为65⼩时,采⽤⽉租制较为合算.--------------------------------10分 【篇三】 ⼀、选择题:每⼩题3分,共30分。

人教版七年级数学期末检测试卷及答案

人教版七年级数学期末检测试卷及答案

七年级数学期末检测试卷及答案The document was prepared on January 2, 2021七年级数学期末检测试卷一、填空题每题2分,共20分1、某食品加工厂的冷库能使冷藏的食品每小时降温5℃,如果刚进库的牛肉温度是10℃,进库8小时后温度可达_______℃.2、开学整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌摆在一条线上,整整齐齐,这是因为__________.3、计算:-5×-23+-39=_____.4、近似数×105精确到____位,有效数字是______.5、今年母亲30岁,儿子2岁,______年后,母亲年龄是儿子年龄的5倍.6、按如下方式摆放餐桌和椅子:7、计算72°35′÷2+18°33′×4=_______.8、已知点B 在线段AC 上,AB=8cm,AC=18cm,P 、Q 分别是AB 、AC 中点,则PQ=_______.9、如图,A 、O 、B 是同一直线上的三点,OC 、OD 、OE 是从O 点引出的三条射线,且∠1∶∠2∶∠3∶∠4=1∶2∶3∶4则∠5=_________.9题图 10题图10、如图,某轮船上午8时在A 处,测得灯塔S 在北偏东60°的方向上,向东行驶至中午12时,该轮船在B 处,测得灯塔S 在北偏西30°的方向上自己完成图形,已知轮船行驶速度为每小时20千米,则∠ASB=______,AB 长为_____.二、选择题每题3分,共24分11、若a <0,b >0,则b 、b+a 、b -a 中最大的一个数是A 、aB 、b+aC 、b -aD 、不能确定12、-2100比-299大A 、2B 、-2C 、299D 、3×29913、已知,123-m +2)123(++n =0,则2m -n= A 、13 B 、11 C 、9 D 、15桌子张数1 2 3 4 …… n 可坐人数 6 8 10 ……CD AE B1 2 3 4 5 O A B北 北14、某种出租车收费标准是:起步价7元即行驶距离不超过3千米需付7元车费,超过了3千米以后,每增加1千米加收元不足1千米按1千米计,某人乘这种出租车从甲地到乙地支付车费19元,设此人从甲地到乙地经过的路程为x 千米,则x 的最大值是A 、11B 、8C 、7D 、515、如图,是一个正方体纸盒的展开图,若在其中三个正方形A 、B 、C 中分别填入适当的数,,则填入正方形A 、B 、C 、中的三个数依次是A 、1、-3、0 B 、0、-3、1C 、-3、0、1D 、-3、1、016、已知线段AB,在AB 的延长线上取一点取一点D,使DA=2AB,那么线段AC 是线段DB 的 倍.A 、32B 、23C 、 21D 、31 17、两个角的大小之比是7∶3,他们的差是72°,则这两个角的关系是A 、相等B 、互余C 、互补D 、无法确定18、利用一副三角板上已知度数的角,不能画出的角是A 、15°B 、135°C 、165°D 、100°三、解答题每题5分,共20分19 .4×-32-13+-错误!-|-43|. 20、计算25.0)61(215)322()2(24--⨯+-÷- 、21、解方程:6323322+-=--x x x 、22解方程:6323322+-=--x x x四、每题5分,共20分23、有资料表明:某地区高度每增加100米,气温降低℃,小明和小红想出一个测量山峰高度的办法,小红在山脚,小明在山顶,他们同时在上午9时测得山脚温度是℃,山顶温度是-℃.你知道山峰的高度吗24、如图,是由小立方块塔成的几何体,请分别从前面看、左面看和上面看,试将你所看到的平面图形画出来.25、七年级学生去春游,如果减少一辆客车,每辆车正好坐60人,如果增加一辆客车,每辆车正好坐45人.问七年级共有多少学生26、下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC 的度数.解:根据题意可画出图 ∵∠AOC=∠BOA -∠BOC=70°-15°=55°∴∠AOC=55°若你是老师,会判小马虎满分吗若会,说明理由.若不会,请将小马虎的的错误指出,并给出你认为正确的解法.五、每题9分,共18分32、某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒不小于5盒.问:1当购买乒乓球多少盒时,两种优惠办法付款一样2当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买为什么A OB C30某市电话拨号上网有两种收费方式,用户可以任选其一:A 、计时制:元每分钟;B 、包月制:60元每月限一部个人住宅电话上网;此外,每一种上网方式都得加收通信费元每分钟.1、某用户某月上网的时间为x 小时,请分别写出两种收费方式下该用户应该支付的费用;2、若某用户估计一个月内上网的时间为25小时,你认为采用哪种方式较为合算友情提示:请同学做完试卷后, 再仔细检查一下,也许你会做得更好,祝你成功七年级数学检测试卷参考答案及评分标准一、1、-30 2、两点确定一条直线 3、1 4、百 1 4 6 0 5、5 6、12 2n+47、110°29′30″ 8、5cm 9、60° 10、90° 80千米 11、三 二 12、40 二、13、C 14、D 15、A 16、B 17、A 18、A 19、C 20、D 21、B22、A三、23、1213 24、x =-3 25、从旋转和俯视角度看 26、13270度2 16350元四、27、解:设山峰的高度为x 米---------1分 28、则有-8.0100⨯x =-分 解得x =600-------------------6分 答:山峰的高度为600米--------7分29、解:设七年级共有x 名学生--------------1分 则根据题意有:45260x x =+------4分 解得x =360------------------------6分答:七年级共有360名学生----------7分30、不会给小马虎满分---------1分原因是:小马虎没有把问题考虑全面,他只考虑了OC 落在∠AOB 的内部,还有OC 落在∠AOB 的外部的情况图略-----------------------------4分当OC 落在∠AOB 的外部时,∠AOC=∠AOB+∠BOC=85°------------7分 五、31、1一、二、三、四季度销售量分别为240件、 25件、15件、220件.1分可用条形图表示图略2分2可求总销售量为:500件;一、二、三、四季度销售量占总销售量的百分比分别为48%、5%、3%、44%.2分可用扇形图表示图略2分3从图表中可以看到二、三季度的销售量小,一、四季度的销售量大,建议旺季时多进羽绒服,淡季时转进其它货物或租给别人使用.决策合理即可2分32、解;1设购买x 盒乒乓球时,两种优惠办法付款一样----------------1分根据题意有:30×5+x -5×5=30×5+5x ×分解得x =20---------------------------------------------- 5分所以,购买20盒乒乓球时,两种优惠办法付款一样.2当购买15盒时:甲店需付款30×5+15-5×5=200元,乙店需付款30×5+15×5×=元.因为200<所以,购买15盒乒乓球时,去甲店较合算.------------7分当购买30盒时:甲店需付款30×5+30-5×5=275元;乙店需付款30×5+30×5×=270元.因为275>270所以,购买30盒乒乓球时,去乙店较合算.--------------9分前面看 左面看 上面看。

七年级数学期末考试试卷(含答案)

七年级数学期末考试试卷(含答案)

七年级数学期末考试试卷(含答案)第一部分:选择题(每小题2分,共40分)1.在下列各组数中,只有一个数是奇数的是()A. 15 ,10 ,14B. 28 ,65 ,75C. 105 ,77 ,49D.72 ,39 ,172.已知正方形边长为a,它的面积是()A. a*aB. 2aC. a^2/2D. a^23.简化下列代数式:3(x + 2y) - 2(4x - y)的结果是()A. -6x + 7yB. 6x - 7yC. -6x - 7yD. 6x + 7y4.下列哪一个数字是一个质数()A. 6B. 10C. 14D. 195.已知取得了一个300分的精简,这个数在什么范围内()A. (200, 300]B. (100, 300]C. (100, 200]D. (200, 400)...(省略部分)第二部分:填空题(每小题3分,共30分)11.请用约简的形式填写下列小数:= 0.5 × 0.4 × 0.812.已知数a = 12 - 3 × 4,求a的值。

13.求下列方程的解:(2/3)x + 5 = 914.请用算术平方根填写下列空白:121 = ()^215.已知正方形的面积是49平方米,求它的边长。

...(省略部分)第三部分:应用题(共30分)21.运动会比赛开始的第一天,白队赢了4场,数目还是蓝队多。

接下来的每一天都有比赛,白队每天赢蓝队1场,第5天比赛结束时,两队有相同数目的胜利。

求第一天开始的时候,白队和蓝队各自赢了多少场比赛?22.某商店水果销售统计,根据收入金额和销售数量绘制了下图,其中横轴表示销售数量(x),纵轴表示收入金额(y)。

请根据图中的数据回答以下问题:![](chart.png)a) 当销售数量为5时,收入金额是多少?b) 黄线代表苹果的销售情况,当销售数量为2时,收入金额是多少?c) 根据图中的数据,苹果的单价是多少?...(省略部分)答案第一部分:选择题1. C2. D3. C4. D5. B...第二部分:填空题11. 0.1612. 013. x = 614. 1115. 7...第三部分:应用题21. 白队赢了6场,蓝队赢了2场22.a) 150b) 35c) 15请按照上述格式设置试卷内容,试卷答案可以根据实际情况修改或增加。

人教版七年级数学期末试卷【含答案】

人教版七年级数学期末试卷【含答案】

人教版七年级数学期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么这个三角形的第三边长可能是多少厘米?A. 3厘米B. 17厘米C. 23厘米D. 25厘米3. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 圆形D. 梯形4. 下列哪个选项是正确的?A. 有理数包括整数和分数B. 无理数包括无限不循环小数C. 实数包括有理数和无理数D. 所有选项都正确5. 下列哪个选项是错误的?A. 1的倒数是1B. 0的倒数是0C. 2的平方是4D. 3的立方是27二、判断题(每题1分,共5分)1. 任何两个奇数相加的和一定是偶数。

()2. 任何两个偶数相乘的积一定是偶数。

()3. 任何两个有理数相乘的积一定是有理数。

()4. 任何两个无理数相加的和一定是无理数。

()5. 任何两个实数相减的差一定是实数。

()三、填空题(每题1分,共5分)1. 1的相反数是_______,-1的相反数是_______。

2. 如果一个数的平方是64,那么这个数是_______或_______。

3. 任何数乘以_______等于_______。

4. 任何数除以_______等于_______。

5. 如果一个三角形的两个内角分别是30度和60度,那么这个三角形的第三个内角是_______度。

四、简答题(每题2分,共10分)1. 请简述有理数的定义。

2. 请简述无理数的定义。

3. 请简述实数的定义。

4. 请简述勾股定理的定义。

5. 请简述三角形内角和定理的定义。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。

2. 一个正方形的边长是6厘米,求这个正方形的面积。

3. 一个圆的半径是4厘米,求这个圆的面积。

4. 一个圆锥的底面半径是3厘米,高是4厘米,求这个圆锥的体积。

2023-2024学年北京石景山七年级上学期期末数学试卷含答案

2023-2024学年北京石景山七年级上学期期末数学试卷含答案

2024北京石景山初一(上)期末数学学校姓名准考证号一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有..一个.1.12-的相反数是(A )12(B )12-(C )2(D )2-2.以河岸边步行道的平面为基准,河面高 1.8m -,河岸上地面高5m ,则地面比河面高(A )3.2m(B ) 3.2m-(C )6.8m(D ) 6.8m-3.依据第三方平台统计数据,2022年12月至2023年5月,石景山区共有350人享受养老助餐服务(其中基本养老服务对象90人,其他老年人260人),累计服务10534人次.其中,数字10534用科学记数法可表示为(A )310.53410⨯(B )41.053410⨯(C )31.053410⨯(D )50.1053410⨯4.如图,从左面看图中四个几何体,得到的图形是四边形的几何体的个数是(A )1(B )2(C )3(D )45.将三角尺与直尺按如图所示摆放,若α∠的度数比β∠的度数的三倍多10︒,则α∠的度数是(A )20︒(B )40︒(C )50︒(D )70︒6.下列运算正确的是(A )325+=a b ab (B )2222-=c c (C )2()2--=-+a b a b(D )22243-=-x y yx x y7.已知:如图O 是直线AB 上一点,OD 和OE 分别平分AOC ∠和BOC ∠,50BOC ∠=︒,则AOD ∠的度数是(A )50︒(B )60︒(C )65︒(D )70︒8.有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是(A )0ab >(B )<-a b (C )20+>a (D )20->a b 二、填空题(本题共16分,每小题2分)9.对单项式“0.5a ”可以解释为:一块橡皮0.5元,买了a 块,共消费0.5a 元.请你再对“0.5a ”赋予一个实际意义________________________________________________.10.如图是一数值转换机的示意图,若输入1=-x ,则输出的结果是.11.若233m x y -与253mx y --是同类项,则m 的值为.12.若2=x 是关于x 的一元一次方程25-=x m 的解,则m 的值为.13.如图,要在河边修建一个水泵站,分别向A 村和B 村送水,修在(请在,,D E F 中选择)处可使所用管道最短,理由是.第13题图第14题图14.如图,正方形广场边长为米,广场的四个角都设计了一块半径为r 米的四分之一圆形花坛,请用代数式表示图中广场空地面积平方米.(用含a 和r 的字母表示)15.规定一种新运算:1⊕=+-+a b a b ab ,例如:23232310⊕=+-⨯+=,(1)请计算:2(1)⊕-___________.(2)若32x -⊕=,则x 的值为.16.a 是不为1的有理数,我们把11a -称为a 的差倒数,如2的差倒数是1112=--,-1的差倒数是111(1)2=--.已知113α=-,2α是1α的差倒数,3α是2α的差倒数,4α是3a 的差倒数,……,以此类推,则2023a =___________.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:312-+-.18.计算:11124()834-⨯-+19.计算:3122(7)2-+⨯-÷.20.本学期学习了一元一次方程的解法,下面是小亮同学的解题过程:解方程:20.30.410.50.3x x -+-=.解:原方程可化为:203104153x x -+-=.……第①步方程两边同时乘以15,去分母,得:3(203)5(104)15x x --+=.……第②步去括号,得:609502015x x --+=.……第③步移项,得:605015920x x -=+-.……第④步合并同类项,得:104x =.……第⑤步系数化1,得:0.4x =.……第⑥步所以0.4x =为原方程的解.上述小亮的解题过程中(1)第②步的依据是_________________________________;(2)第_____(填序号)步开始出现错误,请写出这一步正确的式子__________.21.解方程:52318x x +=-.22.解方程:211123x x +--=.23.先化简,再求值:22(28)(14)x x x ----,其中2x =-.24.如图,已知直线l 和直线外两点,A B ,按下列要求作图并回答问题:(1)画射线AB ,交直线l 于点C ;(2)画直线AD l ⊥,垂足为D ;(3)在直线AD 上画出点E ,使DE AD =;(4)连接CE ;(5)通过画图、测量:点A 到直线l 的距离d ≈cm (精确到0.1);图中有相等的线段(除DE AD =以外)或相等的角,写出你的发现:.25.列方程解应用题:某公司计划为员工购买一批运动服,已知A 款运动服每套180元,B 款运动服每套210元,公司购买了这两种运动服共计50套,合计花费9600元,求公司购买两种款式运动服各多少套?26.已知:线段=10AB ,C 为线段AB 上的点,点D 是BC 的中点.(1)如图,若=4AC ,求CD 的长.根据题意,补全解题过程:∵10,4AB AC CB ===,AB -,∴CB =.∵点D 是BC 的中点,∴CD ==CB .(理由:)(2)若=3AC CD ,求AC 的长.27.已知:OA OB ⊥,射线OC 是平面上绕点O 旋转的一条动射线,OD 平分BOC ∠.(1)如图,若40BOC =︒∠,求AOD ∠.(2)若=(0180)BOC αα︒<<︒∠,直接写出AOD ∠的度数.(用含α的式子表示)28.对于点M ,N ,给出如下定义:在直线MN 上,若存在点P ,使得MP =kNP (k >0),则称点P 是“点M 到点N 的k 倍分点”.例如:如图,点Q 1,Q 2,Q 3在同一条直线上,Q 1Q 2=3,Q 2Q 3=6,则点Q 1是点Q 2到点Q 3的13倍分点,点Q 1是点Q 3到点Q 2的3倍分点.已知:在数轴上,点A ,B ,C 分别表示﹣4,﹣2,2.(1)点B 是点A 到点C 的倍分点,点C 是点B 到点A 的倍分点;(2)点B 到点C 的3倍分点表示的数是;(3)点D 表示的数是x ,线段BC 上存在点A 到点D 的4倍分点,写出x 的取值范围.参考答案阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、选择题(本题共16分,每小题2分)题号12345678答案ACBCDDCB二、填空题(本题共16分,每小题2分)9.答案不唯一,正确即可10.311.212.1-13.E ;两点之间线段最短14.22()a r π-15.(1)4;(2)116.13-三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.解:原式312=-+…………………………2分9=.…………………………5分18.解:原式386=-+-…………………………3分1=-.…………………………5分19.解:原式82(7)2=-+⨯-⨯…………………………2分828=--…………………………4分36=-.…………………………5分20.(1)等式基本性质2;…………………………2分(2)③;…………………………3分609502015x x ---=.…………………………5分21.解:移项,得53182x x -=--.…………………………2分合并同类项,得220x =-.…………………………4分系数化为1,得10x =-.…………………………5分∴10x =-是原方程的解.22.解:去分母,得3(21)2(1)6x x +--=.…………………………2分去括号,得63226x x +-+=.…………………………3分移项,合并同类项,得41x =.…………………………4分系数化为1,得14x =.…………………………5分∴14x =是原方程的解.23.解:原式2241614x x x=---+2217x =-.…………………………4分当2x =-时,原式22(2)17=⨯--.9=-.…………………………6分24.解:(1)(2)(3)(4)画图并标出字母如右图所示;………………3分(5)d ≈cm (精确到0.1);(以答题卡上实际距离为准)………4分CA CE =,ACD ECD ∠=∠,CAD CED ∠=∠.………………6分25.解:设公司购买A 款式运动服x 套,则购买B 款式运动服(50x -)套.……1分根据题意可得,180210(50)9600x x +-=.…………………………3分解得:30x =.则5020x -=.…………………………5分答:公司购买A 款式运动服30套,购买B 款式运动服20套.………………6分26.解:(1)补全解题过程如下:∵10,4AB AC CB ===,AB -AC ,………………………1分∴CB =6.………………………2分∵点D 是BC 的中点,∴CD =12=CB 3.(理由:线段中点的定义).…………4分(2)∵点D 是BC 的中点,∴CD BD =(线段中点的定义).∵=3AC CD ,∴设CD BD x ==,=3AC x .………………………5分∴10AB AC CD BD =++=.即:310x x x ++=.解得,2x =.∴=6AC .…………………………6分27.解:(1)∵OA OB ⊥,∴90AOB ∠=︒(垂直定义).…………………………2分∵OD 平分BOC ∠,∴12BOD BOC ∠=∠(角平分线定义).…………………………4分∵40BOC ∠=︒,∴20BOD ∠=︒.∵AOD AOB BOD ∠=∠-∠,∴70AOD ∠=︒.…………………………5分(2)9090+22αα︒-︒或.…………………………7分28.解:(1)12,23;…………………………2分(2)1或4;…………………………4分(3)5722x -≤≤.…………………………7分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6月四川省青神县七年级期末检测
数学试卷
(100分钟完卷,满分100分)
一、选择题(每题3分,共30分)
1.方程2x+2=3x+1的解为()
A.1 B.-3
5
C.-
1
5
D.-1
2.已知a<b,下列四个不等式中不正确的是()
A.3a<3b B.-3a>-3b C.a+3<b+3 D.2-a<2-b
3.方程组
5
1
x y
x y
+=


-=

的解是()
A.
1
4
x
y
=


=

B.
2
3
x
y
=


=

C.
3
2
x
y
=


=

D.
4
1
x
y
=


=

4.不等式组
20
40
60
x
x
x
+>


->

⎪-≤

的整数解有()
A.1个B.2个C.3个D.4个
5.有一个外角是120°,两个外角相等的三角形是()
A.等腰三角形B.等边三角形C.不等边三角形D.不能确定6.下列图形不是轴对称图形的是()
A.线段B.等腰三角形C.等边三角形D.任意三角形
7.天平右盘中的每个砝码的质量都是1克,则物体A的质量m的取值范围在数轴上表示为()
8.李平同学设计了四种正多边形的瓷砖图案,只用一种瓷砖可以密铺的是()
A.①②④B.②③④C.①③④D.①②③
9.下列事件是随机事件的是()
A.如果a<b,b<c,那么a<c
B.同位角相等,两直线平行
C.在一个全是白球的口袋里摸出一个白球
D.抛出一枚骰子,五点的一面朝上
10.小娜在做下面的数学作业时,因钢笔漏墨水,不小心
将部分字迹污损了。

作业过程如下(涂黑部分即污损部分)
已知:如图,OP平分∠AOB,MN∥OB
试说明:OM=NM
解:∵OP平分∠AOB
∴▄▄▄▄▄▄▄▄▄
又∵MN∥OB
∴▄▄▄▄▄▄▄▄▄
∴∠1=∠3
∴OM=NM
小娜思考:污损部分应分别是以下四项中的两项:①∠1=∠2;②∠2=∠3;③∠3=∠4;④∠1=∠4,那么她补出来的结果应是()
A.①④B.②③C.①②D.③④
二、填空题(每题2分,共20分)
11.关于x的方程3x+a=x+2的解是x=-2,则a =。

12.已知| m-2 |+(3-n)2=0,则-n m=。

13.“a的3倍与4的差不大于1”列出不等式是。

14.在△ABC中,∠A=90°,∠B-∠C=14°,则∠B=°,∠C=°。

15.如果小明邀请小川玩一个抛掷两枚硬币的游戏,游戏规则如下:抛出两个正面小川赢1分,抛出其它结果小明赢得1分,谁先到10分,谁就获胜。

抛两枚硬币出现两个正面的机会是。

这个游戏规则对小川。

(填“公平”或“不公平”)
16.解方程组
8
7
ax y
x by
+=


-=

时,由于粗心,张华看错了方程组中的a,而得解为
3
5
x
y
=-


=


刘平看错了方程组中的b,而得解为
1
10
x
y
=-


=

,则原方程组正确的
解为。

17.如图所示,OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,PE=3,则PF=。

18.如图所示,一个顶角为38°的等腰三角形纸片,剪取顶角后,得到一个四边形,则∠1+∠2=°
19.如图所示,CE垂直平分BD,∠A=∠DBA,AC=16,ΔBCD 的周长是25,则BD的长是。

20.一副三角板,如图所示叠放在一起,则图中∠α的度数是。

三、解方程(组)(每题5分,共10分)
21.
31
1
23
x x
--
+=
第18题图
第17题图
第19题图
第20题图
22. 421
33
x y x y +=⎧⎨+=⎩
四、解不等式(组),并把它们的解集在数轴上表示出来。

(每题5分,共10分) 23.5173x x +≤-
24.253(2)12
3x x x x +≤+⎧⎪
-⎨<⎪⎩
五、解下列各题(每题5分,共10分)
25.已知△ABC ,直线L ,画出△ABC 关于直线L 对称的图形。

26.已知:如图,△ABC ,试说明∠BAC +∠B +∠C =180°。

六、解下列各题(每题5分,共10分)
27. 长风乐园的门票价格规定如右表所列。

某校初一⑴、⑵两个班共104人去游长风乐
园,其中⑴班人数较少,不到50人,⑵班人数较多,有50多人,经估算,如果两班都以班为单位分别购票,则一共应付1240元;如果两班联合起来,作为一个团体购票,则可以节省不少钱,问两班各有多少学生?
购票人数
1~50人 51~100人 100人以上
每人门票价13元11元9元
28.张川家距离学校2.4千米,某天张川从家中去上学走到一半的路程时,发现离到校时间只有12分钟了,如果张川能按时赶到学校,那么他行走剩下的一半路程速度至少应达到每小时多少千米?
七、解下列各题(每题5分,共10分)
29.下面是数学课堂的一个学习片断,阅读后请回答下面的问题。

学习等腰三角形有关内容后,李老师请同学们交流讨论这样一个问题:“已知等腰△ABC的∠B=40°,请你求出其余两个角的度数。


同学们经过思考与交流后,李颖同学举手讲:“其余两角是40°和100°”;张川同学说:“其余两角是70°和70°”,还有一些同学也提出不同的看法……
⑴假如你也在课堂中,你的意见如何?为什么?
⑵通过上面数学问题的讨论,你有什么感觉?(用一句话表示)
30.已知:如图,在等边△ABC中,CD是AB边上的高,延长CB至E,使BE=BD,连结DE。

⑴△CDE是什么三角形?试说明理由;
⑵把“CD是AB边上的高”改成什么条件?也能得到同样的结论。

相关文档
最新文档