大肠杆菌简介

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大肠杆菌1、大肠杆菌是细菌,属于原核生物;具有由肽聚糖组成的细胞壁,只含有核糖体简单的细胞器,没有细胞核有拟核;细胞质中的质粒常用作基因工程中的运载体。

4致病性质
1、定居因子(Colonizationfactor,CF):也称粘附素(Adhesin),即大肠杆菌的菌毛。

致病大肠杆菌须先粘附于宿主肠壁,以免被肠蠕动和肠分泌液清除。

使人类致泻的定居因子为CFAⅠ、CTAⅡ(ColonizationfactorantigenⅠ、Ⅱ),定居因子具有较强的免疫原性,能刺
2、黏附素能使细菌紧密黏着在泌尿道和肠道的细胞上,避免因排尿时尿液的冲刷和肠道的蠕动作用而被排除。

大肠杆菌黏附素的特点是具有高特异性。

包括:定植因子抗原〡,
大肠杆菌〢,〣;集聚黏附菌毛〡和〣;束形成菌毛;紧密黏附素;P菌毛;侵袭质粒抗原蛋白和Dr菌毛等。

肠产毒性大肠杆菌的有些菌株只产生一种肠毒素,即LT或ST;有些则两种均可可产生。

有些致病大肠杆菌还可产生vero毒素。

5、其他:胞壁脂多糖的类脂A具有毒性,O特异多糖有抵抗宿主防御屏障的作用。

大肠杆菌的K抗原有吞噬作用。

病原体
大肠杆菌O157:H7是大肠杆菌的其中一个类型,该种病菌常见于牛只等温血动物的肠内。

这一型的大肠杆菌会释放一种强烈的毒素,并可能导致肠管出现严重症状,如带血腹泻。

大肠杆菌血清学分型基础(即其抗原)大肠埃希菌主要有三种抗原:O抗原,为细胞壁脂多糖最外层的特异性多糖,由重复的多糖单位所组成。

该抗原刺激机体主要产生IgM 类抗体(出现早,消失快)。

K抗原,位于O抗原外层,为多糖,与细菌的侵袭力有关。

K 抗原分为A,B,L三型。

H抗原,位于鞭毛上,加热和用酒精处理,可使H抗原变性或丧失。

H抗原主要刺激机体产生IgG类抗体,与其他肠道菌基本无交叉反应。

表示大肠杆菌血清型的方式是按O:K:H排列,例如:O111:K58(B4):H2
5危害程度
认知:
大肠杆菌是原核生物,构造相对简单,遗传背景清晰,培养操作容易,因此也常常被作为基因工程的对象加以利用:研究者常常将外源基因导入质粒,将质粒整合入大肠杆菌基因,这样,大肠杆菌就能够表达基因重组后的蛋白(例如胰岛素,某些疫苗等)了。

此外,大肠杆菌还常常作为模型生物参与细胞学实验。

虽然绝大多数大肠杆菌与人类有着良好合作,但是仍有少部分特殊类型的大肠杆菌具有相当强的毒力,一旦感染,将造成严重疫情。

其中最具代表性的就是代号为O157:H7的大肠杆菌,它是EHEC(肠出血性大肠杆菌)家族中的一员。

提起O157:H7,可谓劣迹斑斑:美国在1982、1984、1993年曾三次发生O157:H7的爆发性流行;日本曾在1996年爆发过一次波及9000多人的大流行。

O157:H7感染后的主要症状正是出血性腹泻,严重者可伴发溶血尿毒综合征(HUS),危及生命。

由于O157:H7危害较大,且可经食物和饮用水在人群中广泛传播,因此食品卫生主管部门已将O157:H7列为常规检测项目。

此次在德国肆虐的O104也是一种EHEC,感染症状类似O157:H7,且毒力更为猛烈。

症状:
人体感染EHEC后,会发生严重的痉挛性腹痛和反复发作的出血性腹泻,同时伴有发热、呕吐等表现,多为EHEC产生的毒素所致。

某些严重感染者毒素随血行播散造成溶血性贫血,红细胞、血小板减少;肾脏受到波及时还会发生急性肾功能衰竭甚至死亡。

通常情况下大肠杆菌对多种抗生素敏感,但耐药的菌株也不少见。

此次爆发于德国的O104由于可产生分解抗生素的酶,故治疗更为棘手——一旦采取抗生素治疗,反倒会引起细菌产生更多的
志贺样毒素(SLT),加重病情。

因此对于我们普通人而言,对付此类病菌感染的最佳手段还是预防:不吃不熟的肉类食品如生鱼,生牛肉(O157因对牛低毒而很容易被牛携带,因此食用未熟的牛肉易导致O157感染)等,食用生鲜瓜果前要彻底清洗,遇有腹泻尽早上医院。

通常为3至4日,但亦会长达9日。

多为内源性感染,以泌尿系感染为主,如尿道炎、膀胱炎、肾盂肾炎。


大肠杆菌可引起腹膜炎、胆囊炎、阑尾炎等。

婴儿、年老体弱、慢性消耗性疾病、大面积烧伤患者,大肠杆菌可侵入血流,引起败血症。

早产儿,尤其是生后30天内的新生儿,易患大肠杆菌性脑膜炎。

大肠杆菌
肠出血性大肠杆菌感染是一种人畜共患病。

凡是体内有肠出血性大肠杆菌感染的病人、带菌者和家畜、家禽等都可传播本病。

动物作为传染源的作用尤其重要,较常见的可传播本病的动物有牛、鸡、羊、狗、猪等,也有从鹅、马、鹿、白鸽的粪便中分离出O157H7大
肠杆菌的报道。

其中以牛的带菌率最高,可达16%,而且牛一旦感染这种细菌,排菌时间
至少为一年。

可通过饮用受污染的水或进食未熟透的食物(特别是免治牛肉、汉堡扒及烤牛肉)而感染。

饮用或进食未经消毒的奶类、芝士、蔬菜、果汁及乳酪而染病的个案亦有发现。

此外,若个人卫生欠佳,亦可能会通过人传人的途径,或经进食受粪便污染的食物而感染该种病菌。

患病或带菌动物往往是动物来源食品污染的根源。

如牛肉、奶制品的污染大多来自带
菌牛。

带菌鸡所产的鸡蛋、鸡肉制品也可造成传播。

带菌动物在其活动范围内也可通过排泄的粪便污染当地的食物、草场、水源或其他水体及场所,造成交叉污染和感染,危害极大。

1.通过食物传播
O157H7大肠杆菌主要是通过污染食物而引起人的感染,O157H7大肠杆菌的致病能力和对胃酸的抵抗力均较强,对细胞的破坏性大。

因此很多国家将O157H7大肠杆菌引起的
感染性腹泻归为食源性疾病。

在世界各地报告的爆发中,约有70%以上与进食可疑食物有关。

动物来源的食物,如牛肉、鸡肉、牛奶、奶制品等是O157H7大肠杆菌经食物传播的
主要因素,尤其是在动物屠宰过程中这些食物更易受到寄生在动物肠道中的细菌污染。

另外蔬菜、水果等被O157H7大肠杆菌污染也可造成大肠杆菌感染爆发。

1982年和1993年在美国发生的O157H7大肠杆菌感染性腹泻的爆发,就是由于食用了某快餐连锁店的汉堡包引起的。

研究证明,汉堡包的牛肉馅被O157H7大肠杆菌污染。

据专家估计100个菌就可使人发病,而1个汉堡包的牛肉馅里可含有1000个细菌,足以使人得病。

英国曾发生一起与食用蔬菜有关的O157H7感染爆发。

1996年5-8月份在日本发生的世界上最大的一起由O157H7大肠杆菌引起的爆发流行,可疑食物是牛肉和工业化生产的蔬菜。

1991、1993、1996年在美国发生的O157H7感染爆发被证明了食用被污染的苹果汁
和苹果酒。

1998年,中国黑龙江省卫生防疫站首次从市售的熟猪头肉中分离出EHEC,表明中国也存在由该菌引起食物中毒的危险。

2.通过水传播
1989年,在美国密苏里州发生的一起O157H7大肠杆菌感染爆发,共发病240多人。

调查表明,该起爆发可能为水源性,是由于饮用水被污染所致。

加强饮用水源的消毒管理后,疫情得到了控制。

1989年12月-1990年1月在加拿大某镇也发生了一起O157H7大肠杆菌感染爆发。

在2000多名居民中,发病243人,发病率11.6%。

经证实也为水源性爆发。

原因为天气寒冷,供水管道堵塞,导致市政供水系统受污染。

除了饮用水受到污染可造成感染外,其他被污染的水体如游泳池、湖水及其他地表水
等都可造成传播。

这也进一步说明了O157H7在外环境中的生存能力较强,引起人类感染
可能并不需要在外环境中进行增菌。

1991年在美国的俄勒冈州发生的一起O157H7大肠杆菌感染爆发,怀疑是湖水被粪便污染,感染者在湖水里游泳时不慎喝了湖水而被感染。

对1992年在苏格兰发生的一起O157H7大肠杆菌感染的调查发现,一个患病儿童在一个家庭用的大水盆里玩耍,污染了盆里的水,结果用过同一盆水的儿童都先后发病。

1996年在日本大阪发生O157H7大肠杆菌感染爆发后,鉴于O157H7大肠杆菌可经水传播,有关当局关闭了大阪市的23个公共游泳池和515所学校的游泳池。

3.密切接触传播
人与人之间的密切接触也可引起O157H7大肠杆菌的传播。

一个人感染了O157H7大肠杆菌后,常通过密切接触的方式把细菌传染给其父母、子女、兄弟姐妹或其他与之密切接触的人如老师、朋友、亲戚等。

在医院里,也发生了多起由于护士照料病人而感染了O157H7大肠杆菌的报告,并且得到了病原学上的支持。

值得指出的是:在人与人之间的传播过程中,二代病人症状往往较轻,很少出现出血性肠炎。

可能是由于接触传播时感染剂量小或经人传代后细菌毒力减弱。

在上述三条传播途径中,以食物传播为主。

有人对美国自1982年起发生的100多起O157H7爆发流行的感染途径进行统计,发现食源性的占71%(52%为牛肉制品,大部分与快餐店中的汉堡包有关;14%为水果、蔬菜;5%来源于未知食品)、16%为人与人接触感染、12%为水源性感染。

6检测方法
样品采集后应尽快检验。

以无菌操作称取检样25 g,加在225 mL营养肉汤中,以均
MPN,其余的移入500 mL广口瓶内,于36土1 ℃培养6 h。

挑取1环,接种于1管30 mL 肠道菌增菌肉场内,于42 ℃培养18 h。

将乳糖发酵阳性的乳糖胆盐发酵管和增菌液分别划线接种麦康凯或伊红美蓝琼脂平板;
18 h一24 h,观察菌落。

不但要注意乳糖发酵的菌落,同时也要注意乳糖不发酵和迟缓发酵的菌落。

同时将这些培养物分别接种蛋白胨水、半固体、pH 7.2尿素、琼脂、KCN肉汤和赖氨酸脱羧酶试验培养基。

以上培养物均在36 ℃培养过夜。

2.TSI斜面产酸或不产酸,底层产酸,H2S阴性,KCN阴性和尿素阴性的培养物为大肠艾希氏菌。

TSI底层不产酸,或H2S、KCN、尿素有任一项为阳性的培养物,均非大肠艾希氏菌。

必要时做氧化酶试验或革兰氏染色镜检。

[1]
7防治方法
大肠杆菌3、进食或处理食物前,应用肥皂及清水洗净双手,如厕或更换尿片后亦应洗手。

12.若食物的所有部分均加热至摄氏75度,便可消灭大肠杆菌O157 : H7;因此,碎牛肉及汉堡扒应彻底煮至摄氏75度达2至3分钟,直至煮熟的肉完全转为褐色,而肉汁亦变得清澈。

13.不要徒手处理熟食;如有需要,应戴上手套。

14.食物煮熟后应尽快食用。

15.如有需要保留吃剩的熟食,应该加以冷藏,并尽快食用。

食用前应彻底翻热。

变质的食物应该弃掉。

感染大肠杆菌O157 :H7的临床治理方法主要属支持性治疗。

若患者出现腹泻,补充失
输血。

可使用抗革兰氏阴性菌细菌药物,但部分药物无效。

8应用影响
大肠杆菌作为外源基因表达的宿主,遗传背景清楚,技术操作简单,培养条件简单,
系,常做高效表达的首选体系
在这里必须指出的是,处于生物安全考虑,生物工程用的菌株是在不断筛选后被挑选出的菌株。

这些菌株由于失去的细胞壁的重要组分,所以在自然条件下已无法生长。

甚至普通的清洁剂都可以轻易地杀灭这类菌株。

这样,即便由于操作不慎导致活菌从实验室流出,也不易导致生化危机。

此外,生物工程用的菌株基因组都被优化过,使之带有不同基因型(例如β半乳糖甘酶缺陷型),可以更好的用于分子克隆实验
真核基因在大肠杆菌中表达,必须有合适的表达载体(Vector),常用载体:pBV220,pET 系统
目的基因在大肠杆菌中表达的情况:
大肠杆菌更适合原核基因的表达,外源基因表达产量与单位体积产量是正相相关的,而单位体积产量与细胞浓度和每个细胞平均表达产量呈正相相关.细胞浓度与生长
大肠杆菌速率,外源基因拷贝数和表达产物产量之间存在动态平衡,单个细胞的产量又与外源基因拷贝数,基因表达效率,表达产物的稳定性和细胞代谢负荷等因素有关。

当前大肠杆菌病给养禽业带来的损失越来越大,其难于治愈、死亡率高、极易复发等临床特点,正困扰着基层广大养殖户和兽医工作者。

那么大肠杆菌病为何如此难于根治呢?通常多考虑的是抗菌素耐药、继发或并发感染、药物靶部位等因素,其实还忽视了一个引起包心包肝、气囊炎、败血症、肠炎及发热等常见临床病症的另一个重要元凶——大肠杆菌死亡溶解释放的内毒素。

内毒素是由革兰氏阴性菌(大肠杆菌、沙门氏菌、鸭疫里默氏杆菌等)细胞壁的成份,是一种脂多糖。

内毒素对机体有很强的毒性,可引起宿主发热、毒血症、败血症、心包炎、肝周炎、气囊炎、输卵管炎、肾炎,甚至休克死亡。

由于内毒素只有菌体死亡溶解后才能被释放,因此在治疗革兰氏阴性菌感染的疾病时,如果单纯大量应用抗菌素,会使细菌死亡并释放更多的内毒素,使上述症状得不到缓解,甚至出现内毒素性休克,而使死亡增加。

因此当前控制细菌病尤其是大肠杆菌病,不但要抑杀细菌,更要清除内毒素。

“治炎素”的抗菌机制正与大肠杆菌的上述致病机理相吻合。

9近期疫情
人体在食用这种毒黄瓜后,很容易因感染而出现腹部绞痛和腹泻等症状。

同时,有的
板减少。

[2],截止到2011年06月03日肠出血性大肠杆菌(EHEC)已造成。

患者主要分布在德国北部,其中汉堡和石荷州最为严重,共出现400多例确诊或疑似病例。

德国负责流行病预防研究的权威机构罗伯特·科赫研究所2011年5月26日上午报告说,德国肠出血性大肠杆菌病例从未如此集中暴发,德国一周来出现的病例相当于过去一年的总和,患者中三分之二是女性。

目前,除德国之外,英国、法国、荷兰、丹麦、瑞典等国,都不同程度地出现了类似病例。

德国汉堡卫生研究所26日宣布在产自西班牙的黄瓜上检测出了EHEC病菌,目前专家还无法排除其他食品携带这种病菌的可能性。

罗伯特·科赫研究所已于25日建议德国消费者谨慎生食西红柿、黄瓜和蔬菜色拉,尤其是源自德国北部的上述食品。

[3]德国农业部门2011年6月5日表示,该国自产的“豆芽”可能是造成22人死亡,2200人住院治疗的大肠杆菌疫情爆发罪魁。

据悉,德国北部下萨克森州农业部确定,该州农场生产的豆芽引发了本次疫情,并要求人们停止食用带有生豆芽的沙拉凉菜。

柏林2011年6月10日电(记者刘向)德国国家疾病控制中心罗伯特·科赫研究所等多家机构10日在柏林表示,他们已确认豆芽等芽苗菜是造成此次肠出血性大肠杆菌(EHEC)疫情的源头。

当局同时宣布,生吃黄瓜、西红柿和生菜是安全的。

罗伯特·科赫研究所所长布格尔当天在德国疾病控制、卫生检疫等多个部门联合举行的新闻发布会上说,这一结果基于100多名在某餐厅就餐的顾客的跟踪调查。

他们发现,这些顾客中感染肠出血性大肠杆菌的患者都吃了带有生芽苗菜的食物,食用芽苗菜者患病的几率是未食用者的9倍。

大肠杆菌越来越多的证据显示,下萨克森州比嫩比尔特的一家农场生产的芽苗菜是这次疫情传染源头。

这家农场已经完全查封。

有关机构表示,正在检查其他生产芽苗菜的农场。

但迄今,调查人员还没有从任何食物样本中找到病原体——肠出血性大肠杆菌O104:H4,包括在这家农场以及饭馆、患者家的厨房获取的样本。

德国下萨克森州官员2011年6月5日宣布,初步调查显示由该州一家企业向不少本次德国肠出血性大肠杆菌疫情较重的地区供应的豆芽等芽苗菜很可能是造成疫情的一个传
染源,该州卫生防疫部门甚至建议民众近期勿食用豆芽。

而昨日,下萨克森州农业部又宣布,对被疑是肠病疫情传染源的芽苗菜的初步抽样检查并没有发现肠出血性大肠杆菌。

欧洲疾控中心5日称,此次疫情死亡人数已增至22人,感染个案升至2263宗。

一度召回豆芽
德国下萨克森州农业部长林德曼5日下午举行记者招待会说,位于该州于尔岑县的一家企业曾向汉堡、石荷州、梅前州、黑森州和下萨克森州等疫情较重的地区供应过用来做凉拌色拉的绿豆芽等多种芽苗菜。

这家企业的一名女职工已被确诊感染肠出血性大肠杆菌,另一名职工也出现腹泻症状。

种种迹象显示,这家企业至少可能是本次疫情的一个重要传染源。

林德曼说,这家企业共加工了18种芽苗菜,其种子来自德国其他地区、其他欧洲国家和亚洲国家。

病菌既可能来源于种子,也可能源于用于培养芽苗的约37摄氏度的温水。

在这家企业查到的18种芽苗菜包括绿豆芽、鹰嘴豆芽、萝卜芽、小红萝卜芽和绿菜花芽。

目前,这家农场已被关闭,已发出的货物正被召回。

该农场经理日前则对媒体表示,对他产品的指责毫无意义,发芽所需的材料仅是种子和温水,根本没有用肥料,而且该农场根本不使用任何动物粪便作为肥料。

据悉,大肠杆菌通常都存在于动物肠道中,因此动物粪便也被认为是可能的传播途径。

可能跟沼气有关
不过,德国卫生部长丹尼尔·巴尔及RKI研究所所长雷纳德·布尔格暂时对疫情的最新发现表态谨慎。

布尔格强调,该所专家和联邦各州正通过多个线索查找病菌的传播途径,目前线索非常多,涉及多家餐馆及各种食物。

而卫生部长巴尔则认为,在明确结果尚未知晓前,不应妄加猜测。

一周前,卫生防疫部门认为产自西班牙的黄瓜是致病源,但随后又推翻了这一论断。

尽管在西班牙黄瓜上检出了埃希大肠杆菌,但其菌株与此次疫情的菌株并不一致。

较早前曾有德国科学家怀疑,大肠杆菌有可能来自生物气体(即沼气)生产厂,甚至不排除有人蓄意污染食物来发动恐怖袭击。

由于提倡使用生物能源,德国现有6800座沼气生产厂,通过分解及发酵粪便污水生产沼气。

奥古斯堡的医学实验室创办人绍特多尔夫说,沼气发酵容器中不同细菌交集,出现前所未有的新型细菌,而这些带有新型病菌的东西近80%最后被当做肥料。

法国卫生官员6月24日说,疑似在法国引发肠出血性大肠杆菌疫情的植物种子由英国企业提供。

最近一段时间,法国西南部波尔多市10人出现腹泻和便血,其中6人本月8日在贝格勒镇孤儿院一场聚会上吃过带大肠杆菌的芽苗菜。

截至24日晚,10名患者中7人继续接受治疗,其中5人的肾脏出现并发症。

法国经济部分管消费事务的国务秘书弗雷德里克·勒菲弗说,法国种植用品连锁店雅尔迪兰德售出的植物种子培育成芽苗菜后,供应食客,而这些种子来自英国种子和植物邮购企业汤普森—摩根,可能是疫情“源头”。

汤普森-摩根公司辩解说,该公司从许多地方大批买进芽苗菜种子再进行分销,与本次疫情有关的种子可能是来自意大利。

法国疫情的原因也可能是当地在培育芽苗菜时出了问题,与种子本身无关。

英国食品标准署25日发布公告说,近来法国出现的一些大肠杆菌病例被怀疑与英国汤普森-摩根公司出售的芽苗菜种子有关,虽然英国本土还没有发现相关病例,但出于安全考虑提醒公众,在食用苜蓿、豆类和葫芦巴的种子以及由它们培育的芽苗菜时,需要煮熟到从里到外冒热气的程度,不能生吃。

这轮大肠杆菌疫情暴发之初,德国卫生部门曾怀疑产自西班牙的黄瓜是疫情源头。

欧洲多国随即发布对西班牙蔬菜和水果的进口禁令,招致西班牙方面的强烈抗议。

德国政府随后承认判断有误。

自欧洲多国出现肠道疾病疫情一周以来,由于传染源不明,法国蔬菜行业受到严重打击。

据法国蔬菜行业协会3日初步估计,受疫情影响,法国仅黄瓜和西红柿种植者的损失就高达480万欧元(约合702万美元)。

10耐酸机制
研究人员在新研究中证实,L-谷氨酰胺通过酶促反应释放氨,使得大肠杆菌获得了耐酸性。

在三种已知的ARs中,AR1的功能机制仍然不清楚。

相比之下,AR2和AR3的分子机制得到了更深入地解析。

AR2包含有一个氨基酸反向转运蛋白GadC,负责细胞外L-谷氨酸(Glu)与细胞内γ-氨基丁酸(γ-aminobutyric acid ,GABA)的交换。

两个Glu脱羧酶GadA 和GadB将Glu转变为GABA。

与AR2相似,AR3也具有两个组件:反向转运蛋白AdiC和精氨酸脱酸酶AdiA。

AR2或AR3一次完整的循环可将细胞质中的质子排出至细胞外环境中,由此提高细胞内pH,促进细菌在酸性环境下存活。

全面了解细菌AR对于有效的临床预防及治疗均有重要的意义。

因为所有的食物传播性致病菌都必须通过极酸性胃,了解细菌在pH值为2-3的环境下的生存机制极其重要。

当前,研究人员对于这些机制的了解还远远不够。

在这项研究中,研究人员鉴别了一个新型大肠杆菌耐酸性系统,证实其依赖于谷氨酰胺酶YbaS和氨基酸反向转运蛋白GadC。

这种YbaS和GadC可被酸性pH激活,且只在pH 值小于等于6.0时才能适当发挥功能。

通过吸收L-谷氨酰胺(Gln),大肠杆菌利用YbaS将之转化为L-谷氨酸(Glu),伴随释放气态氨。

游离氨中和质子,导致酸性环境下细胞内pH增高。

GadC则负责细胞外Gln 与细胞内Glu 交换。

通过这一耐酸系统,确保了大肠杆菌在极酸性环境下生存。

相关文档
最新文档