第三节反比例函数ppt课件

合集下载

反比例函数-ppt课件

反比例函数-ppt课件

读 范围.
27.1 反比例函数
归纳总结


由于反比例函数表达式中只有一个待定系数 k,因此求

单 反比例函数的表达式只需一组对应值或一个条件即可.


27.1 反比例函数
对点典例剖析


典例2 已知 y 是 x 的反比例函数,当 x=-3 时,y=4

单 .


(1)求 y 与 x 之间的函数表达式;


题 反比例函数→表示出组合函数→列方程组求解→写出函数
型 表达式.


27.1 反比例函数
重 ■题型二 实际问题中的反比例函数模型

例 2 某公司将特色农副产品运往邻市市场进行销售,

型 设汽车的行驶时间为 t h,平均速度为 v km/h(汽车行驶

破 速度不超过 110 km/h).根据经验,v,t 的部分对应值
(2)求当 x=6 时 y 的值;
(3)求当 y=


时 x 的值.
27.1 反比例函数
[答案]解:(1)设 y 与 x 之间的函数表达式为 y=


清 (k≠0),把 x=-3,y=4 代入,得 k=-3×4=-12,∴y 与



读 x 之间的函数表达式是 y=- ;
(2)当 x=6 时,y=(3)当 y=
∴y 关于 x 的函数表达式为 y=2(x-1)+


.
��
Hale Waihona Puke =2x-2+27.1 反比例函数
变式衍生1 已知 y=y1-y2,y1与 x 成正比例,y2 与

关于反比例函数的ppt课件

关于反比例函数的ppt课件

05
反比例函数的学习方 法
理解概念和定义
总结词:掌握基础
详细描述:首先需要理解反比例函数的基本概念和定义,包括反比例函数的表达 式、自变量和因变量的关系等。
学习图像和性质
总结词:深入理解
详细描述:通过学习反比例函数的图像和性质,可以更好地理解函数的特性,包括函数的单调性、奇 偶性等。
掌握应用和比较
图像特性
正比例函数图像是一条通过原点 的直线,而反比例函数的图像则 位于第一象限和第三象限,且在 x轴和y轴上分别存在一个无穷远
点。
增减性
正比例函数随着x的增大而增大 或减小,而反比例函数在x增大 时y减小,在x减小时y增大。
与一次函数的比较
01
定义
一次函数的一般形式为y=kx+b,其中k和b为常数且k≠0;反比例函数
题目2
已知反比例函数$y = frac{k}{x}$的图 象经过第一、三象限,且与直线$y = mx + b$相交于两点,求证:这两点 的横坐标互为相反数。
题目1
已知点$(m,n)$和$(p,q)$在反比例函 数$y = frac{k}{x}$的图象上,且$m times n = p times q$,求证:$k = 0$。
双曲余切函数
01
02
03
定义
双曲余切函数是双曲函数 的一种,定义为 (e^x + e^-x) / (e^x - e^-x)。
性质
双曲余切函数在实数范围 内是连续且可导的,具有 类似于余切函数的周期性 和奇偶性。
应用
双曲余切函数在解决某些 数学问题、优化算法和工 程计算中有应用。
双曲反正切函数
定义
关于反比例函数的 ppt课件

【中考数学考点复习】第三节反比例函数的图象与性质课件

【中考数学考点复习】第三节反比例函数的图象与性质课件

∴点C的坐标为(m,12m),
∴PC=|m8 -12m|,
∴S△POC=12PC·xP,
第9题图
即3=12×|m8 -12m|·m,(7分) 整理为|8-12m2|=6, 解得m=±2或±2 7, ∵点P在第一象限, ∴m>0, ∴P(2,4)或(2 7,477).(10分)
第9题图
10. 在平面直角坐标系 xOy 中,反比例函数 y=mx (x>0)的图象经过点 A(3, 4),过点 A 的直线 y=kx+b 与 x 轴、y 轴分别交于 B,C 两点.
(5)【思维教练】通过作辅助线将△PAB分为两个三角形,利用分割法 及三角形面积公式求解;
解:如解图②,过点 P 作 PQ 垂直于 x 轴,交直线 AB 于点 Q, 则点 Q(52,32),
∴S △PAB(xB-xQ)·PQ+12(xQ-xA)·PQ
Q

=12(xB-xA)·PQ=12×2×32 =3;
y=-8,
联立
x y=1x+5-m
整理得 ,
12x
2+(5-m)x
+8=0,
2
Δ=(5-m)2-16=0,解得 m=1 或 m=9.(9 分) ∴m 的值为 1 或 9.(10 分)
第8题图
9.图,在平面直角坐标系 xOy 中,已知正比例函数 y=1x 的图象与反比 2
例函数 y=k的图象交于 A(a,-2),B 两点. x
∴不等式kx<-x+4 的解集为 x<0 或 1<x<3;
(3)连接 OA,OB,求△AOB 的面积;
第 7 题图②
(3)【思维教练】先求得直线与x轴的交点坐标,再利用和差法及三角形 面积公式求解;
解:如解图①,设直线 AB 与 x 轴交于点 C,

初中数学反比例函数ppt课件ppt课件

初中数学反比例函数ppt课件ppt课件
深化对反比例函数的理解和应用
详细描述
在基础练习题的基础上,设计一些难度稍高的练习题,如计算题、作图题等,引导学生运用反比例函 数解决实际问题,提高解题能力和思维灵活性。
综合练习题
总结词
全面考察学生对反比例函数的掌握程度 和应用能力
VS
详细描述
设计一些综合性的练习题,涉及反比例函 数的多个知识点,要求学生综合运用所学 知识解决问题。通过这类题目,可以检验 学生对反比例函数的整体理解和应用水平 。
反比例函数在实际问题中的拓展应用
经济领域
在经济学中,反比例函数可以用于描 述一些经济现象,如供需关系、边际 效用等。
物理领域
在物理学中,反比例函数可以用于描 述一些物理量之间的关系,如电荷与 电场、电流与电阻等。
反比例函数与其他数学领域的联系
与几何学的联系
反比例函数的图像是双曲线,双曲线 在平面几何中有重要的应用,如面积 计算、角度计算等。
通过观察图像的形状、趋势和 特点,可以直观地理解函数的 性质和特点,从而快速找到解 决问题的方法。
图象法适用于解决一些较为复 杂的问题,例如求函数的极值 、判断函数的奇偶性等。
反比例函数的代数法
代数法是通过代数运算和方程求解来解决问题的方法。
在解题过程中,需要熟练掌握代数运算的规则和方法,能够根据问题的具体情况建 立方程并求解。
与一次函数的结合
反比例函数与一次函数常 常一起出现在问题中,例 如在研究速度与距离的关 系时。
与二次函数的结合
在解决一些实际问题时, 反比例函数可能会与二次 函数一起出现,例如在研 究物体的运动轨迹时。
与三角函数的结合
在物理学和工程学中,反 比例函数可能会与三角函 数一起出现,例如在研究 振动和波动时。

反比例函数ppt课件

反比例函数ppt课件
有42人,各班平均每人的金额分别是多少元?
每班人数(x)人
平均每人所得金
额(y)元
40

50
42



在以上问题中什么不变,什么在变,你能
否用所学过的式子表示y与x的关系?
情境导入
95%
(2)在操场上,学校给每个班计划定一个活动区域,其中
给杜老师班安排了一个面积为1002 的矩形区域,其中矩

=∙

=

= ��−
其他形式
下列哪些关系式中的是的
反比例函数
游戏时长:30秒
游戏难度:★☆☆
下列哪些关系式中的是的反比例函数
例题讲解
待定系数法:
一设二代三解四回
例1:已知是的反比例函数,并且当 = 2时, = 6.
(1)写出关于的函数解析式;
(2)当 = 2时,求的值.
一次函数: = + (、为常数,且 ≠ 0)
正比例函数: = (为常数,且 ≠ 0)







情境导入
72%
(1)在第十三周,我们学校即将举行校运动会,学校计划
给每班发200元的活动经费,如果九年级(1)班有40人,
平均每人所得金额是多少元?若(2)班有50人,(3)班
已知y与
x 2 成反比例,并且当x = 3时, y = 4.
(1)写出关于的函数解析式;
(2)当 = 1.5时,求的值;
(3)当 = 6时,求的值.

(
x2
36
1.5时, = 2
1.5
36
6时,6 = 2 ,
x
解:(1)设 =

27.1 反比例函数课件(共16张PPT)

27.1 反比例函数课件(共16张PPT)
1.要制作容积为15 700 cm3的圆柱形水桶,水桶的底面积为S cm2,高为h cm,则Sh= ,用h表示S的函数表达式为 .2.自行车运动员在长为10 000 m的路段上进行骑车训练,行驶全程所用时间为t s,行驶的平均速度为v m/s,则vt= ,用t表示v的函数表达式为 .3.y与x的乘积为-2,用x表示y的函数表达式为 .
2.下列函数是y关于x的反比例函数的是( ) A. B. C. D.3.若函数 是反比例函数,则m的值是_____.
C-1ຫໍສະໝຸດ 展提升答案:解:2. 已知y与x2成反比例,并且当x=3时,y=4. (1)写出y关于x的函数表达式; (2)当x = 1.5时,求y的值; (3)当y = 6时,求x的值.
第 二十七章 反比例函数
27.1 反比例函数
学习目标
1.认识反比例函数的概念.2.能够根据已知条件,确定反比例函数的表达式.
学习重难点
重点
理解反比例函数的概念;能根据已知条件写出函数表达式.
难点
理解反比例函数的概念.
情景引入
若将成正比例的两个量视为变量,则这两个量之间具有正比例函数关系.那么,当将两个成反比例的量视为变量时,它们之间又具有怎样的函数关系呢?
做一做
新知引入
知识点1 反比例函数的定义
15 700
10 000
归纳总结
k≠0
自变量 x 的取值范围是不等于 0 的实数.
典型例题
例1
写出下列问题中y与x之间的函数关系式,指出其中的正比例函数和反比例函数,并写出它们的比例系数k.(1)y与x互为相反数.(2)y与x互为负倒数.(3)y与2x的积等于a(a为常数,且a≠0).
k≠0
知识点2 确定反比例函数的表达式

26.1.1 反比例函数课件(共22张PPT)

26.1.1  反比例函数课件(共22张PPT)
x
例如:
①y-1与x+1成反比例,则y-1= k ; x和y不是反比例函数
②若y与x2成反比例,则y=
k x2
x1
成反比例关系,x和y不是反比例函数
③反比例函数y= k (k≠0) 必成反比例关系
x
26.1.1 反比例函数
(5) y k (k为常数) 6 xy 123 x 解:(5)k可能为0,不是反比例函数
x1
26.1.1 反比例函数
课堂小结
形如y k (k为常数,k ≠ 0) x ,y均不等于0.
概念
x
其他形式:1. xy = k ; 2. y = kx-1;3. y k
反 比
( k 为常数,k ≠ 0)
x

x, y可以表示单独字母,

x与y成反比例 多项式或单项式
数 成反比例与反
比例函数的区别
7 y - 2 8 y 6
3x
x1
解:(6)是反比例函数,可化为 y
123 x
,自变量x≠0,因变量y≠0
2
解:(7)是反比例函数,可化为 y 3 ,自变量x≠0,因变量y≠0
x
解:(8)不是反比例函数
26.1.1 反比例函数
试一试
根据上面的练习,你能帮小唯唯总结一下反比例函数有哪些形式吗?
一般形式
(
k2

0
),

y
k1
x
1
k2 x
1
.
∵ x = 0 时,y = -3;x = 1 时,y = -1,
∴ -3= -k1+k2
1
1 2
k2
∴k1 = 1,k2 = -2.

反比例函数ppt课件

反比例函数ppt课件

数学
返回目录
▶▶ 典型例题
【例2】已知y是x的反比例函数,且当x=3时,y=8.
(1)求出y与x之间的函数关系式;
(2)当y=-12时,求x的值.
数学
返回目录
▶▶ 典型例题

思路点拨:(1)利用反比例函数的定义,设y= ,然后把x=3,y=8代入求出k.从

而得到反比例函数解析式;
(2)把y=-12代入(1)中的解析式中计算出x的值即可.
1.下列函数是反比例函数的是 (
2
A.y=

)

B.y=2
2.函数y=xk-1是反比例函数,则k=(
A.0
A
B.1
A
2
C.y= 2

2
D.y=
+2
C.2
D.3
)
数学
返回目录
▶▶ 对应练习
3.下列关系式中,y是x的反比例函数的是

A.y=

1
B.y= 2

1
C.y=
2+1
D.-2xy=1
(
D
)

(2)解:∵其中一个菱形的一条对角线长为6 cm,
48
∴另一条对角线长为 =8(cm),
6
∴这个菱形的边长为
6 2
2
+
8 2
=5(cm),
2
∴这个菱形的边长为5 cm.
返回目录
谢谢观看
This is the last of the postings.
Thank you for watching.
北师大版 九年级数学上册
1
解析:A项,y= (k≠0),不符合题意;B项,y= 2 ,是y与x2成反比例,不符合题意;

反比例函数ppt课件

反比例函数ppt课件

x
y

.

∴y=
∴当菱形的面积一定时,它的一条对角线长y是另一条对角线长x的反比
例函数.
典例精析
例3 已知y 是关于 x 的反比例函数,当 x =0.3时,y = -6. 求 y 关于
x 的函数表达式和自变量 x 的取值范围.
解:∵ y 是关于 x 的反比例函数,
∴可设

y=

( k 为常数, k ≠0).
x和y不为反比例关系
是.

k= ,x≠0

不是
⑤y=3x-1 x和y的积为3,为反比例关系 是. k=, x≠0
知识要点
1.判断一个函数为反比例函数的条件:

①函数表达式形如y=

(一般式)或y=kx-1 (乘积式)
或xy=k(判别式)的等式.
②比例系数k是常数,且k≠0.

2.反比例函数y= 的取值范围:
第一章 反比例函数
1.1 反比例函数
复习导入
1.什么是函数?
如果变量y随着变量x而变化,并且对于x所取的每一个值,y
都有 唯一 的一个值和它对应,那么称y是x的函数.其中
x 叫
做自变量, y 叫做因变量.
2.什么是一次函数?
一般形式: y=kx+b
(k、b为常数,k ≠0),y称作x的
一次函数.
特别地,当b=0时,称y是x的 正比例 函数,即y= kx (k为常数,

求解析式方法:待定系数法
设、列、解、代
k≠0).
复习导入
3.反比例关系:
如果两个量x和y的积k是一个常数,即满足
xy=k
为常数,k≠0),那么x、y就成反比例关系.

反比例函数的图象与性质-ppt课件

反比例函数的图象与性质-ppt课件
方 ■ 方法:利用数形结合思想解决反比例函数与几何的综

技 合问题

解决这类问题,一般先设出几何图形中未知边的长,然

拨 后结合函数图象,用含未知数的代数式表示出几何图形与
图象的交点坐标,再由函数表达式及几何图形的性质列方
程(组)求几何图形中的未知量或函数表达式.
6.2 反比例函数的图象与性质

如图,在平面直角坐标系中,菱形 ABCD 的边
B. y2<y3<y1
C. y1<y2<y3
D. y1<y3<y2
6.2 反比例函数的图象与性质
[解析]


∵k=-6<0,∴ 图象位于第二、四象限,在每一象限内

混 ,y 随 x 的增大而增大,∵x >x >0,∴y <y <0,∵x
1
3
3
1
2

析 <0,∴y2>0,∴y3<y1<y2.
[答案] A
6.2 反比例函数的图象与性质






■考点一
反比例函数图象的画法
1. 反比例函数图象的画法(描点法)
6.2 反比例函数的图象与性质






2. 反比例函数图象的特点
反比例函数 y=

(k

为常数,且 k≠0)的图象由
双曲线 分别位于两个象限内的两条曲线组成,这样的曲线
叫做双曲线
(1)轴对称图形,对称轴分别是①第二、四象限

读 算;
(2)需要注意的是,画反比例函数图象时应尽量多取一
些点,描点越多,图象越准确.
6.2 反比例函数的图象与性质

反比例函数反比例函数ppt

反比例函数反比例函数ppt
《反比例函数》PPT
2023-10-28
目 录
• 反比例函数概述 • 反比例函数的性质 • 反比例函数的应用 • 反比例函数的图像变换 • 反比例函数的解析方法 • 反比例函数与实际问题
01
反比例函数概述
反比例函数的定义
定义
形如 y=kx-1(k≠0) 的函数称为反比例函数。
解释
反比例函数是函数的一种,其中自变量x的次数是-1,常数项 k≠0。
总结词
反比例函数在物理学中的应用也十分广泛,尤其在电学和力学中。
详细描述
在电学中,反比例数被用来描述电阻、电流和电压之间的关系,以及电容和电 荷之间的关系等。在力学中,反比例函数被用来描述距离和时间之间的关系,以 及能量和时间之间的关系等。这些关系式都是通过反比例函数来表达的。
与其他学科的结合
总结词
反比例函数的基本形式
表达式
y=kx-1(k≠0)
图像
双曲线,图像分布在第一、三象限,与x轴、y轴无交点。
反比例函数的图像特征
图像关于原点对称:因为反比例函 数的图像是双曲线,所以它关于原 点对称。
无界性:反比例函数的图像无界, 可以无限远离原点。
当k>0时,图像在第一、三象限;当 k<0时,图像在第二、四象限。
除了经济和物理,反比例函数还在其他许 多学科中都有应用。
VS
详细描述
例如,在化学中,反比例函数被用来描述 反应速率和浓度之间的关系;在生物学中 ,反比例函数被用来描述细胞生长和营养 物质之间的关系;在地理学中,反比例函 数被用来描述人口分布和地理面积之间的 关系等。
感谢您的观看
THANKS
总结词
基础、直接、普遍适用
详细描述

《反比例函数》PPT优秀课件

《反比例函数》PPT优秀课件
1、 xy = k 1 2、 y = kx -
k 3、 y = (k为常数,k ≠0) x
检测练习
下列函数中,x均为自变量,那么哪些y是x的 反比例函数?k值是多少?
( 1) y = - 3 x;
(4)y = x + 1
5
3x (3)xy=0.4;
2)y = (
2
(5)y =
n
x
例: y是x的反比例函数,下图给出了x与 y的一些值: x -3 -2 1 -1 2
励志学习的名言警句 1、在强者的眼中,没有最好,只有更好。 2、成功是努力的结晶,只有努力才会有成功。 3、只有一条路不能选择——那就是放弃的路;只有一条路不能拒绝——那就是成长的路。 4、拥有梦想只是一种智力,实现梦想才是一种能力。 5、生命之灯因热情而点燃,生命之舟因拼搏而前行。 6、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 7、没有天生的信心,只有不断培养的信心。 8、成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。 9、自己打败自己的远远多于比别人打败的。 10、当一个小小的心念变成行为时,便能成了习惯,从而形成性格,而性格就决定你一生的成败。 11、忍耐力较诸脑力,尤胜一筹。 12、高峰只对攀登它而不是仰望它的人来说才有真正意义。 13、你可以这样理解impossible(不可能)——I'm possible(我是可能的)。 14、自己打败自己是最可悲的失败,自己战胜自己是最可贵的胜利。 15、你可以选择这样的三心二意:信心恒心决心;创意乐意。 16、成功与不成功之间有时距离很短——只要后者再向前几步。 17、呈概率分布,关键是你能不能坚持到成功开始呈现的那一刻。 18、书是易事,思索是难事,但两者缺一,便全无用处 19、动是成功的阶梯,行动越多,登得越高。 20、天比昨天好,就是希望。 21、力的人影响别人,没能力的人,受人影响。 22、做的事情总找得出时间和机会; 23、要自卑,你不比别人笨。不要自满,别人不比你笨。 24、面对机遇,不犹豫;面对抉择,不彷徨;面对决战,不惧怕! 25、个人先从自己的内心开始奋斗,他就是个有价值的人。 26、超越自己,向自己挑战,向弱项挑战,向懒惰挑战,向陋习挑战。 27、不必每分钟都学习,但求学习中每分钟都有收获。 28、取时间就是争取成功,提高效率就是提高分数。 29、紧张而有序,效率是关键。 30、永远不要以粗心为借口原谅自己。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档