20140224光栅光谱仪实验要求

合集下载

光栅光谱仪实验

光栅光谱仪实验

光栅光谱仪实验浙江大学光电信息工程实验中心一实验目的1、了解光栅的分光原理及主要特性;2、了解光栅光谱仪的工作原理;3、掌握利用光栅光谱仪进行测量的实验方法;二实验仪器1、低压汞灯及电源:发光波长404.7nm、435.8nm、546.1nm、577.0nm、579.0nm;2、透镜及固定调节架2个:(焦距f=45mm,口径38mm;焦距f=190mm,口径38mm);3、狭缝及固定调节架1个:0~2mm;4、光栅及固定调节架1个:光栅自制;5、USB接口摄像头及固定调节架1个;6、计算机及软件;三实验原理衍射光栅是光栅光谱仪的核心色散器件,它的记录介质多采用光致抗蚀剂,一般用激光器作光源,可产生每毫米几千条对的空间频率的光栅,并且通过曝光和显影,直接得到浮雕型的正弦透射光栅。

相邻刻线的间距d称为光栅常数,通常刻线密度为每毫米数百至数十万条,刻线方向与光谱仪狭缝平行。

当平行光入射到一块平面衍射光栅时,让衍射光波经过一透镜,则在透镜焦平面上得到光栅的夫实用文档琅和弗衍射图象,见图一。

如果光源是平行于光栅刻痕的狭缝光源发出的准单色光,则衍射花样是一些分立的亮线(亮条纹)。

图一光栅衍射图亮纹位置满足如下条件——光栅方程式θ (1)±=±mmid mλ=,12,0,sin)(sin±式中,d为光栅常数,d=a+b,在可见光范围内,d一般在1/1000~1/500mm之间。

mθ为第m级亮纹对应的衍射角,λ为入射光波长,i为入射平行光对光栅面的入射角,m为多缝干涉主极大级数。

入射光处于光栅面法线同侧的亮条纹时上式中取正号;异侧时取负号。

光栅上的每一条缝的单缝衍射在θ方向上P点产生一个光振动,N条缝在P点产生的N个光振动的振幅相同,他们的相干叠加决定了P点的光强,光栅衍射是单缝衍射和多缝干涉的总效果。

亮纹(主极大)中心位置满足光栅方程中m=0,(θ=0)时,dsinθ=0为中央明纹中心。

光栅光谱仪的使用

光栅光谱仪的使用

光栅光谱仪的使用实验报告一、实验目的与实验仪器1.实验目的(1)了解平面反射式闪耀光栅的分光原理及主要特性;(2)了解光栅光谱仪的结构,学习使用光栅光谱仪;(3)测量钨灯和汞灯在可见光范围的光谱;(4)测定光栅光谱仪的色分辨能力;(5)测定干涉滤光片的光谱透射率曲线。

2.实验仪器WDS-3平面光栅光谱仪(200~800nm),汞灯,钨灯&氘灯组件,干涉滤光片。

二、实验原理(要求与提示:限400字以内,实验原理图须用手绘后贴图的方式)1.平面反射式闪耀光栅原理(1)θ方向的光强:Iθ=(sinαα)2(sinNβsinβ)2(2)光栅方程:d(sinθ+sin i)= kλ(3)闪耀光栅:光强最大的方向就是槽面反射定律所规定的方向,0级谱线出现在光栅平面反射的方向,闪耀光栅能够把能量集中在需要的光谱级里。

(4)闪耀波长的计算:λ=2dsinγk2.平面光栅光谱仪的结构与组成(1)光学系统结构:光栅:1200/mm;闪耀波长250nm;M1和M2凹面镜焦距为300mm;狭缝0-2mm连续可调。

电子系统:电源系统、光接收系统、步进电动机系统组成。

光学接收系统:光电倍增管及其放大电路组成。

光电倍增管:光信号转变成电信号。

是测光仪器和光电自动化设备中的主要探测元件。

目前测量光信号最灵敏的器件之一。

结构:3.色分辨率光栅光谱仪的色分辨率是分开两条邻近谱线能力的量度。

以汞灯的两条黄谱线(波长为577.0nm和579.1nm)为例测出谱线λ1和λ2峰间的间隔a以及峰的半宽度b,则色分辨能力为:Δλ =bαδλδλ=λ2-λ1=2.10nm4.滤光片光谱特性光谱透射率:T (λ)=I T (λ)I 0(λ)白光光源(钨灯)→单色光→光电流 T (λ)=i T (λ)i 0(λ)中心波长λ0 通带半宽度Δλ 峰值透过率T 0三、实验步骤(要求与提示:限400字以内) 1. 准备工作:1) 调节高压到-300~-600V(不要小于-400V)之间,入射缝、出射缝缝宽均预置为0.15 ~0.30mm 之间,打开氘灯,打开计算机,打开程序,首先进行复位操作,复位后按“确定”进入操作主界面;2) 测量参数设置:能量模式(0.0~4095.0),扫描方式(重复扫描1次),波长范围(200~800nm ,可根据实验需要设定上下限)2. 校准光谱仪的波长指示值(通过氘灯光谱上的486.0nm 峰值实现)3. 汞灯光谱和光谱仪分辨率的测量移去钨灯&氘灯组件,汞灯置于狭缝前,先进行一次全谱扫描,观察汞灯谱线,再设置扫描波长为570~585nm 扫描一次,保存实验数据。

光栅光谱仪实验报告

光栅光谱仪实验报告

一、实验目的1. 了解光栅光谱仪的工作原理及结构。

2. 掌握光栅光谱仪的操作方法。

3. 通过实验,观察光谱现象,加深对光谱学原理的理解。

4. 利用光栅光谱仪进行光谱分析,掌握光谱分析方法。

二、实验原理光栅光谱仪是一种利用光栅分光原理进行光谱测量的光学仪器。

光栅光谱仪的基本原理是利用光栅将复色光分解成单色光,然后通过检测单色光的波长,实现对物质成分的分析。

1. 光栅分光原理光栅分光原理基于衍射现象。

当一束光入射到光栅上时,由于光栅上狭缝的衍射作用,光波发生衍射,形成衍射光。

这些衍射光经过光栅的色散元件(如棱镜、光栅等)进行色散,形成光谱。

2. 光栅光谱仪的结构光栅光谱仪主要由以下部分组成:(1)光源:提供实验所需的入射光。

(2)光栅:将入射光分解成单色光。

(3)色散元件:将分解后的单色光进行色散,形成光谱。

(4)检测器:接收色散后的单色光,并将其转换为电信号。

三、实验仪器与材料1. 光栅光谱仪一台2. 光源一台3. 检测器一台4. 光栅一个5. 色散元件一个6. 实验记录本一本四、实验步骤1. 将光栅光谱仪、光源、检测器等实验仪器安装到位。

2. 打开光源,调节光源亮度,使其达到实验要求。

3. 将光栅安装在光栅光谱仪上,调整光栅角度,使入射光垂直于光栅。

4. 调整色散元件,使其与光栅垂直。

5. 将检测器放置在色散元件的焦平面上,调整检测器位置,使光谱成像清晰。

6. 观察光谱现象,记录光谱数据。

7. 根据光谱数据,分析物质成分。

五、实验结果与分析1. 实验结果实验过程中,观察到光谱现象,记录了光谱数据。

2. 分析根据光谱数据,分析物质成分,得出以下结论:(1)光谱中的谱线与物质成分有关。

(2)通过光谱分析,可以确定物质的成分。

(3)光栅光谱仪具有较高的分辨率和灵敏度,适用于物质成分分析。

六、实验总结通过本次实验,我们了解了光栅光谱仪的工作原理及结构,掌握了光栅光谱仪的操作方法。

实验过程中,观察到光谱现象,加深了对光谱学原理的理解。

光栅光谱仪实验报告

光栅光谱仪实验报告

光栅光谱仪实验报告光栅光谱仪是一种常用的光谱仪器,能够将光信号分解成不同波长的光谱线,并对其进行精确测量。

本实验旨在通过使用光栅光谱仪,对不同光源的光谱进行测量和分析,以及了解光谱仪的基本原理和使用方法。

实验步骤:1. 实验仪器准备,将光栅光谱仪放置在稳定的台面上,并连接电源、光源和计算机等设备。

2. 光源选择,选择不同类型的光源,如白炽灯、氢氖激光等,并依次对其进行测量。

3. 光谱测量,打开光栅光谱仪软件,选择相应的测量模式,对所选光源进行光谱测量,并记录下光谱数据。

4. 数据分析,利用软件对测得的光谱数据进行分析,包括波长、强度等参数的测量和计算。

实验结果:通过实验测量和分析,我们得到了不同光源的光谱数据,并对其进行了初步的分析。

例如,白炽灯的光谱呈连续光谱,而氢氖激光的光谱则呈现出明显的谱线特征。

通过对光谱数据的分析,我们可以了解到不同光源的发光特性和光谱分布规律。

实验总结:本次实验通过使用光栅光谱仪,对不同光源的光谱进行了测量和分析,增强了我们对光谱仪器的理解和使用能力。

同时,通过实验数据的分析,我们也对不同光源的发光特性有了更深入的了解。

在今后的实验和研究中,光栅光谱仪将会是一个重要的实验工具,帮助我们更好地理解光谱学的相关知识和应用。

结语:光栅光谱仪作为一种重要的光谱仪器,在科研和实验中具有重要的应用价值。

通过本次实验,我们对光栅光谱仪的基本原理和使用方法有了更深入的了解,这将为今后的研究和实验工作打下坚实的基础。

希望通过不断的实践和学习,我们能够更好地运用光谱仪器,为科学研究和技术发展做出更大的贡献。

光栅光谱仪实验报告(doc)

光栅光谱仪实验报告(doc)

光栅光谱仪实验报告(doc)09级应用物理学03班40908020323肖金龙2012.03.28光栅光谱仪系统(Grating spectrum-meter system)光谱分析方法作为一种重要的分析手段,在科研、生产、质控等方面,都发挥着极大的作用。

无论是穿透吸收光谱,还是荧光光谱,拉曼光谱,如何获得单波长辐射是不可缺少的手段。

由于现代单色仪可具有很宽的光谱范围(UV- IR),高光谱分辨率(到0.001nm),自动波长扫描,完整的电脑控制功能极易与其他周边设备融合为高性能自动测试系统,使用电脑自动扫描多光栅单色仪已成为光谱研究的首选。

一、实验目的1. 掌握发射光谱测试系统,光学元件的透射率光谱,反射率光谱测试系统以及荧光光谱测试系统的搭建2. 学习利用电脑自动扫描多光栅单色仪测试各种光源特性谱线,学会分析各种光学元件的反射、透射谱线。

学习利用组合多光栅单色仪测试物质荧光光谱,分析荧光物质成分。

3.二、光栅光谱仪测试系统组件名称1(LHT75溴钨灯光源室+LPT75溴钨灯稳流电源(bromine tungsten) 2(LHM254波长校准汞灯光源(The Hg lamp house for calibrating grating, the character wavelength is 254nm)3(NFC-532-15陷波滤波装置The 532nm wavelength is bound when light from the lamp house crossing thefilter.4(SPB300 300mm光栅光谱仪(the focus is 300nm) 5(SPB500 500mm光栅光谱仪6(SD 六挡滤光片轮the light filer for six steps 7(SAC 三口样品室sample house10. DCS102数据采集器data acquisition implement 11. PMTH-S1-CR131 光电倍增管photo multiplier tube12. HVC1005 高压稳压电源regulated power supply in high voltage三、光栅基础知识及实验原理图当一束复合光线进入单色仪的入射狭缝,首先由光学准直镜汇聚成平行光,再通过衍射光栅色散为分开的波长(颜色)。

光栅光谱仪实验报告

光栅光谱仪实验报告

光栅光谱仪实验报告实验报告:光栅光谱仪实验1.引言:光谱是科学家们通过光的分光现象得到的一种物体结构与性质的重要信息。

光栅光谱仪是一种用于分析光的波长和颜色的仪器。

本实验的主要目的是通过光栅光谱仪对不同光源的光进行分析,了解光栅光谱仪的原理和使用方法。

2.实验原理:光栅光谱仪的工作原理是光栅的光栅方程:nλ = d sinθ,其中n 为衍射阶数,λ为光波长,d为光栅常数,θ为衍射角。

根据光谱的连续性,光栅衍射光谱呈现出一系列彩色条纹,根据谱线的位置可以得到光的波长信息。

3.实验步骤:(1)实验器材准备:光栅光谱仪、光源、白纸、标尺等;(2)调整仪器:将光栅光谱仪上的刻度盘调整到合适位置,并使用标尺确定距离;(3)实验记录:将白纸放在光栅光谱仪后方,打开光源,调整仪器使得谱线清晰可辨;(4)测量谱线位置:将谱线的位置与刻度盘上的刻度对应,记录下谱线的位置;(5)数据分析:根据光栅方程计算出样品的波长。

我们使用Hg灯、Na灯和未知样品光等三种光源进行了实验测量。

根据测量结果,我们得到了Hg灯、Na灯和未知样品光的谱线位置,并计算得到了它们的波长。

具体结果如下表所示:光源,谱线位置 (刻度) ,波长 (nm)---------,---------------,-----------Hg灯,35,435.8Hg灯,41,546.1Hg灯,49,578.0Na灯,45,589.0Na灯,50,589.6未知样品光,37,469.45.结果分析:根据实验结果,我们可以发现Hg灯的谱线位置分别为35、41和49,对应的波长分别为435.8、546.1和578.0纳米。

Na灯的谱线位置为45和50,对应的波长为589.0和589.6纳米。

而未知样品光的谱线位置为37,对应的波长为469.4纳米。

6.实验误差分析:在实验中,可能存在的误差主要来自于读数误差、仪器调整不准确等因素。

我们尽量减小这些误差,但还是难以完全避免。

光栅光谱仪——精选推荐

光栅光谱仪——精选推荐

实验报告【实验题目】光栅光谱仪【实验时间】教十206【实验仪器】WGD-5 型组合式多功能光栅光谱仪,滤色片,汞灯,溴钨灯【实验内容】一、汞灯光谱测量探测器选用光电倍增管,高压加到400 伏(不超过600V)。

在能量模式下测量汞灯光谱。

扫描范围300-750nm,扫描步长选1 1 nm。

用“自动寻峰”测量谱线波长,与标准值比较,如果波长差大于1nm,进行波长修正。

说明:光源:汞灯参数设置:工作方式:模式“能量”,间隔“1nm”;工作范围300—750nm。

狭缝宽度调节,使入射缝与出射缝相匹配。

点击“单程”,单色仪开始扫描。

扫描完成根据谱线强度重新调整入射和出射狭缝,使谱线尽量增高,并使黄线576.9nm 、579.0nm 分开( ( 以划线谱线作为参照) )(汞灯谱线:波长(nm) 365.02、404. 66、407.78、435.83、546.07、576.96、579.07、623.4)二、测量红LED灯和激光的光谱在能量模式下测量汞灯光谱。

扫描范围300-750nm,扫描步长选1 1 nm。

用“自动寻峰”测量谱线波长,与标准值比较,如果波长差大于1nm,进行波长修正。

光源:红LED和激光参数设置:工作方式:模式“能量”,间隔“1nm”;工作范围300—750nm。

狭缝宽度调节,使入射缝与出射缝相匹配。

点击“单程”,单色仪开始扫描。

三、测量滤色片透过率曲线光源:取下高压汞灯,换上溴钨灯1. 扫描基线工作方式:模式“基线”。

点击“单程”,单色仪开始扫描。

调节入射缝的缝宽使基线的峰值达到900 以上;扫描结束后,点击“当前寄存器”列表框右侧“---”,在弹出的“环境信息”填入信息,然后关闭。

保存该寄存器的数据,选用“txt”的文本格式。

2. 扫描透过率曲线打开样品池顶盖,将一个滤色片放在入射狭缝的前面,盖上顶盖。

工作方式:模式“透过率”;更换寄存器;扫描,保存。

确定某一种滤光片的峰值、峰值波长及半高宽,确定某一种滤光片的截止波长(禁带两侧第一个峰值的40%强度处所对应波长,如无峰,可不做)四、数据处理:1. 根据所记录的实验数据,用Excel 或者origin 画出实验曲线2. 描述滤光片的特性。

大学物理实验 实验要求-光栅光谱仪

大学物理实验 实验要求-光栅光谱仪

光栅光谱仪实验仪器WGD-5 型组合式多功能光栅光谱仪,滤色片一组(红绿蓝黄青品),汞灯,溴钨灯。

预习思考题1.简述工作原理(不可照抄课本),在此基础上画出光栅光谱仪的光路图,。

2.改变光谱仪入射或出射狭缝的大小会对测量结果有什么影响?3.为什么波长校准时光源要选择汞灯?能否用其他的灯,请举例。

4.测量透过率曲线对光源有什么要求?汞灯是合适的光源吗?5.测量时能否第一步就使用“工作方式”中的“透射率”模式?为什么?实验内容一. 测量前的准备(自带U 盘)(1) 记录螺旋尺旋转方向与缝宽变化的关系。

(2) 打开单色仪的电源开关,探测器选用光电倍增管,将倍增管的高压调至400V(不得超过600V)。

(4) 打开计算机,进入win98 后,双击“WGD-5 倍增管”图标进入工作界面。

待系统和波长初始化完成后便可以工作。

二. 单色仪波长校准将汞灯置于入射狭缝前,打开并照亮狭缝,预热5分钟可正常工作。

探测器选用光电倍增管,高压加到400 伏。

在能量模式下测量汞灯光谱。

扫描范围350-750nm,扫描步长选1nm。

用“自动寻峰”测量谱线波长,与标准值比较,如果波长差大于1nm,进行波长修正。

说明:光源:汞灯参数设置:工作方式:模式“能量”,间隔“1nm”;工作范围:350—750nm。

狭缝宽度调节,使入射缝与出射缝相匹配。

点击“单程”,单色仪开始扫描。

扫描完成根据谱线强度重新调整入射和出射狭缝,使谱线尽量增高,并使黄线576.9nm、579.0nm 分开 (以划线谱线作为参照)(汞灯谱线:波长(nm)404.7、407.8、435.8、491.6、546.1、576.9、579.0、623.4、690.7)三. 测量滤色片透过率曲线(每扫描完一条线即存盘)光源:取下高压汞灯(注意避免烫伤),换上溴钨灯,预热5分钟。

1.扫描基线工作方式:模式“基线”,扫描范围(400-700)nm,扫描步长选1nm。

点击“单程”,单色仪开始扫描。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光栅光谱仪
实验仪器
WGD-5型组合式多功能光栅光谱仪,滤色片一组(红绿蓝),汞灯,溴钨灯,水,玻璃片。

预习思考题
1.简述工作原理(不可照抄课本),在此基础上画出光栅光谱仪的光路图,。

2.改变光谱仪入射或出射狭缝的大小会对测量结果有什么影响?
3.测量透过率曲线对光源有什么要求?汞灯是合适的光源吗?
4.水和玻璃是什么颜色的?为什么?
实验内容
一. 测量前的准备(自带U 盘)
(1) 记录螺旋尺旋转方向与缝宽变化的关系。

(2) 打开单色仪的电源开关,打开汞灯、溴钨灯电源,预热5min。

(3) 将倍增管的高压调至400V(不得超过600V)。

(4) 打开计算机,进入win98 后,双击“WGD-5 倍增管”图标进入工作界面。

待系统和波长初始化完成后便可以工作。

二. 单色仪波长校准
探测器选用光电倍增管,高压加到400伏。

在能量模式下测量汞灯光谱。

扫描范围300-750nm,扫描步长选1nm。

用“自动寻峰”测量谱线波长,与标准值比较,如果波长差大于1nm,进行波长修正。

说明:光源:汞灯
参数设置:工作方式:模式“能量”,间隔“1nm”;工作范围:300—750nm。

狭缝宽度调节,使入射缝与出射缝相匹配。

点击“单程”,单色仪开始扫描。

扫描完成根据谱线强度重新调整入射和出射狭缝,使谱线尽量增高,并使黄线
576.9nm、579.0nm 分开 (以划线谱线作为参照)
(汞灯谱线:波长(nm)365.02、404.66、407.78、435.83、546.07、576.96、579.07、623.4)
三. 测量滤色片透过率曲线
光源:取下高压汞灯,换上溴钨灯
1. 扫描基线
工作方式:模式“基线”。

点击“单程”,单色仪开始扫描。

调节入射缝的缝宽使基线的峰值达到900以上;
扫描结束后,点击“当前寄存器”列表框右侧“---”,在弹出的“环境信息”填入信息,然后关闭。

保存该寄存器的数据,选用“txt”的文本格式。

2. 扫描透过率曲线
打开样品池顶盖,将一个滤色片放在入射狭缝的前面,盖上顶盖。

工作方式:模式“透过率”;更换寄存器;扫描,保存。

确定绿色滤光片的峰值、峰值波长及半高宽,
确定红/蓝/黄色滤光片的截止波长(禁带两侧第一个峰值的40%强度处所对应波长,如无峰,可不做)。

4.测量水和玻璃的透过率曲线,了解其特点。

5. 选做:多个滤光片的叠加。

数据处理(课后)
1. 根据所记录的实验数据,用Excel或者origin画出实验曲线(汞灯谱线要标出对应的
波长,基线和各种滤光片的透过率曲线画在一幅图内);
2. 描述滤光片的特性。

讨论两个重叠滤色片的透过率与它们各自透过率的关系。

描述水和玻璃的“透明度”特性。

3. 总结光栅光谱仪的使用方法与注意事项。

注意事项
1.注意仪器安全,装上光电倍增管后需要等待5 分钟,方可加高压工作,实验过程中严禁取下倍增管。

切勿在加有高压的状态下取出光电倍增管,否则极易损坏探测器。

2.汞灯和溴钨灯使用时需要预热几分钟,使之达到正常工作状态。

3.汞灯熄灭后,必须等其完全冷却后才能重新启动。

4.实验结束后须先将光电倍增管高压降至0V,然后关掉电源开关。

相关文档
最新文档