计算机外文翻译外文文献英文文献数据库系统
外文翻译--计算机
外文原文computerThe modern world of high technology could not have come about except for the development of the computer. Different types and sizes of computers find uses throughout society in the storage and handling of data, from secret governmental files to banking transactions to private household accounts. Computers have opened up a new era in manufacturing through the techniques of automation, and they have enhanced modern communication systems. They are essential tools in almost every field of research and applied technology, from constructing models of the universe to producing tomorrow’s weather reports, and technique use has in itself opened up new areas of conjecture. Database services and computer networks make available a great variety of information sources. The same advanced techniques also make the invasions of privacy and restricted information sources possible, and computer crime has become one of the many risks that society must face if it is to enjoy the benefits of modern technology.A computer is an electronic device that can receive a set of instructions, or program, and then carry out this program by performing calculations on numerical data or by compiling and correlating other forms of information. The type of computers are mainly inclusive of Microcomputer, Minicomputer, Mainframe Computer and Supercomputer, etc. Microminiaturization , the effort to compress more circuit elements into smaller and smaller chip space is becoming the major trend in computer development. Besides, researchers are trying to develop more powerful and more advanced computers.Any customers all pass the operate system to use the calculator, not direct carry on the operation to the hardware of the calculators. The operate system is a bridge that communicates the customer and calculator. Every general-purpose computer must have an operating system to run other programs. Operating systems perform basic tasks and provide a software platform. The choice of operating systems determines to a great extent of the applications. Therefore OS is very important.The operate system is in the charge of Computer resource control program to execute system software. Say in a specific way,the OS is the most basic in the calculator software system, also constituting the part most importantly, it is responsible for the management and controls the calculator system in all hardware resources and the software resources, can make of various resources matched with mutually, moderating to work with one accord, full develop its function, exaltation the efficiency of the system, still take the interface function of the customer and the calculator system at the same time, use the calculator to provide the convenience for the customer. The operate system is a huge management control procedure, including 5 management functions mostly: Progress and processing the machine manage, the homework manage, saving management, equipments management, document management. Divide the line from the function, the tiny machine operate system can is divided into the single mission operate system, single many mission operate systems of customer and many mission operate systems of multi-user of single customer. At present there are several kinds of OS on the computer which are DOS, OS/2, UNIX, XENIX, LINUX, Window2000, Netware etc.In order for a computer to perform the required task, it must be given instructions in a language that it understands. However, the computer’s own binary based language, or machine language, is difficult for humans to use. Therefore, people devised an assembly language to shorten and simplify the process. In order to make a computer more friendly to use, programmers invented high level languages, such as COBOL, FORTRAN, ASSEMBLER, PASCAL, C++, etc, which made the computers easier to use. For the time being, HTML and XML are very useful languages as well.The database is often used to describe a collection of related data that is organized into an integrated, sophisticated structure that provides different people with varied access to the same data. A database management system is an extremely complex set of software programs that controls the organization, storage and retrieval of data in a database. A successful DBMS is often characterized with the four principal features: (1)Data Security and Integrity; (2)Interactive query; (3)Interactive data Entry and Updating; (4)Data Independence. The intelligent databases are becoming more popular in that they canprovide more validation. The researches on new types of database systems are underway.计算机倘若不是伴随着计算机的发展,现代世界的高端技术不可能出现。
外文文献数据库(ENPS)(万方
数据库特点
使用价值高 资源内容丰富
检索快捷方便
二、操作方法
登陆图书馆主页
(http://lib.nBiblioteka ),选择 “数字资源”栏目下的“外文数据库”, 点击“外文文献数据库(ENPS)(万方 数据)”的超链接,进入检索页面。
点击
点击
检索结果
二次检索
提出原文 传递请求
登陆界面
输入用户名、密码 首次使用需先申请
投递方式
确认个人信息
外文文献数据库(ENPS) (万方数据)
一、数据库介绍
由万方数据股份有限公司和国家科技 图书文献中心合作开发的中西合璧的信 息检索服务平台。
资源概貌
外文期刊数据库:收录了1995年以来世界各国
出版的近13000余种重要学术期刊,部分文献 有少量回溯。学科范围涉及工程技术和自然科 学各专业领域,并兼顾社会科学和人文科学, 每年增加论文约百万余篇。 外文会议论文数据库:收录了1985年以来世界 各主要学、协会,出版机构的学术会议论文, 部分文献有少量回溯。学科范围涉及工程技术 和自然科学各专业领域,每年增加论文约20余 万篇。
计算机java外文翻译外文文献英文文献
英文原文:Title: Business Applications of Java. Author: Erbschloe, Michael, Business Applications of Java -- Research Starters Business, 2008DataBase: Research Starters - BusinessBusiness Applications of JavaThis article examines the growing use of Java technology in business applications. The history of Java is briefly reviewed along with the impact of open standards on the growth of the World Wide Web. Key components and concepts of the Java programming language are explained including the Java Virtual Machine. Examples of how Java is being used bye-commerce leaders is provided along with an explanation of how Java is used to develop data warehousing, data mining, and industrial automation applications. The concept of metadata modeling and the use of Extendable Markup Language (XML) are also explained.Keywords Application Programming Interfaces (API's); Enterprise JavaBeans (EJB); Extendable Markup Language (XML); HyperText Markup Language (HTML); HyperText Transfer Protocol (HTTP); Java Authentication and Authorization Service (JAAS); Java Cryptography Architecture (JCA); Java Cryptography Extension (JCE); Java Programming Language; Java Virtual Machine (JVM); Java2 Platform, Enterprise Edition (J2EE); Metadata Business Information Systems > Business Applications of JavaOverviewOpen standards have driven the e-business revolution. Networking protocol standards, such as Transmission Control Protocol/Internet Protocol (TCP/IP), HyperText Transfer Protocol (HTTP), and the HyperText Markup Language (HTML) Web standards have enabled universal communication via the Internet and the World Wide Web. As e-business continues to develop, various computing technologies help to drive its evolution.The Java programming language and platform have emerged as major technologies for performing e-business functions. Java programming standards have enabled portability of applications and the reuse of application components across computing platforms. Sun Microsystems' Java Community Process continues to be a strong base for the growth of the Java infrastructure and language standards. This growth of open standards creates new opportunities for designers and developers of applications and services (Smith, 2001).Creation of Java TechnologyJava technology was created as a computer programming tool in a small, secret effort called "the Green Project" at Sun Microsystems in 1991. The Green Team, fully staffed at 13 people and led by James Gosling, locked themselves away in an anonymous office on Sand Hill Road in Menlo Park, cut off from all regular communications with Sun, and worked around the clock for18 months. Their initial conclusion was that at least one significant trend would be the convergence of digitally controlled consumer devices and computers. A device-independent programming language code-named "Oak" was the result.To demonstrate how this new language could power the future of digital devices, the Green Team developed an interactive, handheld home-entertainment device controller targeted at the digital cable television industry. But the idea was too far ahead of its time, and the digital cable television industry wasn't ready for the leap forward that Java technology offered them. As it turns out, the Internet was ready for Java technology, and just in time for its initial public introduction in 1995, the team was able to announce that the Netscape Navigator Internet browser would incorporate Java technology ("Learn about Java," 2007).Applications of JavaJava uses many familiar programming concepts and constructs and allows portability by providing a common interface through an external Java Virtual Machine (JVM). A virtual machine is a self-contained operating environment, created by a software layer that behaves as if it were a separate computer. Benefits of creating virtual machines include better exploitation of powerful computing resources and isolation of applications to prevent cross-corruption and improve security (Matlis, 2006).The JVM allows computing devices with limited processors or memory to handle more advanced applications by calling up software instructions inside the JVM to perform most of the work. This also reduces the size and complexity of Java applications because many of the core functions and processing instructions were built into the JVM. As a result, software developersno longer need to re-create the same application for every operating system. Java also provides security by instructing the application to interact with the virtual machine, which served as a barrier between applications and the core system, effectively protecting systems from malicious code.Among other things, Java is tailor-made for the growing Internet because it makes it easy to develop new, dynamic applications that could make the most of the Internet's power and capabilities. Java is now an open standard, meaning that no single entity controls its development and the tools for writing programs in the language are available to everyone. The power of open standards like Java is the ability to break down barriers and speed up progress.Today, you can find Java technology in networks and devices that range from the Internet and scientific supercomputers to laptops and cell phones, from Wall Street market simulators to home game players and credit cards. There are over 3 million Java developers and now there are several versions of the code. Most large corporations have in-house Java developers. In addition, the majority of key software vendors use Java in their commercial applications (Lazaridis, 2003).ApplicationsJava on the World Wide WebJava has found a place on some of the most popular websites in the world and the uses of Java continues to grow. Java applications not only provide unique user interfaces, they also help to power the backend of websites. Two e-commerce giants that everybody is probably familiar with (eBay and Amazon) have been Java pioneers on the World Wide Web.eBayFounded in 1995, eBay enables e-commerce on a local, national and international basis with an array of Web sites-including the eBay marketplaces, PayPal, Skype, and -that bring together millions of buyers and sellers every day. You can find it on eBay, even if you didn't know it existed. On a typical day, more than 100 million items are listed on eBay in tens of thousands of categories. Recent listings have included a tunnel boring machine from the Chunnel project, a cup of water that once belonged to Elvis, and the Volkswagen that Pope Benedict XVI owned before he moved up to the Popemobile. More than one hundred million items are available at any given time, from the massive to the miniature, the magical to the mundane, on eBay; the world's largest online marketplace.eBay uses Java almost everywhere. To address some security issues, eBay chose Sun Microsystems' Java System Identity Manager as the platform for revamping its identity management system. The task at hand was to provide identity management for more than 12,000 eBay employees and contractors.Now more than a thousand eBay software developers work daily with Java applications. Java's inherent portability allows eBay to move to new hardware to take advantage of new technology, packaging, or pricing, without having to rewrite Java code ("eBay drives explosive growth," 2007).Amazon (a large seller of books, CDs, and other products) has created a Web Service application that enables users to browse their product catalog and place orders. uses a Java application that searches the Amazon catalog for books whose subject matches a user-selected topic. The application displays ten books that match the chosen topic, and shows the author name, book title, list price, Amazon discount price, and the cover icon. The user may optionally view one review per displayed title and make a buying decision (Stearns & Garishakurthi, 2003).Java in Data Warehousing & MiningAlthough many companies currently benefit from data warehousing to support corporate decision making, new business intelligence approaches continue to emerge that can be powered by Java technology. Applications such as data warehousing, data mining, Enterprise Information Portals (EIP's), and Knowledge Management Systems (which can all comprise a businessintelligence application) are able to provide insight into customer retention, purchasing patterns, and even future buying behavior.These applications can not only tell what has happened but why and what may happen given certain business conditions; allowing for "what if" scenarios to be explored. As a result of this information growth, people at all levels inside the enterprise, as well as suppliers, customers, and others in the value chain, are clamoring for subsets of the vast stores of information such as billing, shipping, and inventory information, to help them make business decisions. While collecting and storing vast amounts of data is one thing, utilizing and deploying that data throughout the organization is another.The technical challenges inherent in integrating disparate data formats, platforms, and applications are significant. However, emerging standards such as the Application Programming Interfaces (API's) that comprise the Java platform, as well as Extendable Markup Language (XML) technologies can facilitate the interchange of data and the development of next generation data warehousing and business intelligence applications. While Java technology has been used extensively for client side access and to presentation layer challenges, it is rapidly emerging as a significant tool for developing scaleable server side programs. The Java2 Platform, Enterprise Edition (J2EE) provides the object, transaction, and security support for building such systems.Metadata IssuesOne of the key issues that business intelligence developers must solve is that of incompatible metadata formats. Metadata can be defined as information about data or simply "data about data." In practice, metadata is what most tools, databases, applications, and other information processes use to define, relate, and manipulate data objects within their own environments. It defines the structure and meaning of data objects managed by an application so that the application knows how to process requests or jobs involving those data objects. Developers can use this schema to create views for users. Also, users can browse the schema to better understand the structure and function of the database tables before launching a query.To address the metadata issue, a group of companies (including Unisys, Oracle, IBM, SAS Institute, Hyperion, Inline Software and Sun) have joined to develop the Java Metadata Interface (JMI) API. The JMI API permits the access and manipulation of metadata in Java with standard metadata services. JMI is based on the Meta Object Facility (MOF) specification from the Object Management Group (OMG). The MOF provides a model and a set of interfaces for the creation, storage, access, and interchange of metadata and metamodels (higher-level abstractions of metadata). Metamodel and metadata interchange is done via XML and uses the XML Metadata Interchange (XMI) specification, also from the OMG. JMI leverages Java technology to create an end-to-end data warehousing and business intelligence solutions framework.Enterprise JavaBeansA key tool provided by J2EE is Enterprise JavaBeans (EJB), an architecture for the development of component-based distributed business applications. Applications written using the EJB architecture are scalable, transactional, secure, and multi-user aware. These applications may be written once and then deployed on any server platform that supports J2EE. The EJB architecture makes it easy for developers to write components, since they do not need to understand or deal with complex, system-level details such as thread management, resource pooling, and transaction and security management. This allows for role-based development where component assemblers, platform providers and application assemblers can focus on their area of responsibility further simplifying application development.EJB's in the Travel IndustryA case study from the travel industry helps to illustrate how such applications could function. A travel company amasses a great deal of information about its operations in various applications distributed throughout multiple departments. Flight, hotel, and automobile reservation information is located in a database being accessed by travel agents worldwide. Another application contains information that must be updated with credit and billing historyfrom a financial services company. Data is periodically extracted from the travel reservation system databases to spreadsheets for use in future sales and marketing analysis.Utilizing J2EE, the company could consolidate application development within an EJB container, which can run on a variety of hardware and software platforms allowing existing databases and applications to coexist with newly developed ones. EJBs can be developed to model various data sets important to the travel reservation business including information about customer, hotel, car rental agency, and other attributes.Data Storage & AccessData stored in existing applications can be accessed with specialized connectors. Integration and interoperability of these data sources is further enabled by the metadata repository that contains metamodels of the data contained in the sources, which then can be accessed and interchanged uniformly via the JMI API. These metamodels capture the essential structure and semantics of business components, allowing them to be accessed and queried via the JMI API or to be interchanged via XML. Through all of these processes, the J2EE infrastructure ensures the security and integrity of the data through transaction management and propagation and the underlying security architecture.To consolidate historical information for analysis of sales and marketing trends, a data warehouse is often the best solution. In this example, data can be extracted from the operational systems with a variety of Extract, Transform and Load tools (ETL). The metamodels allow EJBsdesigned for filtering, transformation, and consolidation of data to operate uniformly on datafrom diverse data sources as the bean is able to query the metamodel to identify and extract the pertinent fields. Queries and reports can be run against the data warehouse that contains information from numerous sources in a consistent, enterprise-wide fashion through the use of the JMI API (Mosher & Oh, 2007).Java in Industrial SettingsMany people know Java only as a tool on the World Wide Web that enables sites to perform some of their fancier functions such as interactivity and animation. However, the actual uses for Java are much more widespread. Since Java is an object-oriented language like C++, the time needed for application development is minimal. Java also encourages good software engineering practices with clear separation of interfaces and implementations as well as easy exception handling.In addition, Java's automatic memory management and lack of pointers remove some leading causes of programming errors. Most importantly, application developers do not need to create different versions of the software for different platforms. The advantages available through Java have even found their way into hardware. The emerging new Java devices are streamlined systems that exploit network servers for much of their processing power, storage, content, and administration.Benefits of JavaThe benefits of Java translate across many industries, and some are specific to the control and automation environment. For example, many plant-floor applications use relatively simple equipment; upgrading to PCs would be expensive and undesirable. Java's ability to run on any platform enables the organization to make use of the existing equipment while enhancing the application.IntegrationWith few exceptions, applications running on the factory floor were never intended to exchange information with systems in the executive office, but managers have recently discovered the need for that type of information. Before Java, that often meant bringing together data from systems written on different platforms in different languages at different times. Integration was usually done on a piecemeal basis, resulting in a system that, once it worked, was unique to the two applications it was tying together. Additional integration required developing a brand new system from scratch, raising the cost of integration.Java makes system integration relatively easy. Foxboro Controls Inc., for example, used Java to make its dynamic-performance-monitor software package Internet-ready. This software provides senior executives with strategic information about a plant's operation. The dynamic performance monitor takes data from instruments throughout the plant and performs variousmathematical and statistical calculations on them, resulting in information (usually financial) that a manager can more readily absorb and use.ScalabilityAnother benefit of Java in the industrial environment is its scalability. In a plant, embedded applications such as automated data collection and machine diagnostics provide critical data regarding production-line readiness or operation efficiency. These data form a critical ingredient for applications that examine the health of a production line or run. Users of these devices can take advantage of the benefits of Java without changing or upgrading hardware. For example, operations and maintenance personnel could carry a handheld, wireless, embedded-Java device anywhere in the plant to monitor production status or problems.Even when internal compatibility is not an issue, companies often face difficulties when suppliers with whom they share information have incompatible systems. This becomes more of a problem as supply-chain management takes on a more critical role which requires manufacturers to interact more with offshore suppliers and clients. The greatest efficiency comes when all systems can communicate with each other and share information seamlessly. Since Java is so ubiquitous, it often solves these problems (Paula, 1997).Dynamic Web Page DevelopmentJava has been used by both large and small organizations for a wide variety of applications beyond consumer oriented websites. Sandia, a multiprogram laboratory of the U.S. Department of Energy's National Nuclear Security Administration, has developed a unique Java application. The lab was tasked with developing an enterprise-wide inventory tracking and equipment maintenance system that provides dynamic Web pages. The developers selected Java Studio Enterprise 7 for the project because of its Application Framework technology and Web Graphical User Interface (GUI) components, which allow the system to be indexed by an expandable catalog. The flexibility, scalability, and portability of Java helped to reduce development timeand costs (Garcia, 2004)IssueJava Security for E-Business ApplicationsTo support the expansion of their computing boundaries, businesses have deployed Web application servers (WAS). A WAS differs from a traditional Web server because it provides a more flexible foundation for dynamic transactions and objects, partly through the exploitation of Java technology. Traditional Web servers remain constrained to servicing standard HTTP requests, returning the contents of static HTML pages and images or the output from executed Common Gateway Interface (CGI ) scripts.An administrator can configure a WAS with policies based on security specifications for Java servlets and manage authentication and authorization with Java Authentication andAuthorization Service (JAAS) modules. An authentication and authorization service can bewritten in Java code or interface to an existing authentication or authorization infrastructure. Fora cryptography-based security infrastructure, the security server may exploit the Java Cryptography Architecture (JCA) and Java Cryptography Extension (JCE). To present the user with a usable interaction with the WAS environment, the Web server can readily employ a formof "single sign-on" to avoid redundant authentication requests. A single sign-on preserves user authentication across multiple HTTP requests so that the user is not prompted many times for authentication data (i.e., user ID and password).Based on the security policies, JAAS can be employed to handle the authentication process with the identity of the Java client. After successful authentication, the WAS securitycollaborator consults with the security server. The WAS environment authentication requirements can be fairly complex. In a given deployment environment, all applications or solutions may not originate from the same vendor. In addition, these applications may be running on different operating systems. Although Java is often the language of choice for portability between platforms, it needs to marry its security features with those of the containing environment.Authentication & AuthorizationAuthentication and authorization are key elements in any secure information handling system. Since the inception of Java technology, much of the authentication and authorization issues have been with respect to downloadable code running in Web browsers. In many ways, this had been the correct set of issues to address, since the client's system needs to be protected from mobile code obtained from arbitrary sites on the Internet. As Java technology moved from a client-centric Web technology to a server-side scripting and integration technology, it required additional authentication and authorization technologies.The kind of proof required for authentication may depend on the security requirements of a particular computing resource or specific enterprise security policies. To provide such flexibility, the JAAS authentication framework is based on the concept of configurable authenticators. This architecture allows system administrators to configure, or plug in, the appropriate authenticatorsto meet the security requirements of the deployed application. The JAAS architecture also allows applications to remain independent from underlying authentication mechanisms. So, as new authenticators become available or as current authentication services are updated, system administrators can easily replace authenticators without having to modify or recompile existing applications.At the end of a successful authentication, a request is associated with a user in the WAS user registry. After a successful authentication, the WAS consults security policies to determine if the user has the required permissions to complete the requested action on the servlet. This policy canbe enforced using the WAS configuration (declarative security) or by the servlet itself (programmatic security), or a combination of both.The WAS environment pulls together many different technologies to service the enterprise. Because of the heterogeneous nature of the client and server entities, Java technology is a good choice for both administrators and developers. However, to service the diverse security needs of these entities and their tasks, many Java security technologies must be used, not only at a primary level between client and server entities, but also at a secondary level, from served objects. By using a synergistic mix of the various Java security technologies, administrators and developers can make not only their Web application servers secure, but their WAS environments secure as well (Koved, 2001).ConclusionOpen standards have driven the e-business revolution. As e-business continues to develop, various computing technologies help to drive its evolution. The Java programming language and platform have emerged as major technologies for performing e-business functions. Java programming standards have enabled portability of applications and the reuse of application components. Java uses many familiar concepts and constructs and allows portability by providing a common interface through an external Java Virtual Machine (JVM). Today, you can find Java technology in networks and devices that range from the Internet and scientific supercomputers to laptops and cell phones, from Wall Street market simulators to home game players and credit cards.Java has found a place on some of the most popular websites in the world. Java applications not only provide unique user interfaces, they also help to power the backend of websites. While Java technology has been used extensively for client side access and in the presentation layer, it is also emerging as a significant tool for developing scaleable server side programs.Since Java is an object-oriented language like C++, the time needed for application development is minimal. Java also encourages good software engineering practices with clear separation of interfaces and implementations as well as easy exception handling. Java's automatic memory management and lack of pointers remove some leading causes of programming errors. The advantages available through Java have also found their way into hardware. The emerging new Java devices are streamlined systems that exploit network servers for much of their processing power, storage, content, and administration.中文翻译:标题:Java的商业应用。
管理信息系统外文翻译 (2)
毕业设计(论文)外文文献翻译毕业设计(论文)题目翻译(1)题目管理信息系统翻译(2)题目数据库管理系统的介绍学院计算机学院专业姓名班级学号Management Information SystemIt is the MIS(Management Information System ) that we constantly say that the management information system , and is living to emphasize the administration , and emphasizes that it changes into more and more significantly and more and more is universalized in the contemporary community of message . MIS is a fresh branch of learning, and it leaped over several territories, and for instance administers scientific knowledge, system science, operational research, statistic along with calculating machine scientific knowledge. Is living on these the branches of learning base, and takes shape that the message is gathered and the process means, thereby take shape the system that the crossbar mingles.1. The Management Information System Summary20 centuries, in the wake of the flourishing development of whole world economy, numerous economists propose the fresh administration theory one by one. Xi Men propose the administration and was dependent on idea to message and decision of strategic importance in the 50’s 20 centuries. The dimension of simultaneous stage is admitted issuing cybernetics, and he thinks that the administration is a control procedure. In 1958, Ger. write the lid: “ the administration shall obtain without delay with the lower cost and exact message, completes the better control “. This particular period, the calculating machine starts being used accountancy work. The data handling term has risen.In 1970, Walter T.Kennevan give administration that has raised the only a short while ago information system term to get off a definition: “ either the cover of the book shape with the discount, is living appropriately time to director, staff member along with the outside world personnel staff supplies the past and now and message that internal forecasting the approaching relevant business reaches such environment, in order to assist they make a strategic de cision”. Is living in this definition to emphasize, yet does not emphasize using the pattern, and mention the calculating machine application in the way of the message support decision of strategic importance.In 1985, admonishing information system originator, title Buddhist nun Su Da university administration professor Gordon B.Davis give the management information system relatively integrated definition, in immediate future “ administer the information system is one use calculating machine software and hardware resources along with data bank man - the engine system.It be able to supply message support business either organization operation, administration or the decision making function. Comprehensive directions of this definition management information system target and meritorious service capacity and component, but also make known the management information system to be living the level that attains at that time.1.1 The Developing History of MISThe management information system is living the most primarily phase iscounting the system, the substance which researched is the regular pattern on face between the incremental data, it what may separate into the data being mutually related and more not being mutually related series, afterwards act as the data conversion to message.The second stage is the data are replaced the system, and it is that the SABRE that the American airline company put up to in the 50’s 20 centuries subscribes to book the bank note system that such type stands for. It possess 1008 bank note booking spots, and may access 600000 traveler keep the minutes and 27000 flight segments record. Its operation is comparatively more complex, and is living whatever one “spot ”wholly to check whether to be the free place up some one flight n umbers. Yet through approximately attending school up to say, it is only a data and replaces the system, for instance it can not let know you with the bank note the selling velocity now when the bank note shall be sell through, thereby takes remedying the step. As a result it also is administer information system rudimentary phase.The third phase is the status reports system, and it may separate into manufacture state speech and service state and make known and research the systems such as status reports and so on. Its type stands for the production control system that is the IBM corporation to the for instance manufacture state speech system. As is known to all, the calculating machine corporation that the IBM corporation is the largest on the world, in 1964 it given birth to middle-sized calculating machine IBM360 and causes the calculating machine level lift a step, yet form that the manufacture administration work. Yet enormously complicatedly dissolve moreover, the calculating machine overtakes 15000 difference components once more, in addition the plant of IBM extends all over the American various places to every one components once more like works an element, and the order of difference possess difference components and the difference element, and have to point out that what element what plant what installation gives birth to, hence not merely giving birth to complexly, fitting, installation and transportation wholly fully complex. Have to there be a manufacture status reports system that takes the calculating machine in order to guarantee being underway successfully of manufacture along with else segment as the base. Hence the same ages IBM establish the systematic AAS of well-developed administration it be able to carry on 450 professional work operations. In 1968, the corporation establishes the communal once more and manufactures informationsystem CMIS and runs and succeeds very much, the past needs 15 weeks work, that system merely may be completed in the way of 3 weeks.It is the data handling system that the status reports system still possess one kind of shape , and that it is used for handles the everyday professional work to make known with manufacture , and stress rests with by the handwork task automation , and lifts the effectiveness with saves the labor power . The data handling system ordinarily can not supply decision of strategic importance message.Last phase is the support systems make a strategic decision, and it is the information system being used for supplementary making a strategic decision. That system may program and the analysis scheme, and goes over key and the error solve a problem. Its proper better person-machine dialogue means, may with not particularlythe personnel staff who have an intimate knowledge of the calculating machine hold conversation. It ordinarily consists of some pattern so as to come into being decision of strategic importance message, yet emphasize comprehensive administration meritorious service capacity.1.2 The Application of Management Information SystemThe management information system is used to the most base work, like dump report form, calculation pay and occurrences in human tubes and so on, and then developing up business financial affairs administrations and inventory control and so on individual event operational control , this pertains to the electron data handling ( EDP Data Processing ) system . When establish the business data bank, thereby possess the calculating machine electric network to attain data sharing queen , the slave system concept is start off , when the implementation the situation as a whole is made program and the design information system ,attained the administration information system phase . In the wake of calculating machine technique progress and the demand adjust the system of people lift further, people emphasize more furthermore administer the information system phase. Progress and people in the wake of the calculating machine technique lift at the demand adjust the system further, people emphasize more furthermore to administer the information system whether back business higher level to lead makes a strategic decision this meritorious service capacity, still more lay special emphasis on the gathering to the external message of business and integrated data storehouse, model library , means storehouse and else artificial intelligence means whether directly to decision of strategic importance person , this is the support system ( DDS ) mission making a strategic decision.There is the part application that few business start MIS inner place the limit of the world at the early days of being living in the 70’s 20 centuries. Up at the moment, MIS is living, and there be the appropriatePopularization rate in every state nation in world, and nearly covered that every profession reaches every department.1.3 The Direction of MIS DevelopmentClose 20 curtains; external grand duke takes charge of having arisen3 kinds of alternations:A. Paying special attention to the administration being emphasized toestablishing MIS’s s ystem, and causing the administration technique headfor the ageing.B. The message is the decision of strategic importance foundation, and MISsupplies the message service in the interest of director at all times.C. Director causes such management program getting in touch with togetherwith the concrete professional work maneuver by means of MIS. not merelybig-and-middle-sized business universally establish MIS some small-sizebusiness also not exceptions of self, universally establish the communaldata network, like the electronic mail and electron data exchange and so on,MIS supplied the well support environment to the application of Intranet’stechnique to speedily developing of INTERNET especially in the past fewyears in the interest of the business.Through international technique development tendency is see, in the 90’s 20 centuries had arisen some kinds of brand-new administration technique.1. Business Processes Rebuild (BPR)A business should value correctly time and produce quality, manufacturing cost and technical service and so on several section administrations, grip at the moment organization and the process compose once more,andcompletes that meritorious service capacity integrationist, operation processization and organization form fluctuation. Shall act as the service veer of middle layer management personnel staff the decision of strategic importance of the director service?2. Intelligentization Decision Support System (IDSS)The intelligentization decision of strategic importance support system was sufficiently consider demand and the work distinguishing feature of business higher level personnel staff.3. Lean Production (LP)Application give birth to on time, comprehensive quality control and parallel project that picked amount is given birth to and so on the technique, the utmost product design cutting down and production cycle, raise produce quality and cuts down the reproduced goods to reserve, and is living in the manufacture promote corps essence, in order to meet the demand that client continuously changes.4. Agile Manufacture (AM)One kind of business administration pattern that possess the vision, such distinguishing feature is workers and staff members’ quality is high, and the organization simplifies and the multi-purpose group effectiveness GAO message loading is agile and answers client requires swiftly.2. The Effect To The Business Administration of MIS DevelopmentThe effect to the business administration of the management information system development is administered the change to business and business administration of information system development and come into being and is coming into being the far-reaching effect with.Decision of strategic importance, particularly strategic decision-making may be assisted by the administration information system, and its good or bad directly affects living and the development up the business. The MIS is impeding the orientation development that the administration means one another unites through quality and ration. This express to utilize the administration in the calculation with the different mathematical model the problem in the quantitative analysis business.The past administer that the problem is difficult to test, but MIS may unite the administration necessaries, and supply the sufficient data, and simulates to produce the term in the interest of the administration.In the wake of the development of MIS, much business sit up the decentralizedmessage concentration to establish the information system ministry of directly under director, and the chief of information system ministry is ordinarily in the interest of assistant manager’s grade. After the authority of business is centralized up high-quality administration personnel staff’s hand, as if causing much sections office work decrease, hence someone prophesy, middle layer management shall vanish. In reality, the reappearance phase employed layer management among the information system queen not merely not to decrease, on the contrary there being the increase a bit.This is for, although the middle layer management personnel staff getting off exonerate out through loaded down with trivial details daily routine, yet needs them to analyses researching work in the way of even more energy, lift further admonishing the decision of strategic importance level. In the wake of the development of MIS, the business continuously adds to the demand of high technique a talented person, but the scarce thing of capability shall be washed out gradually. This compels people by means of study and cultivating, and continuously lifts individual’s quality. In The wake of the news dispatch and electric network and file transmission system development, business staff member is on duty in many being living incomparably either the home. Having caused that corporation save the expenses enormously, the work efficiency obviously moves upward American Rank Zeros corporation the office system on the net, in the interest of the creativity of raise office personnel staff was produced the advantageous term.At the moment many countries are fermenting one kind of more well-developed manufacturing industry strategy, and become quickly manufacturing the business. It completely on the basis of the user requirement organization design together with manufacture, may carry on the large-scale cooperation in the interest of identical produce by means of the business that the flow was shifted the distinct districts, and by means of the once more programming to the machinery with to the resources and the reorganization of personnel staff , constituted a fresh affrication system, and causes that manufacturing cost together with lot nearly have nothing to do with. Quickly manufacturing the business establishes a whole completely new strategy dependence relation against consumer, and is able to arouse the structure of production once more revolution.The management information system is towards the self-adoption and Self-learning orientation development, the decision procedure of imitation man who is be able to be better. Some entrepreneurs of the west vainly hope that consummate MIS is encircles the magic drug to govern the business all kinds of diseases; Yet also someone says, and what it is too many is dependent on the defeat that MIS be able to cause on the administration. It is adaptable each other to comprehend the effect to the business of MIS, and is favor of us to be living in development and the research work, and causes the business organization and administer the better development against MIS of system and administration means , and establish more valid MIS.The Source Of Article: Russ Basiura, Mike Batongbacal管理信息系统管理信息系统就是我们常说的MIS(Management Information System), 在强调管理,强调信息的现代社会中它变得越来越重要、越来越普及。
计算机专业外文翻译+原文-数据库管理系统介绍知识讲解
计算机专业外文翻译+原文-数据库管理系统介绍外文资料Database Management SystemsA database (sometimes spelled data base) is also called an electronic database , referring to any collection of data, or information, that is specially organized for rapid search and retrieval by a computer. Databases are structured to facilitate the storage, retrieval , modification, and deletion of data in conjunction with various data-processing operations .Databases can be stored on magnetic disk or tape, optical disk, or some other secondary storage device.A database consists of a file or a set of files. The information in these files may be broken down into records, each of which consists of one or more fields. Fields are the basic units of data storage , and each field typically contains information pertaining to one aspect or attribute of the entity described by the database . Using keywords and various sorting commands, users can rapidly search , rearrange, group, and select the fields in many records to retrieve or create reports on particular aggregate of data.Complex data relationships and linkages may be found in all but the simplest databases .The system software package that handles the difficult tasks associated with creating ,accessing, and maintaining database records is called a database management system(DBMS).The programs in a DBMS package establish an interface between the database itself and the users of the database.. (These users may be applications programmers, managers and others with information needs, and various OS programs.)A DBMS can organize, process, and present selected data elements form the database. This capability enables decision makers to search, probe, and query database contents in order to extract answers to nonrecurring and unplanned questions that aren’t available in regular reports. These questions might initially be vague and/or poorly defined ,but people can “browse” through the database until they have the needed information. In short, the DBMS will “manage” the stored data items and assemble the needed items from the common database in response to the queries of those who aren’t programmers.A database management system (DBMS) is composed of three major parts:(1)a storage subsystem that stores and retrieves data in files;(2) a modeling and manipulation subsystem that provides the means with which to organize the data and to add , delete, maintain, and update the data;(3)and an interface between the DBMS and its users. Severalmajor trends are emerging that enhance the value and usefulness of database management systems;Managers: who require more up-to-data information to make effective decisionCustomers: who demand increasingly sophisticated information services and more current information about the status of their orders, invoices, and accounts.Users: who find that they can develop custom applications with database systems in a fraction of the time it takes to use traditional programming languages.Organizations : that discover information has a strategic value; they utilize theirdatabase systems to gain an edge over their competitors.The Database ModelA data model describes a way to structure and manipulate the data in a database. The structural part of the model specifies how data should be represented(such as tree, tables, and so on ).The manipulative part of the model specifies the operation with which to add, delete, display, maintain, print, search, select, sort and update the data.Hierarchical ModelThe first database management systems used a hierarchical model-that is-they arranged records into a tree structure. Some records are root records and all others have unique parent records. The structure of the tree is designed to reflect the order in which the data will be used that is ,the record at the root of a tree will be accessed first, then records one level below the root ,and so on.The hierarchical model was developed because hierarchical relationships are commonly found in business applications. As you have known, an organization char often describes a hierarchical relationship: top management is at the highest level, middle management at lower levels, and operational employees at the lowest levels. Note that within a strict hierarchy, each level of management may have many employees or levels of employees beneath it, but each employee has only one manager. Hierarchical data are characterized by this one-to-many relationship among data.In the hierarchical approach, each relationship must be explicitly defined when the database is created. Each record in a hierarchical database can contain only one key field and only one relationship is allowed between any two fields. This can create a problem because data do not always conform to such a strict hierarchy.Relational ModelA major breakthrough in database research occurred in 1970 when E. F. Codd proposed a fundamentally different approach to database management called relational model ,which uses a table as its data structure.The relational database is the most widely used database structure. Data is organized into related tables. Each table is made up of rows called and columns called fields. Each record contains fields of data about some specific item. For example, in a table containing information on employees, a record would contain fields of data such as a person’s last name ,first name ,and street address.Structured query language(SQL)is a query language for manipulating data in a relational database .It is nonprocedural or declarative, in which the user need only specify an English-like description that specifies the operation and the described record or combination of records. A query optimizer translates the description into a procedure to perform the database manipulation.Network ModelThe network model creates relationships among data through a linked-list structure in which subordinate records can be linked to more than one parent record. This approach combines records with links, which are called pointers. The pointers are addresses that indicate the location of a record. With the network approach, a subordinate record can be linked to a key record and at the same time itself be a key record linked to other sets of subordinate records. The network mode historically has had a performance advantage over other database models. Today , such performance characteristics are only important in high-volume ,high-speed transaction processing such as automatic teller machine networks or airline reservation system.Both hierarchical and network databases are application specific. If a new application is developed ,maintaining the consistency of databases in different applications can be very difficult. For example, suppose a new pension application is developed .The data are the same, but a new database must be created.Object ModelThe newest approach to database management uses an object model , in which records are represented by entities called objects that can both store data and provide methods or procedures to perform specific tasks.The query language used for the object model is the same object-oriented programming language used to develop the database application .This can create problems because there is no simple , uniform query language such as SQL . The object model isrelatively new, and only a few examples of object-oriented database exist. It has attracted attention because developers who choose an object-oriented programming language want a database based on an object-oriented model.Distributed DatabaseSimilarly , a distributed database is one in which different parts of the database reside on physically separated computers . One goal of distributed databases is the access of information without regard to where the data might be stored. Keeping in mind that once the users and their data are separated , the communication and networking concepts come into play .Distributed databases require software that resides partially in the larger computer. This software bridges the gap between personal and large computers and resolves the problems of incompatible data formats. Ideally, it would make the mainframe databases appear to be large libraries of information, with most of the processing accomplished on the personal computer.A drawback to some distributed systems is that they are often based on what is called a mainframe-entire model , in which the larger host computer is seen as the master and the terminal or personal computer is seen as a slave. There are some advantages to this approach . With databases under centralized control , many of the problems of data integrity that we mentioned earlier are solved . But today’s personal computers, departmental computers, and distributed processing require computers and their applications to communicate with each other on a more equal or peer-to-peer basis. In a database, the client/server model provides the framework for distributing databases.One way to take advantage of many connected computers running database applications is to distribute the application into cooperating parts that are independent of one anther. A client is an end user or computer program that requests resources across a network. A server is a computer running software that fulfills those requests across a network . When the resources are data in a database ,the client/server model provides the framework for distributing database.A file serve is software that provides access to files across a network. A dedicated file server is a single computer dedicated to being a file server. This is useful ,for example ,if the files are large and require fast access .In such cases, a minicomputer or mainframe would be used as a file server. A distributed file server spreads the files around on individual computers instead of placing them on one dedicated computer.Advantages of the latter server include the ability to store and retrieve files on other computers and the elimination of duplicate files on each computer. A major disadvantage , however, is that individual read/write requests are being moved across the network and problems can arise when updating files. Suppose a user requests a record from a file and changes it while another user requests the same record and changes it too. The solution to this problems called record locking, which means that the first request makes others requests wait until the first request is satisfied . Other users may be able to read the record, but they will not be able to change it .A database server is software that services requests to a database across a network. For example, suppose a user types in a query for data on his or her personal computer . If the application is designed with the client/server model in mind ,the query language part on the personal computer simple sends the query across the network to the database server and requests to be notified when the data are found.Examples of distributed database systems can be found in the engineering world. Sun’s Network Filing System(NFS),for example, is used in computer-aided engineering applications to distribute data among the hard disks in a network of Sun workstation.Distributing databases is an evolutionary step because it is logical that data should exist at the location where they are being used . Departmental computers within a large corporation ,for example, should have data reside locally , yet those data should be accessible by authorized corporate management when they want to consolidate departmental data . DBMS software will protect the security and integrity of the database , and the distributed database will appear to its users as no different from the non-distributed database .In this information age, the data server has become the heart of a company. This one piece of software controls the rhythm of most organizations and is used to pump information lifeblood through the arteries of the network. Because of the critical nature of this application, the data server is also the one of the most popular targets for hackers. If a hacker owns this application, he can cause the company's "heart" to suffer a fatal arrest.Ironically, although most users are now aware of hackers, they still do not realize how susceptible their database servers are to hack attacks. Thus, this article presents a description of the primary methods of attacking database servers (also known as SQL servers) and shows you how to protect yourself from these attacks.You should note this information is not new. Many technical white papers go into great detail about how to perform SQL attacks, and numerous vulnerabilities have beenposted to security lists that describe exactly how certain database applications can be exploited. This article was written for the curious non-SQL experts who do not care to know the details, and as a review to those who do use SQL regularly.What Is a SQL Server?A database application is a program that provides clients with access to data. There are many variations of this type of application, ranging from the expensive enterprise-level Microsoft SQL Server to the free and open source mySQL. Regardless of the flavor, most database server applications have several things in common.First, database applications use the same general programming language known as SQL, or Structured Query Language. This language, also known as a fourth-level language due to its simplistic syntax, is at the core of how a client communicates its requests to the server. Using SQL in its simplest form, a programmer can select, add, update, and delete information in a database. However, SQL can also be used to create and design entire databases, perform various functions on the returned information, and even execute other programs.To illustrate how SQL can be used, the following is an example of a simple standard SQL query and a more powerful SQL query:Simple: "Select * from dbFurniture.tblChair"This returns all information in the table tblChair from the database dbFurniture.Complex: "EXEC master..xp_cmdshell 'dir c:\'"This short SQL command returns to the client the list of files and folders under the c:\ directory of the SQL server. Note that this example uses an extended stored procedure that is exclusive to MS SQL Server.The second function that database server applications share is that they all require some form of authenticated connection between client and host. Although the SQL language is fairly easy to use, at least in its basic form, any client that wants to perform queries must first provide some form of credentials that will authorize the client; the client also must define the format of the request and response.This connection is defined by several attributes, depending on the relative location of the client and what operating systems are in use. We could spend a whole article discussing various technologies such as DSN connections, DSN-less connections, RDO, ADO, and more, but these subjects are outside the scope of this article. If you want to learn more about them, a little Google'ing will provide you with more than enough information.However, the following is a list of the more common items included in a connection request.Database sourceRequest typeDatabaseUser IDPasswordBefore any connection can be made, the client must define what type of database server it is connecting to. This is handled by a software component that provides the client with the instructions needed to create the request in the correct format. In addition to the type of database, the request type can be used to further define how the client's request will be handled by the server. Next comes the database name and finally the authentication information.All the connection information is important, but by far the weakest link is the authentication information—or lack thereof. In a properly managed server, each database has its own users with specifically designated permissions that control what type of activity they can perform. For example, a user account would be set up as read only for applications that need to only access information. Another account should be used for inserts or updates, and maybe even a third account would be used for deletes. This type of account control ensures that any compromised account is limited in functionality. Unfortunately, many database programs are set up with null or easy passwords, which leads to successful hack attacks.译文数据库管理系统介绍数据库(database,有时拼作data base)又称为电子数据库,是专门组织起来的一组数据或信息,其目的是为了便于计算机快速查询及检索。
计算机外文翻译外文文献英文文献数据库系统
外文资料原文Database Systems1.Introduction to Database SystemToday, more than at any previous time, the success of an organization depends on its ability to acquire accurate and timely data about its operation,to manage this data effectively,and to use it to analyze and guide its activities. Phrases such as the information superhighway have become ubiquitous,and information processing is a rapidly growing multibillion dollar industry 。
The amount of information available to us is literally exploding, and the value of data as an organizational asset is being widely recognized。
This paradox drives the need for increasingly powerful and flexible data management systems 。
A database is a collection of data , typically describing the activities of one or more related organizations . For example , a university database might contain information about the following .●Entities such as students ,faculty , courses ,and classrooms 。
常用免费外文全文数据库
常用免费外文全文数据库1.SpringerLINK数据库德国施普林格(Springer-Verlag)是世界上著名的科技出版集团, 通过SpringerLink系统提供其学术期刊及电子图书的在线服务。
2002年7月开始,Springer公司和EBSCO/Metapress 公司在国内开通了SpringerLink服务。
访问方式:镜像服务器(本校读者无需登录)、国外站点(用户需登录出国并自付国际网络通信费)。
访问权限:校园网IP地址范围。
访问全文:(PDF格式)需要使用Acrobat Reader软件,如需安装,可由此下载Acrobat Reader。
2.EBSCOhost数据库EBSCO公司通过国际专线提供检索服务,校园网的用户检索、下载无需支付国际网络通信费。
采用IP控制访问权限,不需要帐号和口令。
3.WorldSciNet数据库WorldSciNet为新加坡世界科学出版社(World Scientific Publishing Co.)电子期刊发行网站,该出版社委托EBSCO / MetaPress 公司在清华大学图书馆建立了世界科学出版社全文电子期刊镜像站.4.Ptics ExpressOptics Express由美国光学学会创办,刊登光学技术领域方面的报告和新进展。
提供1997年创刊以来的全部文献,以平均49天一期的速度出版,并支持彩色图像和多媒体文件。
网站地址:/创建者:Optical Society 0f America5.New Journal 0f PhysicsNew Journal 0fPhysics由英国皇家物理学会和德国物理学会出版,提供1998年创刊以来的全部文献。
所有用户可免费获取电子版文章。
网站地址:创建者:Institute of Physics & German Physical Society6.The Journal of Machine Learning ResearchThe Journal of Machine Learning Research由麻省理工学院出版,是机械研究领域的优质学术性论文的平台,用户可下载2000年创刊以来的全部文章。
计算机外文翻译---基于PHP和MYSQL的网站设计和实现
译文二:基于PHP和MYSQL的网站设计和实现摘要PHP和MYSQL因为其免费以及开放源码已经成为主要的web开发工具。
作者就基于PHP和MYSQL开发网站进行开发环境问题的讨论。
关键词PHP;MYSQL;发展和实现。
1.介绍随着网络技术的发展,不可避免的带动各种企业传统营销与网络营销的增长。
其中最有效的方法是为他们的公司建立一个网站。
目前网站开发的主流平台包括LAMP(Linux操作系统,Apache网络服务器,MYSQL数据库,PHP编程语言),J2EE 和.NET商业软件。
因为PHP和MYSQL是免费的,开源等等,他们是为专业的IT 人士开发的。
从网站流量的角度来看,超过70%的网站流量是有LAMP提供的,这是最流行的网站开发平台。
在本文中,我们基于PHP和MYSQL设计了一个网站。
本文的组织如下。
第一节分析开发环境。
第二节中,我们提出基于PHP的开发模型。
然后,第四节是案例研究。
在第五节我们做出结论。
2.发展环境分析A.开发语言的选择,PHP&JSP是三个主流的网站开发语言,它们分别具有各自的优点和缺点,它们之间的比较见表1。
这个项目我们采用PHP作为开发语言的原因如下:免费的。
这个项目小,不需要使用支付开发平台如 and JSP。
强大的支持。
中小型网站,甚至一些大型网站如百度,新浪都把PHP作为开发语言,可以有组与解决在编程上的问题。
良好的可移植性。
尽管起初只能在Linux和Apache Web服务器环境中开发,现在已经可以移植到任何的操作系统,并兼容标准的Web服务器软件。
简单的语法。
PHP和C编程语言有许多的相似之处,所以会C的程序员很容易的就能使用PHP程序语言。
发展快速。
因为其源代码是开放的,所以PHP能迅速的发展。
B.构建开发环境目前有很多基于PHP的开发平台。
通常大多数开发人员喜欢LAMP开发环境。
那些有一定开发经验的可以通过选择相关的服务器,数据库管理系统和操作系统设置他们的开发平台。
计算机科学与技术 外文翻译 英文文献 中英对照
附件1:外文资料翻译译文大容量存储器由于计算机主存储器的易失性和容量的限制, 大多数的计算机都有附加的称为大容量存储系统的存储设备, 包括有磁盘、CD 和磁带。
相对于主存储器,大的容量储存系统的优点是易失性小,容量大,低成本, 并且在许多情况下, 为了归档的需要可以把储存介质从计算机上移开。
术语联机和脱机通常分别用于描述连接于和没有连接于计算机的设备。
联机意味着,设备或信息已经与计算机连接,计算机不需要人的干预,脱机意味着设备或信息与机器相连前需要人的干预,或许需要将这个设备接通电源,或许包含有该信息的介质需要插到某机械装置里。
大量储存器系统的主要缺点是他们典型地需要机械的运动因此需要较多的时间,因为主存储器的所有工作都由电子器件实现。
1. 磁盘今天,我们使用得最多的一种大量存储器是磁盘,在那里有薄的可以旋转的盘片,盘片上有磁介质以储存数据。
盘片的上面和(或)下面安装有读/写磁头,当盘片旋转时,每个磁头都遍历一圈,它被叫作磁道,围绕着磁盘的上下两个表面。
通过重新定位的读/写磁头,不同的同心圆磁道可以被访问。
通常,一个磁盘存储系统由若干个安装在同一根轴上的盘片组成,盘片之间有足够的距离,使得磁头可以在盘片之间滑动。
在一个磁盘中,所有的磁头是一起移动的。
因此,当磁头移动到新的位置时,新的一组磁道可以存取了。
每一组磁道称为一个柱面。
因为一个磁道能包含的信息可能比我们一次操作所需要得多,所以每个磁道划分成若干个弧区,称为扇区,记录在每个扇区上的信息是连续的二进制位串。
传统的磁盘上每个磁道分为同样数目的扇区,而每个扇区也包含同样数目的二进制位。
(所以,盘片中心的储存的二进制位的密度要比靠近盘片边缘的大)。
因此,一个磁盘存储器系统有许多个别的磁区, 每个扇区都可以作为独立的二进制位串存取,盘片表面上的磁道数目和每个磁道上的扇区数目对于不同的磁盘系统可能都不相同。
磁区大小一般是不超过几个KB; 512 个字节或1024 个字节。
计算机外文翻译英文文献中英版仓库管理系统(WMS)
Warehouse Management Systems (WMS).The evolution of warehouse management systems (WMS) is very similar to that of many other software solutions. Initially a system to control movement and storage of materials within a warehouse, the role of WMS is expanding to including light manufacturing, transportation management, order management, and complete accounting systems. To use the grandfather of operations-related software, MRP, as a comparison, material requirements planning (MRP) started as a system for planning raw material requirements in a manufacturing environment. Soon MRP evolved into manufacturing resource planning (MRPII), which took the basic MRP system and added scheduling and capacity planning logic. Eventually MRPII evolved into enterprise resource planning (ERP), incorporating all the MRPII functionality with full financials and customer and vendor management functionality. Now, whether WMS evolving into a warehouse-focused ERP system is a good thing or not is up to debate. What is clear is that the expansion of the overlap in functionality between Warehouse Management Systems, Enterprise Resource Planning, Distribution Requirements Planning, Transportation Management Systems, Supply Chain Planning, Advanced Planning and Scheduling, and Manufacturing Execution Systems will only increase the level of confusion among companies looking for software solutions for their operations.Even though WMS continues to gain added functionality, the initial core functionality of a WMS has not really changed. The primary purpose of a WMS is to control the movement and storage of materials within an operation and process the associated transactions. Directed picking, directed replenishment, and directed putaway are the key to WMS. The detailed setup and processing within a WMS can vary significantly from one software vendor to another, however the basic logic will use a combination of item, location, quantity, unit of measure, and order information to determine where to stock, where to pick, and in what sequence to perform these operations.Do You Really Need WMS?Not every warehouse needs a WMS. Certainly any warehouse could benefit from some of the functionality but is the benefit great enough to justify the initial and ongoing costs associated with WMS? Warehouse Management Systems are big, complex, data intensive, applications. They tend to require a lot of initial setup, a lot of system resources to run, and a lot of ongoing data management to continue to run. That’s right, you need to "manage" your warehouse "management" system. Often times, large operations will end up creating a new IS department with the sole responsibility of managing the WMS.The Claims:WMS will reduce inventory!WMS will reduce labor costs!WMS will increase storage capacity!WMS will increase customer service!WMS will increase !The Reality:The implementation of a WMS along with automated data collection will likely give you increases in accuracy, reduction in labor costs (provided the labor required to maintain the system is less than the labor saved on the warehouse floor), and a greater ability to service the customer by reducing cycle times. Expectations of inventory reduction and increased storage capacity are less likely. While increased accuracy and efficiencies in the receiving process may reduce the level of required, the impact of this reduction will likely be negligible in comparison to overall inventory levels. The predominant factors that control inventory levels are , lead times, and demand variability. It is unlikely that a WMS will have a significant impact on any of these factors. And while a WMS certainly provides the tools for more organized storage which may result in increased storage capacity, this improvement will be relative to just how sloppy your pre-WMS processes were.Beyond labor efficiencies, the determining factors in deciding to implement a WMS tend to be more often associated with the need to do something to service your customers that your current system does not support (or does not support well) such asfirst-in-first-out, cross-docking, automated pick replenishment, wave picking, lot tracking, yard management, automated data collection, automated material handling equipment, etc.SetupThe setup requirements of WMS can be extensive. The characteristics of each item and location must be maintained either at the detail level or by grouping similar items and locations into categories. An example of item characteristics at the detail level would include exact dimensions and weight of each item in each unit of measure the item is stocked (each, cases, pallets, etc) as well as information such as whether it can be mixed with other items in a location, whether it is rack able, max stack height, max quantity per location, hazard classifications, finished goods or raw material, fast versus slow mover, etc. Although some operations will need to set up each item this way, most operations will benefit by creating groups of similar products. For example, if you are a distributor of music CDs you would create groups for single CDs, and double CDs, maintaining the detailed dimension and weight information at the group level and only needing to attach the group code to each item. You would likely need to maintain detailed information on special items such as boxed sets or CDs in special packaging. You would also create groups for the different types of locations within your warehouse. An example would be to create three different groups (P1, P2, P3) for the three different sized forward picking locations you use for your CD picking. You then set up the quantity of single CDs that will fit in a P1, P2, and P3 location, quantity of double CDsthat fit in a P1, P2, P3 location etc. You would likely also be setting up case quantities, and pallet quantities of each CD group and quantities of cases and pallets per each reserve storage location group.If this sounds simple, it is…well… sort of. In reality most operations have a much more diverse product mix and will require much more system setup. And setting up the physical characteristics of the product and locations is only part of the picture. You have set up enough so that the system knows where a product can fit and how many will fit in that location. You now need to set up the information needed to let the system decide exactly which location to pick from, replenish from/to, and put away to, and in what sequence these events should occur (remember WMS is all about “directed” movement). You do this by assigning specific logic to the various combinations of item/order/quantity/location information that will occur.Below I have listed some of the logic used in determining actual locations and sequences.Location Sequence. This is the simplest logic; you simply define a flow through your warehouse and assign a sequence number to each location. In order picking this is used to sequence your picks to flow through the warehouse, in put away the logic would look for the first location in the sequence in which the product would fit.Zone Logic. By breaking down your storage locations into zones you can direct picking, put away, or replenishment to or from specific areas of your warehouse. Since zone logic only designates an area, you will need to combine this with some other type oflogic to determine exact location within the zone.Fixed Location. Logic uses predetermined fixed locations per item in picking, put away, and replenishment. Fixed locations are most often used as the primary picking location in piece pick and case-pick operations, however, they can also be used for secondary storage.Random Location. Since computers cannot be truly random (nor would you want them to be) the term random location is a little misleading. Random locations generally refer to areas where products are not stored in designated fixed locations. Like zone logic, you will need some additional logic to determine exact locations.First-in-first-out (FIFO).Directs picking from the oldest inventory first.Last-in-first-out (LIFO).Opposite of FIFO. I didn't think there were any real applications for this logic until a visitor to my site sent an email describing their operation that distributes perishable goods domestically and overseas. They use LIFO for their overseas customers (because of longer in-transit times) and FIFO for their domestic customers.Pick-to-clear. Logic directs picking to the locations with the smallest quantities on hand. This logic is great for space utilization.Reserved Locations. This is used when you want to predetermine specific locations to put away to or pick from. An application for reserved locations would be cross-docking, where you may specify certain quantities of an inbound shipment be moved to specific outbound staging locations or directly to an awaiting outbound trailer.Maximize Cube. Cube logic is found in most WMS systems however it is seldom used. Cube logic basically uses unit dimensions to calculate cube (cubic inches per unit) and then compares this to the cube capacity of the location to determine how much will fit. Now if the units are capable of being stacked into the location in a manner that fills every cubic inch of space in the location, cube logic will work. Since this rarely happens in the real world, cube logic tends to be impractical.Consolidate. Looks to see if there is already a location with the same product stored in it with available capacity. May also create additional moves to consolidate like product stored in multiple locations.Lot Sequence. Used for picking or replenishment, this will use the lot number or lot date to determine locations to pick from or replenish from.It’s very common to combine multiple logic methods to determine the best location. For example you may chose to use pick-to-clear logic within first-in-first-out logic when there are multiple locations with the same receipt date. You also may change the logic based upon current workload. During busy periods you may chose logic that optimizes productivity while during slower periods you switch to logic that optimizes space utilization.Other Functionality/ConsiderationsWave Picking/Batch Picking/Zone Picking. Support for various picking methods varies from one system to another. In high-volume fulfillment operations, picking logiccan be a critical factor in WMS selection. See my article on for more info on these methods.Task Interleaving. Task interleaving describes functionality that mixes dissimilar tasks such as picking and put away to obtain maximum productivity. Used primarily in full-pallet-load operations, task interleaving will direct a lift truck operator to put away a pallet on his/her way to the next pick. In large warehouses this can greatly reduce travel time, not only increasing productivity, but also reducing wear on the lift trucks and saving on energy costs by reducing lift truck fuel consumption. Task interleaving is also used with cycle counting programs to coordinate a cycle count with a picking or put away task.Integration with Automated Material Handling Equipment. If you are planning on using automated material handling equipment such as carousels, ASRS units, AGNS, pick-to-light systems, or separation systems, you’ll want to consider this during the software selection process. Since these types of automation are very expensive and are usually a core component of your warehouse, you may find that the equipment will drive the selection of the WMS. As with automated data collection, you should be working closely with the equipment manufacturers during the software selection process.Advanced Shipment Notifications (ASN). If your vendors are capable of sending advanced shipment notifications (preferably electronically) and attaching compliance labels to the shipments you will want to make sure that the WMS can use this toautomate your receiving process. In addition, if you have requirements to provide ASNs for customers, you will also want to verify this functionality.Yard Management. Yard management describes the function of managing the contents (inventory) of trailers parked outside the warehouse, or the empty trailers themselves. Yard management is generally associated with cross docking operations and may include the management of both inbound and outbound trailers.Labor Tracking/Capacity Planning. Some WMS systems provide functionality related to labor reporting and capacity planning. Anyone that has worked in manufacturing should be familiar with this type of logic. Basically, you set up standard labor hours and machine (usually lift trucks) hours per task and set the available labor and machine hours per shift. The WMS system will use this info to determine capacity and load. Manufacturing has been using capacity planning for decades with mixed results. The need to factor in efficiency and utilization to determine rated capacity is an example of the shortcomings of this process. Not that I’m necessarily against capacity planning in warehousing, I just think most operations don’t really need it and can avoid the disappointment of trying to make it work. I am, however, a big advocate of labor tracking for individual productivity measurement. Most WMS maintain enough data to create productivity reporting. Since productivity is measured differently from one operation to another you can assume you will have to do some minor modifications here (usually in the form of ).Integration with existing accounting/ERP systems. Unless the WMS vendor has already created a specific interface with your accounting/ERP system (such as those provided by an approved business partner) you can expect to spend some significant programming dollars here. While we are all hoping that integration issues will be magically resolved someday by a standardized interface, we isn’t there yet. Ideally you’ll want an integrator that has already integrated the WMS you chose with the business software you are using. Since this is not always possible you at least want an integrator that is very familiar with one of the systems.WMS + everything else = ? As I mentioned at the beginning of this article, a lot of other modules are being added to WMS packages. These would include full financials, light manufacturing, transportation management, purchasing, and sales order management. I don’t see this as a un ilateral move of WMS from an add-on module to a core system, but rather an optional approach that has applications in specific industries such as 3PLs. Using ERP systems as a point of reference, it is unlikely that this add-on functionality will match the functionality of best-of-breed applications available separately. If warehousing/distribution is your core business function and you don’t want to have to deal with the integration issues of incorporating separate financials, order processing, etc. you may find these WMS based business systems are a good fit.Implementation TipsOutside of the standard “don’t underestimate”, “thoroughly test”, “train, train, train” implementation tips that apply to any business software installation ,it’s important t o emphasize that WMS are very data dependent and restrictive by design. That is, you need to have all of the various data elements in place for the system to function properly. And, when they are in place, you must operate within the set parameters.When implementing a WMS, you are adding an additional layer of technology onto your system. And with each layer of technology there is additional overhead and additional sources of potential problems. Now don’t take this as a condemnation of Warehouse Management Systems. Coming from a warehousing background I definitely appreciate the functionality WMS have to offer, and, in many warehouses, this functionality is essential to their ability to serve their customers and remain competitive. It’s just important t o note that every solution has its downsides and having a good understanding of the potential implications will allow managers to make better decisions related to the levels of technology that best suits their unique environment.仓库管理系统(WMS )仓库管理系统(WMS )的演变与许多其他软件解决方案是超级相似的。
英文文献网站 外文文献检索
主要的英文文献网找一个服务的网站:不过想自己弄的话可以以下网站吧:Academic Research Library (ProQuest)【地址】原界面链接【文献类型】报纸、期刊、全文/部分全文【访问年限】1971-【描述】本数据库为综合性学术期刊数据库,收录2974种综合性期刊和报纸的文摘/索引(内含Peer Reviewed(同行评审)期刊1502种),其中2020种是全文期刊(内含全文延期上网期刊208种),包括SCI收录的核心全文刊189种,SSCI收录的核心全文...Academic Search Complete学术期刊集成全文数据库 (EBSCO)【地址】原界面链接【文献类型】报纸、多出版类型、期刊、全文/部分全文【访问年限】1965-【描述】Academic Search Premier 收录超过8230种出版物,其中3342种为全文专家评审刊。
它为 100 多种期刊提供了可追溯至 1975 年或更早年代的 PDF 过期案卷,并提供了 1000 多个标题的可检索参考文献。
涉及了几乎所有自然科学和社会科学领域,...ACLS人文科学电子图书-学术著作精选【地址】原界面链接【文献类型】全文/部分全文、图书【访问年限】【描述】《ACLS人文科学电子图书-学术著作精选》(ACLS Humanities E-Book Collection, HEB)由美国学术团体协会(American Council of LearnedSocieties, ACLS)提供。
ACLS成立于1919年,是一家非营利机构,与20个学术团体以及超过100家学术出版社合作HEB项...ACM(美国计算机学会)电子期刊及会议录(ACM总站)【地址】原界面链接【文献类型】期刊、全文/部分全文、会议论文【访问年限】【描述】ACM Digital Library数据库收录了美国计算机协会(Association for Computing Machinery)的各种电子期刊、会议录、快报等文献。
外文文献查找方法
中文数据库类:CNKI /index.htm维普/万方/外文数据库类:Sciencedirect /Blackwell /Springer /home/main.mpxWiely /NCBI /sites/entrez?db=PubMedStanford /查文献时最好是从中文开始,然后是外文文献。
主要有以下几种方法:1. 根据文章出处,去一些较大图书馆查找原文。
2. 如果学校或单位有CNKI,维普,万方的话,就比较好办,中文文献一般都可以搞定,把关键词、期刊名称、卷,期、年等信息输入即可检索到。
3. 对于自然科学来讲英文文献检索首推Elsevier,Springer等。
这些数据库里面文献很多,可以为我们提供很多的文献资源。
4.如果所在单位或大学没有购买这些数据库,我们可以去Science网上杂志找文章,对中国人完全免费!另外还可以通过Google学术搜索()来查询。
里面一般会搜出来你要找的文献,在Google学术搜索里通常情况会出现“每组几个”等字样,然后进入后,分别点击,里面的其中一个就有可能会下到全文。
5. 如果上面的方法找不到全文,就把文章作者的名字或者文章的title在Google 里搜索(不是Google 学术搜索),用作者的名字来搜索,是因为很多国外作者都喜欢把文章的全文(PDF)直接挂在网上,一般情况下他们会把自己的文章挂在自己的个人主页(home page)上,这样可能也是为了让别的研究者更加了解自己的学术领域,这样你就有可能下到你想要的文献的全文了。
第一作者查不到个人主页,就接上面的方法查第二作者。
6. 让所在的研究所图书馆的管理员帮忙从外面的图书馆文献传递,不过有的文献可能是收费的。
7. 到网络资源上求助,如鸭绿江学术资源论坛文献求助获得(/?fromuid=510022);如果你需要的文献目前还没有电子版,也可以通过馆藏求助获得全文。
在找到中文文献之后,就可以通过其中的英文关键词来查找英文文献。
计算机网络技术中英文对照外文翻译文献
中英文资料外文翻译网站建设技术1.介绍网络技术的发展,为今天全球性的信息交流与资在建立源共享和交往提供了更多的途径和可能。
足不出户便可以知晓天下大事,按几下键盘或点几下鼠标可以与远在千里之外的朋友交流,网上通信、网上浏览、网上交互、网上电子商务已成为现代人们生活的一部分。
Internet 时代, 造就了人们新的工作和生活方式,其互联性、开放性和共享信息的模式,打破了传统信息传播方式的重重壁垒,为人们带来了新的机遇。
随着计算机和信息时代的到来,人类社会前进的脚步在逐渐加快。
近几年网页设计发展,快得人目不暇接。
随着网页设计技术的发展,丰富多彩的网页成为网上一道亮丽的风景线。
要想设计美观实用的网页就应该深入掌握网站建设技术。
在建立网站时,我们分析了网站建立的目的、内容、功能、结构,应用了更多的网页设计技术。
2、网站的定义2.1 如何定义网站确定网站的任务和目标,是建设网站所面临的最重要的问题。
为什么人们会来到你的网站? 你有独特的服务吗? 人们第一次到你的网站是为了什么? 他们还会再来吗? 这些问题都是定义网站时必须考虑的问题。
要定义网站,首先,必须对整个网站有一个清晰认识,弄清到底要设计什么、主要的目的与任务、如何对任务进行组织与规划。
其次,保持网站的高品质。
在众多网站的激烈竞争中,高品质的产品是长期竞争的最大优势。
一个优秀的网站应具备:(1)用户访问网站的速度要快;(2)注意反馈与更新。
及时更新网站内容、及时反馈用户的要求;(3)首页设计要合理。
首页给访问者留下的第一印象很重要,设计务必精美,以求产生良好的视觉效果。
2.2 网站的内容和功能在网站的内容方面,就是要做到新、快、全三面。
网站内容的类型包括静态的、动态的、功能的和事物处理的。
确定网站的内容是根据网站的性质决定的,在设计政府网站、商业网站、科普性网站、公司介绍网站、教学交流网站等的内容和风格时各有不同。
我们建立的网站同这些类型的网站性质均不相同。
外文文献和翻译_信息系统开发和数据库开发
信息系统开发和数据库开发在许多组织中,数据库开发是从企业数据建模开始的,企业数据建模确定了组织数据库的范围和一般内容。
这一步骤通常发生在一个组织进行信息系统规划的过程中,它的目的是为组织数据创建一个整体的描述或解释,而不是设计一个特定的数据库。
一个特定的数据库为一个或多个信息系统提供数据,而企业数据模型(可能包含许多数据库)描述了由组织维护的数据的范围。
在企业数据建模时,你审查当前的系统,分析需要支持的业务领域的本质,描述需要进一步抽象的数据,并且规划一个或多个数据库开发项目。
图1显示松谷家具公司的企业数据模型的一个部分。
1.1 信息系统体系结构如图1所示,高级的数据模型仅仅是总体信息系统体系结构(ISA)一个部分或一个组织信息系统的蓝图。
在信息系统规划期间,你可以建立一个企业数据模型作为整个信息系统体系结构的一部分。
根据Zachman(1987)、Sowa和Zachman(1992)的观点,一个信息系统体系结构由以下6个关键部分组成:数据(如图1所示,但是也有其他的表示方法)。
操纵数据的处理(着系可以用数据流图、带方法的对象模型或者其他符号表示)。
网络,它在组织内并在组织与它的主要业务伙伴之间传输数据(它可以通过网络连接和拓扑图来显示)。
人,人执行处理并且是数据和信息的来源和接收者(人在过程模型中显示为数据的发送者和接收者)。
执行过程的事件和时间点(它们可以用状态转换图和其他的方式来显示)。
事件的原因和数据处理的规则(经常以文本形式显示,但是也存在一些用于规划的图表工具,如决策表)。
1.2 信息工程信息系统的规划者按照信息系统规划的特定方法开发出信息系统的体系结构。
信息工程是一种正式的和流行的方法。
信息工程是一种面向数据的创建和维护信息系统的方法。
因为信息工程是面向数据的,所以当你开始理解数据库是怎样被标识和定义时,信息工程的一种简洁的解释是非常有帮助的。
信息工程遵循自顶向下规划的方法,其中,特定的信息系统从对信息需求的广泛理解中推导出来(例如,我们需要关于顾客、产品、供应商、销售员和加工中心的数据),而不是合并许多详尽的信息请求(如一个订单输入屏幕或按照地域报告的销售汇总)。
论文必备中英文献数据库大全
论文必备——中英文献数据库大全终身受用,写论文需要的参考文献都在这里了!一、中文数据库中国最大的数据库,内容较全。
收录了5000多种中文期刊,1994年以来的数百万篇文章,并且目前正以每天数千篇的速度进行更新。
阅读全文需在网站主页下载CAJ全文浏览器。
文献收录1989年以来的全文。
只是扫描质量有点差劲,1994年以后的数据不如CNKI全。
阅读全文需下载维谱全文浏览器,约7M。
目前,以下站点提供免费检索3、万方数据库收录了核心期刊的全文,文件为pdf格式,阅读全文需Acrobat Reader 浏览器。
二、外文全文站点(所有外文数据库世界上第二大免费数据库(最大的免费数据库没有生物学、农业方面的文献),该网站提供部分文献的免费检索,和所用文献的超级链接,免费文献在左边标有FREE.Elsevier Science是荷兰一家全球著名的学术期刊出版商,每年出版大量的农业和生物科学、化学和化工、临床医学、生命科学、计算机科学、地球科学、工程、能源和技术、环境科学、材料科学、航空航天、天文学、物理、数学、经济、商业、管理、社会科学、艺术和人文科学类的学术图书和期刊,目前电子期刊总数已超过1 200多种(其中生物医学期刊499种),其中的大部分期刊都是SCI、EI等国际公认的权威大型检索数据库收录的各个学科的核心学术期刊。
Wiley InterScience是John Wiely & Sons 公司创建的动态在线内容服务,1997年开始在网上开通。
通过InterScience,Wiley公司以许可协议形式向用户提供在线访问全文内容的服务。
Wiley InterScience收录了360多种科学、工程技术、医疗领域及相关专业期刊、30多种大型专业参考书、13种实验室手册的全文和500多个题目的Wiley学术图书的全文。
其中被SCI收录的核心期刊近200种。
(注册一个用户名密码,下次直接用注册的用户名密码进去,不用代理照样能看文章全文,Willey注册一个,就可以免费使用CP了,那可是绝对好的Protocols )施普林格出版集团年出新书2000多种,期刊500多种,其中400多种期刊有电子版。
计算机专业外文翻译+原文-数据库管理系统介绍
外文资料Database Management SystemsA database (sometimes spelled data base) is also called an electronic database , referring to any collection of data, or information, that is specially organized for rapid search and retrieval by a computer. Databases are structured to facilitate the storage, retrieval , modification, and deletion of data in conjunction with various data-processing operations .Databases can be stored on magnetic disk or tape, optical disk, or some other secondary storage device.A database consists of a file or a set of files. The information in these files may be broken down into records, each of which consists of one or more fields. Fields are the basic units of data storage , and each field typically contains information pertaining to one aspect or attribute of the entity described by the database . Using keywords and various sorting commands, users can rapidly search , rearrange, group, and select the fields in many records to retrieve or create reports on particular aggregate of data.Complex data relationships and linkages may be found in all but the simplest databases .The system software package that handles the difficult tasks associated with creating ,accessing, and maintaining database records is called a database management system(DBMS).The programs in a DBMS package establish an interface between the database itself and the users of the database.. (These users may be applications programmers, managers and others with information needs, and various OS programs.)A DBMS can organize, process, and present selected data elements form the database. This capability enables decision makers to search, probe, and query database contents in order to extract answers to nonrecurring and unplanned questions that aren’t available in regular reports. These questions might initially be vague and/or poorly defined ,but people can “browse” through the database until they have the needed information. In short, the DBMS will “manage” the stored data items and assemble the needed items from the common database in response to the queries of those who aren’t programmers.A database management system (DBMS) is composed of three major parts:(1)a storage subsystem that stores and retrieves data in files;(2) a modeling and manipulation subsystem that provides the means with which to organize the data and to add , delete, maintain, and update the data;(3)and an interface between the DBMS and its users. Several major trends are emerging that enhance the value and usefulness of database management systems;Managers: who require more up-to-data information to make effective decisionCustomers: who demand increasingly sophisticated information services and more current information about the status of their orders, invoices, and accounts.Users: who find that they can develop custom applications with database systems in a fraction of the time it takes to use traditional programming languages.Organizations : that discover information has a strategic value; they utilize their database systems to gain an edge over their competitors.The Database ModelA data model describes a way to structure and manipulate the data in a database. The structural part of the model specifies how data should be represented(such as tree, tables, and so on ).The manipulative part of the model specifies the operation with which to add, delete, display, maintain, print, search, select, sort and update the data.Hierarchical ModelThe first database management systems used a hierarchical model-that is-they arranged records into a tree structure. Some records are root records and all others have unique parent records. The structure of the tree is designed to reflect the order in which the data will be used that is ,the record at the root of a tree will be accessed first, then records one level below the root ,and so on.The hierarchical model was developed because hierarchical relationships are commonly found in business applications. As you have known, an organization char often describes a hierarchical relationship: top management is at the highest level, middle management at lower levels, and operational employees at the lowest levels. Note that within a strict hierarchy, each level of management may have many employees or levels of employees beneath it, but each employee has only one manager. Hierarchical data are characterized by this one-to-many relationship among data.In the hierarchical approach, each relationship must be explicitly defined when the database is created. Each record in a hierarchical database can contain only one key field and only one relationship is allowed between any two fields. This can create a problem because data do not always conform to such a strict hierarchy.Relational ModelA major breakthrough in database research occurred in 1970 when E. F. Codd proposed a fundamentally different approach to database management called relational model ,which uses a table as its data structure.The relational database is the most widely used database structure. Data is organized into related tables. Each table is made up of rows called and columns called fields. Each record contains fields of data about some specific item. For example, in a table containing information on employees, a recordwould contain fields of data such as a person’s last name ,first name ,and street address.Structured query language(SQL)is a query language for manipulating data in a relational database .It is nonprocedural or declarative, in which the user need only specify an English-like description that specifies the operation and the described record or combination of records. A query optimizer translates the description into a procedure to perform the database manipulation.Network ModelThe network model creates relationships among data through a linked-list structure in which subordinate records can be linked to more than one parent record. This approach combines records with links, which are called pointers. The pointers are addresses that indicate the location of a record. With the network approach, a subordinate record can be linked to a key record and at the same time itself be a key record linked to other sets of subordinate records. The network mode historically has had a performance advantage over other database models. Today , such performance characteristics are only important in high-volume ,high-speed transaction processing such as automatic teller machine networks or airline reservation system.Both hierarchical and network databases are application specific. If a new application is developed ,maintaining the consistency of databases in different applications can be very difficult. For example, suppose a new pension application is developed .The data are the same, but a new database must be created.Object ModelThe newest approach to database management uses an object model , in which records are represented by entities called objects that can both store data and provide methods or procedures to perform specific tasks.The query language used for the object model is the same object-oriented programming language used to develop the database application .This can create problems because there is no simple , uniform query language such as SQL . The object model is relatively new, and only a few examples of object-oriented database exist. It has attracted attention because developers who choose an object-oriented programming language want a database based on an object-oriented model. Distributed DatabaseSimilarly , a distributed database is one in which different parts of the database reside on physically separated computers . One goal of distributed databases is the access of information without regard to where the data might be stored. Keeping in mind that once the users and their data are separated , the communication and networking concepts come into play .Distributed databases require software that resides partially in the larger computer. This software bridges the gap between personal and large computers and resolves the problems of incompatible dataformats. Ideally, it would make the mainframe databases appear to be large libraries of information, with most of the processing accomplished on the personal computer.A drawback to some distributed systems is that they are often based on what is called a mainframe-entire model , in which the larger host computer is seen as the master and the terminal or personal computer is seen as a slave. There are some advantages to this approach . With databases under centralized control , many of the problems of data integrity that we mentioned earlier are solved . But today’s personal computers, departmental computers, and distributed processing require computers and their applications to communicate with each other on a more equal or peer-to-peer basis. In a database, the client/server model provides the framework for distributing databases.One way to take advantage of many connected computers running database applications is to distribute the application into cooperating parts that are independent of one anther. A client is an end user or computer program that requests resources across a network. A server is a computer running software that fulfills those requests across a network . When the resources are data in a database ,the client/server model provides the framework for distributing database.A file serve is software that provides access to files across a network. A dedicated file server is a single computer dedicated to being a file server. This is useful ,for example ,if the files are large and require fast access .In such cases, a minicomputer or mainframe would be used as a file server. A distributed file server spreads the files around on individual computers instead of placing them on one dedicated computer.Advantages of the latter server include the ability to store and retrieve files on other computers and the elimination of duplicate files on each computer. A major disadvantage , however, is that individual read/write requests are being moved across the network and problems can arise when updating files. Suppose a user requests a record from a file and changes it while another user requests the same record and changes it too. The solution to this problems called record locking, which means that the first request makes others requests wait until the first request is satisfied . Other users may be able to read the record, but they will not be able to change it .A database server is software that services requests to a database across a network. For example, suppose a user types in a query for data on his or her personal computer . If the application is designed with the client/server model in mind ,the query language part on the personal computer simple sends the query across the network to the database server and requests to be notified when the data are found.Examples of distributed database systems can be found in the engineering world. Sun’s Network Filing System(NFS),for example, is used in computer-aided engineering applications to distribute data among the hard disks in a network of Sun workstation.Distributing databases is an evolutionary step because it is logical that data should exist at thelocation where they are being used . Departmental computers within a large corporation ,for example, should have data reside locally , yet those data should be accessible by authorized corporate management when they want to consolidate departmental data . DBMS software will protect the security and integrity of the database , and the distributed database will appear to its users as no different from the non-distributed database .In this information age, the data server has become the heart of a company. This one piece of software controls the rhythm of most organizations and is used to pump information lifeblood through the arteries of the network. Because of the critical nature of this application, the data server is also the one of the most popular targets for hackers. If a hacker owns this application, he can cause the company's "heart" to suffer a fatal arrest.Ironically, although most users are now aware of hackers, they still do not realize how susceptible their database servers are to hack attacks. Thus, this article presents a description of the primary methods of attacking database servers (also known as SQL servers) and shows you how to protect yourself from these attacks.You should note this information is not new. Many technical white papers go into great detail about how to perform SQL attacks, and numerous vulnerabilities have been posted to security lists that describe exactly how certain database applications can be exploited. This article was written for the curious non-SQL experts who do not care to know the details, and as a review to those who do use SQL regularly.What Is a SQL Server?A database application is a program that provides clients with access to data. There are many variations of this type of application, ranging from the expensive enterprise-level Microsoft SQL Server to the free and open source mySQL. Regardless of the flavor, most database server applications have several things in common.First, database applications use the same general programming language known as SQL, or Structured Query Language. This language, also known as a fourth-level language due to its simplistic syntax, is at the core of how a client communicates its requests to the server. Using SQL in its simplest form, a programmer can select, add, update, and delete information in a database. However, SQL can also be used to create and design entire databases, perform various functions on the returned information, and even execute other programs.To illustrate how SQL can be used, the following is an example of a simple standard SQL query and a more powerful SQL query:Simple: "Select * from dbFurniture.tblChair"This returns all information in the table tblChair from the database dbFurniture.Complex: "EXEC master..xp_cmdshell 'dir c:\'"This short SQL command returns to the client the list of files and folders under the c:\ directory of the SQL server. Note that this example uses an extended stored procedure that is exclusive to MS SQL Server.The second function that database server applications share is that they all require some form of authenticated connection between client and host. Although the SQL language is fairly easy to use, at least in its basic form, any client that wants to perform queries must first provide some form of credentials that will authorize the client; the client also must define the format of the request and response.This connection is defined by several attributes, depending on the relative location of the client and what operating systems are in use. We could spend a whole article discussing various technologies such as DSN connections, DSN-less connections, RDO, ADO, and more, but these subjects are outside the scope of this article. If you want to learn more about them, a little Google'ing will provide you with more than enough information. However, the following is a list of the more common items included in a connection request.Database sourceRequest typeDatabaseUser IDPasswordBefore any connection can be made, the client must define what type of database server it is connecting to. This is handled by a software component that provides the client with the instructions needed to create the request in the correct format. In addition to the type of database, the request type can be used to further define how the client's request will be handled by the server. Next comes the database name and finally the authentication information.All the connection information is important, but by far the weakest link is the authentication information—or lack thereof. In a properly managed server, each database has its own users with specifically designated permissions that control what type of activity they can perform. For example, a user account would be set up as read only for applications that need to only access information. Another account should be used for inserts or updates, and maybe even a third account would be used for deletes. This type of account control ensures that any compromised account is limited in functionality. Unfortunately, many database programs are set up with null or easy passwords, which leads to successful hack attacks.译文数据库管理系统介绍数据库(database,有时拼作data base)又称为电子数据库,是专门组织起来的一组数据或信息,其目的是为了便于计算机快速查询及检索。
毕业设计论文外文文献翻译计算机科学与技术微软VisualStudio中英文对照
外文文献翻译(2012届)学生姓名学号********专业班级计算机科学与技术08-5班指导教师微软Visual Studio1微软Visual StudioVisual Studio 是微软公司推出的开发环境,Visual Studio可以用来创建Windows平台下的Windows应用程序和网络应用程序,也可以用来创建网络服务、智能设备应用程序和Office 插件。
Visual Studio是一个来自微软的集成开发环境IDE(inteqrated development environment),它可以用来开发由微软视窗,视窗手机,Windows CE、.NET框架、.NET精简框架和微软的Silverlight支持的控制台和图形用户界面的应用程序以及Windows窗体应用程序,网站,Web应用程序和网络服务中的本地代码连同托管代码。
Visual Studio包含一个由智能感知和代码重构支持的代码编辑器。
集成的调试工作既作为一个源代码级调试器又可以作为一台机器级调试器。
其他内置工具包括一个窗体设计的GUI应用程序,网页设计师,类设计师,数据库架构设计师。
它有几乎各个层面的插件增强功能,包括增加对支持源代码控制系统(如Subversion和Visual SourceSafe)并添加新的工具集设计和可视化编辑器,如特定于域的语言或用于其他方面的软件开发生命周期的工具(例如Team Foundation Server的客户端:团队资源管理器)。
Visual Studio支持不同的编程语言的服务方式的语言,它允许代码编辑器和调试器(在不同程度上)支持几乎所有的编程语言,提供了一个语言特定服务的存在。
内置的语言中包括C/C + +中(通过Visual C++),(通过Visual ),C#中(通过Visual C#)和F#(作为Visual Studio 2010),为支持其他语言,如M,Python,和Ruby等,可通过安装单独的语言服务。
关系数据库的结构外文翻译外文文献英文文献
关系数据库的结构关系模型是任何关系数据库管理系统(RDBMS的基础。
一个关系模型有三个重要组成部分:对象或关系的集合,作用于对象或关系上的操作,以及数据完整性规则。
换句话说,关系数据库有一个存储数据的地方,一种创建和检索数据的方法,以及一种确保数据的逻辑一致性的方法。
一个关系数据库使用关系或二维表来存储支持某个事物所需的信息。
让我们了解一下一个传统的关系数据库系统的基本组件并学习关系数据库的设计。
一旦你对于行、列、表和关联是什么有了深刻理解,你就能够充分发挥关系数据库的强大功能。
表,行和列在关系数据库中,一个表是一个用于保存相关信息的二维结构。
一个数据库由一个或者多个相关联的表组成。
表中的一行是一种事物的集合或实例,比如一个员工或发票上的一项。
表中的一列包含了一类信息;而且行列相交点上的数据、字段,就是能够用数据库查询语言检索到的最小片信息。
举个例子来说,一个员工信息表可能有一列,其列名为“LAST_NAM”列中就包含所有员工的名字。
数据是通过对行、列进行过滤而从表中检索出来的。
主码、数据类型和外码本篇文章均以假设的斯科特•史密斯的工厂为例,他是数据库的建立者和企业的主办人。
他刚开办了一个饰品公司并目想要使用关系数据库的几项基本功能来管理人力资源部门。
关系:用来保存相关信息的一个二维结构,也就是表。
行:在一个数据库表中的一组单数据或多数据元素,用于描述一个人、地方或事物。
列:列是数据库表的组件,它包含所有行中同名和同类型的所有数据。
你会在下面章节学到如何设计数据库,现在让我们假设数据库大部分己经设计完成并且你可能注意到佣金列和管理人列中有一些单元格中没有值;它们是空值。
一个关系数据库能够规定列中的一个单元格是否为空。
如此,可以明确那些非销售部的员工佣金单元为空。
同样也明确了公司董事长的管理人单元为空,因为这个员工不需要向任何人汇报工作。
单元格:是数据库查询语言所能够检索到的最小片信息。
一个单元格就是一个数据库表的行和列交叉形成的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外文资料原文Database Systems1.Introduction to Database SystemToday, more than at any previous time, the success of an organization depends on its ability to acquire accurate and timely data about its operation, to manage this data effectively, and to use it to analyze and guide its activities. Phrases such as the information superhighway have become ubiquitous, and information processing is a rapidly growing multibillion dollar industry .The amount of information available to us is literally exploding, and the value of data as an organizational asset is being widely recognized. This paradox drives the need for increasingly powerful and flexible data management systems .A database is a collection of data , typically describing the activities of one or more related organizations . For example , a university database might contain information about the following .●Entities such as students , faculty , courses , and classrooms .●Relationships between entities , such as students’enrollment in courses , faculty teaching courses , and the use of rooms for courses .A database management system , or DBMS , is software designed to assist in maintaining and utilizing large collections of data , and the need for such systems , as well as their use , is growing rapidly . The alternative to using a DBMS is to use ad hoc approaches that do notcarry over from one application to another , for example , to store the data in files and write application-specific code to manage it .The area of database management systems is a microcosm of computer science in general . The issues addressed and the techniques used span a wide spectrum , including languages , object-orientation and other programming paradigms , compilation , operating systems1concurrent programming , data structures , algorithms ,theory , parallel and distributed systems , user interfaces , expert systems and artificial intelligence , statistical techniques , and dynamic programming .Database management continues to gain importance as more and more data is brought on-line, and made ever more accessible through computer networking. Today the field is being driven by exciting visions such as multimedia databases, interactive video, digital libraries, a host of scientific projects such as the human genome mappin g effort and NASA’s Earth Observation System project, and the desire of companies to consolidate their decision-making processes and mine their data repositories for useful information about their business . Commercially , database management systems represent one of the largest and most vigorous market segments . Thus the study of database systems couldprove to be richly rewarding in more ways than one .2.Database consistsA database consists of a file or a set of files. The information in these files may be broken down into records, each of which consists of one or more fields. Fields are the basic units of data storage, and each field typically contains information pertaining to one aspect or attribute of the entity described by the database. Using keywords and various sorting commands, users can rapidly search, rearrange, group, and select the fields in many records to retrieve or create reports on particular aggregates of data.Database records and files must be organized to allow retrieval of the information. Early systems were arranged sequentially (i.e., alphabetically, numerically, or chronologically); the development of direct-access storage devices made possible random access to data via indexes. Queries are the main way users retrieve database information. Typically, the user provides a string of characters, and the computersearches the database for a corresponding sequence and provides the source materials in which those characters appear. A user can request, for example, all records in which the content of the field for a person’s last name is the word Smith.In flat databases , records are organized according to a simplelist of entities; many simple databases for personal computers are flat in structure. The records in hierarchical databases are organized in a treelike structure, with each level of records branching off into a set of smaller categories. Unlike hierarchical databases, which provide single links between sets of records at different levels, network databases create multiple linkages between sets by placing links, orpointers, to one set of records in another; the speed and versatility of network databases have led to their wide use in business.Relational databases are used where associations among files or records cannot be expressed by links; a simple flat list becomes one table, or “relation”, and multiple relations can be mathematically associated to yield desired information. Object-oriented databases store and manipulate more complex data struct ures, called “objects”, which are organized into hierarchical classes that may inherit properties from classes higher in the chain; this database structure is the mostflexible and adaptable.3.Structure of the Relational databaseThe relational model is the basis for any relational database management system (RDBMS).A relational model has three core components: a collection of objects or relations, operators that act on the objects or relations, and data integrity methods. In other words, it has a place to store the data, a way to create and retrieve the data, and a way to make sure that the data is logically consistent.A relational database uses relations, or two-dimensional tables, to store the information needed to support a business.3.1.Tables, Row, and ColumnsA table in a relational database, alternatively known as a relation, is a two-dimensional structure used to hold related information. A database consists of one or more related tables.Note: Don't confuse a relation with relationships. A relation is essentially a table, and a relationship is a way to correlate, join, or associate two tables.A row in a table is a collection or instance of one thing, such as one employee or one line item on an invoice. A column contains all the information of a single type, and the piece of data at the intersection of a row and a column, a field, is the smallest piece of informationthat can be retrieved with the database's query language. For example, a table with information about employees might have a column calledLAST_NAME that contains all of the employees' last names. Data is retrieved from a table by filtering on both the row and the column.3.2.Primary Keys, Data types, and Foreign KeysRelation: A two-dimensional structure used to hold related information, also known as a table.Row: A group of one or more data elements in a database table that describes a person, place, or thing.Column: The component of a database table that contains all of the data of the same name and type across all rows.Primary Key: A column (or columns) in a table that makes the row in the table distinguishable from every other row in the same table.Data types: numeric values, character or alphabetic values, and date values.A foreign key enforces the concept of referential integrity in a relational database.Foreign Key: A column (or columns) in a table that draws its valuesfrom a primary or unique key column in another table. A foreign key assists in ensuring the data integrity of a table. Referential Integrity A method employed by a relational database system that enforces one-to-many relationships between tables.3.3.Data ModelingIn this process, the developer conceptualizes and documents all the tables for the database. One of the common methods for modeling a database is called ERA, which stands for entities, relationships, and attributes. The database designer uses an application that can maintain entities, their attributes, and their relationships. In general, anentity corresponds to a table in the database, and the attributes of the entity correspond to columns of the table.Data Modeling: A process of defining the entities, attributes, and relationships between the entities in preparation for creating the physical database.The data-modeling process involves defining the entities, defining the relationships between those entities, and then defining theattributes for each of the entities. Once a cycle is complete, it is repeated as many times as necessary to ensure that the designer is capturing what is important enough to go into the database. Let's take a closer look at each step in the data-modeling process.3.4. Defining the EntitiesFirst, the designer identifies all of the entities within the scope of the database application.The entities are the persons, places, or things that are important to the organization and need to be tracked in the database. Entitieswill most likely translate neatly to database tables.。