新鲁教版五四制七年级数学上册《一次函数》单元测试题及答案解析.docx
初中数学鲁教版(五四制)七年级上册期末-章节测试习题(1)
章节测试题1.【题文】如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(4,0),B(-1,4),C(-3,1).(1)作△A'B'C',使△A'B'C'和△ABC关于x轴对称;(2)写出点A',B',C'的坐标;(3)求△ABC的面积.【答案】(1)如图.(2)点A'的坐标为(4,0),点B'的坐标为(-1,-4),点C'的坐标为(-3,-1).(3).【分析】【解答】2.【题文】“十一”期间,小明和父母一起开车到距家200km的景点旅游.出发前,汽车油箱内有油45L,行驶150km后,发现油箱余油量为30L(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每千米的耗油量,并写出行驶路程x(km)与剩余油量Q(L)的关系式;(2)当x=280时,求剩余油量Q的值;(3)当油箱中剩余油量低于3L时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.【答案】【分析】【解答】(1)该车平均每千米的耗油量为(45-30)÷150=0.1(L/km).行驶路程x(km)与剩余油量Q(L)的关系式为Q=45-0.1x.(2)当x=280时,Q=45-0.1×280=17(L).(3)(45-3)÷0.1=420(km).∵420>400.∴他们在汽车报警前能回家.3.【答题】下列四个图形中,属于轴对称图形的是()A. B. C. D.【答案】C【解答】4.【答题】16的平方根是()A. ±4B. ±2C. 4D. -4【答案】A【分析】【解答】5.【答题】在平面直角坐标系中,点A的坐标为(-2,3),点B的坐标为(-2,-3),那么点A和点B的位置关系是()A. 关于x轴对称B. 关于y轴对称C. 关于原点对称D. 关于坐标轴和原点都不对称【答案】A【分析】【解答】6.【答题】关于函数y=-2x+1,下列结论正确的是()A. 图象经过点(-2,1)B. y随x的增大而增大C. 图象不经过第三象限D. 图象不经过第二象限【答案】C【分析】7.【答题】观察下列几组数据:①3,4,5;②4,5,6;③6,8,10;④7,24,25.其中能作为直角三角形三边长的有()A. 1组B. 2组C. 3组D. 4组【答案】C【分析】【解答】8.【答题】如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)()A. 12mB. 13mC. 16mD. 17m【答案】D【分析】【解答】9.【答题】如图,BD=CF,FD⊥BC于点D,DE⊥AB于点E,BE=CD. 若∠AFD=135°,则∠EDF的度数为()A. 55°B. 45°C. 35°D. 65°【答案】B【分析】【解答】10.【答题】如图,两个不同的一次函数y=ax+b与y=bx+a的图象在同一平面直角坐标系的位置可能是()A. B. C. D.【答案】C【分析】【解答】11.【答题】如图,四边形ABCD中,∠A=90°,∠C=110°,点E,F分别在AB,BC上,将△BEF沿EF翻折,得△GEF.若GF∥CD,GE∥AD,则∠D的度数为()A. 60°B. 70°C. 80°D. 90°【答案】C【分析】【解答】12.【答题】小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后小明对准玻璃杯口匀速注水,如图所示.在注水过程中,杯底始终紧贴鱼缸底部,则下列图象中可以近似刻画容器最高水位h与注水时间t 之间的关系的是()A. B. C. D.【答案】D【分析】【解答】13.【答题】______.【答案】6【分析】【解答】14.【答题】若点M(a+2,a-3)在x轴上,则点M的坐标为______.【答案】(5,0)【分析】【解答】15.【答题】将一次函数y=2x-3的图象沿y轴向上平移5个单位后,得到的函数图象对应的函数关系式为______.【答案】y=2x+2【分析】【解答】16.【答题】已知m是的整数部分,n是的小数部分,则m+n=______.【答案】【分析】【解答】17.【答题】如图,有一张直角三角形纸片,直角边AC=6cm,AB=10cm.将△ABC折叠,使点B与点A重合,折痕为DE,那么CD的长为______cm.【答案】【分析】【解答】18.【答题】如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1,A2,…,A n在x轴上,点B1,B2,…,B n在直线y=x上.已知OA1=1,则OA2020的长是______.【答案】22019【分析】【解答】19.【题文】计算:(1);(2).【答案】【分析】【解答】(1).(2)原式=5-1+9-3=10.20.【题文】小明骑自行车上学,骑了一段后想起来要买一本书,于是又折回到刚才经过的新华书店,买到书后继续去学校.他本次所用的时间与路程的关系如图所示,根据图中提供的信息回答下列问题:(1)小明家到学校的距离是______m;(2)小明在书店停留了______min;(3)本次上学途中小明一共骑行了多少米?一共用了多少分钟?【答案】【分析】【解答】(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500m.(2)根据题意,小明在书店停留的时间为从8min到12min,故小明在书店停留了4min.(3)一共行驶的总路程=1200+(1200-600)+(1500-600)=1200+600+900=2700(m).共用了14min.。
鲁教版2019七年级数学第六章一次函数单元练习题(附答案)
鲁教版2019七年级数学第六章一次函数单元练习题(附答案)1.下列函数中,是一次函数但不是正比例函数的是( )A.y =-2xB.y =-5xC.y =-12x -D.y =21x x- 2.下列变量之间的关系中,是函数关系的是 ( )A.人的体重与年龄B.正方形的周长与边长C.长方形的面积与长D.y 中,y 与x3.下列点在一次函数y =2x 的图象上的是( )A .(2,3)B .(3,6)C .(0,3)D .(3,0)4.当kb <0时,一次函数y=kx+b 的图象一定经过( )A .第一、三象限B .第一、四象限C .第二、三象限D .第二、四象限5.如图,经过点B (1,0)的直线y =kx +b 与直线y =4x +4相交于点A (m ,83),则0<kx +b <4x +4的解集为( )A .x <-13B .-13<x <1C .x <1D .-1<x <1 6.已知反比例函数k y x=的图象如图所示,则y=kx-2的图象大致是(如图所示)( )A. B. C. D.7.一个有进水管与出水管的容器,从某时刻开始4min 内只进水不出水,在随后的8min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y (单位:L )与时间x (单位:min )之间的关系如图所示.则8min 时容器内的水量为( )8.已知一次函数2(2)4y k x k =++-的图象经过原点,则( )A.k =±2B.k =2C.k = -2D.无法确定9.根据下表:判断y 与x 的关系式正确的是( )A.3y x =B.13y x =C.3y x =-D.36y x =-+ 10.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到距A 地18千米的B 地,他们离开A 地的距离S (千米)和行驶时间t (小时)之间的函数关系图象如图所示,根据题目和图象所提供的信息,下列说法正确的是( )A.乙比甲先到达B 地B.乙在行驶过程中没有追上甲C.乙比甲早出发半小时D.甲的行驶速度比乙的行驶速度快11.一次函数的图象如图所示,则其函数关系式为_______.12.在一次自行车越野赛中,出发mh 后,小明骑行了25km ,小刚骑行了18km ,此后两人分别以a km/h ,b km/h 匀速骑行,他们骑行的时间t (单位:h )与骑行的路程s (单位:km )之间的函数关系如图所示,观察图象,可得小刚追上小明时离起点__________km ;13.如图,在平面直角坐标系中,为原点,直线与双曲线,分别交于,两点,则_____________.14.火车“动车组”以250千米/时的速度行驶,则行驶的路程s(千米)与行驶时间t(小时)之间的函数关系式是_______________,它是_________________函数.(填“正比例”或“一次”)15.已知一次函数y=kx+2k+3的图象不经过第三象限,则k 的取值范围是________. 16.一次函数y= -3x+9的图象与x 轴交点坐标是__________17.一次函数13y x =-+与2312y x =-+的图象的交点坐标是__________.当x __________时,12y y >.18.对于一次函数,当自变量的取值为时,相应的函数值的范围为,则该函数的解析式为 。
6、5一次函数的应用 同步练习题 -鲁教版(五四制)七年级数学上册
2021-2022学年鲁教版七年级数学上册《6.5一次函数的应用》同步练习题(附答案)1.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m22.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2B.x=0C.x=﹣1D.x=﹣33.下列各个选项中的网格都是边长为1的小正方形,利用函数的图象解方程5x﹣1=2x+5,其中正确的是()A.B.C.D.4.如图,已知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为()A.3B.C.4D.5.A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是米.6.已知A、B、C、D是平面坐标系中坐标轴上的点,且△AOB≌△COD.设直线AB的表达式为y=k1x+b1,直线CD的表达式为y=k2x+b2,则k1•k2=.7.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.8.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为米.9.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围成的三角形面积为4,那么b1﹣b2等于.10.如图,直线l:与x轴、y轴分别相交于点A、B,△AOB与△ACB关于直线l对称,则点C的坐标为.11.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a 的值.12.用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x为非负整数).(1)根据题意,填写下表:一次复印页数(页)5102030…甲复印店收费(元)0.52…乙复印店收费(元)0.6 2.4…(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x 的函数关系式;(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.13.甲、乙两车从A城出发前往B城,在整个行程中,两车离开A城的距离y与t的对应关系如图所示:(1)A、B两城之间距离是多少千米?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车出发多长时间,两车相距20千米.14.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C 处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=米/分;(2)写出d1与t的函数关系式:(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?15.在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x,购票总价为y):方案一:提供8000元赞助后,每张票的票价为50元;方案二:票价按图中的折线OAB所表示的函数关系确定.(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少?(2)求方案二中y与x的函数关系式;(3)至少买多少张票时选择方案一比较合算?16.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?14.某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型价格进价(元/盏)售价(元/盏)A型3045B型5070(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?18.某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:x(单位:台)102030y(单位:万元∕台)605550(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)19.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时a超过150千瓦时但不超过300千瓦时的部b分超过300千瓦时的部分a+0.35月份,该市居民甲用电100千瓦时,交电费60元;居民乙用电200千瓦时,交电费122.5元.该市一户居民在2012年5月以后,某月用电x千瓦时,当月交电费y元.(1)上表中,a=;b=;(2)请直接写出y与x之间的函数关系式;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?20.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.参考答案1.解:如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.故选:B.2.解:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(﹣3,0),∴方程ax+b=0的解是x=﹣3,故选:D.3.解:5x﹣1=2x+5,∴实际上求出直线y=5x﹣1和y=2x+5的交点坐标,把x=0分别代入解析式得:y1=﹣1,y2=5,∴直线y=5x﹣1与y轴的交点是(0,﹣1),y=2x+5与y轴的交点是(0,5),选项A、B、C、D都符合,∴直线y=5x﹣1中y随x的增大而增大,故选项D错误;∵直线y=2x+5中y随x的增大而增大,故选项C错误;当x=2时,y=5x﹣1=9,故选项B错误;选项A正确;故选:A.4.解:由直线y=x+b(b>0),可知∠1=45°,∵∠α=75°,∴∠ABO=180°﹣45°﹣75°=60°,∴OB=OA÷tan∠ABO=.∴点B的坐标为(0,),∴b=.故选:B.5.解:由题意可得,甲的速度为:(2380﹣2080)÷5=60米/分,乙的速度为:(2080﹣910)÷(14﹣5)﹣60=70米/分,则乙从B到A地用的时间为:2380÷70=34分钟,他们相遇的时间为:2080÷(60+70)=16分钟,∴甲从开始到停止用的时间为:(16+5)×2=42分钟,∴乙到达A地时,甲与A地相距的路程是:60×(42﹣34﹣5)=60×3=180米,故答案为:180.6.解:设点A(0,a)、B(b,0),∴OA=a,OB=﹣b,∵△AOB≌△COD,∴OC=a,OD=﹣b,∴C(a,0),D(0,b),∴k1==,k2==,∴k1•k2=1,故答案为:1.7.解:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m米/秒,则(m﹣2.5)×(180﹣30)=75,解得:m=3米/秒,则乙的速度为3米/秒,乙到终点时所用的时间为:=500(秒),此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500﹣1325=175(米).故答案为:175.8.解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得:,∴这次越野跑的全程为:1600+300×2=2200米.故答案为:2200.9.解:如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=﹣b2,∵△ABC的面积为4,∴OA•OB+=4,∴+=4,解得:b1﹣b2=4.故答案为:4.10.解:过点C作CE⊥x轴于点E由直线AB的解析式可知当x=0时,y=,即OB=当y=0时,x=1,即OA=1∵∠AOB=∠C=90°,tan∠3=OB:OA=∴∠3=60°∵△AOB与△ACB关于直线l对称∴∠2=∠3=60°,AC=OA=1∴∠1=180°﹣∠2﹣∠3=60°在RT△ACE中AE=CE=∴OE=1+=∴点C的坐标是(,).11.解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.(2)当x=a时,y C=2a+1;当x=a时,y D=4﹣a.∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=.∴a的值为或.12.解:(1)当x=10时,甲复印店收费为:0,1×10=1;乙复印店收费为:0.12×10=1.2;当x=30时,甲复印店收费为:0,1×30=3;乙复印店收费为:0.12×20+0.09×10=3.3;故答案为1,3;1.2,3.3;(2)y1=0.1x(x≥0);y2=;(3)顾客在乙复印店复印花费少;当x>70时,y1=0.1x,y2=0.09x+0.6,设y=y1﹣y2,∴y1﹣y2=0.1x﹣(0.09x+0.6)=0.01x﹣0.6,设y=0.01x﹣0.6,由0.01>0,则y随x的增大而增大,当x=70时,y=0.1∴x>70时,y>0.1,∴y1>y2,∴当x>70时,顾客在乙复印店复印花费少.13.解:(1)由图象可知A、B两城之间距离是300千米.(2)设乙车出发x小时追上甲车.由图象可知,甲的速度==60千米/小时.乙的速度==100千米/小时.由题意60(x+1)=100x解得x=1.5小时.(3)设y甲=kt+b,则解得,∴y甲=60t﹣300,设y乙=k′t+b′,则,解得,∴y乙=100t﹣600,∵两车相距20千米,∴y甲﹣y乙=20或y乙﹣y甲=20或y甲=20或y甲=280,即60t﹣300﹣(100t﹣600)=20或100t﹣600﹣(60t﹣300)=20或60t﹣300=20或60t ﹣300=280解得t=7或8或或,∵7﹣5=2,8﹣5=3,﹣5=,﹣5=∴甲车出发2小时或3小时或小时或小时,两车相距20千米.14.解:(1)乙的速度v2=120÷3=40(米/分),故答案为:40;(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=;(3)d2=40t,当0≤t<1时,d2+d1>10,即﹣60t+60+40t>10,解得0≤t<2.5,∵0≤t<1,∴当0≤t<1时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d2﹣d1>10,即40t﹣(60t﹣60)>10,当1≤时,两遥控车的信号不会产生相互干扰综上所述:当0≤t<2.5时,两遥控车的信号不会产生相互干扰.15.解:(1)若购买120张票时,方案一购票总价:y=8000+50x=14000元,方案二购票总价:y=13200元.(2)当0≤x≤100时,设y=kx,代入(100,12000)得12000=100k,解得k=120,∴y=120x;当x>100时,设y=kx+b,代入(100,12000)、(120,13200)得,解得,∴y=60x+6000.(3)由(1)可知,要选择方案一比较合算,必须超过120张,由此得8000+50x<60x+6000,解得x>200,所以至少买201张票时选择方案一比较合算.16.解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,由题意,得25x+45(1200﹣x)=46000,解得:x=400.∴购进乙型节能灯1200﹣400=800(只).答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯(1200﹣a)只,商场的获利为y 元,由题意,得y=(30﹣25)a+(60﹣45)(1200﹣a),y=﹣10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴﹣10a+18000≤[25a+45(1200﹣a)]×30%,∴a≥450.∵y=﹣10a+18000,∴k=﹣10<0,∴y随a的增大而减小,∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.17.解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,即y=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴25≤x≤100,∵k=﹣5<0,y随x的增大而减小,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.18.解:(1)设y与x之间的关系式为y=kx+b,由题意,得,解得:,∴y=﹣x+65.∵该机器生产数量至少为10台,但不超过70台,∴10≤x≤70;(2)由题意,得xy=2000,﹣x2+65x=2000,﹣x2+130x﹣4000=0,解得:x1=50,x2=80>70(舍去).答:该机器的生产数量为50台;(3)设每月销售量z(台)与售价a(万元∕台)之间的函数关系式为z=ma+n,由函数图象,得,解得:,∴z=﹣a+90.当z=25时,a=65,由(2)知:成本每台为2000÷50=40(万元).总利润为:25×(65﹣40)=625(万元).答:该厂第一个月销售这种机器的利润为625万元.19.解:(1)根据5月份,该市居民甲用电100千瓦时,交电费60元;得出:a=60÷100=0.6,居民乙用电200千瓦时,交电费122.5元.则(122.5﹣0.6×150)÷(200﹣150)=0.65,故:a=0.6;b=0.65.(2)当x≤150时,y=0.6x.当150<x≤300时,y=0.65(x﹣150)+0.6×150=0.65x﹣7.5,当x>300时,y=0.9(x﹣300)+0.6×150+0.65×150=0.9x﹣82.5;(3)当居民月用电量x≤150时,0.6x≤0.62x,故x≥0,当居民月用电量x满足150<x≤300时,0.65x﹣7.5≤0.62x,解得:x≤250,当居民月用电量x满足x>300时,0.9x﹣82.5≤0.62x,解得:x≤294,综上所述,试行“阶梯电价”后,该市一户居民月用电量不超过250千瓦时时,其月平均电价每千瓦时不超过0.62元.20.解:(1)小明骑车速度:在甲地游玩的时间是1﹣0.5=0.5(h).(2)妈妈驾车速度:20×3=60(km/h)设直线BC解析式为y=20x+b1,把点B(1,10)代入得b1=﹣10∴y=20x﹣10设直线DE解析式为y=60x+b2,把点D(,0)代入得b2=﹣80∴y=60x﹣80…∴解得∴交点F(1.75,25).答:小明出发1.75小时(105分钟)被妈妈追上,此时离家25km.(3)方法一:设从家到乙地的路程为m(km)则点E(x1,m),点C(x2,m)分别代入y=60x﹣80,y=20x﹣10得:,∵∴∴m=30.方法二:设从妈妈追上小明的地点到乙地的路程为n(km),由题意得:∴n=5∴从家到乙地的路程为5+25=30(km).方法三:设从家到乙地的路程为n(km),由题意得:(n/20+0.5)﹣(n/60+4/3)=10/60∴n=30∴从家到乙地的路程为30(km).方法四:设小明离家a小时到达乙地,则妈妈到达乙地时,小明离家(a﹣)小时,则60(a﹣﹣)=20(a﹣),解得,a=2,20×(2﹣)=30,∴从家到乙地的路程为30(km).。
鲁教版初中数学七年级上册一次函数精练题(含答案解析)
鲁教版初中数学七年级上册一次函数精练题(含答案解析)(30分钟 50分)一、选择题(每小题4分,共12分)1.若y=x+2-3b是正比例函数,则b的值是( )(A)0 (B)-错误!未找到引用源。
(C)错误!未找到引用源。
(D)-错误!未找到引用源。
2.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24m,要围成的菜园是如图所示的矩形ABCD.设BC边的长为xm,AB边的长为ym,则y与x之间的函数关系式是( )(A)y=-2x+24(0<x<12)(B)y=-错误!未找到引用源。
x+12(0<x<24)(C)y=2x-24(0<x<12)(D)y=错误!未找到引用源。
x-12(0<x<24)3.若5y+2与x-3成正比例,则y是x的( )(A)正比例函数(B)一次函数(C)没有函数关系(D)以上答案均不正确二、填空题(每小题4分,共12分)4.已知y=(k-1)x|k|+k2-4是一次函数,则(3k+2)2014的值是________.5.从甲地向乙地打长途电话,按时间收费,3min内收费2.4元,超过3min的部分每1min收1元(不足1min按1min计),则时间t≥3(min)时,电话费y(元)与时间t(min)之间的函数关系式是________.6.已知|a+1|+(b-2)2=0,则函数y=(b+3)x-a+1-2b+b2的关系式是________,当x=-错误!未找到引用源。
时,y=________.三、解答题(共26分)7.(8分)已知:y与2x成正比例,且当x=3时,y=-12.求y与x的函数关系式.8.(8分)某种子商店销售“黄金一号”玉米种子,为惠民促销,推出两种销售方案供采购者选择.方案一:每千克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克,则超过3千克的部分的种子价格打7折.(1)请分别求出方案一和方案二中购买的种子数量x(千克)和付款金额y(元)之间的函数关系式.(2)若你去购买一定量的种子,你会怎样选择方案?说明理由.【拓展延伸】9.(10分)生态公园计划在园内的坡地上造一片有A,B两种树的混合林,需要购买这两种树苗共2000棵,种植A,B两种树苗的相关信息如表:项目品种单价(元/棵) 成活率劳务费(元/棵)A 15 95% 3B 20 99% 4设购买A种树苗x棵,造这片林的总费用为y元,解答下列问题:(1)写出y(元)与x(棵)之间的函数关系式;(2)假设这批树苗种植后成活1960棵,则造这片林的总费用需多少元?答案解析1.【解析】选C.由正比例函数的定义可得:2-3b=0,解得b=错误!未找到引用源。
鲁教版五四制七年级数学上册第四章单元试卷.docx
单元评价检测第四章(45分钟 100分)一、选择题(每小题4分,共28分)1.(-0.7)2的平方根是( )(A)-0.7 (B)±0.7 (C)0.7 (D)0.492.下列判断中,你认为正确的是( )(A)0的倒数是0 (B)π是分数(C)大于1 (D)的值是±23.下列说法正确的是( )(A)a一定是正数(B)是有理数(C)2是有理数(D)平方等于自身的数只有14.如图,在数轴上点A,B对应的实数分别为a,b,则有( )(A)a+b>0 (B)a-b>0(C)ab>0 (D)>05.下列说法正确的有:①一个数的立方根的相反数等于这个数的相反数的立方根;②64的平方根是±8,立方根是±4;③±表示非负数a的平方根,表示a的立方根;④-一定是负数( )(A)①③(B)①③④(C)②④(D)①④6.如图,下列各数中,数轴上点A表示的可能是( )(A)4的算术平方根(B)4的立方根(C)8的算术平方根(D)8的立方根7.如果m是2012的算术平方根,那么的平方根为( )(A)±(B)(C)-(D)±二、填空题(每小题5分,共25分)8.写出一个比4小的正无理数:______.9.若=3-m,则m的取值范围为__________.10.比较大小:2______ (用“<”或“>”号填空).11.若x,y为实数,且+|y-2|=0,则x+y=__________.12.对于两个不相等的实数a,b,定义一种新的运算如下,a*b=(a+b>0),如:3*2==,那么6*(5*4)=__________.三、解答题(共47分)13.(10分)如图所示,数轴上表示1和的对应点分别为A,B,点B到点A的距离与点C到点O的距离相等,设点C所表示的数为x,(1)请你写出数x的值.(2)求(x-)2的立方根.14.(12分)计算:(1) (-2)2-+(-3)0.(2) (-3)2+(-3)×2-.15.(12分)“欲穷千里目,更上一层楼”说的是登得高看得远,若观测点的高度为h,观测者能看到的最远距离为d,则d≈,其中r为地球半径(通常取6400km),小明站在海边一块岩石上,眼睛离地面的高度为20m,他观测到远处一艘轮船刚露出海平线,此时该船离小明约有多远?16.(13分)(1)在实数范围内定义运算“⊕”,其法则为:a⊕b=a2-b2,求方程(4⊕3)⊕x=24的解.(2)已知2a的平方根是±2,3是3a+b的立方根,求a-2b的值.答案解析1.【解析】选B.因为(-0.7)2=0.49,又因为(±0.7)2=0.49,所以0.49的平方根是±0.7.2.【解析】选C.0没有倒数,故A错误;π是一个无理数,故B错误;是指4的算术平方根,结果为2,故D错误.3.【解析】选B.a有可能是小于等于0的数,即不一定是正数;是分数,即也是有理数;2显然是无理数;平方等于自身的有0和1,不单单只有1,所以只有是有理数正确.4.【解析】选A.由数轴上a,b两点的位置可知,a<0,b>0,|a|<b,所以a+b>0,a-b<0,ab<0,<0,故选项A正确;选项B,C,D错误.5.【解析】选A.①因为一对相反数的立方根仍是一对相反数,故说法①正确;②因为64的立方根是4,故说法②错误;③本题符合非负数平方根的表示方法,实数立方根的表示方法,故说法③正确;④因为-=0,故说法④错误.故选A.6.【解析】选C.由数轴知,点A表示的数是2与3之间的数,而4的算术平方根和8的立方根都是2,4的立方根小于2,8的算术平方根大于2小于3.7.【解析】选D.把2012缩小100倍,根据被开方数小数点的移动规律,其算术平方根为原来的十分之一,易得的平方根.故选D.8.【解析】此题答案不惟一,如,π,2等.答案:(答案不惟一)9.【解析】因为=3-m,所以3-m≥0,所以m≤3.答案:m≤310.【解析】将2转换成然后再进行大小的比较.答案:>11.【解析】由题意得,x=-3,y=2,所以x+y=-1.答案:-112.【解析】5*4==3,所以6*3==1.答案:113.【解析】(1)因为OB=,OA=1,所以AB=-1,所以OC=AB=-1,所以点C 所表示的数x为-1.(2)由(1)得(x-)2=(-1-)2=1,即(x-)2=1,1的立方根为1.14.【解析】(1)原式=4-+1=.(2)(-3)2+(-3)×2-=9-6-2=3-2.15.【解析】根据题意得,h=20m=0.02km,r=6400km,所以小明离船的距离d≈==16 km.16.【解析】(1)因为a⊕b=a2-b2,所以(4⊕3)⊕x=(42-32)⊕x=7⊕x=72-x2,所以72-x2=24,所以x2=25,所以x=±5.(2)由题意,2a=(±2)2,所以a=2,当a=2时,3a+b=6+b,由于33=6+b,所以b=21,所以a-2b=2-2×21=-40.初中数学试卷马鸣风萧萧。
一次函数单元测试题(含答案)
一次函数测试题一、相信你一定能填对!(每小题3分,共24分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=2x -B .y=12x - C .y=24x - D .y=2x +·2x - 2.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 3.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四4.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-125.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<36.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-17.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 8.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )二、你能填得又快又对吗?(每小题4分,共40分)9.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 10.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.11.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 12.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方. 13.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.14.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)15.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.16.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.17.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.18.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________. 三、认真解答,一定要细心哟!(共36分)23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(12分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?xy1234-2-1CA-14321O答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。
鲁教版七年级上册数学试题-第六章-《一次函数》单元评价检测(含答案)
《一次函数》单元检测(90分钟 120分)一、选择。
(每小题5分,共50分)1.下列函数中是一次函数但不是正比例函数的是( ) A .y=-4x B .x3-5y C .y=4x 2+6 D .y=-0.5x-1 2.下列直线表示的不是y 是x 的函数的是( )A .B .C .D .3.下列函数中,随着x 逐渐增大,y 反而逐渐减小的函数是( ) A .y=x B .y=0.001x C .y=13D .y=-5x4.一次函数y=-2x+1的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限 5.将直线y=-5x+1向下平移2个单位,得到的新直线是( ) A .y=-3x+1 B .y=-7x+1 C .y=-5x+3 D .y=-5x-1 6.若函数y=(k-1)x |k|+b+1是正比例函数,则k 和b 的值为( ) A.k=±1,b=-1 B.k=±1,b=0 C.k=1,b=-1 D.k=-1,b=-17.某地出租车按里程收费,2千米以内收费4元,每超过1千米加收1.5元.则路程x (x ≥2)千米与收费y (元)之间的函数关系式为( ) A .y=1.5x+1 B .y=1.5x+4 C .y=3x+1.5 D .y=1.5x-28.六月某市连降大雨,某部队前往救援,乘车行进一段路程之后,由于道路受阻,汽车无法通行,部队短暂休整后决定步行前往.下列图象能反映部队离开驻地的距离s(千米)与时间t(时)之间函数关系的是()A . B.C.D.二、填空题(每小题5分,共30分)11.已知y 与x+1成正比例,且x=1时,y=2.则x=-1时,y 的值是______. 12.已知△ABC 中,∠C=90°,设∠A 的度数为x ,∠B 的度数为y ,则y 与x 之间的函数关系式为 .13.直线y=3x+2沿y 轴向下平移5个单位,则平移后直线与y 轴的交点坐标为________.14.已知点P (2,a )和点Q (-3,b )都在正比例函数12y x 的图象上,则a b .(填“>”、“<”或“=”)15.为迎接省运会在我市召开,市里组织了一个梯形鲜花队参加开幕式,要求共站60排,第一排40人,后面每一排都比前一排多站一人,则每排人数y 与该排排数x 之间的函数关系式为 (x 的取值范围不要求写). 16.一辆货车从甲地匀速驶往乙地,到达后用了半小时卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地的速度的1.5倍.货车离甲地的距离y(千米)关于时间x(小时)的函数图象如图2所示.则a=________(小时).图2三、解答题(共40分)17.(8分)已知一次函数y=kx-4,当x=2时,y=-3. (1)求一次函数的表达式.(2)将该函数的图象向上平移6个单位,求平移后的图象与x 轴交点的坐标.18.(8分)如图3,已知直线y=kx+3与y=mx相交于点P(2,1).(1)求这两条直线的表达式;(2)求图中阴影部分的面积.图319.(12分)在平面直角坐标系中,过一点分别作x轴,y轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如,图6-6-7中过点P分别作x轴,y轴的垂线.与坐标轴围成矩形OAPB的周长与面积相等,则点P是和谐点.(1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;(2)若和谐点D(a,3)在直线y=-x+b(b为常数)上,求a,b的值.图420.(12分)某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案一:从包装盒加工厂直接购买.购买所需的费用y1与包装盒数x满足如图6-6-8①所示的函数关系.方案二:租赁机器自己加工.所需费用y2(包括租赁机器的费用和加工包装盒的费用)与包装盒数x满足如图5②所示的函数关系.根据图象回答下列问题:(1)方案一中每个包装盒的价格是多少元?(2)方案二中租赁机器的费用是多少元?加工一个包装盒的费用是多少元?(3)请分别求出y1、y2与x的函数关系式;(4)如果你是决策者,你认为选择哪种方案更省钱?请说明理由.图5答案解析一、选择1.D2.A3.D4.C5.D6.D7.A8.A9.A 【解析】甲的速度为8÷2=4(m/s),乙的速度为500÷100=5(m/s).b=5×100-4×(100+2)=92. 5a-4×(a+2)=0,解得a=8. c=100+92÷4=123,所以正确的有①②③.故选择A.10.D二、填空题11.0 12.y=90°-x 13.(0,-3) 14.> 15.y=x+3916. 5 【解析】由题意知,从甲地匀速驶往乙地,用时为3.2-0.5=2.7(小时), ∵返回的速度是它从甲地驶往乙地的速度的1.5倍,∴返回用的时间为2.7÷1.5=1.8(小时),所以a=3.2+1.8=5(小时)二、解答题17.【解析】(1)将x=2,y=-3代入y=kx-4,得-3=2k-4,所以k=,所以一次函数的表达式为y=x-4.(2)将y=x-4的图象向上平移6个单位得y=x+2,当y=0时,x=-4,所以平移后的图象与x轴交点的坐标为(-4,0).18.【解析】(1)因为直线y=kx+3与y=mx相交于点P(2,1),⎩(2)由y=-x+3过点(0,3)可知点B(0,3),即OB=3.19.【解析】(1)∵1×2≠2×(1+2),4×4=2×(4+4), ∴点M不是和谐点,点N是和谐点.(2)①当a>0时,∵点D(a,3)是和谐点,∴(a+3)×2=3a,∴a=6,∵点D(6,3)在直线 y=-x+b上,∴b=9.②当a<0时,∵点D(a,3)是和谐点,∴(-a+3)×2=-3a,∴a=-6,∵点D(-6,3)在直线y=-x+b上,∴b=-3.∴a=6,b=9或a=-6,b=-3.20.【解析】解析:(1)500÷100=5,∴方案一中每个包装盒的价格为5元.(2)根据题图可以知道租赁机器的费用为20 000元,加工一个包装盒的费用为(30 000-20 000)÷4 000=2.5(元). (3)设y1与x的函数关系式为y1=k1x(k1≠0),由题图①知函数的图象经过点(100,500),∴500=100k1,解得k1=5,∴y1与x的函数关系式为y1=5x.设y2与x的函数关系式为y2=k2x+b(k2≠0),由题图②可知函数的图象经过点(0,20 000)和(4 000,30 000), ∴b=20 000且4 000k2+b=30 000,将b=20 000代入4 000k2+b=30 000,解得k2=2.5,∴y2与x的函数关系式为y2=2.5x+20 000.(4)令5x=2.5x+20 000,解得x=8 000,∴当x=8 000时,两种方案同样省钱;当x<8 000时,选择方案一更省钱;当x>8 000时,选择方案二更省钱.。
鲁教版七年级数学上册第六章一次函数单元过关测试卷C卷(附答案)
鲁教版七年级数学上册第六章一次函数单元过关测试卷C 卷(附答案)一、单选题1.甲、乙两车从A 地出发,沿同一路线驶向B 地.甲车先出发匀速驶向B 地,40min 后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km /h ,结果与甲车同时到达B 地.甲乙两车距A 地的路程y (km )与乙车行驶时间x (h )之间的函数图象如图所示,则下列说法中正确的有( ) ① 4.5a =;②甲的速度是60km /h ;③乙出发80min 追上甲;④乙刚到达货站时,甲距B 地180km .A .4个B .3个C .2个D .1个2.如图1,在等边△ABC 中,点E 、D 分别是AC ,BC 边的中点,点P 为AB 边上的一个动点,连接PE ,PD ,PC ,DE ,设AP=x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )A .线段PDB .线段PC C .线段PED .线段DE 3.如图①,ABC ∆中,D 为AB 上的动点,D 从点A 出发以1个单位长度/秒的速度向点B 移动,DM AB ⊥交折线A C B --于点M ,设AD x =,ADM ∆的面积为y ,若y 与x 的函数图象如图②所示,当M 为BC 中点时,y 的值为( )A .2B .92C 322D .324.甲、乙两人在笔直的公路上问起点、同终点、同方向匀速步行2400米,先到终点的人原地体息已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时向t (分)之间的函数关系如图所示,下列说法中正确的是( )A .甲步行的速度为8米/分B .乙走完全程用了34分钟C .乙用16分钟追上甲D .乙到达终点时,甲离终点还有360米5.如图所示,已知直线313y x =-+与x 、y 轴交于B 、C 两点,A (0,0),在△ABC 内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个△AA 1B 1,第2个△B 1A 2B 2,第3个△B 2A 3B 3,…则第n 个等边三角形的边长等于( )A .3B .3C .12n D .3 6.在平面直角坐标系中,已知点A(O,1),B(1,2),点P 在x 轴上运动,当点P 到A 、B 两点的距离之差的绝对值最大时,该点记为点P 1,当点P 到A 、B 两点的距离之和最小时,该点记为点P 2,以P 1P 2为边长的正方形的面积为A .1B .43C .169D .57.一条公路旁依次有A 、B 、C 三个村庄,甲、乙两人骑自行车分别从A 村、B 村同时出发前往C 村,甲、乙之间的距离()km s 与骑行时间()t h 之间的函数关系如图所示,下列结论:①A 、B 两村相距8km ;②甲出发2h 后到达C 村;③甲每小时比乙我骑行8km ;④相遇后,乙又骑行了15min 或45min 时两人相距2km .其中正确结论的个数是( )A .1B .2C .3D .48.速度分别为100km /h 和akm /h (0<a <100)的两车分别从相距s 千米的两地同时出发,沿同一方向匀速前行.行驶一段时间后,其中一车按原速度原路返回,直到与另一车相遇时两车停止.在此过程中,两车之间的距离y (km )与行驶时间t (h )之间的函数关系如图所示.下列说法:①a =60;②b =2;③c =b +52;④若s =60,则b =32.其中说法正确的是( )A .①②③B .②③④C .①②④D .①③④ 9.甲、乙两人在环形跑道上同起点、同终点、同方向匀速跑步400米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (单位:m )与乙出发的时间t (单位:s )之间的关系如图所示,下列说法:①甲的速度为5/m s ;②乙的速度为4/m s ;③乙出发80s 时甲、乙两人之间的距离为72m ;④甲到达终点时乙在终点休息了20s ;⑤28c a b --=,其中的正确的个数有( )A .1个B .2个C .3个D .4个10.如图1,在矩形ABCD 中,E 是AD 上一点,点P 从点B 沿折线BE ED DC --运动到点C 时停止;点Q 从点B 沿BC 运动到点C 时停止,速度均为每秒1个单位长度.如果点P ,Q 同时开始运动,设运动时间为t ,BPQ 的面积为y ,已知y 与t 的函数图象如图2所示,有以下结论:①10BC =;②3cos 5ABE ∠=;③当010t ≤≤时,225y t =;④当12t =时,BPQ 是等腰三角形;⑤当1420t ≤≤时,1105y t =-.其中正确的有( ).A .2个B .3个C .4个D .5个二、填空题11.正方形111A B C O ,2221A B C C ,3332A B C C ,...按如图的方式放置,点1A ,2A ,3A ...和点1C ,2C ,3C ...分别在直线1y x =+和x 轴上,则点2019B 的坐标为_______.12.如图,在直线l 1⊥x 轴于点(1,0),直线l 2⊥x 轴于点(2,0),直线l 3⊥x 轴于点(n ,0)……直线l n ⊥x 轴于点(n ,0).函数y =x 的图象与直线l 1,l 2,l 3,…,l n 分别交于点B 1,B 2,B 3,…,B n .如果△OA 1B 1的面积记为S 1,四边形A 1A 2B 2B 1的面积记作S 2,四边形A 2A 3B 3B 2的面积记作S 3,……四边形A n -1A n B n B n -1的面积记作S n ,那么S 2017=_______.13.甲、乙两辆汽车从 A 地出发前往相距 250 千米的 B 地,乙车先出发匀速行驶,一段时间后,甲车出发 匀速追赶,途中因油料不足,甲到服务区加油花了 6 分钟,为了尽快追上乙车,甲车提高速度仍保持 匀速行驶,追上乙车后继续保持这一速度直到 B 地,如图是甲、乙两车之间的距离 s (km 2),乙车出发时间 t (h )之间的函数关系图象,则甲车比乙车早到_____分钟.14.如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线y=33x+33上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是__.15.如图,在平面直角坐标系中,直线l:y=31x 交x轴于点A,交y轴于点B,点A1、A2、A3,…在x轴上,点B1、B2、B3,…在直线l上.若△OB1A,△A1B2A2,△A2B3A3,…均为等边三角形,则△A5B6A6的面积是__.16.如图,直线 y=x+1 与 y 轴交于点 A1,以 OA1为边,在 y 轴右侧作正方形 OA1B1C1,延长 C1B1交直线 y=x+1 于点 A2,再以 C1A2为边作正方形,…,这些正方形与直线 y=x+1 的交点分别为 A1,A2,A3,…,A n,则点 B n的坐标为_______.17.已知点A(3,4),点B(﹣1,1),在x轴上有两动点E、F,且EF=1,线段EF在x轴上平移,当四边形ABEF的周长取得最小值时,点E的坐标为________.18.如图,在平面直角坐标系中,直线l 2:31y x =+与x 轴交于点A ;与y 轴交于点B ,以x 轴为对称轴作直线31y x =+的轴对称图形的直线l 2,点A 1,A 2,A 3…在直线l 1上,点B 1,B 2,B 3…在x 正半轴上,点C 1,C 2,C 3…在直线l 2上,若△A 1B 1O 、△A 2B 2B 1、△A 2B 1B 2、…△A n B n B n ﹣1均为等边三角形,四边形A 1B 1C 1O 、四边形A 2B 2C 2B 1、四边形A 2B 1C 2B 2…、四边形A n B n ∁n B n ﹣1的面积分别是S 1、S 2、S 3、…、S n ,则S n 为_____.(用含有n 的代数式表示)19.如图,在平面直角坐标系第一象限内,直线y=x 与直线y=2x 的内部作等腰Rt△ABC,是∠ABC=90°,边BC∥x 轴,AB∥y 轴,点A (1,1)在直线y=x 上,点C 在直线y=2x 上:CB 的延长线交直线y=x 于点A 1,作等腰Rt△A 1B 1C 1,是∠A 1B 1C 1=90°,B 1C 1∥x 轴,A 1B 1∥y 轴,点C 1在直线y=2x 上…按此规律,则等腰Rt△A n B n C n 的腰长为______.三、解答题20.如图,已知四边形ABCO 是平行四边形,点C 和O 在x 轴上,且O 为坐标原点,点33A-(,),和点()123B -,,连接CA 并延长交y 轴于点D .(1)求直线AC 的解析式;(2)若点P 从C 出发以2个单位/秒的速度沿x 轴向右运动,同时点Q 从O 出发,以1个单位/秒的速度沿x 轴向左运动,过点P ,Q 分别作x 轴的垂线交射线CD 和射线OA 分别于点E ,F ,请猜想四边形EPQF 的形状,(点P ,Q 重合除外),并证明你的结论.(3)在(2)的条件下,当点P 运动多少秒时,四边形EPQF 是正方形?直接写出结论. 21.如图①,正方形ABCD 的边长为6cm ,动点P 从点A 出发,在正方形的边上沿A B C D →→→运动,设运动的时间为()t s ,点P 移动的路程为()s cm ,s 与t 的函数图象如图②,请回答下列问题:(1)点P 在AB 上运动的时间为 s ,在CD 上运动的速度为 /:cm s(2)设APD ∆的面积为2()y cm ,求当点P 在CD 上运动时,y 与t 之间的函数解析式;(3)①下列图表示APD ∆的面积y 与时间t 之间的函数图象是 .②当t = s 时,APD ∆的面积为212cm22.A 、B 与C 三地依次..在一条直线上.甲,乙两人同时分别....从A,B 两地沿直线匀速步行到C 地,甲到达C 地花了m 分钟.设两人出发x(分钟)时,甲离..B .地的距离为.....y .(米),y 与x 的函数图像如图所示.(1)A地离C地的距离为米,m= ;(2)已知乙的步行速度是40米/分钟,设乙步行时与B地的距离为y(米),直接写出y 与x的函数关系式及自变量x的取值范围,并在图中画出此函数的图像;(3)乙出发几分钟后两人在途中相遇?23.如下图所示,直线y=-12x+3与坐标轴分别交于点A,B,与直线y=x交于点C,线段OA上的点Q以每秒1个单位的速度从点O出发向点A作匀速运动,运动时间为t 秒,连结CQ.(1)求出点C的坐标;(2)若△OQC是等腰直角三角形,则t的值为________;(3)若CQ平分△OAC的面积,求直线CQ对应的函数表达式.24.8分,如图,在平面直角坐标系中,已知直线的解析式为,直线交轴于点,交轴于点.(1)若一个等腰直角三角形OBD的顶点D与点C重合,直角顶点B在第一象限内,请直接写出点B的坐标;(2)过点B作x轴的垂线l,在l上是否存在一点P,使得△AOP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)试在直线AC上求出到两坐标轴距离相等的所有点的坐标.25.某公司有A型产品50件,B型产品50件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店 200 170 乙店 160 150设分配给甲店A 型产品x (2050x ≤≤)件,这家公司卖出这100件产品的总利润为W (元)(1)写出W 关于x 的关系式.(要求化简)(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案?(3)实际销售过程中,公司发现这批产品尤其是A 型产品很畅销,便决定对甲店的最后11件A 型产品每件提价a 元销售(a 为正整数).两店全部销售完毕后结果的总利润为18000元,求a 和对应的x 的值.26.为了能有效地使用电力资源,跃进花园小区实行居民峰谷用电,居民家庭在峰时段(上午8:00—晚上21:00)用电的电价为0.55元/度,谷时段(晚上21:00—次日晨8:00)用电的电价为0.35元/度.(1)若朱老师家某月用电100度,其中峰时段用电x 度,这个月应缴纳电费 度;当朱老师家峰时段用电60度时,求应缴纳电费.(2)朱老师生活节俭,每天早晨5:30起身后立即用额定功率1500瓦的电水壶烧水,10分钟能烧开一壶水。
鲁教版五四制七年级上册数学全册单元测试卷
鲁教版五四制七年级上册数学全册试卷(五套单元试卷+一套期末测试卷)第一章测试卷一、选择题(每题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D,则△ABC中AC 边上的高是线段()A.AE B.CD C.BF D.AF3.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于() A.6 B.8 C.10 D.124.下列各条件中,能作出唯一的△ABC的是()A.AB=4,BC=5,AC=10 B.AB=5,BC=4,∠A=30°C.∠A=90°,AB=10 D.∠A=60°,∠B=50°,AB=5 5.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是()A.14 B.17 C.22 D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB =A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1 B.2 C.3 D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF -S△BEF等于()A.1 B.2 C.3 D.410.如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成7个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,…,P n,把△ABC分成()个互不重叠的小三角形.A.2n B.2n+1 C.2n-1 D.2(n+1)二、填空题(每题3分,共24分)11.一个三角形的其中两个内角为88°,32°,则这个三角形的第三个内角的度数为________.12.要测量河两岸相对的两点A,B间的距离(AB垂直于河岸BF),先在BF上取两点C,D,使CD=CB,再作出BF的垂线DE,且使A,C,E三点在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB.因此测得ED的长就是AB的长.判定△EDC≌△ABC的理由是____________.13.如图,E点为△ABC的边AC的中点,∥AB,若MB=6 cm,=4 cm,则AB=________.14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB,需要说明△C′O′D′≌△COD,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是____________;已知四边形EFMN的四边长分别为e,f,m,n,若e=3,f =4,n=10,则m的取值范围是____________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.17.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则∠1+∠2=________.18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=12(AB+AD),若∠D=115°,则∠B=________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分)19.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD -AB.22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,在R t△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.25.已知点P是R t△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.A2.C:因为BF⊥AC于点F,所以△ABC中AC边上的高是线段BF,故选C. 3.A:因为△ABC≌△EDF,所以AC=EF.所以AE=CF.因为AF=20,EC=8,所以AE=CF=6.故选A.4.D5.B:由已知条件AB∥ED可得,∠B=∠D,由CD=BF可得,BC=DF,再补充条件AB=ED,可得△ABC≌△EDF,故选B.6.C7.C8.B9.B:易得S△ABE=13×12=4,S△ABD=12×12=6,所以S△ADF-S△BEF=S△ABD-S△ABE=2.10.B:△ABC的三个顶点和它内部的点P1,把△ABC分成的互不重叠的小三角形的个数=3+2×0;△ABC的三个顶点和它内部的点P1,P2,把△ABC分成的互不重叠的小三角形的个数=3+2×1;△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成的互不重叠的小三角形的个数=3+2×2,所以△ABC 的三个顶点和它内部的点P1,P2,P3,…,P n,把△ABC分成的互不重叠的小三角形的个数=3+2(n-1)=2n+1.二、11.60°12.ASA:由题意可知,∠ECD=∠ACB,∠EDC=∠ABC=90°,CD=CB,故可用ASA说明两个三角形全等.13.10 cm:由∥AB,点E为AC的中点,可得∠EAM=∠E,AE=CE.又因为∠AEM=∠CEN,所以△AEM≌△CEN.所以AM==4 cm.所以AB=AM+MB =4+6=10(cm).14.SSS15.1<c<7;3<m<17:由三角形的三边关系得第三边的取值范围为4-3<c<4+3,即1<c<7.同理,得四边形EFMN对角线EM的取值范围为4-3<EM<4+3,即1<EM<7.所以10-7<m<10+7,即3<m<17.16.5:由已知可得,∠ADC=∠BDF=∠BEC=90°,所以∠DAC=∠DBF.又因为AC=BF,所以△ADC≌△BDF.所以AD=BD=8,DF=DC=3.所以AF =AD -DF =8-3=5.17.90° :如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE ,所以△ADC ≌△BEA .所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°.18.65° :过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .又因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在△CAF 和△CAE 中,⎩⎨⎧∠AFC =∠AEC ,∠CAF =∠CAE ,AC =AC ,所以△CAF ≌△CAE (AAS).所以FC =EC ,AF =AE .又因为AE =12(AB +AD ),所以AF =12(AE +EB +AD ),即AF =BE +AD .又因为AF =AD +DF ,所以DF=BE .在△FDC 和△EBC 中,⎩⎨⎧CF =CE ,∠CFD =∠CEB ,DF =BE ,所以△FDC ≌△EBC (SAS).所以∠FDC =∠EBC .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°.因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.20.解:能作出两个等腰三角形,如图所示.21.解:因为AB =AC ,所以AD -AB =AD -AC =CD .因为BD -BC <CD ,所以BD -BC <AD -AB .22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离.(3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO ,所以△AOB ≌△AOD .所以AD =AB .23.解:△AEM ≌△A ,△BMF ≌△DNF ,△ABN ≌△ADM .(任写其中两对即可)选择△AEM ≌△A :因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB =∠EAD .所以∠EAM =∠CAN .在△AEM 和△A 中,⎩⎨⎧∠E =∠C ,AE =AC ,∠EAM =∠CAN ,所以△AEM ≌△A (ASA).选择△ABN ≌△ADM :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).选择△BMF ≌△DNF :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).所以AN =AM .所以BM =DN .又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF (AAS).(任选一对进行说明即可)24.解:因为∠ACB =90°,所以∠ECF +∠BCD =90°.因为CD ⊥AB ,所以∠BCD +∠B =90°.所以∠ECF =∠B .在△ABC和△FCE中,∠B=∠ECF,BC=CE,∠ACB=∠FEC=90°,所以△ABC≌△FCE(ASA).所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.第二章测试卷一、选择题(每题3分,共30分)1.下面所给的图中是轴对称图形的是()2.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l 垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个3.下列说法正确的是()A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴4.如图是小明在平面镜里看到的电子钟示数,这时的实际时间是() A.12:01 B.10:51 C.10:21 D.15:105.如图,在△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°6.如图,A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC,BC两边高的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处7.如图,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()8.如图,已知:AB-AC=2 cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长为14 cm,则AC的长是()A.6 B.7 C.8 D.99.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于()A.65°B.50°C.60°D.57.5°10.如图,已知AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED 的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE =DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有() A.4个B.3个C.2个D.1个二、填空题(每题3分,共24分)11.有些字母是轴对称图形,在E,H,I,M,N这5个字母中,是轴对称图形的是__________.12.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.13.如图是一个经过改造的台球桌面示意图(该图由相同的小正方形组成),图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入________号球袋.14.等腰三角形一腰上的高与底边所夹的角为∠α,则这个等腰三角形的顶角为________.15.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E,F为AD上的两点,若△ABC的面积为12,则图中阴影部分的面积是________.16.如图,在直角三角形ABC中,∠B=90°,AD平分∠BAC,交边BC于点D,如果BD=2,AC=6,那么△ADC的面积等于________.17.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O 恰好重合,则∠OEC=________.18.小威在计算时发现:11×11=121,111×111=12 321,1 111×1 111=1 234 321,…,他从中发现了一个规律.请根据他所发现的规律很快地写出111 111 111×111 111 111=________________________________________________________.三、解答题(19题8分,20~21题每题10分,24题14分,其余每题12分,共66分)19.如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.20.两个城镇A,B与两条公路l1,l2的位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中用尺规作图找出所有符合条件的点C(不写已知、求法、作法,只保留作图痕迹).21.如图,在等边三角形ABC中,∠ABC,∠ACB的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.22.如图,在△ABC中,AB=AC,AD⊥BC于点D,CE⊥AB于点E,AE=CE.试说明:(1)△AEF≌△CEB;(2)∠ABF=2∠FBD.23.操作与探究.(1)如图,分别画出①中“”和“”关于直线l的对称图形(画出示意图即可);(2)如图,②中小冬和小亮上衣上印的字母分别是什么?(3)把字母“”和“”写在薄纸上,观察纸的背面,写出你看到的字母背影;(4)小明站在三个学生的身后,这三个学生正向前方某人用手势示意一个三位数,从小明站的地方看(如图③所示),这个三位数是235.请你判断出他们示意的真实三位数是多少?24.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,是否存在△ADE是等腰三角形的情形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.答案一、1.A 2.A 3.C 4.B 5.A 6.C 7.A 8.A9.B :因为△DEF 是由△DEA 沿直线DE 翻折变换而来,所以AD =FD .因为D 是AB 边的中点,所以AD =BD .所以BD =FD .所以∠B =∠BFD .因为∠B =65°,所以∠BDF =180°-∠B -∠BFD =180°-65°-65°=50°.故选B.10.A :因为BF ∥AC ,所以∠C =∠CBF .因为BC 平分∠ABF ,所以∠ABC =∠CBF .所以∠C =∠ABC .所以AB =AC .因为AD 是△ABC 的角平分线,所以BD =CD ,AD ⊥BC .故②③正确.在△CDE 与△BDF 中,⎩⎨⎧∠C =∠DBF ,CD =BD ,∠CDE =∠BDF ,所以△CDE ≌△BDF .所以DE =DF ,CE =BF .故①正确;因为AE =2BF ,所以AC =3BF .故④正确.故选A.二、11.E ,H ,I ,M 12.213.1 :如图,该球最后将落入1号球袋.14.2∠α15.6 :因为AB =AC ,AD ⊥BC ,所以△ABC 关于直线AD 对称.所以S △BEF=S △CEF .因为△ABC 的面积为12,所以图中阴影部分的面积=12S △ABC =6.16.6 :过点D 作DE ⊥AC 于点E ,因为AD 平分∠BAC ,所以DE =BD =2.所以S △ADC =12AC ·DE =12×6×2=6.17.108° 18.12 345 678 987 654 321三、19.解:(1)如图,利用图中格点,可以直接确定出△ABC中各顶点的对称点的位置,从而得到△ABC关于直线MN的对称图形,即为△A′B′C′.(2)S△ABC=4×6-12×4×1-12×3×6-12×2×4=9.20.解:如图.点C1,C2即为所求作的点.21.解:同意.理由如下:如图,连接OE,OF.由题意知,BE=OE,CF=OF,∠OBC=∠OCB=30°,所以∠BOE=∠OBC=30°,∠COF=∠OCB=30°,∠BOC=120°.所以∠EOF=60°,∠OEF=60°,∠OFE=60°.所以△OEF是等边三角形.所以OE=OF=EF=BE=CF.所以E,F是BC的三等分点.22.解:(1)因为AD⊥BC,CE⊥AB,所以∠AEF=∠CEB=90°,∠AFE+∠EAF=90°,∠CFD+∠ECB=90°.又因为∠AFE=∠CFD,所以∠EAF=∠ECB.在△AEF和△CEB中,∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,所以△AEF≌△CEB(ASA).(2)由△AEF≌△CEB,得EF=EB,所以∠EBF=∠EFB.在△ABC中,AB=AC,AD⊥BC,所以BD=CD.所以FB=FC.所以∠FBD=∠FCD.因为∠EFB=180°-∠BFC=∠FBD+∠FCD=2∠FBD,所以∠EBF=2∠FBD,即∠ABF=2∠FBD.23.解:(1)图略.(2)“”和“”.(3)“”和“”.(4)他们示意的真实三位数是235.24.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:因为DC=2,AB=2,所以DC=AB.因为AB=AC,∠B=40°,所以∠C=∠B=40°.因为∠ADB=180°-∠ADC=∠DAC+∠C,∠DEC=180°-∠AED=∠DAC+∠ADE,且∠C=40°,∠ADE=40°,所以∠ADB=∠DEC.在△ABD与△DCE中,∠ADB=∠DEC,∠B=∠C,AB=DC,所以△ABD≌△DCE(AAS).(3)存在,∠BDA=110°或∠BDA=80°.第三章测试卷一、选择题(每题3分,共30分)1.下列各组数中,能够作为直角三角形的三边长的一组是() A.1,2,3 B.2,3,4 C.4,5,6 D.3,4,52.在Rt△ABC中,∠C=90°,若角A,B,C所对的三边分别为a,b,c,且a =7,b=24,则c的长为()A.26 B.18 C.25 D.213.如图,阴影部分是一个正方形,此正方形的面积是()A.16 B.8 C.4 D.24.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有()A.1个B.2个C.3个D.4个5.若△ABC的三边长分别为a,b,c,且满足(a-b)(a2+b2-c2)=0,则△ABC 是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6.如图,直线l上有三个正方形a,b,c,若a,b的面积分别为5和13,则c 的面积为()A.4 B.8 C.12 D.187.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线上的D′处.若AB=3,AD=4,则ED的长为()A.32B.3 C.1 D.438.如图,在△ABC中,AD是BC边上的中线,AC=17,BC=16,AD=15,则△ABC的面积为()A.128 B.136 C.120 D.2409.如图是台阶的示意图,已知每个台阶的宽度都是30 cm,每个台阶的高度都是15 cm,则A,B两点之间的距离等于()A.195 cm B.200 cm C.205 cm D.210 cm10.如图是一个圆柱形的饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一根到达底部的直吸管在罐内部分的长度a(罐壁的厚度和小圆孔的大小忽略不计)的范围是()A.12≤a≤13B.12≤a≤15 C.5≤a≤12 D.5≤a≤13二、填空题(每题3分,共24分)11.在Rt△ABC中,a,b为直角边,c为斜边,若a2+b2=16,则c=________.12.如图,在△ABC中,AB=5 cm,BC=6 cm,BC边上的中线AD=4 cm,则∠ADB=________.13.如图,一架长为4 m的梯子,一端放在离墙脚2.4 m处,另一端靠墙,则梯子顶端离墙脚的距离是________.14.飞机在空中水平飞行,某一时刻刚好飞到一个男孩正上方4 000 m处,过了10 s,飞机距离这个男孩头顶5 000 m,则飞机平均每小时飞行__________.15.已知a,b,c是△ABC的三边长,且满足关系(c2-a2-b2)2+|a-b|=0,则△ABC 的形状为____________.16.在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积为________.17.如图,在一根长90 cm的灯管上缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4 cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为________.18.如图,在Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.如图,在△ABC中,AD⊥BC于D,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.20.如图,在△ADC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB.若AB=20,求△ABD的面积.21.如图,∠ABC=90°,AB=6 cm,AD=24 cm,BC+CD=34 cm,C是直线l 上一动点,请你探索当点C离点B多远时,△ACD是一个以CD为斜边的直角三角形.22.若△ABC的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,判断△ABC 的形状.23.如图,在△ABC中,AB:BC:CA=3:4:5,且周长为36 cm,点P从点A 开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C 以2 cm/s的速度移动,如果同时出发,过3 s时,△BPQ的面积为多少?24.如图,圆柱形玻璃容器高19 cm,底面周长为60 cm,在外侧距下底1.5 cm 的点A处有一只蜘蛛,在蜘蛛正对面的圆柱形容器的外侧,距上底1.5 cm处的点B处有一只苍蝇,蜘蛛急于捕捉苍蝇充饥,请你帮蜘蛛计算它沿容器侧面爬行的最短距离.25.如图,甲是一个直角三角形ABC,它的两条直角边长分别为a,b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.(1)由图乙、图丙,可知①是以________为边长的正方形,②是以________为边长的正方形,③的四条边长都是________,且每个角都是直角,所以③是以________为边长的正方形;(2)图乙中①的面积为________,②的面积为________,图丙中③的面积为________;(3)图乙中①②面积之和为________;(4)图乙中①②的面积之和与图丙中③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?答案一、1.D 2.C 3.B 4.C 5.D 6.B7.A8.C9.A10.A二、11.412.90°13.3.2 m14.1 080 km15.等腰直角三角形16.126 cm2或66 cm217.150 cm18.169 24三、19.解:(1)因为AD⊥BC,所以△ABD和△ACD均为直角三角形.所以AB2=AD2+BD2,AC2=AD2+CD2.又因为AD=12,BD=16,CD=5,所以AB=20,AC=13.所以△ABC的周长为20+13+16+5=54.(2)由(1)知AB=20,AC=13,BC=21,因为AB2+AC2=202+132=569,BC2=212=441,所以AB2+AC2≠BC2.所以△ABC不是直角三角形.20.解:在△ADC中,因为AD=15,AC=12,DC=9,所以AC2+DC2=122+92=152=AD2.所以△ADC是直角三角形,且∠C=90°.在Rt△ABC中,AC2+BC2=AB2,所以BC=16.所以BD=BC-DC=16-9=7.所以S△ABD=12×7×12=42.21.解:设当BC=x cm时,△ACD是一个以CD为斜边的直角三角形.因为BC +CD=34 cm,所以CD=(34-x)cm.因为∠ABC=90°,AB=6 cm,所以在Rt△ABC中,由勾股定理得AC2=AB2+BC2=36+x2.在Rt△ACD中,AD=24 cm,由勾股定理得AC2=CD2-AD2=(34-x)2-576,所以36+x2=(34-x)2-576.解得x=8.所以当点C离点B 8 cm时,△ACD是一个以CD为斜边的直角三角形.22.解:因为a2+b2+c2+50=6a+8b+10c,所以a2+b2+c2-6a-8b-10c+50=0,即(a-3)2+(b-4)2+(c-5)2=0.所以a=3,b=4,c=5.因为32+42=52,即a2+b2=c2,所以根据勾股定理的逆定理可判定△ABC是直角三角形.:本题利用配方法,先求出a,b,c的值,再利用勾股定理的逆定理进行判断.23.解:设AB为3x cm,则BC为4x cm,AC为5x cm.因为△ABC的周长为36 cm,所以AB+BC+AC=36 cm,即3x +4x +5x =36.解得x =3.所以AB =9 cm ,BC =12 cm ,AC =15 cm.因为AB 2+BC 2=AC 2,所以△ABC 是直角三角形,且∠B =90°.过3 s 时,BP =9-3×1=6(cm),BQ =2×3=6(cm),所以S △BPQ =12BP ·BQ =12×6×6=18(cm 2).故过3 s 时,△BPQ 的面积为18 cm 2.24.解:如图,将圆柱侧面展开成长方形MNQP ,过点B 作BC ⊥MN 于点C ,连接AB ,则线段AB 的长度即为所求的最短距离.在Rt △ACB 中,AC =MN -AN -CM =16 cm ,BC 的长等于底面周长的一半,即BC =30 cm.由勾股定理得,AB 2=AC 2+BC 2=162+302=1 156=342,所以AB =34 cm.故蜘蛛沿容器侧面爬行的最短距离为34 cm.25.解:(1)a ;b ;c ;c (2)a 2;b 2;c 2 (3)a 2+b 2(4)图乙中①②的面积之和与图丙中③的面积相等.由大正方形的边长为a +b ,得大正方形的面积为(a +b )2,图乙中把大正方形分成了四部分,分别是边长为a 的正方形,边长为b 的正方形,还有两个长为a ,宽为b 的长方形.根据面积相等得(a +b )2=a 2+b 2+2ab .由图丙可得(a +b )2=c 2+4×12ab .所以a 2+b 2=c 2.能得到关于直角三角形三边长的关系:两直角边的平方和等于斜边的平方.第四章测试卷一、选择题(每题3分,共30分)1.9的算术平方根是()A.±3 B.3 C.-3 D. 32.下列4个数:9,227,π,(3)0,其中无理数是()A.9B.227C.π D.(3)3.下列各式中正确的是()A.49144=±712B.-3-278=-32C.-9=-3D.3(-8)2=44.已知a+2+|b-1|=0,那么(a+b)2 018的值为()A.1 B.-1 C.32 018D.-32 0185.若平行四边形的一边长为2,面积为45,则此边上的高介于() A.3与4之间B.4与5之间C.5与6之间D.6与7之间6.设边长为a的正方形的面积为2.下列关于a的四种结论:①a是2的算术平方根;②a是无理数;③a可以用数轴上的一个点来表示;④0<a<1.其中正确的是()A.①②B.①③C.①②③D.②③④7.实数a,b在数轴上对应点的位置如图所示,则化简a2-|a+b|的结果为() A.2a+b B.-2a+b C.b D.2a-b8.有一个数值转换器,原理如图所示,当输入x 为64时,输出y 的值是( )A .4 B.34 C. 3 D.32 9.一个正方体木块的体积是343 cm 3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是( )A.72 cm 2B.494 cm 2C.498 cm 2D.1472 cm 210.如图,数轴上A ,B 两点表示的实数分别为1和3,若点A 关于点B 的对称点为点C ,则点C 所表示的实数为( )A .2 3-1B .1+ 3C .2+ 3D .2 2+1二、填空题(每题3分,共24分)11.6的相反数是________;绝对值等于2的数是________.12.一个数的平方根与这个数的立方根相等,那么这个数是________.13.估算比较大小:(1)-10________-3.2;(2)3130________5.14.若2x +7=3,(4x +3y )3=-8,则3x +y =________.15.点A 在数轴上和表示1的点相距6个单位长度,则点A 表示的数为________. 16.若两个连续整数x ,y 满足x <5+1<y ,则x +y 的值是________.17.若x ,y 为实数,且|x -2|+y +3=0,则(x +y )2 017的值为________.18.任何实数a ,可用[a ]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72――→第一次[72]=8――→第二次[8]=2――→第三次[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行________次操作后变为1;只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题(19题16分,20题12分,24、25题每题10分,其余每题6分,共66分)19.计算:(1)(-1)2 018+16-94;(2)14+0.52-38;(3)-(-2)2+(-2)2-3-82;(4)2+|3-3 2|-(-5)2.20.求下列各式中未知数的值:(1)|a-2|=5;(2)4x2=25;(3)(x-0.7)3=0.02721.已知a,b,c在数轴上对应点的位置如图所示,化简:||a-||a+b+(c-a)2+||b-c.22.若实数a,b互为相反数,c,d互为倒数,求2(a+b)+38c d的值.23.已知a,b,c是△ABC的三边长,化简:(a+b+c)2-(b+c-a)2+(c-b-a)2.24.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若31-2x与33x-5互为相反数,求1-x的值.25.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失后经过的时间近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失后经过的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?答案一、1.B 2.C3.D:A中49144=712;B中-3-278=32;C中-9无算术平方根;只有D正确.4.A 5.B6.C:∵a2=2,a>0,∴a=2≈1.414,即a>1,故④错误.7.C8.B:64的立方根是4,4的立方根是3 4.9.D10.A二、11.-6;±212.013.(1)>(2)>14.-115.1-6或1+6:数轴上到某个点距离为a(a>0)的点有两个,易忽略左边的点而漏解.注意运用数形结合思想,利用数轴帮助分析.16.7:∵2<5<3,∴3<5+1<4.∵x<5+1<y,且x,y为两个连续整数,∴x=3,y=4.∴x+y=3+4=7.17.-1:∵|x-2|+y+3=0,∴|x-2|=0,y+3=0,∴x=2,y=-3.∴(x+y)2 017=[2+(-3)]2 017=(-1)2 017=-1.18.3;255三、19.解:(1)(-1)2 018+16-94=1+4-32=72.(2)14+0.52-38=12+0.5-2=-1.(3)-(-2)2+(-2)2-3-82=-4+2-(-4)=2.(4)2+|3-3 2|-(-5)2=2+(3 2-3)-5=2+3 2-3-5=3 2-6. 20.解:(1)由|a-2|=5,得a-2=5或a-2=- 5.当a-2=5时,a=5+2;当a-2=-5时,a=-5+2.(2)因为4x2=25,所以x2=254.所以x=±52.(3)因为(x-0.7)3=0.027,所以x-0.7=0.3.所以x=1.21.解:由数轴可知b<a<0<c,所以a+b<0,c-a>0,b-c<0.所以原式=-a-[-(a+b)]+(c-a)+[-(b-c)]=-a+a+b+c-a-b+c=-a+2c.22.解:由已知得a+b=0,cd=1,所以原式=0+38=2.23.解:因为a,b,c是△ABC的三边长,所以a+b+c>0,b+c-a>0,c-b-a<0.所以原式=a+b+c-(b+c-a)+(a+b-c)=3a+b-c.24.解:(1)因为2+(-2)=0,而且23=8,(-2)3=-8,有8+(-8)=0,所以结论成立.所以“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)由(1)验证的结果知,1-2x+3x-5=0,所以x=4,所以1-x=1-2=-1.25.解:(1)当t=16时,d=7×16-12=7×2=14(厘米).答:冰川消失16年后苔藓的直径为14厘米.(2)当d=35时,t-12=5,即t-12=25,解得t=37.答:如果测得一些苔藓的直径是35厘米,冰川约是在37年前消失的.第五章测试卷一、选择题(每题3分,共30分)1.点P(4,3)所在的象限是()A.第一象限B.第二象限 C.第三象限 D.第四象限2.根据下列表述,能确定位置的是()A.红星电影院2排B.北京市四环路C.北偏东30°D.东经118°,北纬40°3.如图,在直角坐标系中,卡片盖住的点的坐标可能是() A.(2,3) B.(-2,1) C.(-2,-2.5) D.(3,-2)4.点P(-2,3)关于x轴对称的点的坐标是()A.(-3,2) B.(2,-3) C.(-2,-3) D.(2,3)5.已知点A(-1,-4),B(-1,3),则()A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴6.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1) B.(-2,-1) C.(-4,1) D.(1,2)7.如图,将长为3的长方形ABCD放在平面直角坐标系中,AD∥x轴,若点D 的坐标为(6,3),则点A的坐标为()A.(5,3) B.(4,3) C.(4,2) D.(3,3)8.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()A.15 B.7.5 C.6 D.39.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3) B.(3,-3)C.(6,-6) D.(3,3)或(6,-6)10.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度,……以此类推,第n步的走法是:当n能被3整除时,向上走1个单位长度;当n被3除,余数为1时,向右走1个单位长度;当n被3除,余数为2时,向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是()A.(66,34) B.(67,33) C.(100,33) D.(99,34)二、填空题(每题3分,共24分)11.写出平面直角坐标系中第三象限内一个点的坐标:________.12.在直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是________.13.如图是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1,0),安化县城所在地用坐标表示为(-3,-1),那么南县县城所在地用坐标表示为________.14.第二象限内的点P(x,y)满足|x|=9,y2=4,则点P的坐标是__________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.如图,点A,B的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP 的面积为6,则点P的坐标为________.17.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B′处,则点B′的坐标为________.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n为自然数)的坐标为______(用n表示).三、解答题(19题6分,20题8分,21,23题每题9分,22题10分,其余每题12分,共66分)19.如图,如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50 m 记作50,图中点A记作(30°,50);北偏西45°的方向记作-45°,从O点出发沿着该方向的反方向走20 m记作-20,图中点B记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).20.春天到了,七(1)班组织同学到人民公园春游,张明、李华对着景区示意图(如图)描述牡丹园的位置(图中小正方形的边长为100 m).张明:“牡丹园的坐标是(300,300).”李华:“牡丹园在中心广场东北方向约420 m处.”实际上,他们所说的位置都是正确的.根据所学的知识解答下列问题:(1)请指出张明同学是如何在景区示意图上建立平面直角坐标系的,并在图中画出所建立的平面直角坐标系;(2)李华同学是用什么来描述牡丹园的位置的?请用张明同学所用的方法,描述出公园内其他地方的位置.21.在平面直角坐标系中,点A(2,m+1)和点B(m+3,-4)都在直线l上,且直线l∥x轴.(1)求A,B两点间的距离;(2)若过点P(-1,2)的直线l′与直线l垂直于点C,求垂足C点的坐标.22.如图,在平面直角坐标系中,O,A,B,C的坐标分别为(0,0),(-1,2),(-3,3)和(-2,1).(1)将图中的各个点的纵坐标不变,横坐标都乘-1,与原图形相比,所得图形有什么变化?画出图形并说明一下变化;(2)将图中的各个点的横坐标不变,纵坐标都乘-1,与原图形相比,所得图形有什么变化?画出图形并说明一下变化.。
2020-2021学年最新鲁教版五四制七年级数学上册《一次函数》单元测试题及答案解析-精编试题
单元评价检测第六章 (45分钟 100分)一、选择题(每小题4分,共28分)1.下列函数(1)y=π2x ;(2)y=3x+1;(3)y=5x;(4)y=2-3x ;(5)y=x 3+4中,一次函数有( ) (A)1个 (B)2个 (C)3个 (D)4个2.一次函数y=kx+b 的图象如图,则k ,b 的值是( )(A)32,-2 (B)23,-2 (C)-32,2(D)-23,2 3.周一的升旗仪式上,同学们看到匀速上升的旗子,能反映其高度与时间关系的图象大致是( )4.根据如图所示程序计算函数值,若输入的x的值为52,则输出的函数值为( )(A)32(B)25(C)425(D)2545.下列图形中,可能是一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是( )6.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段l1,l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪的速度分别是( )(A)3km/h和4km/h (B)3km/h和3km/h(C)4km/h和4km/h (D)4km/h和3km/h7.一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网所用的时间计费;方式B除收月基本费20元外,再以每分0.05元的价格按上网所用时间计费.若上网所用时间为xmin,计费为y元,如图,是在同一坐标系中,分别描述两种计费方式的函数图象,有下列结论:①图象甲描述的是方式A;②图象乙描述的是方式B;③当上网所用时间是500min时,选择方式B省钱.其中,正确结论的个数是( )(A)3 (B)2 (C)1 (D)0二、填空题(每小题5分,共25分)8.已知y与x+1成正比例,且x=1时,y=2.则x=-1时,y的值是______.9.一次函数y=2x-1的图象经过点(a,3),则a=______.10.如果点(m,2)在连接点A(0,4)和点B(-2,0)的直线上,则m的值是______.11.将直线y=x+4沿y轴向下平移2个单位长度,得到的直线经过第________象限.12.如图,已知A地在B地正南方3km处,甲乙两人同时分别从A,B两地向正北方向匀速直行,他们与A地的距离S(km)与所行的时间t(h)之间的函数关系图象用如图所示的AC和BD给出,当他们行走3h后,他们之间的距离为________km.三、解答题(共47分)13.(11分)已知一次函数y=kx-4,当x=2时,y=-3.(1)求一次函数的表达式.(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴交点的坐标. 14.(12分)已知一个正比例函数和一个一次函数,它们的图象都经过点P(-2,1),且一次函数的图象与y轴相交于Q(0,3).(1)求这两个函数的表达式.(2)在给出的坐标系中画出这两个函数图象.(3)求△POQ的面积.15.(12分)科学研究发现,空气含氧量y(g/m3)与海拔高度x(m)之间近似地满足一次函数关系,经测量,在海拔高度为0m的地方,空气含氧量约为299g/m3;在海拔高度为2000m的地方,空气含氧量约为235g/m3.(1)求出y与x的函数关系式.(2)已知某山的海拔高度为1200m,请你求出该山山顶处的空气含氧量约为多少.x+2的图象分别与x轴、y16.(12分)如图,一次函数y=-23轴交于点A,B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.求过B,C两点直线的表达式.答案解析1.【解析】选C.由一次函数的定义知(1)(2)(4)是一次函数.2.【解析】选B.由图象知b=-2,把x=3,y=0代入y=kx-2,得k=2.33.【解析】选D.A 中,旗子的高度先逐渐升高,到达最高点后,高度逐渐下降,所以不符合题意;B 中,旗子的高度始终不变,也不符合题意;C 中,随着时间的增大,旗子的高度越来越低,这是降旗的过程,不符合题意.4.【解析】选B.因为x=52在范围2≤x ≤4中,所以把x=52代入y=1x,得y=152=25. 5.【解析】选A.A 选项中的一次函数m<0,n>0,则有mn<0,正比例函数mn<0,符合;B 选项中一次函数m<0,n>0,则有mn<0,正比例函数mn>0,所以不符合;C 选项中m>0,n>0,则有mn>0,正比例函数mn<0,所以不符合;D 选项中m>0,n<0,则有mn<0,正比例函数mn>0,所以不符合.6.【解析】选D.根据图象知:小敏经过2.8-1.6=1.2小时,走了4.8km ,则其速度为4km/h ;小聪经过1.6h ,走了4.8km ,则其速度为3km/h.7.【解析】选A.根据一次函数图象特点:①图象甲描述的是方式A ,正确,②图象乙描述的是方式B ,正确,③当上网所用时间为500min 时,选择方式B 省钱,正确.8.【解析】因为y 与x+1成正比例,所以设y=k(x+1),因为x=1时,y=2,所以2=k ×2,即k=1,所以y=x+1.则当x=-1时,y=-1+1=0. 答案:09.【解析】将点(a ,3)代入函数y=2x-1得3=2a-1,解得a=2.答案:210.【解析】设直线AB 的表达式为y=kx+b ,由题意得,b=4,0=-2k+4,解得k=2,所以一次函数的表达式是y=2x+4.当y=2时,x=m 代入表达式得m=-1. 答案:-111.【解析】由题意可知,平移后直线的表达式为y=x+2. 因为k=1>0,b=2>0,所以直线y=x+2经过第一、二、三象限. 答案:一、二、三12.【解析】由图象求得AC 的表达式为S 1=2t ,BD 的表达式为S 2=12t+3,当t=3时,S 1=6,S 2=92. 所以两人相距1.5km. 答案:1.513.【解析】(1)将x=2,y=-3代入y=kx-4,得-3=2k-4,所以k=12,所以一次函数的表达式为y=12x-4. (2)将y=12x-4的图象向上平移6个单位得 y=12x+2,当y=0时,x=-4, 所以平移后的图象与x 轴交点的坐标为(-4,0).14.【解析】(1)设正比例函数和一次函数表达式分别为y=k 1x 和y=k 2x+3,则-2k 1=1,-2k 2+3=1,所以k 1=-12,k 2=1,所以正比例函数表达式为 y=-12x ,一次函数表达式为y=x+3. (2)y=-12x 过(0,0)和(2,-1)两点,y=x+3过(-3,0)和(0,3)两点,图象如图:(3)S △POQ =12OQ ·|x P |=12×3×2=3. 15.【解析】(1)设y=kx+b , 则有b=299,2000k+b=235,解得k=-4125,b=299,所以y=-4125x+299.(2)当x=1200时,y=-4125×1200+299=260.6(g/m 3),所以该山山顶处的空气含氧量约为260.6g/m 3.16.【解析】过点C作CE⊥x轴,垂足为E.因为∠BAC=90°,所以∠BAO+∠CAE=90°.因为∠BAO+∠OBA=90°,所以∠CAE=∠OBA.在△AOB和△CEA中{∠BOA=∠CEA=90°,∠OBA=∠CAE,AB=CA,所以△AOB≌△CEA(AAS),所以AE=OB=2,CE=OA=3,所以OE=OA+AE=3+2=5,所以C(5,3),x+2,所以,设直线BC的表达式为y=kx+b,把点B(0,2),C(5,3)代入解得y=15过B,C两点直线的表达式为y=1x+2.5。
一次函数单元测试题(含答案)
第十四章 一次函数测试题(时间:90分钟 总分120分)一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=2x -B .y=2x - C .y=24x - D .y=2x +·2x -2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )A .m>12B .m=12C .m<12D .m=-126.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-1⑧.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、认真解答,一定要细心哟!(共60分) 21.(14分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).22.(12分)一次函数y=kx+b 的图象如图所示:xy1234-2-1CA-14321O(1)求出该一次函数的表达式; (2)当x=10时,y 的值是多少? (3)当y=12时,•x 的值是多少?566-2xy1234-2-15-14321O23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。
一次函数_单元测试含答案
二、单选题:本大题共8小题,从第4小题到第5小题每题3.0分小计6.0分;从第6小题到第11小题每题4.0分小计24.0分;共计30.0分。
4、函数y=中,自变量x的取值范围是[]A.x>B.x<C.x≠D.x≠25、一列火车从青岛站出发,加速行驶一段时间后开始匀速行驶.过了一段时间,火车到达下一个车站,乘客上下车后,火车又加速,一段时间后再次开始匀速行驶.下面图________可以近似地刻画出火车在这段时间内的速度变化情况.[]A B C.D.6、正比例函数如图1所示,则这个函数的解析式为[]A.B.C.D.图1 图2 图37、下列函数中, 不是一次函数的是[ ]A.y=3xB.y=2-xC.y=x-D.y= -38、一次函数的图像不经过[]A.第一象限B.第二象限C.第三象限D.第四象限9、已知一次函数图像如图2所示,那么这个一次函数的解析式是[]A.B.C.D.11、弹簧的长度与所挂物体的质量的关系为一次函数,如图3所示,由此图可知不挂物体时弹簧的长度为[]A.7cm B.8 cm C.9 cm D.10 cm10、下列说法中正确的是[]A.用图象表示变量之间的关系时,用竖直方向上的点表示自变量;B.用图象表示变量之间的关系时,用水平方向上的点表示因变量;C.用图象表示变量关系用横轴上的点表示因变量;D.用图象表示变量关系用纵轴上的点表示因变量.三、填空题:本大题共6小题,从第12小题到第15小题每题3.0分小计12.0分;从第16小题到第17小题每题4.0分小计8.0分;共计20.0分。
12、一次函数y=kx+5的图象过点A(-2,-1),则k=________.13、正比例函数y=2x的图象经过第________象限.14、两港相距600千米,轮船以10千米/小时的速度航行,t小时后剩下的距离y与t的函数关系式________.15、已知一次函数的图象与y轴的交点的纵坐标为-2,且经过点(5,3),则此函数的表达式为________.16、当b为________时,直线与直线的交点在x轴上.17、已知函数y=的图象经过点B(m,),则m=________。
鲁教版五四制七年级上册数学全册各个单元测试卷(及答案)
鲁教版五四制七年级上册数学全册试卷(五套单元试卷+一套期末测试卷)第一章测试卷一、选择题(每题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D,则△ABC中AC 边上的高是线段()A.AE B.CD C.BF D.AF3.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于()A.6B.8C.10D.124.下列各条件中,能作出唯一的△ABC的是()A.AB=4,BC=5,AC=10B.AB=5,BC=4,∠A=30°C.∠A=90°,AB=10D.∠A=60°,∠B=50°,AB=55.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是()A.14B.17C.22D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB =A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1B.2C.3D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC ,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于()A.1B.2C.3D.410.如图,△ABC 的三个顶点和它内部的点P 1,把△ABC 分成3个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成5个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成7个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成()个互不重叠的小三角形.A .2nB .2n +1C .2n -1D .2(n +1)二、填空题(每题3分,共24分)11.一个三角形的其中两个内角为88°,32°,则这个三角形的第三个内角的度数为________.12.要测量河两岸相对的两点A ,B 间的距离(AB 垂直于河岸BF ),先在BF 上取两点C ,D ,使CD =CB ,再作出BF 的垂线DE ,且使A ,C ,E 三点在同一条直线上,如图,可以得到△EDC ≌△ABC ,所以ED =AB .因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是____________.13.如图,E 点为△ABC 的边AC 的中点,∥AB ,若MB =6 cm ,=4 cm ,则AB=________.14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB,需要说明△C′O′D′≌△COD,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是____________;已知四边形EFMN的四边长分别为e,f,m,n,若e=3,f =4,n=10,则m的取值范围是____________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.17.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则∠1+∠2=________.1(AB 18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=2+AD),若∠D=115°,则∠B=________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分)19.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD -AB.22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,在R t△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.25.已知点P是R t△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.A2.C :因为BF ⊥AC 于点F ,所以△ABC 中AC 边上的高是线段BF ,故选C.3.A :因为△ABC ≌△EDF ,所以AC =EF .所以AE =CF .因为AF =20,EC =8,所以AE =CF =6.故选A.4.D5.B :由已知条件AB ∥ED 可得,∠B =∠D ,由CD =BF 可得,BC =DF ,再补充条件AB =ED ,可得△ABC ≌△EDF ,故选B.6.C 7.C 8.B119.B :易得S △ABE =3×12=4,S △ABD =2×12=6,所以S △ADF -S △BEF =S △ABD -S △ABE =2.10.B :△ABC 的三个顶点和它内部的点P 1,把△ABC 分成的互不重叠的小三角形的个数=3+2×0;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成的互不重叠的小三角形的个数=3+2×1;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成的互不重叠的小三角形的个数=3+2(n -1)=2n +1.二、11.60°12.ASA :由题意可知,∠ECD =∠ACB ,∠EDC =∠ABC =90°,CD =CB ,故可用ASA 说明两个三角形全等.13.10 cm :由∥AB ,点E 为AC 的中点,可得∠EAM =∠E ,AE =CE .又因为∠AEM =∠CEN ,所以△AEM ≌△CEN .所以AM ==4 cm.所以AB =AM +MB =4+6=10(cm).14.SSS15.1<c <7;3<m <17:由三角形的三边关系得第三边的取值范围为4-3<c <4+3,即1<c <7.同理,得四边形EFMN 对角线EM 的取值范围为4-3<EM <4+3,即1<EM <7.所以10-7<m <10+7,即3<m <17.16.5:由已知可得,∠ADC =∠BDF =∠BEC =90°,所以∠DAC =∠DBF .又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DF =DC =3.所以AF =AD -DF =8-3=5.17.90°:如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE ,所以△ADC ≌△BEA .所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°.18.65°:过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .又因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在⎧∠AFC =∠AEC ,△CAF 和△CAE 中,⎨∠CAF =∠CAE ,⎩AC =AC ,1所以△CAF ≌△CAE (AAS).所以FC =EC ,AF =AE .又因为AE =2(AB +AD ),1所以AF =2(AE +EB +AD ),即AF =BE +AD .又因为AF =AD +DF ,所以DF⎧CF =CE ,=BE .在△FDC 和△EBC 中,所⎨∠CFD =∠CEB ,所以△FDC ≌△EBC (SAS).⎩DF =BE ,以∠FDC =∠EBC .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°.因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.20.解:能作出两个等腰三角形,如图所示.21.解:因为AB =AC ,所以AD -AB =AD -AC =CD .因为BD -BC <CD ,所以BD -BC <AD -AB .22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离.(3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO ,所以△AOB ≌△AOD .所以AD =AB .23.解:△AEM ≌△A ,△BMF ≌△DNF ,△ABN ≌△ADM .(任写其中两对即可)选择△AEM ≌△A :因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB⎧∠E =∠C ,=∠EAD .所以∠EAM =∠CAN .在△AEM 和△A 中,⎨AE =AC ,所以⎩∠EAM =∠CAN ,△AEM ≌△A (ASA).选择△ABN ≌△ADM :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).选择△BMF ≌△DNF :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).所以AN =AM .所以BM =DN .又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF (AAS).(任选一对进行说明即可)24.解:因为∠ACB =90°,所以∠ECF +∠BCD =90°.因为CD ⊥AB ,所以∠BCD +∠B =90°.所以∠ECF =∠B .在△ABC和△FCE中,∠B=∠ECF,BC=CE,∠ACB=∠FEC=90°,所以△ABC≌△FCE(ASA).所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.第二章测试卷一、选择题(每题3分,共30分)1.下面所给的图中是轴对称图形的是()2.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l 垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个3.下列说法正确的是()A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴4.如图是小明在平面镜里看到的电子钟示数,这时的实际时间是() A.12:01B.10:51C.10:21D.15:105.如图,在△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°6.如图,A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC,BC两边高的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处7.如图,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()8.如图,已知:AB-AC=2 cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长为14 cm,则AC的长是()A.6B.7C.8D.99.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于()A.65°B.50°C.60°D.57.5°10.如图,已知AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED 的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE =DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题(每题3分,共24分)11.有些字母是轴对称图形,在E,H,I,M,N这5个字母中,是轴对称图形的是__________.12.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.13.如图是一个经过改造的台球桌面示意图(该图由相同的小正方形组成),图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入________号球袋.14.等腰三角形一腰上的高与底边所夹的角为∠α,则这个等腰三角形的顶角为________.15.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E,F为AD上的两点,若△ABC的面积为12,则图中阴影部分的面积是________.16.如图,在直角三角形ABC中,∠B=90°,AD平分∠BAC,交边BC于点D,如果BD=2,AC=6,那么△ADC的面积等于________.17.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O 恰好重合,则∠OEC=________.18.小威在计算时发现:11×11=121,111×111=12 321,1 111×1 111=1 234 321,…,他从中发现了一个规律.请根据他所发现的规律很快地写出111 111 111×111 111 111=________________________________________________________.三、解答题(19题8分,20~21题每题10分,24题14分,其余每题12分,共66分)19.如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.20.两个城镇A,B与两条公路l1,l2的位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中用尺规作图找出所有符合条件的点C(不写已知、求法、作法,只保留作图痕迹).21.如图,在等边三角形ABC中,∠ABC,∠ACB的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.22.如图,在△ABC中,AB=AC,AD⊥BC于点D,CE⊥AB于点E,AE=CE.试说明:(1)△AEF≌△CEB;(2)∠ABF=2∠FBD.23.操作与探究.(1)如图,分别画出①中“”和“”关于直线l的对称图形(画出示意图即可);(2)如图,②中小冬和小亮上衣上印的字母分别是什么?(3)把字母“”和“”写在薄纸上,观察纸的背面,写出你看到的字母背影;(4)小明站在三个学生的身后,这三个学生正向前方某人用手势示意一个三位数,从小明站的地方看(如图③所示),这个三位数是235.请你判断出他们示意的真实三位数是多少?24.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,是否存在△ADE是等腰三角形的情形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.答案一、1.A 2.A 3.C 4.B 5.A 6.C 7.A 8.A9.B :因为△DEF 是由△DEA 沿直线DE 翻折变换而来,所以AD =FD .因为D是AB 边的中点,所以AD =BD .所以BD =FD .所以∠B =∠BFD .因为∠B =65°,所以∠BDF =180°-∠B -∠BFD =180°-65°-65°=50°.故选B.10.A :因为BF ∥AC ,所以∠C =∠CBF .因为BC 平分∠ABF ,所以∠ABC =∠CBF .所以∠C =∠ABC .所以AB =AC .因为AD 是△ABC 的角平分线,所以⎧∠C =∠DBF ,BD =CD ,AD ⊥BC .故②③正确.在△CDE 与△BDF 中,⎨CD =BD ,⎩∠CDE =∠BDF ,所以△CDE ≌△BDF .所以DE =DF ,CE =BF .故①正确;因为AE =2BF ,所以AC =3BF .故④正确.故选A.二、11.E ,H ,I ,M12.213.1:如图,该球最后将落入1号球袋.14.2∠α15.6:因为AB =AC ,AD ⊥BC ,所以△ABC 关于直线AD 对称.所以S △BEF1=S △CEF .因为△ABC 的面积为12,所以图中阴影部分的面积=2S △ABC =6.16.6:过点D 作DE ⊥AC 于点E ,因为AD 平分∠BAC ,所以DE =BD =2.11所以S △ADC =2AC ·DE =2×6×2=6.17.108°18.12 345 678 987 654 321三、19.解:(1)如图,利用图中格点,可以直接确定出△ABC 中各顶点的对称点的位置,从而得到△ABC 关于直线MN 的对称图形,即为△A ′B ′C ′.111(2)S △ABC =4×6-2×4×1-2×3×6-2×2×4=9.20.解:如图.点C 1,C 2即为所求作的点.21.解:同意.理由如下:如图,连接OE ,OF .由题意知,BE =OE ,CF =OF ,∠OBC =∠OCB =30°,所以∠BOE =∠OBC =30°,∠COF =∠OCB =30°,∠BOC =120°.所以∠EOF =60°,∠OEF =60°,∠OFE =60°.所以△OEF 是等边三角形.所以OE =OF =EF =BE =CF .所以E ,F 是BC 的三等分点.22.解:(1)因为AD⊥BC,CE⊥AB,所以∠AEF=∠CEB=90°,∠AFE+∠EAF=90°,∠CFD+∠ECB=90°.又因为∠AFE=∠CFD,所以∠EAF=∠ECB.在△AEF和△CEB中,∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,所以△AEF≌△CEB(ASA).(2)由△AEF≌△CEB,得EF=EB,所以∠EBF=∠EFB.在△ABC中,AB=AC,AD⊥BC,所以BD=CD.所以FB=FC.所以∠FBD=∠FCD.因为∠EFB=180°-∠BFC=∠FBD+∠FCD=2∠FBD,所以∠EBF=2∠FBD,即∠ABF=2∠FBD.23.解:(1)图略.(2)“”和“”.(3)“”和“”.(4)他们示意的真实三位数是235.24.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:因为DC=2,AB=2,所以DC=AB.因为AB=AC,∠B=40°,所以∠C=∠B=40°.因为∠ADB=180°-∠ADC=∠DAC+∠C,∠DEC=180°-∠AED=∠DAC+∠ADE,且∠C=40°,∠ADE=40°,所以∠ADB=∠DEC.在△ABD与△DCE中,∠ADB=∠DEC,∠B=∠C,AB=DC,所以△ABD≌△DCE(AAS).(3)存在,∠BDA=110°或∠BDA=80°.第三章测试卷一、选择题(每题3分,共30分)1.下列各组数中,能够作为直角三角形的三边长的一组是() A.1,2,3B.2,3,4C.4,5,6D.3,4,52.在Rt△ABC中,∠C=90°,若角A,B,C所对的三边分别为a,b,c,且a =7,b=24,则c的长为()A.26B.18C.25D.213.如图,阴影部分是一个正方形,此正方形的面积是()A.16B.8C.4D.24.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有()A.1个B.2个C.3个D.4个5.若△ABC的三边长分别为a,b,c,且满足(a-b)(a2+b2-c2)=0,则△ABC 是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6.如图,直线l上有三个正方形a,b,c,若a,b的面积分别为5和13,则c 的面积为()A.4B.8C.12D.187.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线上的D′处.若AB=3,AD=4,则ED的长为()3 A. 2B.3C.14D.38.如图,在△ABC中,AD是BC边上的中线,AC=17,BC=16,AD=15,则△ABC的面积为()A.128B.136C.120D.2409.如图是台阶的示意图,已知每个台阶的宽度都是30 cm,每个台阶的高度都是15 cm,则A,B两点之间的距离等于()A.195 cm B.200 cm C.205cm D.210 cm10.如图是一个圆柱形的饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一根到达底部的直吸管在罐内部分的长度a(罐壁的厚度和小圆孔的大小忽略不计)的范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13二、填空题(每题3分,共24分)11.在Rt△ABC中,a,b为直角边,c为斜边,若a2+b2=16,则c=________.12.如图,在△ABC中,AB=5 cm,BC=6 cm,BC边上的中线AD=4 cm,则∠ADB=________.13.如图,一架长为4 m的梯子,一端放在离墙脚2.4 m处,另一端靠墙,则梯子顶端离墙脚的距离是________.14.飞机在空中水平飞行,某一时刻刚好飞到一个男孩正上方4 000 m处,过了10 s,飞机距离这个男孩头顶5 000 m,则飞机平均每小时飞行__________.15.已知a,b,c是△ABC的三边长,且满足关系(c2-a2-b2)2+|a-b|=0,则△ABC 的形状为____________.16.在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积为________.17.如图,在一根长90 cm的灯管上缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4 cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为________.18.如图,在Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.如图,在△ABC中,AD⊥BC于D,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.20.如图,在△ADC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB.若AB=20,求△ABD的面积.21.如图,∠ABC=90°,AB=6 cm,AD=24 cm,BC+CD=34 cm,C是直线l 上一动点,请你探索当点C离点B多远时,△ACD是一个以CD为斜边的直角三角形.22.若△ABC的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,判断△ABC 的形状.23.如图,在△ABC中,AB:BC:CA=3:4:5,且周长为36 cm,点P从点A 开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C 以2 cm/s的速度移动,如果同时出发,过3 s时,△BPQ的面积为多少?24.如图,圆柱形玻璃容器高19 cm,底面周长为60 cm,在外侧距下底1.5 cm 的点A处有一只蜘蛛,在蜘蛛正对面的圆柱形容器的外侧,距上底1.5 cm处的点B处有一只苍蝇,蜘蛛急于捕捉苍蝇充饥,请你帮蜘蛛计算它沿容器侧面爬行的最短距离.25.如图,甲是一个直角三角形ABC,它的两条直角边长分别为a,b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.(1)由图乙、图丙,可知①是以________为边长的正方形,②是以________为边长的正方形,③的四条边长都是________,且每个角都是直角,所以③是以________为边长的正方形;(2)图乙中①的面积为________,②的面积为________,图丙中③的面积为________;(3)图乙中①②面积之和为________;(4)图乙中①②的面积之和与图丙中③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?答案一、1.D 2.C 3.B 4.C 5.D 6.B 7.A 8.C9.A 10.A 二、11.412.90°13.3.2 m 14.1 080 km 15.等腰直角三角形16916.126 cm 2或66 cm 217.150 cm 18.24三、19.解:(1)因为AD ⊥BC ,所以△ABD 和△ACD 均为直角三角形.所以AB 2=AD 2+BD 2,AC 2=AD 2+CD 2.又因为AD =12,BD =16,CD =5,所以AB =20,AC =13.所以△ABC 的周长为20+13+16+5=54.(2)由(1)知AB =20,AC =13,BC =21,因为AB 2+AC 2=202+132=569,BC 2=212=441,所以AB 2+AC 2≠BC 2.所以△ABC 不是直角三角形.20.解:在△ADC 中,因为AD =15,AC =12,DC =9,所以AC 2+DC 2=122+92=152=AD 2.所以△ADC 是直角三角形,且∠C =90°.在Rt △ABC 中,AC 2+1BC 2=AB 2,所以BC =16.所以BD =BC -DC =16-9=7.所以S △ABD =2×7×12=42.21.解:设当BC =x cm 时,△ACD 是一个以CD 为斜边的直角三角形.因为BC+CD =34 cm ,所以CD =(34-x )cm.因为∠ABC =90°,AB =6 cm ,所以在Rt △ABC 中,由勾股定理得AC 2=AB 2+BC 2=36+x 2.在Rt △ACD 中,AD =24 cm ,由勾股定理得AC 2=CD 2-AD 2=(34-x )2-576,所以36+x 2=(34-x )2-576.解得x =8.所以当点C 离点B 8 cm 时,△ACD 是一个以CD 为斜边的直角三角形.22.解:因为a 2+b 2+c 2+50=6a +8b +10c ,所以a 2+b 2+c 2-6a -8b -10c +50=0,即(a -3)2+(b -4)2+(c -5)2=0.所以a =3,b =4,c =5.因为32+42=52,即a 2+b 2=c 2,所以根据勾股定理的逆定理可判定△ABC 是直角三角形.:本题利用配方法,先求出a ,b ,c 的值,再利用勾股定理的逆定理进行判断.23.解:设AB 为3x cm ,则BC 为4x cm ,AC 为5x cm.因为△ABC 的周长为36 cm ,所以AB +BC +AC =36 cm ,即3x +4x +5x =36.解得x =3.所以AB =9 cm ,BC =12 cm ,AC =15 cm.因为AB 2+BC 2=AC 2,所以△ABC 是直角三角形,且∠B =90°.过3 s 时,BP =9-3×1=6(cm),BQ =2×3=6(cm),11所以S △BPQ =2BP ·BQ =2×6×6=18(cm 2).故过3 s 时,△BPQ 的面积为18 cm 2.24.解:如图,将圆柱侧面展开成长方形MNQP ,过点B 作BC ⊥MN 于点C ,连接AB ,则线段AB 的长度即为所求的最短距离.在Rt △ACB 中,AC =MN -AN -CM =16 cm ,BC 的长等于底面周长的一半,即BC =30 cm.由勾股定理得,AB 2=AC 2+BC 2=162+302=1 156=342,所以AB =34 cm.故蜘蛛沿容器侧面爬行的最短距离为34 cm.25.解:(1)a ;b ;c ;c (2)a 2;b 2;c 2(3)a 2+b 2(4)图乙中①②的面积之和与图丙中③的面积相等.由大正方形的边长为a +b ,得大正方形的面积为(a +b )2,图乙中把大正方形分成了四部分,分别是边长为a 的正方形,边长为b 的正方形,还有两个长为a ,宽为b 的长方形.根12据面积相等得(a +b )2=a 2+b 2+2ab .由图丙可得(a +b )2=c 2+4×ab .所以a +2b 2=c 2.能得到关于直角三角形三边长的关系:两直角边的平方和等于斜边的平方.第四章测试卷一、选择题(每题3分,共30分)1.9的算术平方根是()A.±3B.3 C.-3 D.3222.下列4个数:9,7,π,(3)0,其中无理数是()A.922B.7C.πD.(3)03.下列各式中正确的是()A.497=±14412B.-3273-8=-2C.-9=-33D.(-8)2=44.已知a+2+|b-1|=0,那么(a+b)2 018的值为()A.1B.-1C.32 018D.-32 0185.若平行四边形的一边长为2,面积为45,则此边上的高介于() A.3与4之间B.4与5之间C.5与6之间D.6与7之间6.设边长为a的正方形的面积为2.下列关于a的四种结论:①a是2的算术平方根;②a是无理数;③a可以用数轴上的一个点来表示;④0<a<1.其中正确的是()A.①②C.①②③B.①③D.②③④7.实数a,b在数轴上对应点的位置如图所示,则化简a2-|a+b|的结果为() A.2a+b B.-2a+b C.b D.2a-b8.有一个数值转换器,原理如图所示,当输入x为64时,输出y的值是()A.4C.33B.43D.29.一个正方体木块的体积是343 cm3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是()74949147A.2cm2B.4cm2C.8cm2D.2cm210.如图,数轴上A,B两点表示的实数分别为1和3,若点A关于点B的对称点为点C,则点C所表示的实数为()A.23-1B.1+3C.2+3D.22+1二、填空题(每题3分,共24分)11.6的相反数是________;绝对值等于2的数是________.12.一个数的平方根与这个数的立方根相等,那么这个数是________.313.估算比较大小:(1)-10________-3.2;(2)130________5.314.若2x+7=3,(4x+3y)3=-8,则x+y=________.15.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.16.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.17.若x,y为实数,且|x-2|+y+3=0,则(x+y)2 017的值为________.18.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1.现对72第一次第二次第三次进行如下操作:72――→[72]=8――→[8]=2――→[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行________次操作后变为1;只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题(19题16分,20题12分,24、25题每题10分,其余每题6分,共66分)19.计算:(1)(-1)2 018+16-(3)-(-2)+(-2)--82;(4)2+|3-32|-(-5)2.20.求下列各式中未知数的值:(1)|a -2|=5;(2)4x 2=25;(3)(x -0.7)3=0.0272294;(2)132+0.5-8;43|a|-|a+b|+(c-a)2 21.已知a,b,c在数轴上对应点的位置如图所示,化简:+|b-c|.322.若实数a,b互为相反数,c,d互为倒数,求2(a+b)+8c d的值.23.已知a,b,c是△ABC的三边长,化简:(a+b+c)2-(b+c-a)2+(c-b-a)2.24.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;33(2)若1-2x与3x-5互为相反数,求1-x的值.25.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失后经过的时间近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失后经过的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?答案一、1.B 2.C3.D :A 中正确.4.A 5.B6.C:∵a 2=2,a >0,∴a =2≈1.414,即a >1,故④错误.37.C 8.B :64的立方根是4,4的立方根是 4.9.D 10.A二、11.-6;±212.013.(1)>(2)>14.-115.1-6或1+6:数轴上到某个点距离为a (a >0)的点有两个,易忽略左边的点而漏解.注意运用数形结合思想,利用数轴帮助分析.16.7:∵2<5<3,∴3<5+1<4.∵x <5+1<y ,且x ,y 为两个连续整数,∴x =3,y =4.∴x +y =3+4=7.17.-1:∵|x -2|+y +3=0,∴|x -2|=0,y +3=0,∴x =2,y =-3.∴(x +y )2 017=[2+(-3)]2 017=(-1)2 017=-1.18.3;255三、19.解:(1)(-1)2 018+16-(2)937=1+4-42=2.3497273=;B 中--144128=2;C 中-9无算术平方根;只有D1132+0.5-8=42+0.5-2=-1.3(3)-(-2)2+(-2)2--82=-4+2-(-4)=2.(4)2+|3-32|-(-5)2=2+(32-3)-5=2+32-3-5=32-6.20.解:(1)由|a -2|=5,得a -2=5或a -2=- 5.当a -2=5时,a =5+2;当a -2=-5时,a =-5+2.255(2)因为4x 2=25,所以x 2=4.所以x =±2.(3)因为(x -0.7)3=0.027,所以x -0.7=0.3.所以x =1.21.解:由数轴可知b <a <0<c ,所以a +b <0,c -a >0,b -c <0.所以原式=-a -[-(a +b )]+(c -a )+[-(b -c )]=-a +a +b +c -a -b +c =-a +2c .322.解:由已知得a +b =0,cd =1,所以原式=0+8=2.23.解:因为a ,b ,c 是△ABC 的三边长,所以a +b +c >0,b +c -a >0,c -b -a <0.所以原式=a +b +c -(b +c -a )+(a +b -c )=3a +b -c .24.解:(1)因为2+(-2)=0,而且23=8,(-2)3=-8,有8+(-8)=0,所以结论成立.所以“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)由(1)验证的结果知,1-2x +3x -5=0,所以x =4,所以1-x =1-2=-1.25.解:(1)当t =16时,d =7×16-12=7×2=14(厘米).答:冰川消失16年后苔藓的直径为14厘米.(2)当d =35时,t -12=5,即t -12=25,解得t =37.答:如果测得一些苔藓的直径是35厘米,冰川约是在37年前消失的.第五章测试卷一、选择题(每题3分,共30分)1.点P(4,3)所在的象限是()A.第一象限B.第二象限 C.第三象限 D.第四象限2.根据下列表述,能确定位置的是()A.红星电影院2排C.北偏东30°B.北京市四环路D.东经118°,北纬40°3.如图,在直角坐标系中,卡片盖住的点的坐标可能是() A.(2,3)B.(-2,1)C.(-2,-2.5)D.(3,-2)4.点P(-2,3)关于x轴对称的点的坐标是()A.(-3,2)B.(2,-3)C.(-2,-3)D.(2,3)5.已知点A(-1,-4),B(-1,3),则()A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴6.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1)B.(-2,-1)C.(-4,1)D.(1,2)7.如图,将长为3的长方形ABCD放在平面直角坐标系中,AD∥x轴,若点D 的坐标为(6,3),则点A的坐标为()A.(5,3)B.(4,3)C.(4,2)D.(3,3)8.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()A.15B.7.5C.6D.39.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)10.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度,……以此类推,第n步的走法是:当n能被3整除时,向上走1个单位长度;当n被3除,余数为1时,向右走1个单位长度;当n被3除,余数为2时,向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)二、填空题(每题3分,共24分)11.写出平面直角坐标系中第三象限内一个点的坐标:________.12.在直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是________.13.如图是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1,0),安化县城所在地用坐标表示为(-3,-1),那么南县县城所在地用坐标表示为________.14.第二象限内的点P(x,y)满足|x|=9,y2=4,则点P的坐标是__________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.如图,点A,B的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP 的面积为6,则点P的坐标为________.17.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B′处,则点B′的坐标为________.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位长度,得到点A1(0,1),A2(1,1),A 3(1,0),A4(2,0),…,那么点A4n+1(n为自然数)的坐标为______(用n表示).三、解答题(19题6分,20题8分,21,23题每题9分,22题10分,其余每题12分,共66分)19.如图,如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50 m 记作50,图中点A记作(30°,50);北偏西45°的方向记作-45°,从O点出发沿着该方向的反方向走20 m记作-20,图中点B记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).20.春天到了,七(1)班组织同学到人民公园春游,张明、李华对着景区示意图(如图)描述牡丹园的位置(图中小正方形的边长为100 m).张明:“牡丹园的坐标是(300,300).”李华:“牡丹园在中心广场东北方向约420m处.”实际上,他们所说的位置都是正确的.根据所学的知识解答下列问题:(1)请指出张明同学是如何在景区示意图上建立平面直角坐标系的,并在图中画出所建立的平面直角坐标系;(2)李华同学是用什么来描述牡丹园的位置的?请用张明同学所用的方法,描述出公园内其他地方的位置.。
2021-2022学年鲁教版七年级数学上册《6-4确定一次函数的表达式》同步练习题(附答案)
2021-2022学年鲁教版七年级数学上册《6.4确定一次函数的表达式》同步练习题(附答案)1.小明根据某个一次函数关系式填写了的表格:则空格中的数为()x﹣102y﹣36A.16B.8C.12D.242.函数y=2x+b的图象与两坐标轴围成的三角形的面积为4,则函数的表达式为()A.y=2x+4B.y=2x﹣4C.y=2x+4或y=2x﹣4D.y=﹣2x﹣43.如图,直线l与y轴交于点(0,3),与正比例函数y=2x的图象交于点B,且B点的横坐标为1,则直线l对应函数的表达式是()A.y=x﹣3B.y=2x+3C.y=3﹣x D.y=x﹣34.如图,直线AB对应的函数表达式是()A.y=﹣x+3B.y=x+3C.y=﹣x+3D.y=x+35.一块长为5米,宽为2米的长方形木板,现要在长边上截去长为x米的一小长方形(如图),则剩余木板的面积y(平方米)与x(米)之间的关系式为()A.y=2x B.y=10﹣2x C.y=5x D.y=10﹣5x6.1千克某种水果5元,则所需钱数y(元)和水果重x(千克)之间的关系是()A.y=5x B.x=5y C.D.y=x+57.某水池现有水100m3,每小时进水20m3,排水15m3,t小时后水池中的水为Qm3,它的解析式为()A.Q=100+20t B.Q=100﹣15t C.Q=100+5t D.Q=100﹣5t 8.如果每盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y与x之间的关系应该是()A.y=12x B.y=18x C.y=x D.y=x9.如图所示,直线l的解析式是()A.y=x+2B.y=﹣2x+2C.y=x﹣2D.y=﹣x﹣2 10.若直线y=kx+b经过点A(2,0),且与坐标轴围成的三角形的面积为6,则这条直线的表达式为.11.2021年1月1日,汽油价格为每升6.05元,张老师用一张面额为1000元的加油卡加油付费,则张老师卡上余额y(元)和加油量x(升)之间的函数关系式为.12.已知y是x的正比例函数,当x=1时y=﹣5,则当y=20时,x=.13.若一次函数的图象经过点(0,﹣2),且与两坐标轴所围成的三角形面积为2,则这个函数的表达式为.14.若点P(﹣2,3)在直线y=﹣3x+b上,则b的值为.15.地面温度为15℃,在一定高度内如果高度每升高1千米,气温下降6℃.则气温t℃与高度h(千米)之间的关系式为.16.等腰三角形的周长为12厘米,底边长为y厘米,腰长为x厘米.则y与x的之间的关系式是y=(3<x<6).17.某商店出售商品时,在进价的基础上又加了一定的利润,其数量x与售价y的关系如下表所示,那么售价y与数量x之间的关系式是.数量x(千克)1234…售价y(元)8+0.416+0.824+1.232+1.6…18.商店出售一种瓜子数量x与售价c之间的关系如下表:数量x(克)售价c(元)1000.90+0.05200 1.80+0.05300 2.70+0.05400 3.60+0.05500 4.50+0 05……(表内售价栏中的0.05是塑料袋的价钱)则用含x的代数式表示c是.19.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.小明同学在洗手后,没有把水龙头拧紧,当小明离开x小时后水龙头滴了y毫升水.试写出y关于x的函数关系式.20.在平面直角坐标系中,一次函数y=kx+b的图象(k≠0)与直线y=x﹣2相交于y轴上一点A,且图象经过点B(2,3)点O是坐标原点,求一次函数的解析式和△AOB的面积.21.已知一次函数的图象过点(3,5)与点(﹣4,﹣9),求这个一次函数的解析式.22.已知y﹣2与x+1成正比例函数,当x=1时,y=5.(1)求y关于x的函数关系式;(2)当x=﹣3时,求y的值.23.如图,直线y=x+b与x轴交于点A,与y轴交于点B,且OB=2.(1)求一次函数的关系式;(2)若直线l过点B且与x轴交于点C,S△OBC=,求直线l的函数关系式.24.已知一次函数y=kx+b的图象与x轴交于点A(﹣6,0),与y轴交于点B.若△AOB 的面积为12,求一次函数的表达式.参考答案1.解:设一次函数的解析式为y=kx+b(k≠0),∵x=﹣1时y=﹣3;x=0时,y=6,∴,解得,∴一次函数的解析式为y=9x+6,∴当x=2时,y=18+6=24.故选:D.2.解:∵令x=0,则y=b,令y=0,则x=﹣,∴函数y=2x+b的图象与两坐标轴的交点分别为(0,b),(﹣,0),∴|b|•|﹣|=4,解得b=±4,∴函数的表达式为y=2x+4或y=2x﹣4.故选:C.3.解:设直线l对应函数的表达式为y=kx+b,把x=1代入y=2x得y=2,则B点坐标为(1,2),把B(1,2),(0,3)代入y=kx+b得,解得,所以直线l对应函数的表达式为y=﹣x+3.故选:C.4.解:设直线AB对应的函数表达式是y=kx+b,把A(0,3),B(2,0)代入,得,解得,故直线AB对应的函数表达式是y=﹣x+3.故选:A.5.解:由题意,有y=2(5﹣x),即y=10﹣2x.故选:B.6.解:设y=kx,然后根据题意列出关系式.5=k•1,∴k=5.∴y=5x.故选:A.7.解:由题意得:Q=100+20t﹣15t=100+5t.故选:C.8.解:依题意有单价为18÷12=元,则有y=x.故选:D.9.解:直线经过点(﹣2,0)和点(0,2),因而可以设直线的解析式是y=k+b,把点的坐标代入得到,解得,因而直线l的解析式是y=x+2.故选:A.10.解:把(2,0)代入得2k+b=0,解得b=﹣2k,所以y=kx﹣2k,把x=0代入得y=kx﹣2k得y=﹣2k,所以直线与y轴的交点坐标为(0,﹣2k),所以×2×|﹣2k|=6,解得k=3或﹣3,所以所求的直线解析式为y=3x﹣6或y=﹣3x+6.故答案为y=3x﹣6或y=﹣3x+6.11.解:由题意得:y与x的函数解析式为:y=1000﹣6.05x.故答案为:y=1000﹣6.05x12.解:设正比例函数的解析式为y=kx,将x=1,y=﹣5代入,得﹣5=k,所以y=﹣5x,当y=20时,20=﹣5x,解得x=﹣4.故答案为﹣4.13.解:由题意可设:y=kx﹣2,与x轴交点为(,0),与y轴交点为(0,﹣2),∴||•|﹣2|=2,解得:k=1或﹣1,∴函数解析式为y=x﹣2,或y=﹣x﹣2.故答案是:y=x﹣2,或y=﹣x﹣2.14.解:∵点P(﹣2,3)在直线y=﹣3x+b上,∴点P(﹣2,3)满足直线y=﹣3x+b,∴3=(﹣3)×(﹣2)+b解得,b=﹣3;故答案是:﹣3.15.解:∵当高度为h时,降低6h,∴气温t℃与高度h(千米)之间的关系式为t=15﹣6h.故答案为t=15﹣6h.16.解:∵2x+y=12∴y=﹣2x+12∵x>6÷2=3,y<2x∴3<x<6即腰长y与底边x的函数关系是:y=﹣2x+12(3<x<6).17.解:设y=kx,然后根据题意列出关系式.8+0.4=k,k=8.4.故答案为:y=8.4x.18.解:∵100克的瓜子是0.05的基础上增加了0.90,∴1克的瓜子应在0.05的基础上增加了=,∴x克瓜子的总售价为x+0.05,故答案为c=x+0.05.19.解:∵水龙头每秒钟会滴下2滴水,每滴水约0.05毫升,∴离开x小时滴的水为3600×2×0.05x,∴y=360x.(x≥0)20.解:∵直线y=x﹣2与y轴的交点A的坐标为(0,﹣2),∴A(0,﹣2),∵图象经过点B(2,3),∴3=2k﹣2,解得k=,∴一次函数的解析式为y=x﹣2,S△AOB=OA•|x B|=×2×2=2.21.解:设一次函数为y=kx+b(k≠0),(1分)因为它的图象经过(3,5),(﹣4,﹣9),所以解得:,(3分)所以这个一次函数为y=2x﹣1.(5分)22.解:(1)由题意可得y﹣2=k(x+1),把当x=1时,y=5代入得:5﹣2=k(1+1),解得:k=,所以y﹣2=(x+1),故一次函数的解析式为y=x+.(2)当x=﹣3时,y=×(﹣3)+=﹣1.23.解:(1)∵OB=2,代入y=x+b得,b=2,∴一次函数的关系式为y=x+2;(2)令y=0,则x+2=0,解得x=﹣6,∴A(﹣6,0),∴A△AOB=OA•OB=×6×2=6,∵S△OBC=,∴S△OBC=3,∴OC=3,∴C(3,0)或(﹣3,0),∴直线l的函数关系式为y=x+2或y=﹣x+2.24.解:∵图象经过点A(﹣6,0),∴0=﹣6k+b,即b=6k①,∵图象与y轴的交点是B(0,b),∴•OB=12,即:,∴|b|=4,∴b1=4,b2=﹣4,代入①式,得,,一次函数的表达式是或.。
2022秋七年级数学上册 第六章 一次函数达标检测 卷鲁教版五四制
第六章达标检测卷一、选择题(本大题共12道小题,每小题3分,共36分)1.函数y =x +3中自变量x 的取值范围在数轴上表示正确的是( )2.在平面直角坐标系中,一次函数y =x +1的图象是( )3.下列各选项中表示y 是x 的函数的是( )4.直线y =x +3与y 轴的交点坐标是( )A .(0,3)B .(0,1)C .(1,0)D .(3,0)5.函数的零点是指使函数值等于零的自变量的值,则下列函数中存在零点的是( ) A .y =x 2+x +2 B .y =x +1 C .y =x +1xD .y =|x |-16.下列函数:①y =3x ;②y =9x -8;③y =2x ;④y =35-23x ;⑤y =34x 2+12x +9.其中是一次函数的有( )A .①②③B .①②④C .②③④D .②④⑤7.一次函数y =mx +n 的图象如图所示,则关于x 的方程mx +n =0的解为( ) A .x =2 B .y =2 C .x =-3 D .y =-38.小明从家出发步行至学校,停留一段时间后乘车返回,则下列函数图象最能体现他离家的距离(s )与出发时间(t )之间的对应关系的是( )9.已知一次函数y =kx +b ,y 随着x 的增大而减小,且kb >0,则这个函数的大致图象是( )10.如果直线y =12x +n 与直线y =mx -1的交点坐标是(1,-2),那么m -n 的值为( )A.12 B .1 C.32 D.5211.数形结合思想是解决数学问题常用的思想方法.如图,直线y =x +5和直线y =ax +b 相交于点P ,根据图象可知,方程x +5=ax +b 的解是( )A .x =20B .x =5C .x =25D .x =1512.如图①,点P 从△ABC 的顶点A 出发,沿A →B →C 匀速运动到点C ,图②是点P 运动时线段CP 的长度y 随时间x 变化的关系图象,其中点Q 为曲线部分的最低点,则△ABC 的边AB 的长度为( ) A .12 B .8 C .10 D .13二、填空题(本大题共6道小题,每小题3分,共18分)13.点⎝ ⎛⎭⎪⎫-12,m 和点(2,n )在直线y =2x +b 上,则m 与n 的大小关系是________.14.如图,一次函数y =kx +b 的图象与x 轴的交点坐标为(2,0),则下列说法:①y 随x 的增大而减小;②b >0;③关于x 的方程kx +b =0的解为x =2.其中说法正确的有________(把你认为说法正确的序号都填上).15.若一次函数y =(2m -1)x +3-2m 的图象经过第一、二、四象限,则m 的取值范围是__________. 16.乐乐根据某个一次函数(y 关于x 的函数)的表达式填写了下表,其中有一格的数字不慎被墨汁遮住了,想想看,该空格里原来填的数是________.17.如图,l 1反映了某公司的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,当销售量x 满足____________时,该公司盈利(收入大于成本).18.经过点(2,0),且与坐标轴围成的三角形的面积为2的直线表达式是______________________. 三、解答题(本大题共7道题,19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.拖拉机开始工作时,油箱中有油40升,如果工作1小时耗油4升,求: (1)油箱中的余油量Q (升)与工作时间t (时)的函数关系式及自变量的取值范围; (2)当工作5小时时油箱的余油量.20.解答下列各题:(1)若点P (m ,3)在函数y =2x -3的图象上,求点P 的坐标;(2)已知y +2与x -1成正比例,且当x =2时y =6,求y 与x 的函数关系式.21.如图,一次函数y =kx +5的图象与y 轴交于点B ,与正比例函数y =32x 的图象交于点P (2,a ).(1)求k 的值; (2)求△POB 的面积.22.请你根据如图所示的图象提供的信息,解答下面问题:(1)分别写出直线l 1,l 2对应的函数中变量y 的值随x 的变化而变化的情况; (2)求出直线l 1对应的函数表达式.23.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积的数值相等,则这个点叫做和谐点.例如在图中,过点P分别作x轴、y轴的垂线,与坐标轴围成的长方形OAPB的周长与面积的数值相等,则点P是和谐点.(1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由.(2)若和谐点P(a,3)在直线y=-x+b(b为常数)上,求a,b的值.24.如图,在平面直角坐标系中,直线l交x轴于点A,交y轴于点B(0,-1),且经过点(-1,2).若点P 在x轴上,且S△PAB=6S△OAB,求点P的坐标.25.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5 h后到达甲地,游玩一段时间后按原速前往乙地.小明离家1 h 20 min后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车的速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间.(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10 min到达乙地,求从家到乙地的路程.答案一、1.C 2.C 3.D 4.A 5.D 6.B 7.C 8.B 9.B 10.C 11.A12.C 【点拨】根据图②中的曲线可知:当点P 从△ABC 的顶点A 处,运动到点B 处时,图①中的AC =BC =13,当点P 运动到AB 中点时,此时CP ⊥AB ,根据图②中点Q 为曲线部分的最低点,得CP =12,所以根据勾股定理,得此时AP =132-122=5.所以AB =2AP =10. 二、13.m <n 14.①②③ 15.m <1216.2 17.x >418.y =x -2或y =-x +2三、19.解:(1)由题意可知Q =40-4t (0≤t ≤10); (2)把t =5代入Q =40-4t ,得油箱的余油量Q =20升.20.解:(1)将点P (m ,3)的坐标代入y =2x -3,得2m -3=3,解得m =3, 所以点P 的坐标为(3,3); (2)因为y +2与x -1成正比例, 所以设y +2=k (x -1), 当x =2时y =6,即6+2=k (2-1),解得k =8, 所以y +2=8(x -1), 即y =8x -10.所以y 与x 的函数关系式为y =8x -10.21.解:(1)把点P (2,a )的坐标代入y =32x ,得a =3,所以点P 的坐标为(2,3), 把点P (2,3)的坐标代入y =kx +5, 得2k +5=3,解得k =-1.(2)把x =0代入y =-x +5,得y =5, 所以点B 的坐标为(0,5),所以OB =5. 因为点P 的横坐标为2, 所以S △POB =12×5×2=5.22.解:(1)直线l 1对应的函数中,y 的值随x 的增大而增大;直线l 2对应的函数中,y 的值随x 的增大而减小.(2)设直线l 1对应的函数表达式为y =a 1x +b 1,由题意得a 1+b 1=1,b 1=-1, 可得a 1=2,所以直线l 1对应的函数表达式为y =2x -1.23.解:(1)点M 不是和谐点,点N 是和谐点.理由:因为1×2≠2×(1+2),4×4=2×(4+4), 所以点M 不是和谐点,点N 是和谐点.(2)由题意得,当a >0时,(a +3)×2=3a ,所以a =6. 又因为点P (a ,3)在直线y =-x +b 上, 所以-a +b =3,所以b =9. 当a <0时,(-a +3)×2=-3a , 所以a =-6.又因为点P (a ,3)在直线y =-x +b 上, 所以-a +b =3,所以b =-3.综上所述,a =6,b =9或a =-6,b =-3. 24.解:因为直线l 交y 轴于点B (0,-1). 所以可设直线l 对应的函数表达式为y =kx -1. 又因为直线l 经过点(-1,2), 所以2=-k -1. 解得k =-3.故直线l 对应的函数表达式为y =-3x -1. 对于y =-3x -1, 令y =0,得0=-3x -1, 解得x =-13,所以点A 的坐标为⎝ ⎛⎭⎪⎫-13,0, 所以S △OAB =12OA ·OB =12×13×1=16.设点P 的坐标为(m ,0),则S △PAB =12PA ·OB =12×⎪⎪⎪⎪⎪⎪m -⎝ ⎛⎭⎪⎫-13×1=12⎪⎪⎪⎪⎪⎪m +13.由S △PAB =6S △OAB ,得12⎪⎪⎪⎪⎪⎪m +13=6×16,从而得m +13=2或m +13=-2,所以m =53或m =-73,即点P 的坐标为⎝ ⎛⎭⎪⎫53,0或⎝ ⎛⎭⎪⎫-73,0.25.解:(1)观察图象,可知小明骑车的速度为100.5=20(km/h ),在甲地游玩的时间是1-0.5=0.5(h ).(2)妈妈驾车的速度为20×3=60(km/h ).如图,设直线BC 对应的函数表达式为y =20x +b 1, 把点B (1,10)的坐标代入函数表达式,得b 1=-10. 所以直线BC 对应的函数表达式为y =20x -10. 设直线DE 对应的函数表达式为y =60x +b 2,把点D ⎝ ⎛⎭⎪⎫43,0的坐标代入函数表达式, 得b 2=-80.所以直线DE 对应的函数表达式为y =60x -80.当小明被妈妈追上时,两人走过的路程相等,则20x -10=60x -80,解得x =1.75, 20×(1.75-1)+10=25(km).所以小明从家出发1.75 h 后被妈妈追上,此时离家25 km 远.(3)设从妈妈追上小明的地点到乙地的路程为z km ,根据题意,得z 20-z 60=1060,解得z =5,所以从家到乙地的路程为5+25=30(km).。
初中数学鲁教版(五四制)七年级上册第六章 一次函数1 函数-章节测试习题(1)
章节测试题1.【题文】根据下列情境编制一个实际问题,说出其中的常量与变量小王春节骑车去看望爷爷,小王家与爷爷家相距10千米,小王骑车的速度为每小时12千米【答案】-12与10是常量,s与t是变量【分析】根据函数的定义,需要有两个变量,可以从小王与爷爷家的距离和时间考虑求解【解答】设小王与爷爷家的距离为s,出发时间为t,则s=-12t+10,-12与10是常量,s与t是变量2.【题文】指出下面关系式中的常量与变量.运动员在400m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步速度v(m/s)之间的函数关系式为t=【答案】常量是400m,变量是v、t【分析】根据常量是变化过程中保持不变的量,变化过程中变化的量是变量,可得答案.【解答】运动员在400m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步速度v(m/s)之间的函数关系式为t=,常量是400m,变量是v、t.3.【答题】如图,分别给出了变量x与y的对应关系,其中y是x的函数的是()A. B. C. D.【答案】C【分析】【解答】4.【题文】下列变量之间的关系是不是函数关系?为什么?(1)正方形的面积与边长;(2)三角形的面积与高;(3)矩形的面积一定,它的长与宽;(4)学生的身高与体重.【答案】【分析】【解答】(1)正方形的面积与边长是函数关系.∵正方形面积若用S表示,边长用a表示,则有S=a2.在边长a的取值范围内,a的每一个值,S都有唯一的值与a对应.(2)三角形的面积与高不是函数关系.∵,其中有三个变量S,a,h,这与函数定义中有“两个变量”不符合.(3)矩形的面积一定,它的长与宽是函数关系.∵S=ab,面积S一定,则,在b 的取值范围内,b的每一个值,a都有唯一的值与b对应.(4)学生的身高与体重不是函数关系.∵身高和体重没有必然的联系,可列举身边事例.5.【答题】一辆汽车以平均速度60km/h的速度在公路上行驶,则它所走的路程s(km)与所用的时间t(h)之间的关系表达式为()A. s=60+tB.C.D. s=60t【答案】D【分析】【解答】6.【答题】科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长.现测得一弹簧的长度y(cm)与所挂物体的质量x(kg)间有下表中的关系,则下列说法不正确的是()x/kg 0 1 2 3 4 5y/cm 20 20.5 21 21.5 22 22.5A. x与y都是变量,且x是自变量,y是因变量B. 弹簧不挂重物时的长度为0cmC. 随着所挂物体的质量增加,弹簧长度逐渐变长D. 所挂物体的质量每增加1kg,弹簧长度增加0.5cm【答案】B【分析】【解答】7.【题文】例1 一辆汽车的油箱中现有汽油60L,如果不再加油,那么油箱中的余油量Q(单位:L)随行驶路程x(单位:km)的增加而减少,平均耗油量为0.1L/km.(1)写出表示Q与x的函数关系式;(2)汽车行驶150km时,油箱中还有多少汽油?(3)指出自变量x的取值范围.【答案】见解答.【分析】对于一个已知函数,自变量的取值范围是使这个函数有意义的一切值;对于一个实际问题,自变量的取值必须使实际问题有意义.【解答】(1)y=-0.1x+60.(2)当x=150时,Q=-0.1×150+60=45(L).∴汽车行驶150km时,油箱中还有汽油45L.(3)自变量x的取值范围为0≤x≤600.8.【题文】例2 某经销商销售香蕉,据以往经验,单价与每天的销量之间的关系如下表所示:(1)在这个变化过程中,自变量是______,因变量是______;(2)设单价为x元/kg,每天的销量为y kg,写出y与x之间的关系式(不必写出自变量取值范围);(3)某天香蕉进价为3元/kg,售价为6元/kg,则该经销商这天一共赚了多少元?【答案】见解答.【分析】本题属于一次函数的应用题,解答此题的关键是从表格中找出规律,即每千克的售价下调1元,每天的销量增加20kg,同时注意“利润=售价-进价”关系式的运用.【解答】(1)由题意知,在这个变化过程中,自变量为单价,因变量为每天的销量.(2)由题意知y=300+20(12-x),化简得y=540-20x.(3)当x=6时,y=420kg,∴该经销商这天一共赚了420×(6-3)=1260元.答:该经销商这天一共赚了1260元.9.【答题】已知下列关系式:①y2-3y=5;②m=-3.5n;③y=-2x;④y=5x-1;⑤C=2πr;⑥a2=|b|,其中是函数关系的是()A. ①⑥B. ②③④⑤C. ④⑥D. ①②【答案】B【分析】【解答】10.【答题】小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车.车修好后,因怕耽误上课,他加快了骑车速度.下面是小明离家后的路程s关于离开家时间t的函数图象,其中符合小明行驶情况的图象大致是()A. B. C. D.【答案】C【分析】【解答】11.【答题】小颖现有存款200元.为赞助“希望工程”,她计划今后每月存款10元,则存款总金额y(元)与时间x(月)之间的函数关系式是()A. y=10xB. y=120xC. y=200-10xD. y=200+10x 【答案】D【分析】【解答】12.【答题】李老师带领x名学生到动物园参观,已知成人票每张20元,学生票每张10元.设门票的总费用为y元,则y=______.【答案】10x+20【分析】【解答】13.【答题】用一根长为20 cm的铁丝围成一个长方形,若该长方形的一边长为x cm,面积为y cm2,则y与x之间的关系式为______.【答案】y=-x2+10x【分析】【解答】14.【题文】如下表所示,甲、乙两地打电话需付的电话费y(元)是随时间t(min)的变化而变化的,试根据下表列出的几组数据回答下列问题:(1)自变量是______,因变量是______;(2)写出电话费y(元)与通话时间t(min)之间的关系式;(3)若小明通话10min,则需付话费多少元?(4)若小明某次通话后需付话费4.8元,则小明通话多少分钟?【答案】【分析】【解答】(1)自变量是通话时间,因变量是电话费.(2)y=0.15t.(3)当t=10时,y=0.15t=0.15×10=1.5.∴小明通话10分钟,需付话费1.5元.(4)把y=4.8代入y=0.15t中,得4.8=0.15t,∴t=32.∴当付话费4.8元时,小明通话32分钟.15.【答题】下列式子中,y不是x的函数的是()A. y=x2B. |y|=xC.D. y=2x+1【答案】B【分析】【解答】16.【答题】如图,下列各三角形中的三个数之间均具有相同的规律.根据此规律,最后一个三角形中y与n之间的关系是()A. y=2n+1B. y=2n+1+nC. y=2n+nD. y=2n+n+1【答案】C【分析】【解答】17.【题文】假设圆柱的高是5cm,圆柱的底面半径由小到大变化.(1)圆柱的体积如何变化?在这个变化过程中,自变量、因变量各是什么?(2)如果圆柱底面半径为r(cm),那么圆柱的体积V(cm3)可以表示为______;(3)当r由1cm变化到10cm时,V由______cm3变化到______cm3.【答案】【分析】【解答】(1)圆柱的体积随着圆柱底面半径的增大而增大.自变量:圆柱的底面半径;因变量:圆柱的体积.(2)圆柱的体积等于底面积乘高,∴V=5πr2.(3)当r=1cm时,V=5πr2=5πcm3;当r=10cm时,V=5πr2=500πcm3.18.【答题】一般地,如果在某个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有______的值与它对应,那么我们就称______是______的函数,其中______是自变量,______是因变量.【答案】【分析】【解答】19.【答题】表示函数的方法一般有:______、______和______.【答案】【分析】【解答】20.【答题】下列变量间的关系不是函数关系的是()A. 长方形的宽一定,其长与面积B. 正方形的面积与周长C. 等腰三角形的面积与底边长D. 圆的周长与半径【答案】C【分析】【解答】。
鲁教版(五四制)七年级数学上册 6.2 一次函数 同步练习卷(有答案)
鲁教版(五四制)七年级数学上册6.2 一次函数同步练习卷题号一二三四总分得分一、选择题(本大题共12小题,共36分)1.下列函数中是一次函数的是()A. t=200vB. s=t(50−t)C. y=x2+2xD. y=6−2x2.函数y=(3−m)x2|m|−5+(m−5)是一次函数,则m=()A. ±3B. 3C. ±2D. −33.等腰三角形底角与顶角之间的函数关系是()A. 正比例函数B. 一次函数C. 反比例函数D. 二次函数4.如果y=(a+1)x a2是正比例函数,那么a的值是()A. −1B. 0或1C. −1或1D. 15.若函数y=(2m+1)x2+(1−2m)x(m为常数)是正比例函数,则m的值为()A. m>12B. m=12C. m<12D. m=−126.一长为5m、宽为2m的长方形木板,现要在长边上截去长为x(m)(0≤x<5)的长方形木板(如图所示),则剩余木板的面积y(m2)关于x(m)的函数表达式为().A. y=2xB. y=5xC. y=10−2xD. y=10−x7.拖拉机的油箱中装有油60L,耕地时平均每时耗油5L.则开始耕地后,油箱中剩油量QL与耕地时间th之间的函数表达式为()A. Q=60+5tB. Q=5−60tC. Q=60−5tD. Q=5+60t8.下列函数关系中表示一次函数的有()①y=2x+1②y=1x ③y=x+12−x④s=60t⑤y=100−25x.A. 1个B. 2个C. 3个D. 4个9.若函数y=(k−4)x+5是一次函数,则k应满足的条件为()A. k>4B. k<4C. k=4D. k≠410.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的关系式是()A. t=20vB. t=20v C. t=v20D. t=10v11.下列说法不正确的是()A. 正比例函数是一次函数的特殊形式B. 一次函数不一定是正比例函数C. y=kx+b是一次函数D. 2x−y=0是正比例函数12.小高从家门口骑车去离家4千米的单位上班,先花3分钟走平路1千米,再走上坡路以0.2千米/分钟的速度走了5分钟,最后走下坡路花了4分钟到达工作单位,若设他从家开始去单位的时间为t(分钟),离家的路程为y(千米),则y与t(8<t≤12)的函数关系为()A. y=0.5t(8<t≤12)B. y=0.5t+2(8<t≤12)C. y=0.5t+8(8<t≤12)D. y=0.5t−2(8<t≤12)二、填空题(本大题共5小题,共15分)13.已知函数y=(n−2)x+n2−4是正比例函数,则n为____.14.中国电信公司最近推出无线市话的收费标准如下:前3min(不足3min按3min计)收费0.2元,3min后每分钟收费0.1元,则通话一次的时间x(min)(x>3)与这次通话费用y(元)之间的关系式____.15.某车站规定旅客可以免费携带不超过20千克的行李,超过部分每千克收取1.5元的行李费,则旅客需交的行李费y(元)与携带行李重量x(千克)(x>20)之间的关系式为________________.16.一蜡烛高20厘米,点燃后平均每小时燃掉4厘米,则蜡烛点燃后剩余的高度ℎ(厘米)与燃烧时间t(时)之间的关系式是__________(0≤t≤5).17.用一根长为30cm的铁丝围成一个长方形,若该长方形的一边长为x cm,面积为y cm2,则y与x之间的关系式为______ .三、计算题(本大题共1小题,共6分)18.甲、乙两家体育商品店出售同型号的乒乓球拍和乒乓球.球拍每副都是20元,球每盒都是5元,两家商店的促销方式如下:甲店是每买一副球拍送球一盒;乙店是按定价的九折优惠.某班需购4副球拍,球若干盒(不少于4盒).(1)设购买球的盒数为x(盒),在甲、乙两店购买时需付款数分别为y1元和y2元,分别写出在两家商店购买付款数y(元)与乒乓球盒数x(盒)之间的函数关系式;(2)根据函数关系式,给该班提出一个最合理的购买方案.四、解答题(本大题共3小题,共43分)19.已知y+a与x+b(a,b为常数)成正比例,且比例系数为k(k≠0).(1)y是x的一次函数吗?请说明理由;(2)在(1)的条件下,当a与b满足什么关系时,y是x的正比例函数?20.某种汽车行驶时油箱里剩余油量与汽车行驶路程通过测量得到如下数据:(1)汽车行驶4千米时油箱中剩余油量为多少?(2)如果用s表示行驶路程,L表示剩余油量,那么当s不断增加时,L的变化趋势如何?(3)s每增加1千米时,L的变化情况相同吗?(4)当汽车行驶路程为50千米时,油箱中剩余油量为多少?21. 已知函数y =(k −2)x k 2−3+b +1是关于x 的一次函数,求k 和b 的取值范围.解:根据题意,得k 2−3=1, ①∴k =−2或k =2,b 是任意实数. ②以上解答正确吗?若不正确,请改正.参考答案1.D2.D3.B4.D5.D6.C7.C8.D9.D 10.B 11.C 12.D13.-2 14.y=0.1x-0.1 15. 1.530y x =-16.h=204t - 17. 215x y x =-+ 18. 解:(1)甲:y 1=20×4+5(x-4)=60+5x (x ≥4);乙:y 2=4.5x+72(x ≥4).(2)y 1=y 2时,60+5x=4.5x+72,解得x=24,即当x=24时,到两店一样合算;y 1>y 2时,60+5x >4.5x+72,解得x >24,即当x >24时,到乙店合算;y 1<y 2时,60+5x <4.5x+72,解得x <24,又∵x ≥4,∴当4≤x <24时,到甲店合算.19. 解:(1)∵y+a 与x+b 成正比例,设比例系数为k ,则y+a=k (x+b ),整理得:y=kx+kb-a ,∴y 是x 的一次函数;(2)∵y=kx+kb-a ,∴要想y 是x 的正比例函数,kb-a=0即a=kb 时y 是x 的正比例函数.20. (1) 汽车行驶4千米时油箱中剩余油量为20-0.12=19.88升.(2) 如果用s 表示行驶路程,L 表示剩余油量,那么当s 不断增加时,L 越来越少.(3)相同(4)20-0.03*50=18.5升.21. 解:不正确,忽视了一次项系数不能为零.正确解法:根据题意得:k 2-3=1,且k-2≠0,∴k=-2或k=2(舍去)∴k=-2.b 是任意的常数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元评价检测
第六章
(45分钟100分)
一、选择题(每小题4分,共28分)
1.下列函数(1)y=π2x;(2)y=3x+1;(3)y=;(4)y=2-3x;(5)y=x3+4中,一次函数有( )
(A)1个(B)2个(C)3个(D)4个
2.一次函数y=kx+b的图象如图,则k,b的值是( )
(A),-2 (B),-2
(C)-,2 (D)-,2
3.周一的升旗仪式上,同学们看到匀速上升的旗子,能反映其高度与时间关系的图象大致是( )
4.根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为( )
(A)(B)(C)(D)
5.下列图形中,可能是一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是( )
6.小敏从A地出发向B地行走,同时小聪从B地出发向A
地行走,如图所示,相交于点P的两条线段l1,l2分别表示
小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关
系,则小敏、小聪的速度分别是( )
(A)3km/h和4km/h (B)3km/h和3km/h
(C)4km/h和4km/h (D)4km/h和3km/h
7.一家电信公司给顾客提供两种上网收费方式:方式
A以每分0.1元的价格按上网所用的时间计费;方
式B除收月基本费20元外,再以每分0.05元的价
格按上网所用时间计费.若上网所用时间为xmin,
计费为y元,如图,是在同一坐标系中,分别描述两种计费方式的函数图象,有下列结论:
①图象甲描述的是方式A;②图象乙描述的是方式B;③当上网所用时间是500min时,选择方式B省钱.其中,正确结论的个数是( )
(A)3 (B)2 (C)1 (D)0
二、填空题(每小题5分,共25分)
8.已知y与x+1成正比例,且x=1时,y=2.则x=-1时,y的值是______.
9.一次函数y=2x-1的图象经过点(a,3),则a=______.
10.如果点(m,2)在连接点A(0,4)和点B(-2,0)的直线上,则m的值是______.
11.将直线y=x+4沿y轴向下平移2个单位长度,得到的直线经过第________象限.
12.如图,已知A地在B地正南方3km处,甲乙两人同
时分别从A,B两地向正北方向匀速直行,他们与A地
的距离S(km)与所行的时间t(h)之间的函数关系图象用
如图所示的AC和BD给出,当他们行走3h后,他们之
间的距离为________km.
三、解答题(共47分)
13.(11分)已知一次函数y=kx-4,当x=2时,y=-3.
(1)求一次函数的表达式.
(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴交点的坐标. 14.(12分)已知一个正比例函数和一个一次函数,它们的图象都经过点P(-2,1),且一次函数的图象与y轴相交于Q(0,3).
(1)求这两个函数的表达式.
(2)在给出的坐标系中画出这两个函数图象.
(3)求△POQ 的面积.
15.(12分)科学研究发现,空气含氧量y(g/m 3)与海拔高度x(m)之间近似地满足一次函数关系,经测量,在海拔高度为0m 的地方,空气含氧量约为299g/m 3;在海拔高度为2000m 的地方,空气含氧量约为235g/m 3.
(1)求出y 与x 的函数关系式.
(2)已知某山的海拔高度为1200m ,请你求出该山山顶处的空气含氧量约为多少.
16.(12分)如图,一次函数y=-
x+2的图象分别与x 轴、y 轴交于点A ,B ,以线段AB 为边在第一象限内作等腰
Rt △ABC ,∠BAC=90°.求过B ,C 两点直线的表达式.
答案解析
1.【解析】选C.由一次函数的定义知(1)(2)(4)是一次函数.
2.【解析】选B.由图象知b=-2,把x=3,y=0代入y=kx-2,得k=
. 3.【解析】选D.A 中,旗子的高度先逐渐升高,到达最高点后,高度逐渐下降,所以不符合题意;B 中,旗子的高度始终不变,也不符合题意;C 中,随着时间
的增大,旗子的高度越来越低,这是降旗的过程,不符合题意.
4.【解析】选B.因为x=在范围2≤x≤4中,所以把x=代入y=,得y==.
5.【解析】选A.A选项中的一次函数m<0,n>0,则有mn<0,正比例函数mn<0,符合;B选项中一次函数m<0,n>0,则有mn<0,正比例函数mn>0,所以不符合;C选项中m>0,n>0,则有mn>0,正比例函数mn<0,所以不符合;D选项中m>0,n<0,则有mn<0,正比例函数mn>0,所以不符合.
6.【解析】选D.根据图象知:小敏经过2.8-1.6=1.2小时,走了4.8km,则其速度为4km/h;小聪经过1.6h,走了4.8km,则其速度为3km/h.
7.【解析】选A.根据一次函数图象特点:①图象甲描述的是方式A,正确,②图象乙描述的是方式B,正确,③当上网所用时间为500min时,选择方式B 省钱,正确.
8.【解析】因为y与x+1成正比例,所以设y=k(x+1),因为x=1时,y=2,所以2=k×2,即k=1,所以y=x+1.则当x=-1时,y=-1+1=0.
答案:0
9.【解析】将点(a,3)代入函数y=2x-1得3=2a-1,解得a=2.
答案:2
10.【解析】设直线AB的表达式为y=kx+b,由题意得,b=4,0=-2k+4,解得k=2,所以一次函数的表达式是y=2x+4.当y=2时,x=m代入表达式得m=-1.
答案:-1
11.【解析】由题意可知,平移后直线的表达式为y=x+2.
因为k=1>0,b=2>0,
所以直线y=x+2经过第一、二、三象限.
答案:一、二、三
12.【解析】由图象求得AC的表达式为S1=2t,BD的表达式为S2=t+3,当t=3时,S1=6,S2=.
所以两人相距1.5km.
答案:1.5
13.【解析】(1)将x=2,y=-3代入y=kx-4,得-3=2k-4,
所以k=,所以一次函数的表达式为y=x-4.
(2)将y=x-4的图象向上平移6个单位得
y=x+2,当y=0时,x=-4,
所以平移后的图象与x轴交点的坐标为(-4,0).
14.【解析】(1)设正比例函数和一次函数表达式分别为y=k1x和y=k2x+3,则-2k1=1,-2k2+3=1,
所以k1=-,k2=1,所以正比例函数表达式为
y=-x,一次函数表达式为y=x+3.
(2)y=-x过(0,0)和(2,-1)两点,y=x+3过(-3,0)和(0,3)两点,图象如图:
(3)S△POQ=OQ·|x P|=×3×2=3.
15.【解析】(1)设y=kx+b,
则有b=299,2000k+b=235,
解得k=-,b=299,
所以y=-x+299.
(2)当x=1200时,y=-×1200+299
=260.6(g/m3),
所以该山山顶处的空气含氧量约为260.6g/m3.
16.【解析】过点C作CE⊥x轴,垂足为E.
因为∠BAC=90°,所以∠BAO+∠CAE=90°.
因为∠BAO+∠OBA=90°,所以∠CAE=∠OBA.
在△AOB和△CEA中∠∠°∠∠
所以△AOB≌△CEA(AAS),
所以AE=OB=2,CE=OA=3,
所以OE=OA+AE=3+2=5,
所以C(5,3),
设直线BC的表达式为y=kx+b,把点B(0,2),C(5,3)代入解得y=x+2,所以,过B,C两点直线的表达式为y=x+2.。