大学物理学_下册_吴柳_课后答案[12-19章]_khdaw
大学物理学吴柳下答案
大学物理学下册 吴柳 第12章12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后,长度之比是多少)?解:活塞两侧气体的始末状态满足各自的理想气体状态方程左侧: T pV T V p 111= 得, T pT V p V 111=右侧:T pV T V p 222= 得, T pT Vp V 222=122121T p T p V V = 即隔板两侧的长度之比 122121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2atm ,密度32kg/m 1024.1-⨯=ρ.求该气体的摩尔质量.解:nkT p = (1)nm =ρ (2)A mN M = (3) 由以上三式联立得:12352232028.010022.610013.1100.12731038.11024.1----⋅=⨯⨯⨯⨯⨯⨯⨯⨯⨯==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量.解:()V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ()()RT MM MVV p 2122-=- (2)(1)、(2)式联立得: ()()()Vp p RT M M V p Vp p RTM M M 212121221--=⎪⎪⎭⎫ ⎝⎛--=12.4在实验室中能够获得的最佳真空相当于大约10-14atm (即约为10-10mmHg 的压强),试问在室温(300K )下在这样的“真空”中每立方厘米内有多少个分子? 解: 由nkT p = 得,35311235141045.21045.21038.130010013.110----⨯=⨯=⨯⨯⨯⨯==cm m kT p n 12.5已知一气球的容积V =8.7m 3,充以温度t 1=150C 的氢气,当温度升高到370C 时,维持其气压p 及体积不变,气球中部分氢气逸出,而使其重量减轻了0.052kg ,由这些数据求氢气在00C,压力p 下的密度. 解:V p 1t m V p 2t ()V V -2 p 2t m ∆3V p 3t m 由221t V t V = (1)mmV V V ∆=-22 (2)331t V t V = (3) 3V m=ρ (4) 由以上四式联立得: 3231122109.815.2737.815.288052.02215.310--⋅⨯=⨯⨯⨯=∆-=m kg Vt t m t t t ρ 12.6真空容器中有一氢分子束射向面积2cm 0.2=S 的平板,与平板做弹性碰撞.设分子束中分子的速度13s m 100.1-⋅⨯=v ,方向与平板成60º夹角,每秒内有23100.1⨯=N 个氢分子射向平板.求氢分子束作用于平板的压强. [2.9×103Pa] 解: AN M m =Pa SNm S F p 323433230109.210022.6100.223100.110210260sin 2⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯===--v12.7 下列系统各有多少个自由度:⑴在一平面上滑动的粒子;⑵可以在一平面上滑动并可围绕垂直于该平面的轴转动的硬币;⑶一弯成三角形的金属棒在空间自由运动. 解:(1) 2 (2) 3 (3) 612.8 容器内贮有氧气,其压强Pa 101.013atm 15⨯==p ,温度t =270C,求: (1)单位体积内的分子数;(2)分子的质量m ;(3)氧气的密度ρ;(4)分子的方均根速率;(5)分子的平均平动能;(6)在此温度下,4g 氧的内能. 解:(1) 由 nkT p = 得,3252351045.215.3001038.110013.1--⨯=⨯⨯⨯==m kT p n (2) kg N M m A 262331031.510022.61032--⨯=⨯⨯== (3) 3262530.11031.51045.2--⋅=⨯⨯⨯==m kg nm ρ(4) 12321084.4103215.30031.833--⋅⨯=⨯⨯⨯==s m M RTv (5) J kT k 21231021.615.3001038.12323--⨯=⨯⨯⨯==ε (6) J RT M m 21079.715.30031.82532425⨯=⨯⨯⨯==ε12.9 1mol 氢气,在温度270C 时,求⑴具有若干平动动能;⑵具有若干转动动能;⑶温度每升高10C 时增加的总动能是多少? 解: (1) J RT 311074.315.30031.82323⨯=⨯⨯==ε (2) J RT 321049.215.30031.822⨯=⨯==ε(3) J R 8.2025==∆ε12.10 试求1mol 氢气分别在0℃和500℃时的内能.解: J RT 3111067.515.27331.82525⨯=⨯⨯==ε J RT 4221061.115.77331.82525⨯=⨯⨯==ε12.11 (1)求在相同的T 、p 条件下,各为单位质量的 H 2气与He 气的内能之比.(2)求在相同的T 、p 条件下,单位体积的H 2气与He 气的内能之比. 解:(1) RT E H 25102132⨯⨯=- RT E eH 2310413⨯⨯=-3102=eH H E E (2) 由nkT p =, 相同的T 、p 条件,可知: e H H n n =2 kT n E H H 2522= kT n E e e H H 23=352=eH H E E 12.12 设山顶与地面的温度均为273K,空气的摩尔质量为0.0289kg ·mol -1.测得山顶的压强是地面压强的3/4,求山顶相对地面的高度为多少? 解:依题意有,340=p p 由气压公式有:m p p g RT h 301030.234ln 81.90289.027331.8ln ⨯=⨯⨯==μ 12.13 求速率大小在p v 与1.01p v 之间的气体分子数占总分子数的百分率. 解:速率间隔在p p 1.01v ~v ,即p v v 01.0=∆1==p W v v 01.0=∆=∆pW v v在p p v v 01.1~间隔的分子数占总分子数的百分数为()%83.0422=∆=∆=∆-W e W W W f N N W π12.14 求00C 的氢气分子和氧气分子的平均速率、方均根速率和最概然速率. 解: 氢气分子相对应的各种速率为1331071.110215.27331.860.160.1--⋅⨯=⨯⨯⨯==s m M RT v 13321084.110215.27331.873.173.1--⋅⨯=⨯⨯⨯==s m M RT v 1331050.110215.27331.841.141.1--⋅⨯=⨯⨯⨯==s m M RT p v 由于三种速率均与分子的摩尔质量平方根成反比4122=o H M M 所以氧气分子的三种速率为氢气分子相应速率的四分之一 121026.4-⋅⨯=s m o v 1221061.4-⋅⨯=s m o v ()121076.3-⋅⨯=s m opv12.15 如图12-31所示.两条曲线分别表示氧气和氢气在同样温度下的速率分布曲线.试问哪条曲线对应氧(氢)气的分布曲线? 氧气和氢气的最概然速率各是多少? 方均根速率各是多少? 解: 由 MRT p 2=v 可知,温度相同时,p v 与M 成反比又由图可知,12p p v v > 因此 可得,21M M > 所以, (1)为氧气的速率分布曲线 (2)为氢气的速率分布曲线()()()()2222H M O M O H p p =v v ()12500-⋅=s m O p v()()()()122222000232500-⋅===s m O H M O M H p p v v由 MRT32=v MRT p 2=v 得, p v v 232= ()12261250023-⋅=⨯=s m O v))(v f 图12-31 习题12.14图()1222450200023-⋅=⨯=s m H v12.16 设质量为m 的N 个分子的速率分布曲线如图12-32所示.(1)由N 和0v 求a 值.(2)在速率2/0v 到30v /2间隔内的分子数;(3)分子的平均平动能. 解:(1)在区间内0~0v ()v v v 0aNf = 在区间内002~v v ()a Nf =v 在区间内02~0v ,分子总数为N()0202002023200000v v v v v v v v v v v v v v a a a ad d a N =+⎪⎪⎭⎫ ⎝⎛=+=⎰⎰ 032v Na =(2)()N a a a ad d a N 12787202322023200000000==+⎪⎪⎭⎫ ⎝⎛=+=∆⎰⎰v v v v v v v v v v v v v v v v 0 (3) ()v v v v v d f ⎰=02022202020022022363191461211121210v v v v v v v v v v v v v m m ad Nd a Nm m =⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+==⎰⎰ε 12.17 设N 个粒子系统的速度分布函数为⎩⎨⎧>>>=)0),0(d d 00v v v v v (为常量K K N v⑴画出分布函数图;⑵用N 和v 0定出常数K ;⑶用v 0表示出平均速率和方均根速率. 解:(1)KO )(v Nf 0图12-32习题12.15图0v v (2) 00v v v K Kd N ==⎰ 0v NK =(3) 211000000v v v v v v vv v ===⎰⎰d d NNv00254.032383v v v v ===ππ 12.18 试从麦克斯韦速率分布律出发推写出如下分布律:(a )以最概然速率mkTp 2=v 作为分子速率单位的分子速率p x v v =的分布律;(b )分子动能221v m k =ε的分布律.并求出最概然动能kp ε,它是否就等于221p m v ? 解:麦克斯韦速率分布律 ()2223224v v v kTm e kT m f -⎥⎦⎤⎢⎣⎡=ππ(a ) m kT p 2=v px v v= ()2224x e x kTm x f -=π (b)221v m k =ε()k kTk ke kT mf επεε-⎪⎭⎫ ⎝⎛=23124()0112423=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=-kT e kT m d f k kT k k kεπεεε得, 01=⎪⎭⎫⎝⎛-kT k ε 221p kp m kT v ==ε12.19 设容器内盛两种不同单原子气体,原子质量分别为m 1和m 2的此混合气体处于平衡状态时内能相等,均为U ,求这两种气体平均速率1v 和2v 的比值以及混合气体的压力.设容器体积为V .解: RT M m U 231'= RT M m U 232''= 得,2''1'M m M m =21'''M M mm = 118m kT π=v 228m kTπ=v 则 1221m m =v v RT pV ν= RTUM m M m M m 3421'2''1'==+=ν 得, VU V RT RT U p 3434==12.20 求在标准状态下一秒内分子的平均自由程和平均碰撞次数.已知氢分子的有效直径为2.0×10-10 m.解:3252351069.215.2731038.110013.1--⨯=⨯⨯⨯==m kT p n ()m nd 72521021009.21069.2100.22121--⨯=⨯⨯⨯==ππλ1331070.110215.27331.888--⋅⨯=⨯⨯⨯==s m m RT ππv 19731013.81009.21070.1--⨯=⨯⨯==s z λv12.21 在足够大的容器中,某理想气体的分子可视为d=4.0×10-10 m 的小球,热运动的 平均速率为2100.5⨯=v m/s,分子数密度为n =3.0×1025 /m 3.试求:(1) 分子平均自由程和平均碰撞频率;(2) 气体中某分子在某时刻位于P 点,若经过与其他分子N 次碰撞后,它与P 点的距离近似可表为λN R =,那么此分子约经多少小时与P 点相距10米?(设分子未与容器壁碰撞) 解: (1)()m nd 8252102107.4100.3100.42121--⨯=⨯⨯⨯==ππλ110821006.1107.4100.5--⨯=⨯⨯==s z λv(2) λN R =h R R z N t 1182107.4100.5110018222=⨯⨯⨯⨯==⎪⎭⎫ ⎝⎛==-λυυλλ 12.22 设电子管内温度为300K ,如果要管内分子的平均自由程大于10cm 时,则应将它抽到多大压力?(分子有效直径约为3.0⨯10-8cm ) 解:nd 221πλ=若使cm 10>λ()3192102105.21.0100.32121--⨯=⨯⨯==m d n πλπ 需使 319105.2-⨯<m nPa nkT p 1.03001038.1105.22319=⨯⨯⨯⨯==- 即需使 Pa p 1.0<12.23 计算⑴在标准状态下,一个氮分子在1s 内与其他分子的平均碰撞次数;⑵容积为4L 的容器,贮有标准状况下的氮气,求1s 内氮分子间的总碰撞次数.(氮分子的有效直径为3.76⨯10-8cm )解: (1) λυ=z 3252351069.215.2731038.110013.1--⨯=⨯⨯⨯==m kT p n()m nd 8252102109.51069.21076.32121--⨯=⨯⨯⨯==ππλ1231054.4102815.27331.888--⋅⨯=⨯⨯⨯==s m M RT ππυ 1982107.7109.51054.4--⨯=⨯⨯=s z (2) mol V V mol 179.04.224===ν AN N ν=132923103.8107.710022.6179.0-⨯=⨯⨯⨯⨯===s z N z N z A ν12.24 实验测知00C 时氧的粘滞系数s)g/(cm 1092.14⋅⨯=-η,试用它来求标准状态下氧分子的平均自由程和分子有效直径.解:λυρη31=M RT πυ8= nm =ρ 其中 kT p n =, A N M m = 得:RTpM =ρ所以m MRT p RTMpMRT8355105.91032815.27331.810013.111092.1381383---⨯=⨯⨯⨯⨯⨯⨯⨯===ππηπηλpd kT nd 22221ππλ==m p kT d 108523100.3105.910013.1215.2731038.12---⨯=⨯⨯⨯⨯⨯⨯==πλπ12.25 今测得氮气在00C 时的导热系数为237103.W m K 11⨯⋅⋅---,计算氮分子的有效直径.已知氮的分子量为28. 解:⎪⎭⎫⎝⎛=M C VM λυρκ31 R C VM 25= RT pM nm ==ρ m RMT p R MRT M pM RT73531069.131.8815.273102810013.11107.235681565283---⨯=⨯⨯⨯⨯⨯⨯⨯⨯===ππκπκλpd kT nd 22221ππλ==m p kT d 107523102.21069.110013.1215.2731038.12---⨯=⨯⨯⨯⨯⨯⨯==πλπ12.26 在270C 时,2mol 氮气的体积为0.1L ,分别用范德瓦耳斯方程及理想气体状态方程计算其压强,并比较结果.已知氮气a =0.828atm ⋅L 2⋅mol -2, b =3.05⨯10-2L ⋅mol . 解:RT pV ν=Pa VRTp 731099.4101.015.30031.82⨯=⨯⨯⨯==-ν ()RT b V V a p ννν=-⎪⎭⎫ ⎝⎛+22p 2p 0V 02V V()()PaV a b V RT p 72532221044.91.010013.1828.04101005.321.015.30031.82⨯=⨯⨯⨯-⨯⨯⨯-⨯⨯=--=--ννν 第13章13.1 (1)理想气体经过下述三种途径由初态I (2p 0,V 0)变到终态Ⅱ(p 0,2V 0).试计算沿以下每一路径外界对气体所作的功:(a )先从V 0到2V 0等压膨胀然后等体积降压;(b )等温膨胀;(c )先以V 0等体积降压到p 0后再等压膨胀.(2)对1mol 的范氏气体重复以上三个过程的计算? [答案:(1)(a)2p 0V 0,(b) 2p 0V 0ln2,(c)p 0V 0;(2) (a)2p 0V 0, (b)00002002ln ))(( V a b V b V b V V ap ----+,(c)p 0V 0] 解:(1)(a) ()00000222200V p V V p pdV A V V =-==⎰ (b) 200222ln 2ln 00V p RT dV VRTpdV A V V V V ====⎰⎰(c) ()00000220V p V V p pdV A V V =-==⎰(2) 范德瓦尔斯方程: ()RT b V V a p mol mol=-⎪⎪⎭⎫ ⎝⎛+2 (a) 00220V p pdV A V V ==⎰(b)()000020000222222ln 22ln 000V ab V b V b V V a p V a V a RT dV V a b V RTpdV A bV b V V V V V ----⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫⎝⎛--==--⎰⎰(c) 0020V p pdV A V V ==⎰13.2 由如图13-40所示.一系统由状态a 沿acb 到达状态b ,吸热量80Cal ,而系统做功126J.⑴经adb 过程系统做功42J ,问有多少热量传入系统?⑵当系统由状态b 沿曲线ba 返回状态a 时,外界对系统做功为84J ,试问系统是吸热还是放热?热量是多少? 解:1Cal=4.2J(1) A E Q +∆= J Q 3362.480=⨯=J A Q E 210126336=-=-=∆ 所以经adb 过程传入系统的热量 J A E Q 252422101=+=+∆= (2) J A 84-=029484210<-=--=+∆=J A E Q 所以系统是放热,热量是294J13.3 如图13-41所示.单原子理想气体从状态a 经过程abcd 到状态d ,已知p a =p d =1atm ,p b =p c =2atm ,V a =1L ,V b =1.5L ,V c =3L ,V a =4L .⑴试计算气体在abcd 过程中内能的变化、功和热量;⑵如果气体从状态d 保持压力不变到状态a (图中虚线),求以上三项的结果;⑶若过程沿曲线从a 到c 状态,已知该过程吸热257Cal ,求该过程中气体所做的功. 解:(1) b a →()a b m V T T C E -=∆.νa a a RT V p ν= RV p T a a a ν=b b b RT V p ν= RV p T bb b ν=()a a b b a a b b V p V p R V p R V p R E -=⎪⎭⎫ ⎝⎛-=∆2323ννν()J 231004.31010132515.1223⨯=⨯⨯-⨯⨯=- ()J pdV A b aV V 231076.010*******.02121⨯=⨯⨯⨯+⨯==-⎰J A E Q 21080.3⨯=+∆= 同理: c b →()()J V p V p E b b c c 231056.4101013255.12322323⨯=⨯⨯⨯-⨯⨯=-=∆-图13-41 习题13.3图pp 12J pdV A cbV V 231004.3105.11013252⨯=⨯⨯⨯==-⎰J A E Q 21060.7⨯=+∆=d c →()()J V p V p E c c d d 231004.31010132532412323⨯-=⨯⨯⨯-⨯⨯=-=∆- ()J pdV A d cV V 231052.1101013252121⨯=⨯⨯+⨯==-⎰J A E Q 21052.1⨯-=+∆=J E 21056.4⨯=∆总 J A 21032.5⨯=总 J Q 21088.9⨯=总(2) ()()J V p V p E d d a a 231056.410101325412323⨯-=⨯⨯-⨯=-=∆- J pdV A adV V 231004.3103101325⨯-=⨯⨯-==-⎰J A E Q 21060.7⨯-=+∆=(3) c a →()J E 221060.71056.404.3⨯=⨯+=∆J E Q A 221019.31060.72.4257⨯=⨯-⨯=∆-=13.4 如图13-42所示.一定质量的氧气在状态A 时,V 1=3L ,p 1=8.2×105Pa ,在状态B时V 2=4.5L ,p 2=6×105Pa .分别计算气体在下列过程吸收的热量,完成的功和内能的改变:⑴经ACB 过程,⑵经ADB 过程. 解:(1) ACB 过程C A → ()()35103102.862525-⨯⨯⨯-⨯=-=∆A A C C V p V p EJ 31065.1⨯-=J A 0=J Q 31065.1⨯-=B C → ()()J V p V p E C C B B 3531025.21061035.42525⨯=⨯⨯⨯-⨯=-=∆-()()J V V p A 335122109.01035.4106⨯=⨯-⨯⨯=-=- J Q 31015.3⨯=图13-42 习题13,4图J E 3106.0⨯=∆总 J A 3109.0⨯=总 J Q 3105.1⨯=总(2) ADB 过程D A →()()J V p V p E A A D D 35310075.3102.81035.42525⨯=⨯⨯⨯-⨯=-=∆-()()J V V p A 3351211023.11035.4102.8⨯=⨯-⨯⨯=-=-J Q 310305.4⨯=B D → ()()J V p V p E D D B B 33510475.2105.4102.862525⨯-=⨯⨯⨯-⨯=-=∆-J A 0=J Q 310475.2⨯-=J E 3106.0⨯=∆总 J A 31023.1⨯=总 J Q 31083.1⨯=总13.5压强为p =1.01×103Pa,体积为0.0082 m 3的氮气,从初始温度300K 加热到400K. (1)如加热时分别体积不变需要多少热量?(2) 如加热时分别压强不变需要多少热量? [答案: Q V =683J; Q p =957J]解:(1) RT pV ν= RTpV=ν ()J R RT pV T C E m V 6901003000082.01001.125300400255.=⨯⨯⨯⨯=-=∆=∆νJE Q V 690=∆=(2)J T R RTpVT C Q m p p 9661003000082.01001.1271255.=⨯⨯⨯⨯=∆⎪⎭⎫⎝⎛+=∆=ν 13.6 将500J 的热量传给标准状态下2 mol 氢气.(1)若体积不变,问此热量变为什么?氢气的温度变为多少?(2)若温度不变,问此热量变为什么?氢气的压强及体积各变为多少?(3)若压强不变, 问此热量变为什么? 氢气的温度及体积各变为多少?[答案: (1) T=285K; (2)Pa 1007.942⨯=p ,V 2=0.05m 3,(3)T =281.6K; V 2=0.046 m 3] 解:(1) 全部转化为内能 T C Q m V V ∆=.ν K R C Q T m V 12252500.=⨯==∆ν K T 15.2851215.2732=+=(2) 全部转化为对外界做功 12lnV V RT Q T ν= 12V e V RTQ T ν= 3310448.0104.222m V =⨯⨯=-3205.0m V =2211V p V p = Pa V V p p 4521121007.905.00448.010013.1⨯=⨯⨯==(3) 一部分用于对外做功,一部分用于内能增加 T C Q m p p ∆=.νK R C Q T mp p6.8272500.=⨯==∆ν K T 75.2816.815.2732=+=2211T V T V = 32112046.075.28115.2730448.0m T T V V =⨯==13.7 一定量的理想气体在某一过程中压强按2Vcp =的规律变化,c 是常量.求气体从V 1增加到 V 2所做的功.该理想气体的温度是升高还是降低? [答案: 2121);11(T T V V c A >-= ]解:⎪⎪⎭⎫ ⎝⎛-===⎰⎰212112121V V c dV V cpdV W V V V V 由理想气体状态方程 RT pdV ν= 得,RTV V c ν=2RT V cν= 可知1221V V T T = 因为 12V V > , 所以 21T T > 即气体的温度降低13.8 1mol 氢,在压强为1.0×105Pa,温度为20o C 时体积为0V .今使它分别经如下两个过程达到同一状态:(1)先保持体积不变,加热使其温度升高到80o C,然后令它等温膨胀使体积变为原来的2倍;(2)先等温膨胀至原体积的2倍,然后保持体积不变加热至80o C .试分别计算以上两种过程中吸收的热量、气体做的功和内能的增量,并作出p-V 图.[答案: Q 2=2933J,A =1687J,∆U =1246J]解:(1) 定容过程J A 0=()J R T C Q E m V V 50.1246208025.=-=∆==∆ 等温过程 J E 0=∆ ()J RT V V RT Q A T 16.20342ln 8015.27331.82ln ln12=⨯+⨯==== J Q 66.3280=总 J A 16.2034=总 J E 50.1246=∆总 (2) 等温过程J E 0=∆J RT Q A T 56.16882ln 15.29331.82ln =⨯⨯===定容过程J A 0=()J R T C Q E m V V 50.1246208025.=-=∆==∆ J Q 06.2935=总 J A 56.1688=总 J E 50.1246=∆总 13.9 某单原子理想气体经历一准静态过程,压强Tcp =,其中c 为常量.试求此过程中该气体的摩尔热容C m . [答案: C m =(7/2)R ] 解:由理想气体状态方程 RT pV ν= 其中 Tc p =得, 2T cRV ν=dT cRTdV ν2=根据热力学第一定律,A E Q +∆= T R R dT c RT T c T R pdV T C Q m V ∆⎪⎭⎫ ⎝⎛+=+∆=+∆=⎰⎰223223.νννν 则可得,R T Q C m 27=∆=ν13.10 为了测定气体的γ=⎛⎝ ⎫⎭⎪C C p V 可用下列方法:一定量的气体初始温度、压强和体积分别为T 0,p 0和V 0,用通有电流的铂丝对它加热,第一次保持气体体积V 0不变,温度和压强各变为T 1和p 1;第二次保持压力,p 0不变,温度和体积各变为T 2和V 1,设两次加热的电流和时间都相同.试证明γ=--()()p p V V V p 100100解: 过程1为定容过程 V 不变,()01T T C T C Q V V -=∆=νν由理想气体状态方程得, 000RT V p ν= R V p T ν000=101RT V p ν= RV p T ν011=即 ()001V p p RC Q V-=(1) 过程2为定压过程 p 不变,()02T T C T C Q p p -=∆=νν由理想气体状态方程得, RV p T ν102=即 ()001p V V R C Q p -= (2)由(1)(2)式即证得, ()()001001p V V V p p C C Vp --==γ13.11气缸内有单原子理想气体,若绝热压缩使其容积减半,问气体分子的平均速率变为原来速率的几倍?若为双原子理想气体,又为几倍?[答案:1.26;1.15] 解:由理想气体绝热方程 常量=-T V 1γ 得,212111T V T V --=γγ 12112-⎪⎪⎭⎫ ⎝⎛=γV V T T 其中1221V V =1122-=γT T又由 M RTπυ8= 可知, 2112122-==γυυT T1p 单原子理想气体 R 35=γ, 则 26.123112==υυ双原子理想气体 R 57=γ, 则 15.125112==υυ13.12一定量的理想气体经历如图13-43所示的循环,其中AB 、CD 是等压过程,BC 、DA 是绝热过程,A 、B 、C 、D 点的温度分别为T 1、T 2、T 3、T 4.试证明此循环效率为 231T T -=η. 解:等压过程AB 吸热 ()121T T C Q p -=ν等压过程CD 放热 ()432T T C Q p -=ν BC 、DA 是绝热过程 0=Q 124312111T T T T Q Q Q A---=-==η 利用绝热方程 常量=--γγT p 1 得,γγγγ----=312211T p T p 31122T p p T γγ--⎪⎪⎭⎫⎝⎛=γγγγ----=412111T p T p 41121T p p T γγ--⎪⎪⎭⎫⎝⎛=2311211T T p p -=⎪⎪⎭⎫⎝⎛-=-γγη 13.13设有一理想气体为工作物质的热机循环,如图13-44所示,试证明其效率为1)/(1)/(12121---=p p V V γη.解:b a →为等体升温过程,吸热 ()a b m V T T C Q -=.1νa c →为等压压缩过程, 放热()a c m p T T C Q -=.2ν2 1图13-45习题13.14狄赛尔循环()()a b m V a c m p T T C T T C Q Q ---=-=..1211η 利用理想气体状态方程 RT pV ν=, 得()()222111V p V p RV p V p R T T a a b b a b -=-=-νν 循环效率为 ()()1111212122212212---=---=p p V V V p V p V p V p γγη 13.14 有一种柴油机的循环叫做狄赛尔循环,如图13-45所示.其中BC 为绝热压缩过程,DE 为绝热膨胀过程,CD 为等压膨胀过程,EB 为等容冷却过程,试证明此循环的效率为⎪⎪⎭⎫ ⎝⎛-'⎪⎪⎭⎫⎝⎛-'-=-11)/(121212V V V V V V γγγη 解:CD 为等压膨胀过程, 吸热 ()C D p T T C Q -=ν1EB 为等容冷却过程, 放热 ()B E V T T C Q -=ν2 循环效率 CD BE T T T T Q Q ---=-=γη11112 利用理想气体状态方程 RT pV ν=, 得()B B E E B E V p V p R T T -=-ν1()C C D D C D V p V p RT T -=-ν1()()2'11111V V p p p V V p V p V p V p C B E C C D D B B E E ---=---=γγη 利用绝热方程 常量=γpV , 得γγE E D D V p V p = E D p V V p γ⎪⎭⎫ ⎝⎛='1()()221211V p V p RV p V p R T T a a c c a c -=-=-ννγγB BC C V p V p = B C p VV p γ⎪⎪⎭⎫ ⎝⎛=21 由C D p p =得 γ⎪⎪⎭⎫ ⎝⎛=2'V V p p B E()()⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛---=-⎪⎪⎭⎫ ⎝⎛--=-111111111112'1212'2'122'1V V V V V V V V V V p p p p V V p p p p V B C B EB C B E γγγγγη 13.15 1mol 理想气体在400K-300K 之间完成一卡诺循环,在400K 的等温线上,起始体积为0.001 m 3,最后体积为 0.005 m 3,试计算气体在此循环中所作的功,以及从高温热源吸收的热量和传给低温热源的热量.[答案:A =1.24×103J,Q 2=4.01×103J] 解:J V V RT Q 312111035.5ln⨯==ν 该循环效率为 %254003001112=-=-=T T η 可得 J Q A 311034.1⨯==η由 21Q Q A -=, 得 J A Q Q 3121001.4⨯=-=13.16 1mol 刚性双原子分子理想气体,作如图13-46所示的循环,其中1-2为直线,2-3为绝热线,3-1为等温线,且已知θ=450,T 1=300K,T 2=2T 1,V 3=8 V 1,试求:(1)各分过程中气体做功、吸热及内能增量;(2)此循环的效率. 解:(1)21→由理想气体状态方程可得, 111RT V p =222RT V p = 又由图可知,11V p =, 22V p =121RT V= 11RT V =1222RT V = 122RT V =22V V =()J R T T C E V 5.62323002512=⨯=-=∆ ()J RT V V VdV pdV A V V V v 5.12462121121222121==-===⎰⎰J A E Q 7479=+∆= 吸热32→O Q = A E -=∆ 利用绝热方程 γγpV V p =22, 得 13322223232--===⎰⎰γγγV p V p VdVV p pdV A V V V V γγ3322V p V p = 2323p VV p γ⎪⎪⎭⎫ ⎝⎛= J RT V V V p VV V p A 5.62321578212182128157122122223222=-⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=-⎪⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=--γγγγ13→0=∆E A Q =J V V RT A 51848ln 30031.8ln131-=⨯⨯-=-= J Q 5184-= 放热(2) 循环效率 %7.30747951841112=-=-=Q Q η *13.17 0.1mol 单原子理想气体,由状态A经直线AB 所表示的过程到状态B,如图13-47所示,已知V A =1L , V B =3L ,p A =3atm .(1)试证A 、B 两状态的温度相等;(2)求AB 过程中气体吸收的热量;(3)求在AB 过程中,温度最高的状态C 的体积和压力(提示:写出过程方程T =T (V ));(4)由(3)的结果分析从A 到B 的过程中温度变化的情况,从A 到C 吸热还是放热?证明Q CB =0.能否由此说从C 到B 的每个微小过程都有δQ =0? 解:(1) 由理想气体状态方程, 得 A A A RT V p ν= B B B RT V p ν=又由已知条件可知 B B A A V p V p = 即证: B A T T =(2) ()0=-=∆A B V T T C E νp (atm)图13-47 习题13.17图J pdV A 25310052.410013.11022221⨯=⨯⨯⨯⎪⎭⎫⎝⎛+⨯⨯==-⎰J A Q 210052.4⨯==(3) 由理想气体状态方程 RT pV ν=, 得R pV T ν=又由图可知: 4+-=V p 即 ()V V R T 412+-=ν 由极值条件:0=dVdT, 得 042=+-V即当 L V 2=, atm p 2= 时T 取到极大值(4) 由 (3) 可知, B A →过程中 温度T 满足函数 ()V V RT 412+-=ν C A →过程中温度升高,到达C 点时取得极大值B C →过程中温度降低,到达点时温度又回到A 点时的值C A →过程 ()0>-=∆A C V T T C E ν0>A0>+∆=A E Q 吸热dA dE dQ +=()()dV V V RC dT C dE VV 63421+-=+-==ννν ()dV V pdV dA 4+-==()dV V dQ 104+-= 即证: ()010432=+-=⎰dV V Q L LCB但不能说从C 到B 的每个微小过程都有0=Q δ13.18一台家用冰箱放在气温为300K 的房间内,做—盒-13℃的冰块需从冷冻室中吸出 2.09×105J 的热量.设冰箱为卡诺制冷机,求: (1)做一盒冰块所需之外功;(2)若此冰箱能以2.09×102J·s -1的速率取出热量,求所要求的电功率是多少瓦? (3)做一盒冰块所需之时间. 解:(1)卡诺循环 制冷系数2122T T T A Q e -==abcpVOabcdOp 代入数据得 5.6260300260=-=eJ e Q A 4521022.35.61009.2⨯=⨯==(2) W e P P 2.325.61009.22'=⨯==(3) h s P Q t 28.0101009.21009.2325'2≈=⨯⨯== 13.19 以可逆卡诺循环方式工作的致冷机,在某种环境下它的致冷系数为w =30.在同样的环境下把它用作热机,问其效率为多少?[答案:%2.3=η]解:卡诺循环 制冷系数AQ w 2=得 wA Q =2 卡诺热机循环效率 1Q A=η 且 A Q Q +=21 ()%2.33011111=+=+=+=w A w A η13.20根据热力学第二定律证明: (1)两条绝热线不能相交;(2) 一条等温线和一条绝热线不能相交两次.解:(1)假设两条绝热线可以相交,如图所示ab 为等温线 bc 、ac 为绝热线此循环过程中 A Q =1 即热全部转化为功, 这与热力学第二定律的开尔文表述相矛盾 所以,即证得:两条绝热线不能相交(2) 假设一条等温线和一条绝热线可以两次相交,如图所示ab 为等温线 cd 为绝热线此循环过程中 A Q =1 即热全部转化为功 这与热力学第二定律的开尔文表述相矛盾, 即证13.21一杯质量180g 温度为100 0C 的水置于270C 的空气中,冷却到室温后水的熵变是多少?空气的熵变是多少?总熵变是多少?[答案:-164J/K ,233J/K ,69J/K]解:熵变的定义:⎰=∆T dQS 热量的计算公式: ⎰=mcdT Q112165300373ln 22.4180ln 21-⋅-=⨯⨯-====∆⎰⎰K J T T mc dT T mc T dQ S T T 水 ()122121853007322.4180-⋅=⨯⨯=-===∆⎰K J T T T mc T Q T dQ S 空气 120165185-⋅=-=∆+∆=∆K J S S S 空气水总13.22 1mol 理想气体经一等压过程,温度变为原来的2倍.该气体的定压摩尔热容为C p ,m ,求此过程中熵的增量. [答案: 2ln Δp C S =] 解:2ln 2121p T T p T T p C TdTC TdT C S ===∆⎰⎰13.23 一房间有N 个分子, 某一宏观态时其中半个房间的分子数为n .⑴写出这种分布的熵的表达式S =k ln Ω; ⑵n =0状态与n =N /2状态之间的熵变是多少? ⑶如果N=6⨯1023,计算这个熵差.解:(1)根据玻耳兹曼熵的表达式 W k S ln =, 得()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎭⎫⎝⎛==⎪⎭⎫ ⎝⎛--NN n N k eN k n W k S A NN n A 222222ln2ln ln 2(2)熵的变化:k N NN N k N k S S S A AN 2222ln 2ln202=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯--=-=∆ (3) 23106⨯=N 时, 熵差为1232314.421038.1106--⋅=⨯⨯⨯=∆K J S第14章14.1 作简谐运动的质点,速度最大值为3cm/s ,振幅A =2cm ,若速度为正最大值时开始计时.(1)求振动的周期;(2)求加速度的最大值;(3)写出振动的表达式. 解: (1) 由2/m A A T ωπ==v ,可得2/20.02/0.03 4.2m T A s ππ==⨯⨯=v(2) 22222/0.03/0.02 4.510/m m a A A m s ω-====⨯v(3) 由于0t =时,m =+v v ,可知/2ϕπ=-,而10.03/0.02 1.5ms Aω-===v ,所以有cos()0.02cos(1.5/2)x A t t ωϕπ=+=-14.2 一水平弹簧振子的振幅A =2cm,周期T =0.50s.当t =0时 (1)物体过x =1cm 处且向负方向运动;(2)物体过x =-1cm 处且向正方向运动.分别写出以上两种情况下的振动表达式. 解: (1) 22cos() 2.010cos(4)3x A t t T ππϕπ-=+=⨯+(2) 22.010cos(42/3)x t ππ-=⨯-14.3 设一物体沿x 轴作简谐振动,振幅为12cm ,周期为2.0s ;在t =0时位移为6.0cm ,且向x 轴正方向运动.试求:(1)初相位;(2)t =0.5s 时该物体的位置、速度和加速度;(3)在x =-6.0cm 且向x 轴负方向运动时,物体的速度和加速度以及它从这个位置到达平衡位置所需要的时间. 解: (1) 001cos 23x A πϕϕ==∴=±又∵00>v ,即0sin 0A ωϕ->00sin 03πϕϕ∴<=-(2) 12cos()()0.53x t cm t s ππ=-=时0.5t s x cm ==10.52220.512sin()6312cos()3t s t st cm s a t cm sπππππππ-=-==--=-⋅=--=-⋅v(3) 12cos x ϕ=)习题14.3图2Ao当6x cm =-时1cos 2ϕ=-∵30sin ϕ<∴=v12212sin 6365566cm s a x cm t t sπϕπωππϕϕωωπ-=-=-⋅=-=∆∆=⋅∆∆===v 14.4 两个谐振子作同频率、同振幅的简谐振动.第一个振子的振动表达式为)cos(1φω+=t A x ,当第一个振子从振动的正方向回到平衡位置时,第二个振子恰在正方向位移的端点.求:(1)第二个振子的振动表达式和二者的相位差;(2)若t =0时,21Ax -=并向x 负方向运动,画出二者的x-t 曲线及旋转矢量图.解: (1) 用旋转矢量法分析,当第一个振子从振动的正方向回到平衡位置时,第二个振子恰好在正方向端点。
大学物理下册课后习题答案word精品文档43页
大学物理下册课后习题答案习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 解得 q q 33-=' (2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的解: 如题8-2图示解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r的分量θsin p . ∴ 场点P 在r 方向场强分量垂直于r 方向,即θ方向场强分量题8-5图 题8-6图8-6 长l =15.0cm AB 上均匀地分布着线密度λ=5.0x10-9C ·m-1(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2) 2220d d π41d +=x xE Q λε 方向如题8-6图所示由于对称性⎰=lQx E 0d ,即Q E只有y 分量,以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x ==积分RR E x 000π2d sin π4ελϕϕελπ==⎰∴ RE E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E解: 如8-8图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为P Ed 在垂直于平面上的分量βcos d d P E E =⊥题8-8图由于对称性,P 点场强沿OP 方向,大小为 ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿OP8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(xRarctan=α) 解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积**关于球冠面积的计算:见题8-9(c)图8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E s,02π4ε∑=q rE当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r < 0,0==∑E q(2) 21R r R <<λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-= 1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+= n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a). (1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场'dπ4π3430320OO r E ερ=∴ O 点电场'd33030OO r E ερ= ; (2) ρ+在O '产生电场'd π4d 3430301OO E ερπ=' ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO 题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερrE PO =,∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6Cd=0.2cm ,把这电偶极子放在1.0×105N ·C-1解: ∵ 电偶极子p在外场E中受力矩 ∴ qlE pE M ==max 代入数字8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r -外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的解: 如题8-16图示8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图(2) AB 电荷在O 点产生电势,以0=∞U同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C) 解: 设均匀带电直线电荷密度为λ,在电子轨道处场强 电子受力大小 re eE F e 0π2ελ== 得 1320105.12π2-⨯==emv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm解: 平行板电容器内部近似为均匀电场8-20 根据场强E与电势U 的关系U E -∇= ,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图)解: (1)点电荷 rqU 0π4ε=题 8-20 图 ∴ 0200π4r rq r r U E ε=∂∂-= 0r 为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势(3)偶极子l q p=在l r >>处的一点电势8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有 说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即又∵ +2σ03=σ说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少? 解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即且 1σ+2σSq A= 得 ,32S q A =σ Sq A321=σ而 7110232-⨯-=-=-=A C q S q σCC10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计(1) (2) *(3) 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且 得 q R R q 21=' 外球壳上电势8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:得 -='q 3q 8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2解: 由题意知 2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电 小球3再与小球2接触后,小球2与小球3均带电 ∴ 此时小球1与小球2间相互作用力(2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q . ∴ 小球1、2间的作用力00294π432322F r q q F ==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图 解得 Sq 261==σσ 所以CB 间电场 Sqd U E 00422εεσ+==注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2U U C = 8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求:(1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强 介质外)(2R r <场强 (2)介质外)(2R r >电势介质内)(21R r R <<电势 (3)金属球的电势8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ 由∑⎰=⋅0d q S D得而 101E D ε=,202E D r εε=题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容.解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑(1)电场能量密度 22222π82l r Q D w εε== 薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量(3)电容:∵ CQ W 22=*8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即 但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量电容2C 与3C 并联3223C C C += 其上电荷123Q Q =8-32 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V ? 解: (1) 1C 与2C 串联后电容 (2)串联后电压比231221==C C U U ,而100021=+U U 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112*********U U U C U C q qU C U C q q q q 解得 (1) =1q U C C C C C q U C C C C C 21212221211)(,)(+-=+- (2)电场能量损失8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域在21R r R <<时 301π4r rQ E ε=3R r >时 302π4rrQ E ε = ∴在21R r R <<区域 在3R r >区域∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε(2)导体壳接地时,只有21R r R <<时30π4r rQ E ε =,02=W(3)电容器电容 )11/(π422102R R QW C -==ε 习题九9-1 在同一磁感应线上,各点B的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向?解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B的方向.题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B方向相反,即21B B≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管 外面环绕一周(见题9-4图)的环路积分⎰外B L·d l =0 但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L·d l =I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ外,与⎰⎰=⋅=⋅Ll l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B 的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m-2x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是 (2)通过befc 面积2S 的磁通量(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S BΦWb (或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=BCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B题9-8图解:如题9-8图所示,A B方向垂直纸面向里(2)设0=B在2L 外侧距离2L 为r 处则02)1.0(220=-+rIr I πμπμ 解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度. 解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
大学物理学__下_答案
大学物理学下 吴柳 第十二章12.1 一封闭的立方体形的容器,部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后,比是多少)?解: 活塞两侧气体的始末状态满足各自的理想气体状态方程左侧: T pV T V p 111= 得, T pT Vp V 111=右侧:T pV T V p 222= 得, T pT Vp V 222=122121T p T p V V = 即隔板两侧的长度之比 122121T p T p l l = 12.2 已知容器有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2atm ,密度32kg/m 1024.1-⨯=ρ.求该气体的摩尔质量.解:nkT p = (1)nm =ρ (2)A mN M = (3) 由以上三式联立得:12352232028.010022.610013.1100.12731038.11024.1----⋅=⨯⨯⨯⨯⨯⨯⨯⨯⨯==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量.解:()V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ()()RT MM MVV p 2122-=- (2)(1)、(2)式联立得: ()()()Vp p RT M M V p Vp p RTM M M 212121221--=⎪⎪⎭⎫ ⎝⎛--=12.4在实验室中能够获得的最佳真空相当于大约10-14atm (即约为10-10mmHg 的压强),试问在室温(300K )下在这样的“真空”中每立方厘米有多少个分子? 解: 由nkT p = 得,35311235141045.21045.21038.130010013.110----⨯=⨯=⨯⨯⨯⨯==cm m kT p n 12.5已知一气球的容积V =8.7m 3,充以温度t 1=150C 的氢气,当温度升高到370C 时,维持其气压p 及体积不变,气球中部分氢气逸出,而使其重量减轻了0.052kg ,由这些数据求氢气在00C,压力p 下的密度. 解:V p 1t m V p 2t ()V V -2 p 2t m ∆3V p 3t m 由221t V t V = (1)mmV V V ∆=-22 (2)331t V t V = (3) 3V m=ρ (4) 由以上四式联立得: 3231122109.815.2737.815.288052.02215.310--⋅⨯=⨯⨯⨯=∆-=m kg Vt t m t t t ρ 12.6真空容器中有一氢分子束射向面积2cm 0.2=S 的平板,与平板做弹性碰撞.设分子束中分子的速度13s m 100.1-⋅⨯=v ,方向与平板成60º夹角,每秒有23100.1⨯=N 个氢分子射向平板.求氢分子束作用于平板的压强. [2.9×103Pa] 解: AN M m =Pa SNm S F p 323433230109.210022.6100.223100.110210260sin 2⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯===--v12.7 下列系统各有多少个自由度:⑴在一平面上滑动的粒子;⑵可以在一平面上滑动并可围绕垂直于该平面的轴转动的硬币;⑶一弯成三角形的金属棒在空间自由运动. 解:(1) 2 (2) 3 (3) 612.8 容器贮有氧气,其压强Pa 101.013atm 15⨯==p ,温度t =270C,求: (1)单位体积的分子数;(2)分子的质量m ;(3)氧气的密度ρ;(4)分子的方均根速率;(5)分子的平均平动能;(6)在此温度下,4g 氧的能. 解:(1) 由 nkT p = 得,3252351045.215.3001038.110013.1--⨯=⨯⨯⨯==m kT p n (2) kg N M m A 262331031.510022.61032--⨯=⨯⨯== (3) 3262530.11031.51045.2--⋅=⨯⨯⨯==m kg nm ρ(4) 12321084.4103215.30031.833--⋅⨯=⨯⨯⨯==s m M RTv (5) J kT k 21231021.615.3001038.12323--⨯=⨯⨯⨯==ε (6) J RT M m 21079.715.30031.82532425⨯=⨯⨯⨯==ε12.9 1mol 氢气,在温度270C 时,求⑴具有若干平动动能;⑵具有若干转动动能;⑶温度每升高10C 时增加的总动能是多少? 解: (1) J RT 311074.315.30031.82323⨯=⨯⨯==ε (2) J RT 321049.215.30031.822⨯=⨯==ε(3) J R 8.2025==∆ε12.10 试求1mol 氢气分别在0℃和500℃时的能.解: J RT 3111067.515.27331.82525⨯=⨯⨯==ε J RT 4221061.115.77331.82525⨯=⨯⨯==ε12.11 (1)求在相同的T 、p 条件下,各为单位质量的 H 2气与He 气的能之比.(2)求在相同的T 、p 条件下,单位体积的H 2气与He 气的能之比. 解:(1) RT E H 25102132⨯⨯=- RT E eH 2310413⨯⨯=-3102=eH H E E (2) 由nkT p =, 相同的T 、p 条件,可知: e H H n n =2 kT n E H H 2522= kT n E e e H H 23=352=eH H E E 12.12 设山顶与地面的温度均为273K,空气的摩尔质量为0.0289kg ·mol -1.测得山顶的压强是地面压强的3/4,求山顶相对地面的高度为多少? 解:依题意有,340=p p 由气压公式有:m p p g RT h 301030.234ln 81.90289.027331.8ln ⨯=⨯⨯==μ 12.13 求速率大小在p v 与1.01p v 之间的气体分子数占总分子数的百分率. 解:速率间隔在p p 1.01v ~v ,即p v v 01.0=∆1==p W v v 01.0=∆=∆pW v v在p p v v 01.1~间隔的分子数占总分子数的百分数为()%83.0422=∆=∆=∆-W e W W W f N N W π12.14 求00C 的氢气分子和氧气分子的平均速率、方均根速率和最概然速率. 解: 氢气分子相对应的各种速率为1331071.110215.27331.860.160.1--⋅⨯=⨯⨯⨯==s m M RT v 13321084.110215.27331.873.173.1--⋅⨯=⨯⨯⨯==s m M RT v 1331050.110215.27331.841.141.1--⋅⨯=⨯⨯⨯==s m M RT p v 由于三种速率均与分子的摩尔质量平方根成反比4122=o H M M 所以氧气分子的三种速率为氢气分子相应速率的四分之一 121026.4-⋅⨯=s m o v 1221061.4-⋅⨯=s m o v ()121076.3-⋅⨯=s m opv12.15 如图12-31所示.两条曲线分别表示氧气和氢气在同样温度下的速率分布曲线.试问哪条曲线对应氧(氢)气的分布曲线? 氧气和氢气的最概然速率各是多少? 方均根速率各是多少? 解: 由 MRT p 2=v 可知,温度相同时,p v 与M 成反比又由图可知,12p p v v > 因此 可得,21M M > 所以, (1)为氧气的速率分布曲线 (2)为氢气的速率分布曲线()()()()2222H M O M O H p p =v v ()12500-⋅=s m O p v()()()()122222000232500-⋅===s m O H M O M H p p v v由 MRT32=v MRT p 2=v 得, p v v 232= ()12261250023-⋅=⨯=s m O v))(v f 图12-31 习题12.14图()1222450200023-⋅=⨯=s m H v12.16 设质量为m 的N 个分子的速率分布曲线如图12-32所示.(1)由N 和0v 求a 值.(2)在速率2/0v 到30v /2间隔的分子数;(3)分子的平均平动能. 解:(1)在区间内0~0v ()v v v 0aNf = 在区间内002~v v ()a Nf =v 在区间内02~0v ,分子总数为N()0202002023200000v v v v v v v v v v v v v v a a a ad d a N =+⎪⎪⎭⎫ ⎝⎛=+=⎰⎰ 032v Na =(2)()N a a a ad d a N 12787202322023200000000==+⎪⎪⎭⎫ ⎝⎛=+=∆⎰⎰v v v v v v v v v v v v v v v v 0 (3) ()v v v v v d f ⎰=02022202020022022363191461211121210v v v v v v v v v v v v v m m ad Nd a Nm m =⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+==⎰⎰ε 12.17 设N 个粒子系统的速度分布函数为⎩⎨⎧>>>=)0),0(d d 00v v v v v (为常量K K N v⑴画出分布函数图;⑵用N 和v 0定出常数K ;⑶用v 0表示出平均速率和方均根速率. 解:(1)KO )(v Nf 0图12-32习题12.15图0v v (2) 00v v v K Kd N ==⎰ 0v NK =(3) 211000000v v v v v v vv v ===⎰⎰d d NNv00254.032383v v v v ===ππ 12.18 试从麦克斯韦速率分布律出发推写出如下分布律:(a )以最概然速率mkTp 2=v 作为分子速率单位的分子速率p x v v =的分布律;(b )分子动能221v m k =ε的分布律.并求出最概然动能kp ε,它是否就等于221p m v ? 解:麦克斯韦速率分布律 ()2223224v v v kTm e kT m f -⎥⎦⎤⎢⎣⎡=ππ(a ) m kT p 2=v px v v= ()2224x e x kTm x f -=π (b)221v m k =ε()k kTk ke kT mf επεε-⎪⎭⎫ ⎝⎛=23124()0112423=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=-kT e kT m d f k kT k k kεπεεε得, 01=⎪⎭⎫⎝⎛-kT k ε 221p kp m kT v ==ε12.19 设容器盛两种不同单原子气体,原子质量分别为m 1和m 2的此混合气体处于平衡状态时能相等,均为U ,求这两种气体平均速率1v 和2v 的比值以及混合气体的压力.设容器体积为V .解: RT M m U 231'= RT M m U 232''= 得,2''1'M m M m =21'''M M mm = 118m kT π=v 228m kTπ=v 则 1221m m =v v RT pV ν= RTUM m M m M m 3421'2''1'==+=ν 得, VU V RT RT U p 3434==12.20 求在标准状态下一秒分子的平均自由程和平均碰撞次数.已知氢分子的有效直径为2.0×10-10 m.解:3252351069.215.2731038.110013.1--⨯=⨯⨯⨯==m kT p n ()m nd 72521021009.21069.2100.22121--⨯=⨯⨯⨯==ππλ1331070.110215.27331.888--⋅⨯=⨯⨯⨯==s m m RT ππv 19731013.81009.21070.1--⨯=⨯⨯==s z λv12.21 在足够大的容器中,某理想气体的分子可视为d=4.0×10-10 m 的小球,热运动的 平均速率为2100.5⨯=v m/s,分子数密度为n =3.0×1025 /m 3.试求:(1) 分子平均自由程和平均碰撞频率;(2) 气体中某分子在某时刻位于P 点,若经过与其他分子N 次碰撞后,它与P 点的距离近似可表为λN R =,那么此分子约经多少小时与P 点相距10米?(设分子未与容器壁碰撞) 解: (1)()m nd 8252102107.4100.3100.42121--⨯=⨯⨯⨯==ππλ110821006.1107.4100.5--⨯=⨯⨯==s z λv(2) λN R =h R R z N t 1182107.4100.5110018222=⨯⨯⨯⨯==⎪⎭⎫ ⎝⎛==-λυυλλ 12.22 设电子管温度为300K ,如果要管分子的平均自由程大于10cm 时,则应将它抽到多大压力?(分子有效直径约为3.0⨯10-8cm ) 解:nd 221πλ=若使cm 10>λ()3192102105.21.0100.32121--⨯=⨯⨯==m d n πλπ 需使 319105.2-⨯<m nPa nkT p 1.03001038.1105.22319=⨯⨯⨯⨯==- 即需使 Pa p 1.0<12.23 计算⑴在标准状态下,一个氮分子在1s 与其他分子的平均碰撞次数;⑵容积为4L 的容器,贮有标准状况下的氮气,求1s 氮分子间的总碰撞次数.(氮分子的有效直径为3.76⨯10-8cm ) 解: (1) λυ=z 3252351069.215.2731038.110013.1--⨯=⨯⨯⨯==m kT p n()m nd 8252102109.51069.21076.32121--⨯=⨯⨯⨯==ππλ1231054.4102815.27331.888--⋅⨯=⨯⨯⨯==s m M RT ππυ 1982107.7109.51054.4--⨯=⨯⨯=s z (2) mol V V mol 179.04.224===ν AN N ν=132923103.8107.710022.6179.0-⨯=⨯⨯⨯⨯===s z N z N z A ν12.24 实验测知00C 时氧的粘滞系数s)g/(cm 1092.14⋅⨯=-η,试用它来求标准状态下氧分子的平均自由程和分子有效直径. 解:λυρη31=M RT πυ8=nm =ρ 其中 kT p n =, AN M m = 得:RT pM=ρ所以m MRT p RTMpMRT8355105.91032815.27331.810013.111092.1381383---⨯=⨯⨯⨯⨯⨯⨯⨯===ππηπηλpd kT nd 22221ππλ==m p kT d 108523100.3105.910013.1215.2731038.12---⨯=⨯⨯⨯⨯⨯⨯==πλπ12.25 今测得氮气在00C 时的导热系数为237103.W m K 11⨯⋅⋅---,计算氮分子的有效直径.已知氮的分子量为28. 解:⎪⎭⎫⎝⎛=M C VM λυρκ31 R C VM 25= RT pM nm ==ρ m RMT p R MRT M pM RT73531069.131.8815.273102810013.11107.235681565283---⨯=⨯⨯⨯⨯⨯⨯⨯⨯===ππκπκλpd kT nd 22221ππλ==m p kT d 107523102.21069.110013.1215.2731038.12---⨯=⨯⨯⨯⨯⨯⨯==πλπ12.26 在270C 时,2mol 氮气的体积为0.1L ,分别用德瓦耳斯方程及理想气体状态方程计算其压强,并比较结果.已知氮气a =0.828atm ⋅L 2⋅mol -2, b =3.05⨯10-2L ⋅mol . 解:RT pV ν=Pa VRTp 731099.4101.015.30031.82⨯=⨯⨯⨯==-ν ()RT b V V a p ννν=-⎪⎭⎫ ⎝⎛+22p 2p 0V 02V V()()PaV a b V RT p 72532221044.91.010013.1828.04101005.321.015.30031.82⨯=⨯⨯⨯-⨯⨯⨯-⨯⨯=--=--ννν 第13章13.1 (1)理想气体经过下述三种途径由初态I (2p 0,V 0)变到终态Ⅱ(p 0,2V 0).试计算沿以下每一路径外界对气体所作的功:(a )先从V 0到2V 0等压膨胀然后等体积降压;(b )等温膨胀;(c )先以V 0等体积降压到p 0后再等压膨胀.(2)对1mol 的氏气体重复以上三个过程的计算? [答案:(1)(a)2p 0V 0,(b) 2p 0V 0ln2,(c)p 0V 0;(2) (a)2p 0V 0, (b)00002002ln ))(( V a b V b V b V V ap ----+,(c)p 0V 0] 解:(1)(a) ()00000222200V p V V p pdV A V V =-==⎰ (b) 200222ln 2ln 00V p RT dV VRTpdV A V V V V ====⎰⎰(c) ()00000220V p V V p pdV A V V =-==⎰(2) 德瓦尔斯方程: ()RT b V V a p mol mol=-⎪⎪⎭⎫ ⎝⎛+2 (a) 00220V p pdV A V V ==⎰(b)()000020000222222ln 22ln 000V ab V b V b V V a p V a V a RT dV V a b V RTpdV A bV b V V V V V ----⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫⎝⎛--==--⎰⎰(c) 0020V p pdV A V V ==⎰13.2 由如图13-40所示.一系统由状态a 沿acb 到达状态b ,吸热量80Cal ,而系统做功126J.⑴经adb 过程系统做功42J ,问有多少热量传入系统?⑵当系统由状态b 沿曲线ba 返回状态a 时,外界对系统做功为84J ,试问系统是吸热还是放热?热量是多少? 解:1Cal=4.2J(1) A E Q +∆= J Q 3362.480=⨯=J A Q E 210126336=-=-=∆ 所以经adb 过程传入系统的热量 J A E Q 252422101=+=+∆= (2) J A 84-=029484210<-=--=+∆=J A E Q 所以系统是放热,热量是294J13.3 如图13-41所示.单原子理想气体从状态a 经过程abcd 到状态d ,已知p a =p d =1atm ,p b =p c =2atm ,V a =1L ,V b =1.5L ,V c =3L ,V a =4L .⑴试计算气体在abcd 过程中能的变化、功和热量;⑵如果气体从状态d 保持压力不变到状态a (图中虚线),求以上三项的结果;⑶若过程沿曲线从a 到c 状态,已知该过程吸热257Cal ,求该过程中气体所做的功. 解:(1) b a →()a b m V T T C E -=∆.νa a a RT V p ν= RVp T a a a ν=b b b RT V p ν= RV p T bb b ν=()a a b b a a b b V p V p R V p R V p R E -=⎪⎭⎫ ⎝⎛-=∆2323ννν()J 231004.31010132515.1223⨯=⨯⨯-⨯⨯=- ()J pdV A b aV V 231076.010*******.02121⨯=⨯⨯⨯+⨯==-⎰J A E Q 21080.3⨯=+∆= 同理: c b →()()J V p V p E b b c c 231056.4101013255.12322323⨯=⨯⨯⨯-⨯⨯=-=∆-图13-41 习题13.3图pp 12J pdV A cbV V 231004.3105.11013252⨯=⨯⨯⨯==-⎰J A E Q 21060.7⨯=+∆=d c →()()J V p V p E c c d d 231004.31010132532412323⨯-=⨯⨯⨯-⨯⨯=-=∆- ()J pdV A d cV V 231052.1101013252121⨯=⨯⨯+⨯==-⎰J A E Q 21052.1⨯-=+∆=J E 21056.4⨯=∆总 J A 21032.5⨯=总 J Q 21088.9⨯=总(2) ()()J V p V p E d d a a 231056.410101325412323⨯-=⨯⨯-⨯=-=∆- J pdV A adV V 231004.3103101325⨯-=⨯⨯-==-⎰J A E Q 21060.7⨯-=+∆=(3) c a →()J E 221060.71056.404.3⨯=⨯+=∆J E Q A 221019.31060.72.4257⨯=⨯-⨯=∆-=13.4 如图13-42所示.一定质量的氧气在状态A 时,V 1=3L ,p 1=8.2×105Pa ,在状态B时V 2=4.5L ,p 2=6×105Pa .分别计算气体在下列过程吸收的热量,完成的功和能的改变:⑴经ACB 过程,⑵经ADB 过程. 解:(1) ACB 过程C A → ()()35103102.862525-⨯⨯⨯-⨯=-=∆A A C C V p V p EJ 31065.1⨯-=J A 0=J Q 31065.1⨯-=B C → ()()J V p V p E C C B B 3531025.21061035.42525⨯=⨯⨯⨯-⨯=-=∆-()()J V V p A 335122109.01035.4106⨯=⨯-⨯⨯=-=- J Q 31015.3⨯=图13-42 习题13,4图J E 3106.0⨯=∆总 J A 3109.0⨯=总 J Q 3105.1⨯=总(2) ADB 过程D A →()()J V p V p E A A D D 35310075.3102.81035.42525⨯=⨯⨯⨯-⨯=-=∆-()()J V V p A 3351211023.11035.4102.8⨯=⨯-⨯⨯=-=- J Q 310305.4⨯=B D → ()()J V p V p E D D B B 33510475.2105.4102.862525⨯-=⨯⨯⨯-⨯=-=∆-J A 0=J Q 310475.2⨯-=J E 3106.0⨯=∆总 J A 31023.1⨯=总 J Q 31083.1⨯=总13.5压强为p =1.01×103Pa,体积为0.0082 m 3的氮气,从初始温度300K 加热到400K. (1)如加热时分别体积不变需要多少热量?(2) 如加热时分别压强不变需要多少热量? [答案: Q V =683J; Q p =957J]解:(1) RT pV ν= RTpV=ν ()J R RT pV T C E m V 6901003000082.01001.125300400255.=⨯⨯⨯⨯=-=∆=∆νJE Q V 690=∆=(2)J T R RTpVT C Q m p p 9661003000082.01001.1271255.=⨯⨯⨯⨯=∆⎪⎭⎫⎝⎛+=∆=ν 13.6 将500J 的热量传给标准状态下2 mol 氢气.(1)若体积不变,问此热量变为什么?氢气的温度变为多少?(2)若温度不变,问此热量变为什么?氢气的压强及体积各变为多少?(3)若压强不变, 问此热量变为什么? 氢气的温度及体积各变为多少?[答案: (1) T=285K; (2)Pa 1007.942⨯=p ,V 2=0.05m 3,(3)T =281.6K; V 2=0.046 m 3] 解:(1) 全部转化为能 T C Q m V V ∆=.ν K R C Q T m V 12252500.=⨯==∆ν K T 15.2851215.2732=+=(2) 全部转化为对外界做功 12lnV V RT Q T ν= 12V e V RTQ T ν= 3310448.0104.222m V =⨯⨯=-3205.0m V =2211V p V p = Pa V V p p 4521121007.905.00448.010013.1⨯=⨯⨯==(3) 一部分用于对外做功,一部分用于能增加 T C Q m p p ∆=.νK R C Q T mp p6.8272500.=⨯==∆ν K T 75.2816.815.2732=+=2211T V T V = 32112046.075.28115.2730448.0m T T V V =⨯==13.7 一定量的理想气体在某一过程中压强按2Vcp =的规律变化,c 是常量.求气体从V 1增加到 V 2所做的功.该理想气体的温度是升高还是降低? [答案: 2121);11(T T V V c A >-= ]解:⎪⎪⎭⎫ ⎝⎛-===⎰⎰212112121V V c dV V cpdV W V V V V 由理想气体状态方程 RT pdV ν= 得,RTV V c ν=2RT V cν= 可知1221V V T T = 因为 12V V > , 所以 21T T > 即气体的温度降低13.8 1mol 氢,在压强为1.0×105Pa,温度为20o C 时体积为0V .今使它分别经如下两个过程达到同一状态:(1)先保持体积不变,加热使其温度升高到80o C,然后令它等温膨胀使体积变为原来的2倍;(2)先等温膨胀至原体积的2倍,然后保持体积不变加热至80o C .试分别计算以上两种过程中吸收的热量、气体做的功和能的增量,并作出p-V 图.[答案: Q 2=2933J,A =1687J,∆U =1246J]解:(1) 定容过程J A 0=()J R T C Q E m V V 50.1246208025.=-=∆==∆ 等温过程 J E 0=∆ ()J RT V V RT Q A T 16.20342ln 8015.27331.82ln ln12=⨯+⨯==== J Q 66.3280=总 J A 16.2034=总 J E 50.1246=∆总 (2) 等温过程J E 0=∆J RT Q A T 56.16882ln 15.29331.82ln =⨯⨯===定容过程J A 0=()J R T C Q E m V V 50.1246208025.=-=∆==∆ J Q 06.2935=总 J A 56.1688=总 J E 50.1246=∆总 13.9 某单原子理想气体经历一准静态过程,压强Tcp =,其中c 为常量.试求此过程中该气体的摩尔热容C m . [答案: C m =(7/2)R ] 解:由理想气体状态方程 RT pV ν= 其中 Tc p =得, 2T cRV ν=dT cRTdV ν2=根据热力学第一定律,A E Q +∆= T R R dT c RT T c T R pdV T C Q m V ∆⎪⎭⎫ ⎝⎛+=+∆=+∆=⎰⎰223223.νννν 则可得,R T Q C m 27=∆=ν13.10 为了测定气体的γ=⎛⎝ ⎫⎭⎪C C p V 可用下列方法:一定量的气体初始温度、压强和体积分别为T 0,p 0和V 0,用通有电流的铂丝对它加热,第一次保持气体体积V 0不变,温度和压强各变为T 1和p 1;第二次保持压力,p 0不变,温度和体积各变为T 2和V 1,设两次加热的电流和时间都相同.试证明γ=--()()p p V V V p 100100解: 过程1为定容过程 V 不变,()01T T C T C Q V V -=∆=νν由理想气体状态方程得, 000RT V p ν= R V p T ν000=101RT V p ν= RV p T ν011=即 ()001V p p RC Q V-=(1) 过程2为定压过程 p 不变,()02T T C T C Q p p -=∆=νν由理想气体状态方程得, RV p T ν102=即 ()001p V V R C Q p -= (2)由(1)(2)式即证得, ()()001001p V V V p p C C Vp --==γ13.11气缸有单原子理想气体,若绝热压缩使其容积减半,问气体分子的平均速率变为原来速率的几倍?若为双原子理想气体,又为几倍?[答案:1.26;1.15] 解:由理想气体绝热方程 常量=-T V 1γ 得,212111T V T V --=γγ 12112-⎪⎪⎭⎫ ⎝⎛=γV V T T 其中1221V V =1122-=γT T又由 M RTπυ8= 可知, 2112122-==γυυT T1p 2p 单原子理想气体 R 35=γ, 则 26.123112==υυ双原子理想气体 R 57=γ, 则 15.125112==υυ13.12一定量的理想气体经历如图13-43所示的循环,其中AB 、CD 是等压过程,BC 、DA 是绝热过程,A 、B 、C 、D 点的温度分别为T 1、T 2、T 3、T 4.试证明此循环效率为 231T T -=η. 解:等压过程AB 吸热 ()121T T C Q p -=ν等压过程CD 放热 ()432T T C Q p -=ν BC 、DA 是绝热过程 0=Q 124312111T T T T Q Q Q A---=-==η 利用绝热方程 常量=--γγT p 1 得,γγγγ----=312211T p T p 31122T p p T γγ--⎪⎪⎭⎫⎝⎛=γγγγ----=412111T p T p 41121T p p T γγ--⎪⎪⎭⎫⎝⎛=2311211T T p p -=⎪⎪⎭⎫⎝⎛-=-γγη 13.13设有一理想气体为工作物质的热机循环,如图13-44所示,试证明其效率为1)/(1)/(12121---=p p V V γη.解:b a →为等体升温过程,吸热 ()a b m V T T C Q -=.1νa c →为等压压缩过程, 放热()a c m p T T C Q -=.2ν2 1图13-45习题13.14狄赛尔循环()()a b m V a c m p T T C T T C Q Q ---=-=..1211η 利用理想气体状态方程 RT pV ν=, 得()()222111V p V p RV p V p R T T a a b b a b -=-=-νν 循环效率为 ()()1111212122212212---=---=p p V V V p V p V p V p γγη 13.14 有一种柴油机的循环叫做狄赛尔循环,如图13-45所示.其中BC 为绝热压缩过程,DE 为绝热膨胀过程,CD 为等压膨胀过程,EB 为等容冷却过程,试证明此循环的效率为⎪⎪⎭⎫ ⎝⎛-'⎪⎪⎭⎫⎝⎛-'-=-11)/(121212V V V V V V γγγη 解:CD 为等压膨胀过程, 吸热 ()C D p T T C Q -=ν1EB 为等容冷却过程, 放热 ()B E V T T C Q -=ν2 循环效率 CD BE T T T T Q Q ---=-=γη11112 利用理想气体状态方程 RT pV ν=, 得()B B E E B E V p V p R T T -=-ν1()C C D D C D V p V p RT T -=-ν1()()2'11111V V p p p V V p V p V p V p C B E C C D D B B E E ---=---=γγη 利用绝热方程 常量=γpV , 得γγE E D D V p V p = E D p V V p γ⎪⎭⎫ ⎝⎛='1()()221211V p V p RV p V p R T T a a c c a c -=-=-ννγγB BC C V p V p = B C p VV p γ⎪⎪⎭⎫ ⎝⎛=21 由C D p p =得 γ⎪⎪⎭⎫ ⎝⎛=2'V V p p B E()()⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛---=-⎪⎪⎭⎫ ⎝⎛--=-111111111112'1212'2'122'1V V V V V V V V V V p p p p V V p p p p V B C B EB C B E γγγγγη 13.15 1mol 理想气体在400K-300K 之间完成一卡诺循环,在400K 的等温线上,起始体积为0.001 m 3,最后体积为 0.005 m 3,试计算气体在此循环中所作的功,以及从高温热源吸收的热量和传给低温热源的热量.[答案:A =1.24×103J,Q 2=4.01×103J] 解:J V V RT Q 312111035.5ln⨯==ν 该循环效率为 %254003001112=-=-=T T η 可得 J Q A 311034.1⨯==η由 21Q Q A -=, 得 J A Q Q 3121001.4⨯=-=13.16 1mol 刚性双原子分子理想气体,作如图13-46所示的循环,其中1-2为直线,2-3为绝热线,3-1为等温线,且已知θ=450,T 1=300K,T 2=2T 1,V 3=8 V 1,试求:(1)各分过程中气体做功、吸热及能增量;(2)此循环的效率. 解:(1)21→由理想气体状态方程可得, 111RT V p =222RT V p = 又由图可知,11V p =, 22V p =121RT V= 11RT V =1222RT V = 122RT V =22V V =()J R T T C E V 5.62323002512=⨯=-=∆ ()J RT V V VdV pdV A V V V v 5.12462121121222121==-===⎰⎰J A E Q 7479=+∆= 吸热32→O Q = A E -=∆ 利用绝热方程 γγpV V p =22, 得 13322223232--===⎰⎰γγγV p V p VdVV p pdV A V V V V γγ3322V p V p = 2323p VV p γ⎪⎪⎭⎫ ⎝⎛= J RT V V V p VV V p A 5.62321578212182128157122122223222=-⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=-⎪⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=--γγγγ13→0=∆E A Q =J V V RT A 51848ln 30031.8ln131-=⨯⨯-=-= J Q 5184-= 放热(2) 循环效率 %7.30747951841112=-=-=Q Q η *13.17 0.1mol 单原子理想气体,由状态A经直线AB 所表示的过程到状态B,如图13-47所示,已知V A =1L , V B =3L ,p A =3atm .(1)试证A 、B 两状态的温度相等;(2)求AB 过程中气体吸收的热量;(3)求在AB 过程中,温度最高的状态C 的体积和压力(提示:写出过程方程T =T (V ));(4)由(3)的结果分析从A 到B 的过程中温度变化的情况,从A 到C 吸热还是放热?证明Q CB =0.能否由此说从C 到B 的每个微小过程都有δQ =0? 解:(1) 由理想气体状态方程, 得 A A A RT V p ν= B B B RT V p ν=又由已知条件可知 B B A A V p V p = 即证: B A T T =(2) ()0=-=∆A B V T T C E νp (atm)图13-47 习题13.17图J pdV A 25310052.410013.11022221⨯=⨯⨯⨯⎪⎭⎫⎝⎛+⨯⨯==-⎰J A Q 210052.4⨯==(3) 由理想气体状态方程 RT pV ν=, 得R pV T ν=又由图可知: 4+-=V p 即 ()V V R T 412+-=ν 由极值条件:0=dVdT, 得 042=+-V即当 L V 2=, atm p 2= 时T 取到极大值(4) 由 (3) 可知, B A →过程中 温度T 满足函数 ()V V RT 412+-=ν C A →过程中温度升高,到达C 点时取得极大值B C →过程中温度降低,到达点时温度又回到A 点时的值C A →过程 ()0>-=∆A C V T T C E ν0>A0>+∆=A E Q 吸热dA dE dQ +=()()dV V V RC dT C dE VV 63421+-=+-==ννν ()dV V pdV dA 4+-==()dV V dQ 104+-= 即证: ()010432=+-=⎰dV V Q L LCB但不能说从C 到B 的每个微小过程都有0=Q δ13.18一台家用冰箱放在气温为300K 的房间,做—盒-13℃的冰块需从冷冻室中吸出 2.09×105J 的热量.设冰箱为卡诺制冷机,求: (1)做一盒冰块所需之外功;(2)若此冰箱能以2.09×102J·s -1的速率取出热量,求所要求的电功率是多少瓦? (3)做一盒冰块所需之时间. 解:(1)卡诺循环 制冷系数2122T T T A Q e -==abcpVOabcdVOp 代入数据得 5.6260300260=-=eJ e Q A 4521022.35.61009.2⨯=⨯==(2) W e P P 2.325.61009.22'=⨯==(3) h s P Q t 28.0101009.21009.2325'2≈=⨯⨯== 13.19 以可逆卡诺循环方式工作的致冷机,在某种环境下它的致冷系数为w =30.在同样的环境下把它用作热机,问其效率为多少?[答案:%2.3=η]解:卡诺循环 制冷系数AQ w 2=得 wA Q =2 卡诺热机循环效率 1Q A=η 且 A Q Q +=21 ()%2.33011111=+=+=+=w A w A η13.20根据热力学第二定律证明: (1)两条绝热线不能相交;(2) 一条等温线和一条绝热线不能相交两次.解:(1)假设两条绝热线可以相交,如图所示ab 为等温线 bc 、ac 为绝热线此循环过程中 A Q =1 即热全部转化为功, 这与热力学第二定律的开尔文表述相矛盾 所以,即证得:两条绝热线不能相交(2) 假设一条等温线和一条绝热线可以两次相交,如图所示ab 为等温线 cd 为绝热线此循环过程中 A Q =1 即热全部转化为功 这与热力学第二定律的开尔文表述相矛盾, 即证13.21一杯质量180g 温度为100 0C 的水置于270C 的空气中,冷却到室温后水的熵变是多少?空气的熵变是多少?总熵变是多少?[答案:-164J/K ,233J/K ,69J/K]解:熵变的定义:⎰=∆T dQS 热量的计算公式: ⎰=mcdT Q112165300373ln 22.4180ln 21-⋅-=⨯⨯-====∆⎰⎰K J T T mc dT T mc T dQ S T T 水 ()122121853007322.4180-⋅=⨯⨯=-===∆⎰K J T T T mc T Q T dQ S 空气 120165185-⋅=-=∆+∆=∆K J S S S 空气水总13.22 1mol 理想气体经一等压过程,温度变为原来的2倍.该气体的定压摩尔热容为C p ,m ,求此过程中熵的增量. [答案: 2ln Δp C S =] 解:2ln 2121p T T p T T p C TdTC TdT C S ===∆⎰⎰13.23 一房间有N 个分子, 某一宏观态时其中半个房间的分子数为n .⑴写出这种分布的熵的表达式S =k ln Ω; ⑵n =0状态与n =N /2状态之间的熵变是多少? ⑶如果N=6⨯1023,计算这个熵差.解:(1)根据玻耳兹曼熵的表达式 W k S ln =, 得()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎭⎫⎝⎛==⎪⎭⎫ ⎝⎛--NN n N k eN k n W k S A NN n A 222222ln2ln ln 2(2)熵的变化:k N NN N k N k S S S A AN 2222ln 2ln202=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯--=-=∆ (3) 23106⨯=N 时, 熵差为1232314.421038.1106--⋅=⨯⨯⨯=∆K J S第14章14.1 作简谐运动的质点,速度最大值为3cm/s ,振幅A =2cm ,若速度为正最大值时开始计时.(1)求振动的周期;(2)求加速度的最大值;(3)写出振动的表达式. 解: (1) 由2/m A A T ωπ==v ,可得2/20.02/0.03 4.2m T A s ππ==⨯⨯=v(2) 22222/0.03/0.02 4.510/m m a A A m s ω-====⨯v(3) 由于0t =时,m =+v v ,可知/2ϕπ=-,而10.03/0.02 1.5ms Aω-===v ,所以有cos()0.02cos(1.5/2)x A t t ωϕπ=+=-14.2 一水平弹簧振子的振幅A =2cm,周期T =0.50s.当t =0时 (1)物体过x =1cm 处且向负方向运动;(2)物体过x =-1cm 处且向正方向运动.分别写出以上两种情况下的振动表达式. 解: (1) 22cos() 2.010cos(4)3x A t t T ππϕπ-=+=⨯+(2) 22.010cos(42/3)x t ππ-=⨯-14.3 设一物体沿x 轴作简谐振动,振幅为12cm ,周期为2.0s ;在t =0时位移为6.0cm ,且向x 轴正方向运动.试求:(1)初相位;(2)t =0.5s 时该物体的位置、速度和加速度;(3)在x =-6.0cm 且向x 轴负方向运动时,物体的速度和加速度以及它从这个位置到达平衡位置所需要的时间. 解: (1) 001cos 23x A πϕϕ==∴=±又∵00>v ,即0sin 0A ωϕ->00sin 03πϕϕ∴<=-(2) 12cos()()0.53x t cm t s ππ=-=时0.5t s x cm ==10.52220.512sin()6312cos()3t s t st cm s a t cm sπππππππ-=-==--=-⋅=--=-⋅v(3) 12cos x ϕ=习题14.3图2Ao当6x cm =-时1cos2ϕ=-∵30sin ϕ<∴=v12212sin 6365566cm s a x cm t t sπϕπωππϕϕωωπ-=-=-⋅=-=∆∆=⋅∆∆===v 14.4 两个谐振子作同频率、同振幅的简谐振动.第一个振子的振动表达式为)cos(1φω+=t A x ,当第一个振子从振动的正方向回到平衡位置时,第二个振子恰在正方向位移的端点.求:(1)第二个振子的振动表达式和二者的相位差;(2)若t =0时,21Ax -=并向x 负方向运动,画出二者的x-t 曲线及旋转矢量图.解: (1) 用旋转矢量法分析,当第一个振子从振动的正方向回到平衡位置时,第二个振子恰好在正方向端点。
(完整版)大学物理课后习题答案详解
r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。
(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。
解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理答案解题上1-12 khdaw
m
时,vt = 0,所以上升到最高点的时间为 t1 = vy0/g = 2.49(s). 再根据匀变速直线运动的速度和位移 的关系式 vt2 - v02 = 2as, 可得上升的最大高度为 h1 = vy02/2g = 30.94(m). 他从最高点开始再做自由落体运动, 下 落的高度为 h2 = h1 + h = 100.94(m). 根据自由落体运动公式 s = gt2/2,得下落的 时间为
相距 2.74m.计算: (1)螺帽从天花板落到底面所需的时 间; (2)螺帽相对于升降机外固定柱子的 下降距离. [解答]在螺帽从天花板落到底面时,升 降机上升的高度为
1 h1 v0t at 2 ; 2
螺帽做竖直上抛运动,位移为
令 y = 0, 解得飞机回到原来高度时的时间为 t = 0(舍去) ;t
da
dx
0 0
w.
x t
可得
1 1 kt . v v0 v0 , 1 v0 kt
ww
w.
积分 因此
由于 v = dx/dt,所以
网
kh
dx
(2)公式可化为 v
v0 1 dt d(1 v0 kt ) k (1 v0 kt ) 1 v0 kt 1 d(1 v0 kt ) . k (1 v0 kt )
w.
1.6 一飞机在铅直面内飞行,某时刻 飞机的速度为 v = 300m·s-1,方向与水平线 夹角为 30°而斜向下, 此后飞机的加速度为a = 20 3 m·s-2,方向与水平前进方向夹角为 30°而斜向上,问多长时间后,飞机又回到 原来的高 y 度?在此 a ay 期间飞机 O α ax 在水平方 θ v0x x v 0 y 向飞行的 v0 距离为多 少? [解答]建立水平和垂直坐标系,飞机的 初速度的大小为 v0x = v0cosθ, v0y = v0sinθ. 加速度的大小为 ax = acosα, ay = asinα.
习题11 课后答案【khdaw_lxywyl】
da
2y
后 答
di
I dy a
长载流细条在 P 点产生的磁感应强度
kh
dB
课
0 d i
2 y
0 I d y
所有载流长条在 P 点产生的磁感强度的方向都相同,方向垂直纸面向外. 所以
w.
B d B
方向垂直纸面向外. 11-9
0I
2
ax x
dy I ax 0 ln y 2 a x
I 2Rn
( R 2 y 2 )3/ 2
案 网
B By
B 的方向为 y 轴正向
(2)
11-11
已知磁感应强度 B 2.0 Wb·m-2 的均匀磁场,方向沿 x 轴正方向,如题 10-12 图所
面的磁通量. 解:
w.
11-12
(1)通过 abcd 面积 S1 的磁通是
B1
0 I
2r
0 I
2 导线在 P 点产生的磁感强度的大小为:
B2
0 I
da
后 答
2r B1 、 B2 的方向如图所示.
2
0 I
1 2 ( d x 2 )1 / 2
P 点总场
课
w.
y 1 d r x P B1
1 2 ( d x 2 )1 / 2
F2 F1 IlB 20 10 0.5 =25N
co
F1 l
m
(2)
F1-mg=ma F1-mg0
B
mg 0.6 1.0 9.8
Il
=
50 1.0
0.12T
11-16
大学物理学教程(第二版)下册标准答案
物理学教程下册答案9-16第九章 静 电 场9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )题 9-1 图分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).9-2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ).9-3 下列说法正确的是( )(A) 电场强度为零的点,电势也一定为零(B) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题9-4 图分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).9-5精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e,而中子电量与零差值的最大范围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析考虑到极限情况,假设电子与质子电量差值的最大范围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律()r r r re r q q e e e F N 78.3π41π412202210===εε F 与径向单位矢量e r 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求P 点的电场强度.分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度.解 根据上述分析2020π1)2/(2π41aq a q E P εε==题 9-7 图9-8若电荷Q均匀地分布在长为L的细棒上.求证:(1) 在棒的延长线,且离棒中心为r处的电场强度为224π1LrQεE-=(2) 在棒的垂直平分线上,离棒为r处的电场强度为2204π21LrrQεE+=若棒为无限长(即L→∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x,其电荷为d q=Q d x/L,它在点P 的电场强度为rrqεeE2dπ41d'=整个带电体在点P 的电场强度⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=L E i E d(2) 若点P 在棒的垂直平分线上,如图(a )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==L y E E j j E d sin d α证 (1) 延长线上一点P 的电场强度⎰'=L rq E20π2d ε,利用几何关系 r ′=r -x 统一积分变量,则 ()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 20⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则 ()2202/32222041π2d π41Lr r Q r x L x rQ E L/-L/+=+=⎰εε 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度r ελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(b )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.9-9 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.题 9-9 图分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθδδd sin π2d d 2⋅⋅==R S q ,在点O 激发的电场强度为()i E 2/3220d π41d r x q x +=ε 由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθδθεεd cos sin 2 d sin π2cos π41d π41d 02303/2220=⋅=+=R RR r x q x E 积分得 02/π004d cos sin 2εδθθθεδ⎰==E 9-10 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.题 9-10 图分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θcos 20er p =,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41xp εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布. 解1 水分子的电偶极矩θθcos 2cos 200er p p ==在电偶极矩延长线上30030030cos π1cos 4π412π41x θer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得()⎥⎥⎦⎤⎢⎢⎣⎡--+-=22/30202001cos 2cos π42x xr r x r x eE θθε 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x r x x r x xr r x θθθcos 2231cos 21cos 2032/3032/30202,将上式化简并略去微小量后,得300cos π1x θe r εE = 9-11 两条无限长平行直导线相距为r 0,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.题 9-11 图分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有()i i E E E x r x r x r x -=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2ελελ(2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有i E F 00π2r ελλ==-+ i E F 002π2r ελλ-=-=+- 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.9-12 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.题 9-12 图分析 方法1:作半径为R 的平面S 与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 方法2:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=S S d s E Φ解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d 依照约定取闭合曲面的外法线方向为面元d S 的方向,E R R E 22ππcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为()r E e e e E ϕθθϕϕθϕsin sin cos sin cos ++=r θθR e S d d sin d 2=ER ER ER S S 2π0π02222πd sin d sin d d sin sin d ===⋅=⎰⎰⎰⎰ϕϕθθϕθϕθS E Φ9-13 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⋅⨯-=-≈=2902m C 1006.1π4/E R q E εσ单位面积额外电子数25cm 1063.6)/(-⨯=-=e n σ9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有⎰==⋅s Q E r S E 0i 2π4d ε上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布.解 依照上述分析,由高斯定理可得R r <时, 302π34π4r E r ερ= 假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ= R r >时, 302π34π4R E r ερ= 考虑到电场强度沿径向朝外,带电球体外的电场强度为r e rR E 2033ερ=9-15 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .题 9-15 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=ER 1 <r <R 2 , L λq =∑rελE 02π2= r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变 000π2π2ΔεσrL εL λr ελE === 9-16 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.题 9-16 图分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W 其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()2/322031π2y d εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()d εQ y y d εQ Q Q W y 022/3220002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1 、Q 3 在点O 的电势dεQ d εQ d εQ V 003010π2π4π4=+= 将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 9-17 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2= 其中λ为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明.解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等. 9-18 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为Rq εV 0π41= 当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1=0.40 mm ,带有电量q 1=1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV 当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量 q 2=2q 1 ,雨滴表面电势V 5722π4113102==R q εV 9-19 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a )放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.题 9-19 图分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布. 解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布, ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a a x0 00i E εσ电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x<<--=⋅=⎰ d 00l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 00a-a x l E l E ()a x a V >-=⋅+⋅=⎰⎰ d d 00a a x εσl E l E 电势变化曲线如图(b )所示. 9-20 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?题 9-20 图分析 通常可采用两种方法.方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2)利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQ V 0π4= 在球面内电场强度为零,电势处处相等,等于球面的电势RεQ V 0π4= 其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布()()()22021321201211 π4 π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r +=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞l E l E l E 当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r +=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞l E l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫ ⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1≤r ≤R 2 ,则202012π4π4R εQ r εQ V += 若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+=(2) 两个球面间的电势差 ()2011012112π4π42R εQ R εQ V V U R r -=-== 9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题 9-21 图分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理⎰⎰=⋅V V d 1d 0ρεS E 可求得电场分布E (r ),再根据电势差的定义 ()l E d ⋅=-⎰b ab a r V V 并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理 当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E =当r ≥R 时 02/ππ2ερl R rl E =⋅得 ()rεR ρr E 022= 取棒表面为零电势,空间电势的分布有当r ≤R 时()()22004d 2r R ερr εr ρr V R r -==⎰当r ≥R 时 ()rR εR ρr r εR ρr V Rr ln 2d 20202==⎰ 如图所示是电势V 随空间位置r 的分布曲线. 9-22 一圆盘半径R =3.00 ×10-2 m .圆盘均匀带电,电荷面密度σ=2.00×10-5 C·m -2.(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.题 9-22 图分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 如图所示,圆盘上半径为r 的带电细圆环在轴线上任一点P 激发的电势220d π2π41d x r r r σεV += 由电势叠加,轴线上任一点P 的电势的()x x R εσx r r r εσV R -+=+=⎰22002202d 2 (1) (2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R x εσx V (2) 电场强度方向沿x 轴方向. (3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 6911=V-1m V 6075⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有V 1695π40==xεq V 1-20m V 5649π4⋅==xεq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过 0.3%和0.8%,这已足以满足一般的测量精度.9-23 两个很长的共轴圆柱面(R 1 =3.0×10-2m ,R 2 =0.10 m ),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题9-15 的结果,可得两圆柱面之间的电场强度为 r ελE 0π2=根据电势差的定义有120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln /π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 475 7π2-⋅==rE ελ 9-24 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出25.9MeV 的能量.即MeV 25.9e 2He H 4014211++→这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚变反应又称作热核反应.试估算:(1)一个质子(H 11)以多大的动能(以电子伏特表示)运动,才能从很远处到达与另一个质子相接触的距离? (2)平均热运动动能达到此值时,温度有多高? (质子的半径约为1.0 ×10-15 m ) 分析 作为估算,可以将质子上的电荷分布看作球对称分布,因此质子周围的电势分布为 rεe V 0π4= 将质子作为经典粒子处理,当另一质子从无穷远处以动能E k 飞向该质子时,势能增加,动能减少,如能克服库仑斥力而使两质子相碰,则质子的初始动能Re r eV E 2π41202R k 0ε=≥ 假设该氢原子核的初始动能就是氢分子热运动的平均动能,根据分子动理论知:kT E 23k = 由上述分析可估算出质子的动能和此时氢气的温度.解 (1) 两个质子相接触时势能最大,根据能量守恒eV 102.72π415202R K0⨯==≥Re r εeV E 由20k 021v m E =可估算出质子初始速率 17k 00s m 102.1/2-⋅⨯==m E v该速度已达到光速的4%.(2) 依照上述假设,质子的初始动能等于氢分子的平均动能kT E E 23k k0== 得 K 106.5329k0⨯≈=kE T 实际上在这么高的温度下,中性原子已被离解为电子和正离子,称作等离子态,高温的等离子体不能用常规的容器来约束,只能采用磁场来约束(托卡马克装置)9-25 在一次典型的闪电中,两个放电点间的电势差约为109 V,被迁移的电荷约为30 C .(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L =3.34 ×105 J· kg )(2) 假设每一个家庭一年消耗的能量为3 000kW·h ,则可为多少个家庭提供一年的能量消耗?解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量kg 1098.8Δ4⨯===LqU L E m 即可融化约 90 吨冰. (2) 一个家庭一年消耗的能量为J 1008.1h kW 0003100⨯=⋅=E8.2Δ00===E qU E E n 一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能.9-26 已知水分子的电偶极矩p =6.17×10-30 C· m .这个水分子在电场强度E =1.0 ×105 V · m -1的电场中所受力矩的最大值是多少?分析与解 在均匀外电场中,电偶极子所受的力矩为E p M ⨯=当电偶极子与外电场正交时,电偶极子所受的力矩取最大值.因而有m N 1017.625max ⋅⨯==-pE M9-27 电子束焊接机中的电子枪如图所示,K 为阴极,A 为阳极,阴极发射的电子在阴极和阳极电场加速下聚集成一细束,以极高的速率穿过阳极上的小孔,射到被焊接的金属上使两块金属熔化在一起.已知V 105.24AK⨯=U ,并设电子从阴极发射时的初速度为零,求:(1)电子到达被焊接金属时具有的动能;(2)电子射到金属上时的速度.分析 电子被阴极和阳极间的电场加速获得动能,获得的动能等于电子在电场中减少的势能.由电子动能与速率的关系可以求得电子射到金属上时的速度.解 (1)依照上述分析,电子到达被焊接金属时具有的动能 eV 105.24AK k ⨯==eU E(2)由于电子运动的动能远小于电子静止的能量,可以将电子当做经典粒子处理.电子射到金属上时的速度题9-27 图第十章静电场中的导体与电介质10-1将一个带正电的带电体A从远处移到一个不带电的导体B附近,则导体B的电势将()(A)升高(B)降低(C)不会发生变化(D)无法确定分析与解不带电的导体B相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B附近时,在导体B的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A).10-2将一带负电的物体M靠近一不带电的导体N,在N的左端感应出正电荷,右端感应出负电荷.若将导体N的左端接地(如图所示),则()(A)N上的负电荷入地(B)N上的正电荷入地(C)N上的所有电荷入地(D)N上所有的感应电荷入地题10-2 图分析与解导体N接地表明导体N为零电势,即与无穷远处等电势,这与导体N在哪一端接地无关.因而正确答案为(A).10-3如图所示将一个电量为q的点电荷放在一个半径为R的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E (D )Rεq V d εq E 020π4,π4==题 10-3 图分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ).10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关。
大学物理学_吴柳-下_答案
大学物理学下 吴柳 第十二章12.1 一封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12—30所示。
当两侧各充以p 1,T 1与 p 2,T 2的相同气体后,两侧的长度之比是多少)?解:活塞两侧气体的始末状态满足各自的理想气体状态方程左侧: T pV T V p 111= 得, T pT Vp V 111=右侧:T pV T V p 222= 得, T pT V p V 222=122121T p T p V V = 即隔板两侧的长度之比 122121T p T p l l = 12。
2 已知容器内有某种理想气体,其温度和压强分别为T =273K ,p =1.0×10-2atm ,密度32kg/m 1024.1-⨯=ρ。
求该气体的摩尔质量.解:nkT p = (1)nm =ρ (2)A mN M = (3) 由以上三式联立得:12352232028.010022.610013.1100.12731038.11024.1----⋅=⨯⨯⨯⨯⨯⨯⨯⨯⨯==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量。
解:()V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ()()RT MM MVV p 2122-=- (2)(1)、(2)式联立得: ()()()Vp p RT M M V p Vp p RTM M M 212121221--=⎪⎪⎭⎫ ⎝⎛--=12。
4在实验室中能够获得的最佳真空相当于大约10-14atm (即约为10-10mmHg 的压强),试问在室温(300K )下在这样的“真空”中每立方厘米内有多少个分子? 解: 由nkT p = 得,35311235141045.21045.21038.130010013.110----⨯=⨯=⨯⨯⨯⨯==cm m kT p n 12.5已知一气球的容积V =8.7m 3,充以温度t 1=150C 的氢气,当温度升高到370C 时,维持其气压p 及体积不变,气球中部分氢气逸出,而使其重量减轻了0。
大学物理学_吴柳-下_答案
大学物理学下 吴柳 第十二章一封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后,问平衡时隔板将位于什么位置上(少)解: 活塞两侧气体的始末状态满足各自的理想气体状态方程左侧: T pV T V p 111= 得, T pT V p V 111=右侧:T pV T V p 222= 得, T pT Vp V 222=122121T p T p V V = 即隔板两侧的长度之比 122121T p T p l l = 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =×10-2atm,密度32kg/m 1024.1-⨯=ρ.求该气体的摩尔质量.解:nkT p = (1)nm =ρ (2)A mN M = (3) 由以上三式联立得:12352232028.010022.610013.1100.12731038.11024.1----⋅=⨯⨯⨯⨯⨯⨯⨯⨯⨯==mol kg N p kT M A ρ 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量.解:()V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ()()RT MM MVV p 2122-=- (2)(1)、(2)式联立得: ()()()Vp p RT M M V p Vp p RTM M M 212121221--=⎪⎪⎭⎫ ⎝⎛--=在实验室中能够获得的最佳真空相当于大约1014atm (即约为1010mmHg 的压强),试问在室温(300K )下在这样的“真空”中每立方厘米内有多少个分子 解: 由nkT p = 得,35311235141045.21045.21038.130010013.110----⨯=⨯=⨯⨯⨯⨯==cm m kT p n 已知一气球的容积V =8.7m 3,充以温度t 1=150C 的氢气,当温度升高到370C 时,维持其气压p 及体积不变,气球中部分氢气逸出,而使其重量减轻了0.052kg ,由这些数据求氢气在00C,压力p 下的密度. 解:V p 1t m V p 2t ()V V -2 p 2t m ∆3V p 3t m 由221t V t V = (1)mmV V V ∆=-22 (2)331t V t V = (3) 3V m=ρ (4) 由以上四式联立得: 3231122109.815.2737.815.288052.02215.310--⋅⨯=⨯⨯⨯=∆-=m kg Vt t m t t t ρ 真空容器中有一氢分子束射向面积2cm 0.2=S 的平板,与平板做弹性碰撞.设分子束中分子的速度13s m 100.1-⋅⨯=v ,方向与平板成60o 夹角,每秒内有23100.1⨯=N 个氢分子射向平板.求氢分子束作用于平板的压强. [×103Pa] 解: AN M m =Pa SNm S F p 323433230109.210022.6100.223100.110210260sin 2⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯===--v下列系统各有多少个自由度:⑴在一平面上滑动的粒子;⑵可以在一平面上滑动并可围绕垂直于该平面的轴转动的硬币;⑶一弯成三角形的金属棒在空间自由运动. 解:(1) 2 (2) 3 (3) 6容器内贮有氧气,其压强Pa 101.013atm 15⨯==p ,温度t =270C,求: (1)单位体积内的分子数;(2)分子的质量m ;(3)氧气的密度ρ;(4)分子的方均根速率;(5)分子的平均平动能;(6)在此温度下,4g 氧的内能.解:(1) 由 nkT p = 得,3252351045.215.3001038.110013.1--⨯=⨯⨯⨯==m kT p n (2) kg N M m A 262331031.510022.61032--⨯=⨯⨯== (3) 3262530.11031.51045.2--⋅=⨯⨯⨯==m kg nm ρ(4)12321084.4103215.30031.833--⋅⨯=⨯⨯⨯==s m M RTv (5) J kT k 21231021.615.3001038.12323--⨯=⨯⨯⨯==ε (6) J RT M m 21079.715.30031.82532425⨯=⨯⨯⨯==ε1mol 氢气,在温度270C 时,求⑴具有若干平动动能;⑵具有若干转动动能;⑶温度每升高10C 时增加的总动能是多少解: (1)J RT 311074.315.30031.82323⨯=⨯⨯==ε (2) J RT 321049.215.30031.822⨯=⨯==ε(3) J R 8.2025==∆ε试求mol 氢气分别在0℃和500℃时的内能.解:J RT 3111067.515.27331.82525⨯=⨯⨯==ε J RT 4221061.115.77331.82525⨯=⨯⨯==ε(1)求在相同的T 、p 条件下,各为单位质量的 H 2气与He 气的内能之比.(2)求在相同的T 、p 条件下,单位体积的H 2气与He 气的内能之比. 解:(1) RT E H 25102132⨯⨯=- RT E eH 2310413⨯⨯=-3102=eH H E E (2) 由nkT p =, 相同的T 、p 条件,可知: e H H n n =2 kT n E H H 2522= kT n E e e H H 23=352=eH H E E 设山顶与地面的温度均为273K,空气的摩尔质量为0.0289kg ·mol -1.测得山顶的压强是地面压强的3/4,求山顶相对地面的高度为多少 解:依题意有,340=p p 由气压公式有:m p p g RT h 301030.234ln 81.90289.027331.8ln ⨯=⨯⨯==μ 求速率大小在p v 与p v 之间的气体分子数占总分子数的百分率. 解:速率间隔在p p 1.01v ~v ,即p v v 01.0=∆1==p W v v 01.0=∆=∆pW v v在p p v v 01.1~间隔的分子数占总分子数的百分数为()%83.0422=∆=∆=∆-W e W W W f N N W π求00C 的氢气分子和氧气分子的平均速率、方均根速率和最概然速率. 解: 氢气分子相对应的各种速率为1331071.110215.27331.860.160.1--⋅⨯=⨯⨯⨯==s m M RT v 13321084.110215.27331.873.173.1--⋅⨯=⨯⨯⨯==s m M RT v 1331050.110215.27331.841.141.1--⋅⨯=⨯⨯⨯==s m M RT p v 由于三种速率均与分子的摩尔质量平方根成反比4122=o H M M 所以氧气分子的三种速率为氢气分子相应速率的四分之一 121026.4-⋅⨯=s m o v 1221061.4-⋅⨯=s m o v ()121076.3-⋅⨯=s m opv如图12-31所示.两条曲线分别表示氧气和氢气在同样温度下的速率分布曲线.试问哪条曲线对应氧(氢)气的分布曲线 氧气和氢气的最概然速率各是多少 方均根速率各是多少 解: 由 MRT p 2=v 可知,温度相同时,p v 与M 成反比 又由图可知,12p p v v > 因此 可得,21M M > 所以, (1)为氧气的速率分布曲线 (2)为氢气的速率分布曲线()()()()2222H M O M O H p p =v v ()12500-⋅=s m O p v()()()()122222000232500-⋅===s m O H M O M H p p v v由MRT32=v MRTp 2=v 得, p v v 232=()12261250023-⋅=⨯=s m O v ()1222450200023-⋅=⨯=s m H v))(v f 500图12-31 习题图设质量为m 的N 个分子的速率分布曲线如图12-32所示.(1)由N 和0v 求a 值.(2)在速率2/0v 到30v /2间隔内的分子数;(3)分子的平均平动能. 解:(1)在区间内0~0v ()v v v 0aNf = 在区间内002~v v ()a Nf =v 在区间内02~0v ,分子总数为N()0202002023200000v v v v v v v v v v v v v v a a a ad d a N =+⎪⎪⎭⎫ ⎝⎛=+=⎰⎰ 032v Na =(2)()N a a a ad d a N 12787202322023200000000==+⎪⎪⎭⎫ ⎝⎛=+=∆⎰⎰v v v v v v v v v v v v v v v v 0 (3) ()v v v v v d f ⎰=0202220202002202236319146121112121v v v v v v v v v v v v v m m ad Nd a Nm m =⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+==⎰⎰ε 设N 个粒子系统的速度分布函数为⎩⎨⎧>>>=)0),0(d d 00v v v v v (为常量K K N v⑴画出分布函数图;⑵用N 和v 0定出常数K ;⑶用v 0表示出平均速率和方均根速率. 解:(1) ()v NfKO0v vv o)(v Nf 02v 0v图12-32习题图(2) 00v v v K Kd N ==⎰ 0v NK =(3) 211000000v v v v v v v v v ===⎰⎰d d NNv00254.032383v v v v ===ππ 试从麦克斯韦速率分布律出发推写出如下分布律:(a )以最概然速率mkTp 2=v 作为分子速率单位的分子速率p x v v =的分布律;(b )分子动能221v m k =ε的分布律.并求出最概然动能kp ε,它是否就等于221p m v解:麦克斯韦速率分布律 ()2223224v v v kTm e kT m f -⎥⎦⎤⎢⎣⎡=ππ(a ) m kT p 2=v px v v= ()2224x e x kTm x f -=π (b)221v m k =ε()k kTk ke kT mf επεε-⎪⎭⎫ ⎝⎛=23124()0112423=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=-kT e kT m d f k kT k k kεπεεε得, 01=⎪⎭⎫⎝⎛-kT k ε 221p kp m kT v ==ε设容器内盛两种不同单原子气体,原子质量分别为m 1和m 2的此混合气体处于平衡状态时内能相等,均为U ,求这两种气体平均速率1v 和2v 的比值以及混合气体的压力.设容器体积为V .解: RT M m U 231'= RT M m U 232''= 得,2''1'M m M m =21'''M M mm = 118m kT π=v 228m kTπ=v 则 1221m m =v v RT pV ν= RTUM m M m M m 3421'2''1'==+=ν 得, VU V RT RT U p 3434==求在标准状态下一秒内分子的平均自由程和平均碰撞次数.已知氢分子的有效直径为×10-10 m.解:3252351069.215.2731038.110013.1--⨯=⨯⨯⨯==m kT p n ()m nd 72521021009.21069.2100.22121--⨯=⨯⨯⨯==ππλ1331070.110215.27331.888--⋅⨯=⨯⨯⨯==s m m RT ππv 19731013.81009.21070.1--⨯=⨯⨯==s z λv在足够大的容器中,某理想气体的分子可视为d=×10-10 m 的小球,热运动的 平均速率为2100.5⨯=v m/s,分子数密度为n =×1025 /m 3.试求:(1) 分子平均自由程和平均碰撞频率;(2) 气体中某分子在某时刻位于P 点,若经过与其他分子N 次碰撞后,它与P 点的距离近似可表为λN R =,那么此分子约经多少小时与P 点相距10米(设分子未与容器壁碰撞)解: (1)()m nd 8252102107.4100.3100.42121--⨯=⨯⨯⨯==ππλ110821006.1107.4100.5--⨯=⨯⨯==s z λv(2) λN R =h R R z N t 1182107.4100.5110018222=⨯⨯⨯⨯==⎪⎭⎫ ⎝⎛==-λυυλλ 设电子管内温度为300K ,如果要管内分子的平均自由程大于10cm 时,则应将它抽到多大压力(分子有效直径约为108cm )解:nd 221πλ=若使cm 10>λ()3192102105.21.0100.32121--⨯=⨯⨯==m d n πλπ 需使 319105.2-⨯<m nPa nkT p 1.03001038.1105.22319=⨯⨯⨯⨯==- 即需使 Pa p 1.0<计算⑴在标准状态下,一个氮分子在1s 内与其他分子的平均碰撞次数;⑵容积为4L 的容器,贮有标准状况下的氮气,求1s 内氮分子间的总碰撞次数.(氮分子的有效直径为108cm )解: (1) λυ=z 3252351069.215.2731038.110013.1--⨯=⨯⨯⨯==m kT p n()m nd 8252102109.51069.21076.32121--⨯=⨯⨯⨯==ππλ1231054.4102815.27331.888--⋅⨯=⨯⨯⨯==s m M RT ππυ 1982107.7109.51054.4--⨯=⨯⨯=s z (2) mol V V mol 179.04.224===ν AN N ν=132923103.8107.710022.6179.0-⨯=⨯⨯⨯⨯===s z N z N z A ν实验测知00C 时氧的粘滞系数s)g/(cm 1092.14⋅⨯=-η,试用它来求标准状态下氧分子的平均自由程和分子有效直径. 解:λυρη31=M RT πυ8=nm =ρ 其中 kT p n =, A N M m = 得:RTpM =ρ所以mMRT p RTMpMRT 8355105.91032815.27331.810013.111092.1381383---⨯=⨯⨯⨯⨯⨯⨯⨯===ππηπηλpd kT nd 22221ππλ==m p kT d 108523100.3105.910013.1215.2731038.12---⨯=⨯⨯⨯⨯⨯⨯==πλπ今测得氮气在00C 时的导热系数为237103.W m K 11⨯⋅⋅---,计算氮分子的有效直径.已知氮的分子量为28. 解:⎪⎭⎫⎝⎛=M C VM λυρκ31 R C VM 25= RT pM nm ==ρ m RMT p R MRT M pM RT73531069.131.8815.273102810013.11107.235681565283---⨯=⨯⨯⨯⨯⨯⨯⨯⨯===ππκπκλpd kT nd 22221ππλ==m p kT d 107523102.21069.110013.1215.2731038.12---⨯=⨯⨯⨯⨯⨯⨯==πλπ在270C 时,2mol 氮气的体积为0.1L ,分别用范德瓦耳斯方程及理想气体状态方程计算其压强,并比较结果.已知氮气a =L 2mol , b =102L mol .解:RT pV ν=Pa VRTp 731099.4101.015.30031.82⨯=⨯⨯⨯==-ν ()RT b V V a p ννν=-⎪⎭⎫⎝⎛+22 ()()PaV a b V RT p 72532221044.91.010013.1828.04101005.321.015.30031.82⨯=⨯⨯⨯-⨯⨯⨯-⨯⨯=--=--ννν 第13章p 2p 0V 02V V(1)理想气体经过下述三种途径由初态I(2p 0,V 0)变到终态Ⅱ(p 0,2V 0).试计算沿以下每一路径外界对气体所作的功:(a )先从V 0到2V 0等压膨胀然后等体积降压;(b)等温膨胀;(c)先以V 0等体积降压到p 0后再等压膨胀.(2)对1mol 的范氏气体重复以上三个过程的计算 [答案:(1)(a)2p 0V 0,(b) 2p 0V 0ln2,(c)p 0V 0;(2) (a)2p 0V 0, (b)00002002ln ))(( V a b V b V b V V ap ----+,(c)p 0V 0] 解:(1)(a) ()00000222200V p V V p pdV A V V =-==⎰ (b) 200222ln 2ln 00V p RT dV VRTpdV A V V V V ====⎰⎰(c) ()00000220V p V V p pdV A V V =-==⎰(2) 范德瓦尔斯方程: ()RT b V V a p mol mol=-⎪⎪⎭⎫ ⎝⎛+2 (a) 00220V p pdV A V V ==⎰(b)()000020000222222ln 22ln 000V ab V b V b V V a p V a V a RT dV V a b V RTpdV A bV b V V V V V ----⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫⎝⎛--==--⎰⎰(c) 0020V p pdV A V V ==⎰由如图13-40所示.一系统由状态a 沿acb 到达状态b,吸热量80Cal,而系统做功126J.⑴经adb 过程系统做功42J,问有多少热量传入系统⑵当系统由状态b 沿曲线ba 返回状态a 时,外界对系统做功为84J,试问系统是吸热还是放热热量是多少 解:1Cal=(1) A E Q +∆= J Q 3362.480=⨯=J A Q E 210126336=-=-=∆ 所以经adb 过程传入系统的热量 J A E Q 252422101=+=+∆= (2) J A 84-=029484210<-=--=+∆=J A E Q 所以系统是放热,热量是294J如图13-41所示.单原子理想气体从状态a 经过程abcd 到状态d,已知p a =p d =1atm,p b =p c =2atm,V a =1L,V b =1.5L,V c =3L,V a =4L.⑴试计算气体在abcd 过程中内能的变化、功和热量;⑵如果气体从状态d 保持压力不变到状态a(图中虚线),求以上三项的结果;⑶若过程沿曲线从a 到c 状态,已知该过程吸热257Cal,求该过程中气体所做的功. 解:(1) b a →()a b m V T T C E -=∆.νa a a RT V p ν= RVp T a a a ν=b b b RT V p ν= RV p T bb b ν=()a a b b aa b b V p V p RV p R V p R E -=⎪⎭⎫⎝⎛-=∆2323ννν ()J 231004.31010132515.1223⨯=⨯⨯-⨯⨯=- ()J pdV A b aV V 231076.010*******.02121⨯=⨯⨯⨯+⨯==-⎰J A E Q 21080.3⨯=+∆= 同理: c b →()()J V p V p E b b c c 231056.4101013255.12322323⨯=⨯⨯⨯-⨯⨯=-=∆- J pdV A cbV V 231004.3105.11013252⨯=⨯⨯⨯==-⎰J A E Q 21060.7⨯=+∆=d c →图13-41 习题图pp 12()()J V p V p E c c d d 231004.31010132532412323⨯-=⨯⨯⨯-⨯⨯=-=∆- ()J pdV A d cV V 231052.1101013252121⨯=⨯⨯+⨯==-⎰J A E Q 21052.1⨯-=+∆=J E 21056.4⨯=∆总 J A 21032.5⨯=总 J Q 21088.9⨯=总(2) ()()J V p V p E d d a a 231056.410101325412323⨯-=⨯⨯-⨯=-=∆- J pdV A adV V 231004.3103101325⨯-=⨯⨯-==-⎰J A E Q 21060.7⨯-=+∆=(3) c a →()J E 221060.71056.404.3⨯=⨯+=∆J E Q A 221019.31060.72.4257⨯=⨯-⨯=∆-=如图13-42所示.一定质量的氧气在状态A 时,V 1=3L,p 1=×105Pa,在状态B时V 2=4.5L,p 2=6×105Pa.分别计算气体在下列过程吸收的热量,完成的功和内能的改变:⑴经ACB 过程,⑵经ADB 过程. 解:(1) ACB 过程C A → ()()35103102.862525-⨯⨯⨯-⨯=-=∆A A C C V p V p E J 31065.1⨯-=J A 0=J Q 31065.1⨯-=B C → ()()J V p V p E C C B B 3531025.21061035.42525⨯=⨯⨯⨯-⨯=-=∆-()()J V V p A 335122109.01035.4106⨯=⨯-⨯⨯=-=- J Q 31015.3⨯=J E 3106.0⨯=∆总 J A 3109.0⨯=总 J Q 3105.1⨯=总(2) ADB 过程D A →图13-42 习题13,4图()()J V p V p E A A D D 35310075.3102.81035.42525⨯=⨯⨯⨯-⨯=-=∆- ()()J V V p A 3351211023.11035.4102.8⨯=⨯-⨯⨯=-=- J Q 310305.4⨯=B D → ()()J V p V p E D D B B 33510475.2105.4102.862525⨯-=⨯⨯⨯-⨯=-=∆-J A 0=J Q 310475.2⨯-=J E 3106.0⨯=∆总 J A 31023.1⨯=总 J Q 31083.1⨯=总压强为p =×103Pa,体积为0.0082 m 3的氮气,从初始温度300K 加热到400K. (1)如加热时分别体积不变需要多少热量(2) 如加热时分别压强不变需要多少热量 [答案: Q V=683J; Q p =957J]解:(1) RT pV ν= RTpV=ν ()J R RT pV T C E m V 6901003000082.01001.125300400255.=⨯⨯⨯⨯=-=∆=∆νJE Q V 690=∆=(2)J T R RTpVT C Q m p p 9661003000082.01001.1271255.=⨯⨯⨯⨯=∆⎪⎭⎫⎝⎛+=∆=ν 将500J 的热量传给标准状态下2 mol 氢气.(1)若体积不变,问此热量变为什么氢气的温度变为多少(2)若温度不变,问此热量变为什么氢气的压强及体积各变为多少(3)若压强不变, 问此热量变为什么 氢气的温度及体积各变为多少[答案: (1) T=285K; (2)Pa 1007.942⨯=p ,V 2=0.05m 3,(3)T =; V 2=0.046 m 3 ] 解:(1) 全部转化为内能 T C Q m V V ∆=.ν K RC Q T m V 12252500.=⨯==∆ν K T 15.2851215.2732=+=(2) 全部转化为对外界做功 12lnV V RT Q T ν=()Pap 5100.1/⨯OVV 02V abcd12V eV RTQ T ν= 3310448.0104.222m V =⨯⨯=-3205.0m V =2211V p V p = Pa V V p p 4521121007.905.00448.010013.1⨯=⨯⨯==(3) 一部分用于对外做功,一部分用于内能增加 T C Q m p p ∆=.νK R C Q T mp p6.8272500.=⨯==∆ν K T 75.2816.815.2732=+=2211T V T V = 32112046.075.28115.2730448.0m T T V V =⨯==一定量的理想气体在某一过程中压强按2Vcp =的规律变化,c 是常量.求气体从V 1增加到 V 2所做的功.该理想气体的温度是升高还是降低 [答案: 2121);11(T T V V c A >-= ]解:⎪⎪⎭⎫ ⎝⎛-===⎰⎰212112121V V c dV V cpdV W V V V V 由理想气体状态方程 RT pdV ν= 得,RT V V c ν=2RTV cν= 可知1221V V T T = 因为 12V V > , 所以 21T T > 即气体的温度降低1mol 氢,在压强为×105Pa,温度为20o C 时体积为0V .今使它分别经如下两个过程达到同一状态:(1)先保持体积不变,加热使其温度升高到80o C,然后令它等温膨胀使体积变为原来的2倍;(2)先等温膨胀至原体积的2倍,然后保持体积不变加热至80o C.试分别计算以上两种过程中吸收的热量、气体做的功和内能的增量,并作出p-V 图.[答案: Q 2=2933J,A =1687J,U =1246J]解:(1) 定容过程J A 0=()J R T C Q E m V V 50.1246208025.=-=∆==∆ 等温过程 J E 0=∆ ()J RT V V RT Q A T 16.20342ln 8015.27331.82ln ln12=⨯+⨯==== J Q 66.3280=总 J A 16.2034=总 J E 50.1246=∆总 (2) 等温过程J E 0=∆J RT Q A T 56.16882ln 15.29331.82ln =⨯⨯===定容过程J A 0=()J R T C Q E m V V 50.1246208025.=-=∆==∆ J Q 06.2935=总 J A 56.1688=总 J E 50.1246=∆总 某单原子理想气体经历一准静态过程,压强Tcp =,其中c 为常量.试求此过程中该气体的摩尔热容C m . [答案: C m =(7/2)R ] 解:由理想气体状态方程 RT pV ν= 其中 Tc p =得, 2T cRV ν=dT cRTdV ν2=根据热力学第一定律,A E Q +∆= T R R dT c RT T c T R pdV T C Q m V ∆⎪⎭⎫ ⎝⎛+=+∆=+∆=⎰⎰223223.νννν 则可得,R T Q C m 27=∆=ν 为了测定气体的γ=⎛⎝ ⎫⎭⎪C C p V 可用下列方法:一定量的气体初始温度、压强和体积分别为T 0,p 0和V 0,用通有电流的铂丝对它加热,第一次保持气体体积V 0不变,温度和压强各变为T 1和p 1;第二次保持压力,p 0不变,温度和体积各变为T 2和V 1,设两次加热的电流和时间都相同.试证明γ=--()()p p V V V p 100100解: 过程1为定容过程 V 不变,()01T T C T C Q V V -=∆=νν由理想气体状态方程得, 000RT V p ν=R V p T ν000=101RT V p ν= RV p T ν011=即 ()001V p p RC Q V-=(1) 过程2为定压过程 p 不变,()02T T C T C Q p p -=∆=νν由理想气体状态方程得, RV p T ν102=即 ()001p V V R C Q p -= (2)由(1)(2)式即证得,()()001001p V V V p p C C Vp --==γ气缸内有单原子理想气体,若绝热压缩使其容积减半,问气体分子的平均速率变为原来速率的几倍若为双原子理想气体,又为几倍[答案:;] 解:由理想气体绝热方程 常量=-T V 1γ 得,212111T V T V --=γγ 12112-⎪⎪⎭⎫ ⎝⎛=γV V T T其中1221V V =1122-=γT T又由 M RTπυ8= 可知, 2112122-==γυυT T单原子理想气体 R 35=γ, 则 26.123112==υυ双原子理想气体 R 57=γ, 则 15.125112==υυVO1p 2p 12一定量的理想气体经历如图13-43所示的循环,其中AB 、CD 是等压过程,BC 、DA 是绝热过程,A 、B 、C 、D 点的温度分别为T 1、T 2、T 3、T 4.试证明此循环效率为 231T T -=η. 解:等压过程AB 吸热 ()121T T C Q p -=ν等压过程CD 放热 ()432T T C Q p -=ν BC 、DA 是绝热过程 0=Q 124312111T T T T Q Q Q A---=-==η 利用绝热方程 常量=--γγT p 1 得,γγγγ----=312211T p T p 31122T p p T γγ--⎪⎪⎭⎫⎝⎛=γγγγ----=412111T p T p 41121T p p T γγ--⎪⎪⎭⎫⎝⎛=2311211T T p p -=⎪⎪⎭⎫⎝⎛-=-γγη 设有一理想气体为工作物质的热机循环,如图13-44所示,试证明其效率为1)/(1)/(12121---=p p V V γη.解:b a →为等体升温过程,吸热 ()a b m V T T C Q -=.1νa c →为等压压缩过程, 放热()a c m p T T C Q -=.2ν ()()a b m V a c m p T T C T T C Q Q ---=-=..1211η利用理想气体状态方程 RT pV ν=, 得()()221211V p V p RV p V p R T T a a c c a c -=-=-νν2 1图13-45习题狄赛尔循环()()222111V p V p RV p V p R T T a a b b a b -=-=-νν 循环效率为 ()()1111212122212212---=---=p p V V V p V p V p V p γγη 有一种柴油机的循环叫做狄赛尔循环,如图13-45所示.其中BC 为绝热压缩过程,DE 为绝热膨胀过程,CD 为等压膨胀过程,EB 为等容冷却过程,试证明此循环的效率为⎪⎪⎭⎫ ⎝⎛-'⎪⎪⎭⎫⎝⎛-'-=-11)/(121212V V V V V V γγγη解:CD 为等压膨胀过程, 吸热 ()C D p T T C Q -=ν1EB 为等容冷却过程, 放热 ()B E V T T C Q -=ν2 循环效率 CD BE T T T T Q Q ---=-=γη11112 利用理想气体状态方程 RT pV ν=, 得()B B E E B E V p V p R T T -=-ν1()C C D D C D V p V p RT T -=-ν1()()2'11111V V p p p V V p V p V p V p C B E C C D D B B E E ---=---=γγη 利用绝热方程 常量=γpV , 得γγE E D D V p V p = E D p V V p γ⎪⎭⎫ ⎝⎛='1γγB BC C V p V p = B C p VV p γ⎪⎪⎭⎫ ⎝⎛=21 由C D p p =得 γ⎪⎪⎭⎫⎝⎛=2'V V p p B E ()()⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛---=-⎪⎪⎭⎫ ⎝⎛--=-111111111112'1212'2'122'1V V V V V V V V V V p p p p V V p p p p V B C B EB C B E γγγγγη1mol 理想气体在400K-300K 之间完成一卡诺循环,在400K 的等温线上,起始体积为0.001 m 3,最后体积为 0.005 m 3,试计算气体在此循环中所作的功,以及从高温热源吸收的热量和传给低温热源的热量.[答案:A =×103J,Q 2=×103J] 解:J V V RT Q 312111035.5ln⨯==ν 该循环效率为 %254003001112=-=-=T T η 可得 J Q A 311034.1⨯==η由 21Q Q A -=, 得 J A Q Q 3121001.4⨯=-=1mol 刚性双原子分子理想气体,作如图13-46所示的循环,其中1-2为直线,2-3为绝热线,3-1为等温线,且已知θ=450,T 1=300K,T 2=2T 1,V 3=8 V 1,试求:(1)各分过程中气体做功、吸热及内能增量;(2)此循环的效率. 解:(1)21→由理想气体状态方程可得, 111RT V p =222RT V p = 又由图可知,11V p =, 22V p =121RT V = 11RT V =1222RT V = 122RT V =22V V =()J R T T C E V 5.62323002512=⨯=-=∆ ()J RT V V VdV pdV A V V V v 5.12462121121222121==-===⎰⎰J A E Q 7479=+∆= 吸热32→O Q = A E -=∆ 利用绝热方程 γγpV V p =22, 得 13322223232--===⎰⎰γγγV p V p VdVV p pdV A V V V V γγ3322V p V p = 2323p VV p γ⎪⎪⎭⎫ ⎝⎛=J RT V V V p VV V p A 5.62321578212182128157122122223222=-⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=-⎪⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=--γγγγ13→0=∆E A Q =J V V RT A 51848ln 30031.8ln131-=⨯⨯-=-= J Q 5184-= 放热(2) 循环效率 %7.30747951841112=-=-=Q Q η * 单原子理想气体,由状态A经直线AB 所表示的过程到状态B,如图13-47所示,已知V A =1L, V B =3L,p A =3atm.(1)试证A 、B 两状态的温度相等;(2)求AB 过程中气体吸收的热量;(3)求在AB 过程中,温度最高的状态C 的体积和压力(提示:写出过程方程T =T (V ));(4)由(3)的结果分析从A 到B 的过程中温度变化的情况,从A 到C 吸热还是放热证明Q CB =0.能否由此说从C 到B 的每个微小过程都有Q =0解:(1) 由理想气体状态方程, 得 A A A RT V p ν= B B B RT V p ν=又由已知条件可知 B B A A V p V p = 即证: B A T T =(2) ()0=-=∆A B V T T C E νJ pdV A 25310052.410013.11022221⨯=⨯⨯⨯⎪⎭⎫⎝⎛+⨯⨯==-⎰J A Q 210052.4⨯==(3) 由理想气体状态方程 RT pV ν=, 得 R pV T ν=又由图可知: 4+-=V p 即 ()V V RT 412+-=ν p (atm)3 A1 B0 1 3 V (L)图13-47 习题图由极值条件:0=dVdT, 得 042=+-V 即当 L V 2=, atm p 2= 时T 取到极大值(4) 由 (3) 可知, B A →过程中 温度T 满足函数 ()V V RT 412+-=ν C A →过程中温度升高,到达C 点时取得极大值B C →过程中温度降低,到达点时温度又回到A 点时的值C A →过程 ()0>-=∆A C V T T C E ν0>A0>+∆=A E Q 吸热dA dE dQ +=()()dV V V RC dT C dE VV 63421+-=+-==ννν ()dV V pdV dA 4+-==()dV V dQ 104+-= 即证: ()010432=+-=⎰dV V Q LLCB但不能说从C 到B 的每个微小过程都有0=Q δ一台家用冰箱放在气温为300K 的房间内,做—盒-13℃的冰块需从冷冻室中吸出 ×105J 的热量.设冰箱为卡诺制冷机,求: (1)做一盒冰块所需之外功;(2)若此冰箱能以×102J·s -1的速率取出热量,求所要求的电功率是多少瓦 (3)做一盒冰块所需之时间. 解:(1)卡诺循环 制冷系数2122T T T A Q e -==代入数据得 5.6260300260=-=eJ e Q A 4521022.35.61009.2⨯=⨯==(2) W e P P 2.325.61009.22'=⨯==(3) h s P Q t 28.0101009.21009.2325'2≈=⨯⨯==abcpVOabcdVOp 以可逆卡诺循环方式工作的致冷机,在某种环境下它的致冷系数为w =30.在同样的环境下把它用作热机,问其效率为多少[答案:%2.3=η]解:卡诺循环 制冷系数AQ w 2=得 wA Q =2 卡诺热机循环效率 1Q A=η 且 A Q Q +=21 ()%2.33011111=+=+=+=w A w A η根据热力学第二定律证明: ()两条绝热线不能相交;() 一条等温线和一条绝热线不能相交两次.解:(1)假设两条绝热线可以相交,如图所示ab 为等温线 bc 、ac 为绝热线此循环过程中 A Q =1 即热全部转化为功, 这与热力学第二定律的开尔文表述相矛盾 所以,即证得:两条绝热线不能相交(2) 假设一条等温线和一条绝热线可以两次相交,如图所示ab 为等温线 cd 为绝热线此循环过程中 A Q =1 即热全部转化为功 这与热力学第二定律的开尔文表述相矛盾, 即证一杯质量180g 温度为100 0C 的水置于270C 的空气中,冷却到室温后水的熵变是多少空气的熵变是多少总熵变是多少[答案:-164J/K ,233J/K ,69J/K]解:熵变的定义:⎰=∆T dQS 热量的计算公式: ⎰=mcdT Q112165300373ln 22.4180ln 21-⋅-=⨯⨯-====∆⎰⎰K J T T mc dT T mc T dQ S T T 水()122121853007322.4180-⋅=⨯⨯=-===∆⎰K J T T T mc T Q T dQ S 空气 120165185-⋅=-=∆+∆=∆K J S S S 空气水总1mol 理想气体经一等压过程,温度变为原来的2倍.该气体的定压摩尔热容为C p ,m ,求此过程中熵的增量. [答案: 2ln Δp C S =] 解:2ln 2121p T T p T T p C TdTC TdT C S ===∆⎰⎰一房间有N 个分子, 某一宏观态时其中半个房间的分子数为n .⑴写出这种分布的熵的表达式S =k ln;⑵n =0状态与n =N /2状态之间的熵变是多少 ⑶如果N=61023,计算这个熵差.解:(1)根据玻耳兹曼熵的表达式 W k S ln =, 得()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎭⎫⎝⎛==⎪⎭⎫ ⎝⎛--NN n N k eN k n W k S A NN n A 222222ln2ln ln 2(2)熵的变化:k N NN N k N k S S S A AN 2222ln 2ln202=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫⎝⎛-⨯--=-=∆ (3) 23106⨯=N 时, 熵差为1232314.421038.1106--⋅=⨯⨯⨯=∆K J S第14章作简谐运动的质点,速度最大值为3cm/s,振幅A =2cm,若速度为正最大值时开始计时.(1)求振动的周期;(2)求加速度的最大值;(3)写出振动的表达式. 解: (1) 由2/m A A T ωπ==v ,可得2/20.02/0.03 4.2m T A s ππ==⨯⨯=v(2) 22222/0.03/0.02 4.510/m m a A A m s ω-====⨯v(3) 由于0t =时,m =+v v ,可知/2ϕπ=-,而10.03/0.02 1.5ms Aω-===v ,所以有cos()0.02cos(1.5/2)x A t t ωϕπ=+=-一水平弹簧振子的振幅A =2cm,周期T =.当t =0时 (1)物体过x =1cm 处且向负方向运动;(2)物体过x =1cm 处且向正方向运动.分别写出以上两种情况下的振动表达式. 解: (1) 22cos() 2.010cos(4)3x A t t T ππϕπ-=+=⨯+(2) 22.010cos(42/3)x t ππ-=⨯-设一物体沿x 轴作简谐振动,振幅为12cm,周期为;在t =0时位移为6.0cm,且向x 轴正方向运动.试求:(1)初相位;(2)t =时该物体的位置、速度和加速度;(3)在x =-6.0cm 且向x 轴负方向运动时,物体的速度和加速度以及它从这个位置到达平衡位置所需要的时间. 解: (1) 001cos 23x A πϕϕ==∴=±又∵00>v ,即0sin 0A ωϕ->00sin 03πϕϕ∴<=-(2) 12cos()()0.53x t cm t s ππ=-=时0.563t s x cm ==10.52220.512sin()6312cos()633t s t st cm s a t cm sππππππππ-=-==--=-⋅=--=-⋅v(3) 12cos x ϕ=当6x cm =-时1cos 2ϕ=-∵30sin ϕ<∴=v12212sin 365566cm s a x cm t t sπϕπωππϕϕωωπ-=-=-⋅=-=∆∆=⋅∆∆===v 两个谐振子作同频率、同振幅的简谐振动.第一个振子的振动表达式为)cos(1φω+=t A x ,ϕϕϕ∆6-6x ()cm 习题图2Aox (cm) t (s)2 10 -1 -2习题图当第一个振子从振动的正方向回到平衡位置时,第二个振子恰在正方向位移的端点.求:(1)第二个振子的振动表达式和二者的相位差;(2)若t =0时,21Ax -=并向x 负方向运动,画出二者的x-t 曲线及旋转矢量图.解: (1) 用旋转矢量法分析,当第一个振子从振动的正方向回到平衡位置时,第二个振子恰好在正方向端点。
大学物理第二版下册答案
大学物理第二版下册答案
由初始条件 x 0
l 0 , 求得 A
l0
0 .1m , 故物体 A 的运动方程为
v0
x=0.1cos(7t+ π)m (2) 当考虑滑轮质量时,两段绳子中张力数值不等,如图所 示,分别为 T 1、 T2,则对 A 列出任一位置 x 处的牛顿方程式 为:
2
dx
mg sin
T1 m 2
故振动周期:
2
2
T
1 .256 (s) 1. 26 (s)
5
(2) t=0 时,由振动方程得:
5(rad/s)
大学物理第二版下册答案
x0
0 .60 m
dx
0
|t 0 3. 0 cos( 5t
)0
dt
2
(3) 由旋转矢量法知,此时的位相: 3
速度 加速度 所受力
A sin
0 .60 5 (
3 ) m / s 2.6(m / s )
Mg k O P 将 A 与 B 粘合后,挂在弹簧下端,静止平衡所在位置
O 点,取 O 点为原坐标原点如图题
8-5 所示,则有: k O O ( M m ) g
设当 B 与 A 粘在一起后, 在其运动过程的任一位置, 弹簧形变量 O O 所受合力为:
x ,则 A、B 系统
F ( M m ) g k (O O x) kx
(2)
dt
对 滑 轮 列 出 转动 方 程为 :
2
T1 r T 2 r J
1 Mr 2 a
1 dx Mr
2
(3)
2
r 2 dt
式中 ,T 2=k(l0+x)
( 4)
1 d2x
《大学物理 》下册习题答案
7-1.原长为m 5.0的弹簧,上端固定,下端挂一质量为kg 1.0的物体,当物体静止时,弹簧长为m 6.0.现将物体上推,使弹簧缩回到原长,然后放手,以放手时开始计时,取竖直向下为正向,写出振动式。
(g 取9.8)解:振动方程:cos()x A t ωϕ=+,在本题中,kx mg =,所以9.8k =;∴ω=== 取竖直向下为x 正向,弹簧伸长为0.1m 时为物体的平衡位置,所以如果使弹簧的初状态为原长,那么:A =0.1m ,当t =0时,x =-A ,那么就可以知道物体的初相位为π。
所以:0.1cos x π=+)即:)x =-。
7-2.有一单摆,摆长m 0.1=l ,小球质量g 10=m ,0=t 时,小球正好经过rad06.0-=θ处,并以角速度0.2rad/s θ= 向平衡位置运动。
设小球的运动可看作简谐振动,试求:(1)角频率、频率、周期;(2)用余弦函数形式写出小球的振动式。
(g 取9.8) 解:振动方程:cos()x A t ωϕ=+我们只要按照题意找到对应的各项就行了。
(1)角频率: 3.13/rad s ω===,频率:0.5Hz ν===,周期:22T s ===; (2)振动方程可表示为:cos 3.13A t θϕ=+(),∴ 3.13sin 3.13A t θϕ=-+ () 根据初始条件,0t =时:cos A θϕ=,0(12sin 0(343.13Aθϕ>=-< ,象限),象限)可解得:2008.810227133 2.32A m ϕ-=⨯==-=-,,所以得到振动方程:28.810cos3.13 2.32t m θ-=⨯-()。
7-4.一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。
当0=t 时,位移为cm 6,且向x 轴正方向运动。
求:(1)振动表达式;(2)s 5.0=t 时,质点的位置、速度和加速度;(3)如果在某时刻质点位于cm 6-=x ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。
大学物理第五版下册-课后答案
9-1一个质点作简谐运动,振幅为A,在起始时刻质点的位移为-A,且向x 轴正方向运2动,代表此简谐运动的旋转矢量为()题9-1图分析与解(b)图中旋转矢量的矢端在x 轴上投影点的位移为-A/2,且投影点的运动方向指向O x轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(b).9-2已知某简谐运动的振动曲线如图(a)所示,则此简谐运动的运动方程为()(A)x = 2cos⎡2πt -2 π⎤(cm)(C)x = 2cos⎡2 πt +2 π⎤(cm)⎢⎣3 3 ⎥⎦ ⎢⎣3 3 ⎥⎦(B)x = 2cos⎡4πt -2 π⎤(cm)(D)x = 2cos⎡4 πt +2 π⎤(cm)⎢⎣3 3 ⎥⎦ ⎢⎣3 3 ⎥⎦题9-2图分析与解由振动曲线可知,初始时刻质点的位移为–A/2,且向x 轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为2π / 3 .振动曲线上给出质点从–A/2 处运动到+A 处所需时间为 1 s,由对应旋转矢量图可知相应的相位差∆ϕ=4π3 ,则角频率ω=∆ϕ/ ∆t =(4π/ 3)s-1 ,故选(D).本题也可根据振动曲线所给信息,逐一代入方程9-3 两个同周期简谐运动曲线如图(a ) 所示, x 1 的相位比 x 2 的相位( )(A ) 落后 π2(B )超前 π2(C )落后 π (D )超前π分析与解 由振动曲线图作出相应的旋转矢量图(b ) 即可得到答案为(b ).题9-3 图9-4 当质点以频率 ν 作简谐运动时,它的动能的变化频率为( )(A )v(B ) v (C ) 2v2(D ) 4v分析与解 质点作简谐运动的动能表式为E k=1m ω 2 A 2sin 2 (ωt 2+ ϕ ),可见其周期为简谐运动周期的一半,则频率为简谐运动频率 ν 的两倍.因而正确答案为(C ).9-5 图(a )中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为( ) 3(A )π 21(B ) π2(C ) π (D ) 0分析与解 由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差是π(即反相位).运动方程分别为x 1 = A cos ωt 和 x 2= A cos (ωt + π).它们的振幅不同.对2于这样两个简谐运动,可用旋转矢量法,如图(b )很方便求得合运动方程为x 1 = 而正确答案为(D ).Acos ωt .因2题9-5图9-6 有一个弹簧振子,振幅A = 2.0 ⨯10-2 m ,周期T = 1.0 s ,初相ϕ出它的运动方程,并作出x -t 图、v -t 图和a -t 图.=3π / 4 .试写题9-6 图分析弹簧振子的振动是简谐运动.振幅 A 、初相ϕ、角频率ω是简谐运动方程m / k 外, ω 可通过关系式ω = 2π / T 确定.振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同.解 因ω = 2π / T ,则运动方程x = A cos (ωt + ϕ ) = A ⎛ 2πt + ϕ ⎫cos ⎪ ⎝ T⎭根据题中给出的数据得x = 2.0 ⨯ 10-2 cos (2πt + 0.75π ) (m )振子的速度和加速度分别为v = d x / d y a = d 2x / d 2y = -4π ⨯ 10-2sin (2πt = -8π ⨯ 10-2cos (2πt + 0.75π) ( m ⋅ s-1 )+ 0.75π) ( m ⋅ s -1)x - t 、 v - t 及 a - t 图如图所示.9-7 若简谐运动方程为 x = 0.10 cos (20πt + 0.25π)(m ),求:(1) 振幅、频率、角频率、周期和初相;(2) t = 2s 时的位移、速度和加速度.分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式x = A cos (ωt + ϕ )作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果.解 (1) 将 x = 0.10 cos (20πt + 0.25π)(m )与 x = A cos (ωt + ϕ )比较后可得:振幅 A = 0.10m ,角频率ω = 20π s -1,初相ϕ =0.25 π ,则周期T = 2π / ω = 0.1 s ,频率 v = 1/ T Hz .(2) t = 2s 时的位移、速度、加速度分别为x = 0.10 cos (40πt + 0.25π) = 7.07 ⨯10-2 m v = d x / d t = -2πsin (40π + 0.25π) = -4.44m ⋅ s -1a = d 2 x / d 2t = -40π2cos (40π + 0.25π) = -2.79 ⨯102 m ⋅ s -29-8 一远洋货轮,质量为 m ,浮在水面时其水平截面积为 S .设在水面附近货轮的水平截面积近似相等,水的密度为 ρ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期.分析 要证明货轮作简谐运动,需要分析货轮在平衡位置附近上下运动时,它所受的合外力 F 与位移 x 间的关系,如果满足 F = -kx ,则货轮作简谐运动.通过 F = -kx 即可求得振动 周期T = 2π / ω = 2π .证 货轮处于平衡状态时[图(a )],浮力大小为 F =mg .当船上下作微小振动时,取货轮处于力平衡时的质心位置为坐标原点 O ,竖直向下为 x 轴正向,如图(b )所示.则当货轮向下偏移 x 位移时,受合外力为∑ F = P + F '其中 F ' 为此时货轮所受浮力,其方向向上,大小为F ' = F + ρgSx = mg + ρgSx则货轮所受合外力为 题9-8 图∑ F = P -F ' = -ρgSx = -kx式中 k = ρgS 是一常数.这表明货轮在其平衡位置上下所作的微小振动是简谐运动. 由∑ F = m d2x / d 2t 可得货轮运动的微分方程为d 2 x / d 2t + ρgSx / m = 0令ω 2= ρgS / m ,可得其振动周期为T = 2π / ω = 2π 9-9 设地球是一个半径为 R 的均匀球体,密度 ρ = 5.5 ⨯103kg ⋅ m -3 .现假定沿直径凿通一条隧道,若有一质量为 m 的质点在此隧道内作无摩擦运动.(1) 证明此质点的运动是简谐运动;(2) 计算其周期.题9-9 图分析 证明方法与上题相似.分析质点在隧道内运动时的受力特征即可. 证 (1) 取图所示坐标.当质量为 m 的质点位于 x 处时,它受地球的引力为m / ρgSm / k x x 式中G 为引力常量, m 是以 x 为半径的球体质量,即 m = 4πρx 3/ 3 .令 k = 4πρGm / 3 ,则质点受力F = 4πρGmx / 3 = -kx因此,质点作简谐运动.(2) 质点振动的周期为T = 2π= = 5.07 ⨯103 s9-10 如图(a )所示,两个轻弹簧的劲度系数分别为 k 1 、k 2时.(1) 证明其运动仍是简谐运动;(2) 求系统的振动频率..当物体在光滑斜面上振动题 9-10 图分析 从上两题的求解知道,要证明一个系统作简谐运动,首先要分析受力情况,然后看是否满足简谐运动的受力特征(或简谐运动微分方程).为此,建立如图(b )所示的坐标.设系统平衡时物体所在位置为坐标原点 O ,Ox 轴正向沿斜面向下,由受力分析可知,沿 Ox 轴, 物体受弹性力及重力分力的作用,其中弹性力是变力.利用串联时各弹簧受力相等,分析物体 在任一位置时受力与位移的关系,即可证得物体作简谐运动,并可求出频率υ .证 设物体平衡时两弹簧伸长分别为 x 1 、 x 2 ,则由物体受力平衡,有mg sin θ = k 1x 1 = k 2 x 2按图(b )所取坐标,物体沿 x 轴移动位移 x 时,两弹簧又分别被拉伸 x 1' 和 x 2' ,即物体受力为(1)x = x 1' + x 2' .则 3π / Gρ12π(k + k )/ m 1 21 2将式(1)代入式(2)得F = -k 2 x 2' = -k 1x 1' 由式(3)得 x 1' = -F / k 1 、 x 2' = -F / k 2 ,而 x = x 1' + x 2' ,则得到(3)F = -[k k / (k + k )]x = -kx 1 2式中 k = k 1k 2 / (k 1 + k 2 )为常数,则物体作简谐运动,振动频率v = ω / 2π = 12πk / m= 讨论 (1) 由本题的求证可知,斜面倾角 θ 对弹簧是否作简谐运动以及振动的频率均不产生影响.事实上,无论弹簧水平放置、斜置还是竖直悬挂,物体均作简谐运动.而且可以证明它们的频率相同,均由弹簧振子的固有性质决定,这就是称为固有频率的原因.(2) 如果振动系统如图(c )(弹簧并联)或如图(d )所示,也可通过物体在某一位置的受力分析得出其 作简谐运动,且振动频率均为v = ,读者可以一试.通过这些例子可以知道,证明物体是否作简谐运动的思路是相同的.*9-11 在如图(a )所示装置中,一劲度系数为 k 的轻弹簧,一端固定在墙上,另一端连接一质量为 m 1 的物体 A ,置于光滑水平桌面上.现通过一质量 m 、半径为 R 的定滑轮 B (可视为匀质圆盘)用细绳连接另一质量为 m 2 的物体 C .设细绳不可伸长,且与滑轮间无相对滑动, 求系统的振动角频率.题 9-11 图分析 这是一个由弹簧、物体 A 、C 和滑轮 B 组成的简谐运动系统.求解系统的振动频率可采用两种方法.(1) 从受力分析着手.如图(b )所示,设系统处于平衡状态时,与物体1 2π k k /(k + k )m1 2 1 2k 正向从原点 O 伸长 x 时,分析物体 A 、C 及滑轮 B 的受力情况,并分别列出它们的动力学方程,可解得系统作简谐运动的微分方程.(2)从系统机械能守恒着手.列出系统机械能守恒方 程,然后求得系统作简谐运动的微分方程.解 1 在图(b )的状态下,各物体受力如图(c )所示.其中 F = -k (x + x 0 )i .考虑到绳 子不可伸长,对物体 A 、B 、C 分别列方程,有F T 1 = -k (x + x 0 ) = d 2 x m 1 d t 2 d 2 x(1)m 2 g - F T 2 = m 2 d t 2 (2)( - ) = α = 1d 2 xF T 2 F T 1 R J2 d t 2(3) kx 0 = m 2 g (4)方程(3)中用到了 F = F ' 、F = F ' 、J = mR 2/ 2 及α = a / R .联立式(1) ~式(4)T 2 T 2 可得T 1 T 1d 2 x k则系统振动的角频率为d t+m 1 + m 2 + m / 2x = 0(5)ω = 解 2 取整个振动装置和地球为研究系统,因没有外力和非保守内力作功,系统机械能守恒.设物体平衡时为初始状态,物体向右偏移距离 x (此时速度为 v 、加速度为 a )为末状态, 则由机械能守恒定律,有E = -m gx + 1 m v 2 + 1 m v 2 + 1 J ω2 + 1 k (x + x )20 2 2 1 2 2 2 2在列出上述方程时应注意势能(重力势能和弹性势能)零点的选取.为运算方便,选初始状态下物体 C 所在位置为重力势能零点;弹簧原长时为弹性势能的零点.将上述方程对时间求导得0 = -m gv + m v d v + m v d v + Jω d ω + k (x + x )d x2 1 d t 2 d t d t 0d t 将 J = mR 2 / 2 , ωR = v , d v / d t = d 2 x / d t 2和m g = kx 代入上式,可得d 2x + d t 2 m2 0+ m + m / 2 x = 0(6)12式(6)与式(5)相同,表明两种解法结果一致.9-12 一放置在水平桌面上的弹簧振子,振幅 A =2.0 ×10-2 m ,周期 T =0.50s.当 t =0 时,(1) 物体在正方向端点;(2) 物体在平衡位置、向负方向运动;(3) 物体在 x =-1.0×10- 2m 处, 向负方向运动; (4) 物体在 x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.分析 在振幅 A 和周期 T 已知的条件下,确定初相 φ 是求解简谐运动方程的关键.初相k / (m 1 + m 2 + m / 2)π π = 4π 和 v =v 0 来确定 φ 值.(2) 旋转矢量法:如图(a )所示,将质点 P 在 Ox 轴上振动的初始位置 x 0 和速度 v 0 的方向与旋转矢量图相对应来确定 φ.旋转矢量法比较直观、方便,在分析中常采用.题 9-12 图解 由题给条件知 A =2.0 ×10-2 m , ω = 2 / T = 4π s -1,而初相 φ 可采用分析中的两种不 同方法来求.解析法 : 根据简 谐 运动方 程 x = A cos (ωt + ϕ ) ,当 t = 0 时有 x 0 = A cos (ωt + ϕ ) ,v 0 = - Aωsin .当(1) x 0 = A 时, cos ϕ1 = 1,则ϕ1 = 0 ;π π(2) x 0 = 0 时, cos ϕ2 = 0 ,ϕ2 = ± ,因v 0 < 0 ,取ϕ2 = ;2 2(3) x 0 = 1.0 ⨯10-2 m 时, cos ϕ = 0.5,ϕ3 = ± π 3 ,由v 0 < 0 ,取ϕ3 = ; 3(4) x = -1.0 ⨯10-2m 时, cos ϕ = -0.5 ,ϕ = π ± ,由v > 0 ,取ϕ 4π 0 4 4 3 0 4 3旋转矢量法:分别画出四个不同初始状态的旋转矢量图,如图(b )所示,它们所对应的初 相分别为ϕ1 = 0 , ϕ2 =, ϕ3 =2, ϕ4 =.33振幅 A 、角频率 ω、初相 φ 均确定后,则各相应状态下的运动方程为(1) x = 2.0 ⨯10-2cos4πt(m )(2) x = 2.0 ⨯10-2 cos (4πt + π/2) (m ) (3) x = 2.0 ⨯10-2 cos (4πt + π/3) (m ) (4) x = 2.0 ⨯10-2 cos (4πt + 4π/3) (m )9-13 有一弹簧, 当其下端挂一质量为 m 的物体时, 伸长量为 9.8 ×10-2 m .若使物体上、下振动,且规定向下为正方向.(1) 当 t =0 时,物体在平衡位置上方 8.0 ×10-2 m 处,由静止开始向下运动,求运动方程.(2)当 t =0 时,物体在平衡位置并以 0.6m·s -1 的速度向上运动,求运动方程.π π 3 .k / m g / ∆l x + ( 21010 v / ω )2⎝ 12 ⎭由弹簧振子系统的固有性质(振子质量 m 及弹簧劲度系数 k )决定的,即ω =k 可根据物体受力平衡时弹簧的伸长来计算;振幅 A 和初相 φ 需要根据初始条件确定.题 9-13 图解 物体受力平衡时,弹性力 F 与重力 P 的大小相等,即 F =mg .而此时弹簧的伸长量 Δl =9.8 ×10-2m .则弹簧的劲度系数 k =F /Δl =mg /Δl .系统作简谐运动的角频率为ω = = = 10 s -1(1) 设系统平衡时,物体所在处为坐标原点,向下为 x 轴正向.由初始条件 t =0 时, x 10 =8.0 ×10-2 m 、v 10 =0 可得振幅 A = = 8.0 ⨯10- 2m ;应用旋转矢量法可确定初相ϕ1 = π [图(a )].则运动方程为x = 8.0 ⨯10-2cos (10t + π) (m ) (2)t =0 时,x 20 =0、v 20 =0.6 m·s -1 ,同理可得 A 2== 6.0 ⨯10- 2 m ; ϕ2 = π / 2 [图(b )].则运动方程为x = 6.0 ⨯10-2cos (10t + 0.5π) (m ) 9-14 某振动质点的 x -t 曲线如图(a )所示,试求:(1) 运动方程;(2) 点 P 对应的相位;(3) 到达点 P 相应位置所需的时间.分析 由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题.本题就是要通过 x -t 图线确定振动的三个特征量 A 、ω 和ϕ0 ,从而写出运动方程.曲线最大幅值即为振幅 A ;而 ω、ϕ0 通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比较方便. 解 (1) 质点振动振幅 A =0.10 m.而由振动曲线可画出 t 0 =0 和 t 1 =4 s时旋转矢 量,如图( b ) 所 示.由图可见初相 ϕ0 = -π / 3 (或 ϕ0 = 5π / 3 ), 而由 ω(t 1 - t 0 ) = π / 2 + π / 3 得ω = 5π / 24 s ,则运动方程为 -1x = 0.10 cos⎛ 5πt - π / 3⎫(m )24⎪ x + ( 220 20 v / ω)2p pp p题 9-14 图(2) 图(a )中点 P 的位置是质点从 A /2 处运动到正向的端点处.对应的旋转矢量图如 图(c ) 所示.当初相取ϕ0 = -π / 3 时,点 P 的相位为ϕ p = ϕ0 + ω(t - 0)= 0 (如果初相 取成 0 = 5π / 3 ,则点 P 相应的相位应表示为ϕp = ϕ0 + ω(t - 0) = 2π . (3) 由旋转矢量图可得ω(t - 0)= π / 3 ,则t =1.6 s . 9-15 作简谐运动的物体,由平衡位置向 x 轴正方向运动,试问经过下列路程所需的最短时间各为周期的几分之几? (1) 由平衡位置到最大位移处;(2) 由平衡位置到 x =A /2 处;(3) 由 x =A /2 处到最大位移处.解 采用旋转矢量法求解较为方便.按题意作如图所示的旋转矢量图,平衡位置在点 O .(1) ) 平衡位置 x 1 到最大位移 x 3 处, 图中的旋转矢量从位置 1 转到位置 3 ,故 ∆ϕ1 = π / 2 ,则所需时间∆t 1 = ∆ϕ1 / ω = T / 4(2) 从平衡位置x 1 到x 2 =A /2 处,图中旋转矢量从位置1 转到位置2,故有∆ϕ2 则所需时间= π / 6 , ∆t 2 = ∆ϕ2 / ω = T / 12(3) 从 x 2 =A /2 运动到最大位移 x 3 处,图中旋转矢量从位置 2 转到位置 3,有 ∆ϕ0 = π / 3 ,则所需时间∆t 3 = ∆ϕ3 / ω = T / 6N 9-16 在一块平板下装有弹簧,平板上放一质量为 1.0 kg 的重物.现使平板沿竖直方向作上下简谐运动,周期为 0.50s,振幅为 2.0×10-2 m .求:(1) 平板到最低点时,重物对平板的作用力;(2) 若频率不变,则平板以多大的振幅振动时,重物会跳离平板? (3) 若振幅不变,则平板以多大的频率振动时, 重物会跳离平板?题 9-16 图分析 按题意作示意图如图所示.物体在平衡位置附近随板作简谐运动,其间受重力 P 和板支持力 F N 作用,F N 是一个变力.按牛顿定律,有d 2 y F = mg - F N = m d t2 (1)由于物体是随板一起作简谐运动,因而有a 改写为 = d 2y d t 2 = -A ω 2 cos (ωt + ϕ ) ,则式(1)可 F N = mg + mA ω 2cos (ωt + ϕ ) (2)(1) 根据板运动的位置,确定此刻振动的相位ωt + ϕ ,由式(2)可求板与物体之间的作 用力.(2) 由式(2)可知支持力 F N 的值与振幅 A 、角频率 ω 和相位( ωt + ϕ )有关.在振 动过程中,当ωt + ϕ = π 时 F N 最小.而重物恰好跳离平板的条件为 F N =0,因此由式(2)可 分别求出重物跳离平板所需的频率或振幅.解 (1) 由分析可知,重物在最低点时,相位ωt + ϕ =0,物体受板的支持力为F = mg + mA ω 2 = mg + mA (2π / t)2 = 12.96 N 重物对木块的作用力 F N ' 与 F N 大小相等,方向相反. (2) 当频率不变时,设振幅变为 A ′.根据分析中所述,将 F N =0 及ωt + ϕ 分析中式(2),可得= π 代入max max 2 (3) 当振幅不变时,设频率变为v ' .同样将 F N =0 及ωt + ϕ 可得= π 代入分析中式(2), v ' = ω= 2π = 3.52 Hz 9-17 两 质点作同 频率、同 振幅的简 谐运动. 第一个质 点的运动 方程 为x 1 = A cos (ωt + ϕ ),当第一个质点自振动正方向回到平衡位置时,第二个质点恰在振动正方 向的端点,试用旋转矢量图表示它们,并求第二个质点的运动方程及它们的相位差.题 9-17 图解 图示为两质点在时刻 t 的旋转矢量图,可见第一个质点 M 的相位比第二个质点 N 的相位超前π / 2 ,即它们的相位差 Δφ=π/2.故第二个质点的运动方程应为x 2 = A cos (ωt + ϕ - π / 2)9-18 图(a )为一简谐运动质点的速度与时间的关系曲线,且振幅为 2cm ,求(1) 振动周期;(2) 加速度的最大值;(3) 运动方程.分析 根据 v -t 图可知速度的最大值 v max ,由 v max =Aω 可求出角频率 ω,进而可求出周期 T 和加速度的最大值 a max =Aω2 .在要求的简谐运动方程 x =A cos (ωt +φ)中,因为 A 和 ω 已得出,故只要求初相位 φ 即可.由 v -t 曲线图可以知道,当 t =0 时,质点运动速度v 0 =v max /2 =Aω/2,之后速度越来越大,因此可以判断出质点沿 x 轴正向向着平衡点运动.利用 v 0 =-Aωsinφ 就可求出 φ.解 (1) 由v = A ω 得ω =1.5 s -1 ,则 T = 2π / ω = 4.2 s(2) a = A ω 2 = 4.5 ⨯10-2 m ⋅s -2 (3) 从分析中已知 v 0 = - Aωsin = Aω / 2 ,即sin ϕ = -1 / 2= -π / 6,-5π / 6因为质点沿 x 轴正向向平衡位置运动,则取 = -5π / 6 ,其旋转矢量图如图(b )所示.则运动 方程为 x = 2cos (1.5t - 5π / 6) (cm )1 mg / m A 2πg / l g / l max题 9-18 图9-19 有一单摆,长为 1.0m ,最大摆角为 5°,如图所示.(1) 求摆的角频率和周期;(2)设开始时摆角最大,试写出此单摆的运动方程;(3) 摆角为 3°时的角速度和摆球的线速度各为多少?题 9-19 图分析 单摆在摆角较小时(θ<5°)的摆动,其角量 θ 与时间的关系可表示为简谐运动方程 θ = θmax co s (ωt + ϕ ) ,其中角频率 ω 仍由该系统的性质(重力加速度 g 和绳长 l )决定,即 ω = .初相 φ 与摆角 θ,质点的角速度与旋转矢量的角速度(角频率)均是不同的物理 概念,必须注意区分.解 (1) 单摆角频率及周期分别为ω = = 3.13 s -1; T = 2π / ω = 2.01 s(2) 由t = 0 时θ = θ = 5o可得振动初相ϕ = 0 ,则以角量表示的简谐运动方程为 θ = π cos3.13t 36(3) 摆角为 3°时,有cos (ωt + ϕ ) = θ / θmax = 0.6 ,则这时质点的角速度为J / mgl c maxE c M线速度的大小为= -0.80θ ω = -0.218 s -1 v = l d θ/d t = -0.218 s -1讨论 质点的线速度和角速度也可通过机械能守恒定律求解,但结果会有极微小的差别.这是因为在导出简谐运动方程时曾取sin θ ≈ θ ,所以,单摆的简谐运动方程仅在 θ 较小时成立.9-20 为了测月球表面的重力加速度,宇航员将地球上的“秒摆”(周期为 2.00s),拿到月 球上去,如测得周期为 4.90s,则月球表面的重力加速度约为多少? (取地球表面的重力加速度 g = 9.80 m ⋅s-2 ) 解 由单摆的周期公式T = 2π 可知 g ∝ 1 / T 2 ,故有 g / g = T 2 / T 2 ,则月球的重力加速度为 g = (T/ T M )2g M E E M= 1.63 m ⋅ s - 29-21 一飞轮质量为 12kg ,内缘半径 r =0.6m,如图所示.为了测定其对质心轴的转动惯量,现让其绕内缘刃口摆动,在摆角较小时,测得周期为 2.0s ,试求其绕质心轴的转动惯量.9-21 题图分析 飞轮的运动相当于一个以刃口为转轴的复摆运动,复摆振动周期为 T = 2π ,因此,只要知道复摆振动的周期和转轴到质心的距离l c ,其以刃口为转轴的 转动惯量即可求得.再根据平行轴定理,可求出其绕质心轴的转动惯量.解 由复摆振动周期T = 2π J / mgl ,可得 J = mgrT 2 / 4π2.则由平行轴定理得 J 0 = J - mr 2 = mgrT 2 / 4π 2 - mr 2 = 2.83 kg ⋅ m 29-22 如图(a )所示,质量为 1.0 ×10-2kg 的子弹,以 500m·s -1 的速度射入木块,并嵌在木块中,同时使弹簧压缩从而作简谐运动,设木块的质量为 4.99 kg ,弹簧的劲度系数为 8.0 ×103 N·m -1 ,若以弹簧原长时物体所在处为坐标原点,向左为 x 轴正向,求简谐运动方程.l / g E E题 9-22 图分析 可分为两个过程讨论.首先是子弹射入木块的过程,在此过程中,子弹和木块组成的系统满足动量守恒,因而可以确定它们共同运动的初速度 v 0 ,即振动的初速度.随后的过程是以子弹和木块为弹簧振子作简谐运动.它的角频率由振子质量 m 1 +m 2 和弹簧的劲度系数 k 确定,振幅和初相可根据初始条件(初速度 v 0 和初位移 x 0 )求得.初相位仍可用旋转矢量法求.解 振动系统的角频率为 ω == 40 s -1由动量守恒定律得振动的初始速度即子弹和木块的共同运动初速度 v 0 为v = m v (m + m ) = 1.0 m ⋅ s -10 1 1 2 又因初始位移 x 0 =0,则振动系统的振幅为A = = v 0/ ω = 2.5⨯10-2 m 图(b )给出了弹簧振子的旋转矢量图,从图中可知初相位 0 = π / 2 ,则简谐运动方程为x = 2.5⨯10-2 cos (40t + 0.5π) (m )9-23 如图(a )所示,一劲度系数为 k 的轻弹簧,其下挂有一质量为 m 1 的空盘.现有一质量为 m 2 的物体从盘上方高为 h 处自由落入盘中,并和盘粘在一起振动.问:(1) 此时的振动周期与空盘作振动的周期有何不同? (2) 此时的振幅为多大?k / (m 1 + m 2 ) x + ( 2 0 0 v / ω) 2x + (v / ω) 2 20 0题 9-23 图分析 原有空盘振动系统由于下落物体的加入,振子质量由 m 1 变为 m 1 + m 2,因此新系统的角频率(或周期)要改变.由于 A = ,因此,确定初始速度 v 0 和初始位移 x 0 是求解振幅 A 的关键.物体落到盘中,与盘作完全非弹性碰撞,由动量守恒定律可确定盘与物体的共同初速度 v 0 ,这也是该振动系统的初始速度.在确定初始时刻的位移 x 0 时,应注意新振动系统的平衡位置应是盘和物体悬挂在弹簧上的平衡位置.因此,本题中初始位移 x 0 ,也就是空盘时的平衡位置相对新系统的平衡位置的位移.解 (1) 空盘时和物体落入盘中后的振动周期分别为T = 2π / ω =2π T ' = 2π / ω' = 2π 可见 T ′>T ,即振动周期变大了. (2) 如图(b )所示,取新系统的平衡位置为坐标原点 O .则根据分析中所述,初始位移为空盘时的平衡位置相对粘上物体后新系统平衡位置的位移,即x = l - l =m 1g - m 1 + m 2 g = - m 2 g 01 2 k k k式中 l 1 =m 1/k 为空盘静止时弹簧的伸长量,l 2 =(m 1 +m 2)/k 为物体粘在盘上后,静止时弹 簧的伸长量.由动量守恒定律可得振动系统的初始速度,即盘与物体相碰后的速度v 0 = m 2 v =m 1 + m 2 式中 v = 是物体由 h 高下落至盘时的速度.故系统振动的振幅为m 1 / k(m 1 + m 2 )/ km 2 m 1 + m 2 2gh2ghx + 2 0 0 ( v / ω ) 21 1 本题也可用机械能守恒定律求振幅 A . 9-24 如图所示,劲度系数为 k 的轻弹簧,系一质量为 m 1 的物体,在水平面上作振幅为 A的简谐运动.有一质量为 m 2 的粘土,从高度 h 自由下落,正好在(a )物体通过平衡位置时, (b )物体在最大位移处时,落在物体上.分别求:(1)振动周期有何变化? (2)振幅有何变化?题 9-24 图分析 谐振子系统的周期只与弹簧的劲度系数和振子的质量有关.由于粘土落下前后,振子的质量发生了改变,因此,振动周期也将变化.至于粘土如何落下是不影响振动周期的.但是,粘土落下时将改变振动系统的初始状态,因此,对振幅是有影响的.在粘土落到物体上的两种不同情况中,系统在水平方向的动量都是守恒的.利用动量守恒定律可求出两种情况下系统的初始速度,从而利用机械能守恒定律(或公式 A = )求得两种情况下的振 幅.解 (1) 由分析可知,在(a )、(b )两种情况中,粘土落下前后的周期均为T = 2π / ω = 2π T ' = 2π / ω' = 2π 物体粘上粘土后的周期 T ′比原周期 T 大.(2) (a ) 设粘土落至物体前后,系统振动的振幅和物体经过平衡位置时的速度分别为A 、v 和 A ′、v ′.由动量守恒定律和机械能守恒定律可列出如下各式kA '2 / 2 = m v 2 / 2 (1) kA '2 / 2 = (m + m )v '2 / 2 2 (2)联立解上述三式,可得 m 1v = (m 1 + m 2 )v 'A ' = (3) 即 A ′<A ,表明增加粘土后,物体的振幅变小了.(b ) 物体正好在最大位移处时,粘土落在物体上.则由动量守恒定律知它们水平方向的共同速度 v ′=m 1v /(m 1 +m 2 ) =0,因而振幅不变,即m 1 / k(m 1 + m 2 )/ km 1 / (m 1 + m 2 )AA / a max max 0 max max 9-25 质量为 0.10kg 的物体,以振幅 1.0×10-2 m 作简谐运动,其最大加速度为 4.0 m·s -1求:(1) 振动的周期;(2) 物体通过平衡位置时的总能量与动能;(3) 物体在何处其动能和势能相等? (4) 当物体的位移大小为振幅的一半时,动能、势能各占总能量的多少?分析 在简谐运动过程中,物体的最大加速度 a = A ω 2,由此可确定振动的周期T .另外,在简谐运动过程中机械能是守恒的,其中动能和势能互相交替转化,其总能量 E =kA 2/2.当动能与势能相等时,E k =E P =kA 2/4.因而可求解本题.解 (1) 由分析可得振动周期 T = 2π / ω = 2π = 0.314 s(2) 当物体处于平衡位置时,系统的势能为零,由机械能守恒可得系统的动能等于总能量,即 E = E = 1 mA 2ω 2 = 1 mAak 2 2max = 2.0 ⨯10-3 J(3) 设振子在位移 x 0 处动能与势能相等,则有kx 2 / 2 = kA 2 / 4得 x 0 = ± 2 A / 2 = ±7.07 ⨯10-3 m(4) 物体位移的大小为振幅的一半(即 x = A / 2 )时的势能为 E = 1 kx 2 = 1 k ⎛ A ⎫ = E / 4 P 2 2 2 ⎪ ⎝ ⎭则动能为E K = E - E P = 3E / 4 9-26 一氢原子在分子中的振动可视为简谐运动.已知氢原子质量 m =1.68 ×10-27 Kg ,振动频率υ =1.0 ×1014 Hz ,振幅 A =1.0 ×10-11m.试计算:(1) 此氢原子的最大速度;(2) 与此振动相联系的能量.解 (1) 简谐运动系统中振子运动的速度 v =-A ωsin (ωt +φ),故氢原子振动的最大速度为v = ωA = 2πvA = 6.28⨯102 m ⋅ s -1 (2) 氢原子的振动能量E = mv 2 / 2 = 3.31⨯10-20 J 9-27 质量 m =10g 的小球与轻弹簧组成一振动系统, 按 x = 0.5(8πt + π / 3) (cm )的规 律作自由振动,求(1) 振动的角频率、周期、振幅和初相;(2) 振动的能量 E ;(3) 一个周期内的平均动能和平均势能.解 (1) 将 x = 0.5(8πt + π / 3) (cm )与 x = A cos (ωt + ϕ )比较后可得:角频率ω = 8π s -1 ,振 幅 A =0.5cm ,初相 φ=π/3,则周期 T =2π/ω=0.25 sA + A + 2 A A cos ( 2 21 2 1 2 ϕ - ϕ ) 2 1 (3) 简谐运动的动能和势能分别为 E = 1 mA 2ω 2sin 2 (ωt + ϕ ) K 2E = 1 mA 2ω 2cos 2 (ωt + ϕ ) P 2则在一个周期中,动能与势能对时间的平均值分别为E = 1 ⎰T 1 mA 2ω 2 sin 2 (ωt + ϕ )d t = mA 2ω 2 = 3.95 ⨯10-5 J T 0 2 4E = 1 ⎰T 1 mA 2ω 2 cos 2 (ωt + ϕ )d t = mA 2ω 2 = 3.95 ⨯10-5 J T 0 2 49-28已 知 两 同 方 向 、 同 频 率 的 简 谐 运 动 的 运 动 方 程 分 别 为 x 1= 0.05cos (10t + 0.75π) (m ); x 2 = 0.06cos (10t + 0.25π) (m ) .求:(1) 合振动的振幅及初相;(2) 若有另一同方向、同频率的简谐运动 x 3 = 0.07co s (10t + ϕ3 ) (m ),则ϕ3 为多少时, x 1 +x 3 的振幅最大? 又ϕ3 为多少时,x 2 +x 3 的振幅最小?题 9-28 图分析 可采用解析法或旋转矢量法求解.由旋转矢量合成可知,两个同方向、同频率简谐运动的合成仍为一简谐运动,其角频率不变;合振动的振幅 A = ,其大小与两个分振动的初相差ϕ2 - ϕ1 相关.而合振动的初相位ϕ = arctan [(A s in ϕ + A sin ϕ ) / (A cos ϕ + A cos ϕ )] 1 1 2 2 1 1 2 2解 (1) 作两个简谐运动合成的旋转矢量图(如图).因为∆ϕ 故合振动振幅为= ϕ2 - ϕ1 = -π / 2 , A= 合振动初相位 = 7.8 ⨯10-2 m ϕ = arctan [(A s in ϕ + A sin ϕ ) / (A cos ϕ + A cos ϕ )] 1 1 2 2 1 1 2 2= arctan11 = 1.48 rad (2) 要使 x 1 +x 3 振幅最大,即两振动同相,则由∆ϕ= 2k π 得 A + A + 2 A A cos ( 2 2 1 2 1 2 ϕ - ϕ ) 21 K PA 2 + A 2 + 2A 2cos (π + ϕ - ϕ )2 12 要使 x 1 +x3 的振幅最小,即两振动反相,则由得 ϕ3 = ϕ2 + (2k + 1)π = 2k π + 1.25π, k = 0,±1,±2,...9-29 手电筒和屏幕质量均为 m ,且均被劲度系数为 k 的轻弹簧悬挂于同一水平面上,如 图所示.平衡时,手电筒的光恰好照在屏幕中心.设手电筒和屏幕相对于地面上下振动的表达式分别为 x 1 = A cos (ωt + ϕ1 )和 x 2 = A cos (ωt + ϕ2 ).试求在下述两种情况下,初相位 φ1 、φ2 应满足的条件:(1) 光点在屏幕上相对于屏静止不动;(2) 光点在屏幕上相对于屏作振幅 A ′=2A 的振动.并说明用何种方式起动,才能得到上述结果.题 9-29 图分析 落在屏幕上的光点相对地面的运动和屏幕相对于地面的运动都已知道,且是两个简谐运动.因此由运动的合成不难写出光点相对屏的运动(实际上是两个同方向、同频率简谐运动的合成).根据相对运动公式,有依题意x 光对地 = x 光对屏 + x 屏对地x 光对地 = x 1 = A cos (ωt + ϕ1 ) x 屏对地 = x 2 = A cos (ωt + ϕ2 ) 所以 x 光对屏 = x 1 - x 2 = x 1 + x 2'= A cos (ωt + ϕ1 ) + A cos (ωt + π + ϕ2 ) 可见光点对屏的运动就是两个同方向、同频率简谐运动 x 1 = A cos (ωt + ϕ1 ) 和 x 2' = A cos (ωt + π + ϕ2 )的合成.用与上题相同的方法即可求解本题.其中合运动振幅 A ' = . 解 (1) 根据分析和参考上题求解,当要求任一时刻光点相对于屏不动,即 x 光对屏 = 0 ,就是 当π + ϕ2 - ϕ1 = (2k + 1)π 时,即ϕ = ϕ1 + 2k π 时( k = 0,±1,±2,...),A ′=0.当光点 相对于屏作振幅为 2A 的运动时,要求π + ϕ2 - ϕ1 =2k π ,即ϕ2 = ϕ1 + (2k - 1)π .(2) 由以上求解可知,要使光点相对于屏不动,就要求手电筒和屏的振动始终要同步, 即同相位,为此,把它们往下拉 A 位移后,同时释放即可;同理,要使光点对屏作振幅为 2A 的谐振动,两者必须相位相反,为此,让手电筒位于平衡点 0 上方的-A 处,而屏则位于+A 处同9-30 两个同频率的简谐运动 1 和 2 的振动曲线如图(a )所示,求(1)两简谐运动的运动方程 x 1 和 x 2;(2) 在同一图中画出两简谐运动的旋转矢量,并比较两振动的相位关系;(3)若两简谐运动叠加,求合振动的运动方程.分析 振动图已给出了两个简谐运动的振幅和周期,因此只要利用图中所给初始条件,由旋转矢量法或解析法求出初相位,便可得两个简谐运动的方程.解 (1) 由振动曲线可知,A =0.1 m,T =2s,则 ω=2π/T =πs-1 .曲线 1 表示质点初始时刻在 x =0 处且向 x 轴正向运动,因此 φ1 =-π/2;曲线 2 表示质点初始时刻在x =A /2 处且向 x 轴负向运动,因此 φ2 =π/3.它们的旋转矢量图如图(b )所示.则两振动 的运动方程分别为x 1 = 0.1cos (πt - π / 2) (m ) 和 x 2 = 0.1cos (πt + π / 3) (m )(2) 由图(b )可知振动 2 超前振动 1 的相位为 5π/6.(3) x = x 1 + x 2 = A 'cos (ωt + ϕ )其中 A ' = ϕ = arctanA 1sin ϕ1 + A 2sin ϕ2 A 1cos ϕ1 + A 2cos ϕ2 = 0.052 m = arctan (- 0.268) = - π 12 则合振动的运动方程为 x = 0.052cos (πt - π/12)(m )题 9-30 图9-31 将频率为 348 Hz 的标准音叉振动和一待测频率的音叉振动合成,测得拍频为 3.0Hz .若在待测频率音叉的一端加上一小块物体,则拍频数将减少,求待测音叉的固有频率. 分析 这是利用拍现象来测定振动频率的一种方法.在频率υ1 和拍频数 Δυ=|υ2 -υ1|已知的情况下,待测频率υ2 可取两个值,即υ2 =υ1 ±Δυ.式中Δυ前正、负号的选取应根据待测音叉系统质量改变时,拍频数变化的情况来决定.解 根据分析可知,待测频率的可能值为A + A + 2 A A cos ( 2 2 1 2 1 2 ϕ - ϕ ) 2 1。
大学物理学(下册)习题答案详解
第十二章 热力学基础一、选择题 12-1 C 12-2 C 12-3 C 12-4 B 12-5 C 12-6 A 二、填空题 12-710000100p V p V p V p V --12-8 260J ,280J - 12-912-10 )(5.21122V p V p -,))((5.01212V V p p -+,)(5.0)(312211122V p V p V p V p -+- 12-11 268J ,732J 三、计算题12-12 分析:理想气体的内能是温度T 的单值函数,内能的增量E ∆由始末状态的温度的增量T ∆决定,与经历的准静态过程无关.根据热力学第一定律可知,在等温过程中,系统从外界吸收的热量全部转变为内能的增量,在等压过程中,系统从外界吸收的热量部分用来转变为内能的增量,同时对外做功. 解:单原子理想气体的定体摩尔热容,32V m C R = (1) 等体升温过程20=A,21333()8.3150623222V V m E Q C T R T R T T J J ∆==∆=∆=-=⨯⨯= (2) 等压膨胀过程,2133()8.315062322V m E C T R T T J J ∆=∆=-=⨯⨯= 2121()()8.3150416A p V V R T T J J =-=-=⨯=1039p Q A E J =+∆=或者,,215()8.315010392p p m p m Q C T C T T J J =∆=-=⨯⨯=12-13 分析:根据热力学第一定律和理想气体物态方程求解. 解:氢气的定体摩尔热容,52V m C R =(1) 氢气先作等体升压过程,再作等温膨胀过程. 在等体过程中,内能的增量为 ,558.3160124622V V m Q E C T R T J J =∆=∆=∆=⨯⨯= 等温过程中,对外界做功为221ln8.31(27380)ln 22033T T V Q A RT J J V ===⨯+⨯= 吸收的热量为3279V T Q Q Q J =+=(2) 氢气先作等温膨胀过程,然后作等体升压过程. 在等温膨胀过程中,对外界做功为211ln8.31(27320)ln 21687T V A RT J J V ==⨯+⨯= 在等体升压过程中,内能的增量为,558.3160124622V m E C T R T J J ∆=∆=∆=⨯⨯= 吸收的热量为2933T Q A E J =+∆=3虽然氢气所经历的过程不同,但由于始末状态的温差T ∆相同,因而内能的增量E ∆相同,而Q 和A 则与过程有关.12-14 分析:卡诺循环的效率仅与高、低温热源的温度1T 和2T 有关.本题中,求出等温膨胀过程吸收热量后,利用卡诺循环效率及其定义,便可求出循环的功和在等温压缩过程中,系统向低温热源放出的热量. 解:从高温热源吸收的热量321110.005ln 8.31400ln 5.35100.001V m Q RT J J M V ==⨯⨯=⨯ 由卡诺循环的效率2113001125%400T A Q T η==-=-= 可得循环中所作的功310.255350 1.3410A Q J J η==⨯=⨯传给低温热源的热量3321(1)(10.25) 5.3510 4.0110Q Q J J η=-=-⨯⨯=⨯12-15 分析:在a b →等体过程中,系统从外界吸收的热量全部转换为内能的增量,温度升高.在b c →绝热过程中,系统减少内能,降低温度对外作功,与外界无热量交换.在c a →等压压缩过程中,系统放出热量,温度降低,对外作负功.计算得出各个过程的热量和功,根据热机循环效率的定义即可得证. 证明:在a b →等体过程中,系统从外界吸收的热量为,,1222()()V m V V m b a C mQ C T T p V p V M R=-=-在c a →等压压缩过程中,系统放出热量的大小为,,2122()()p m P p m c a C mQ C T T p V p V M R=-=- 所以,该热机的循环效率为41,212221,12222(1)()111()(1)p m P V V m V C p V p V Q V p Q C p V p V p ηγ--=-=-=---12-16 分析:根据卡诺定理,在相同的高温热源(1T ),与相同的低温热源(2T )之间工作的一切可逆热机的效率都相等,有221111Q TQ T η=-=-.非可逆热机的效率221111Q T Q T η=-<-. 解:(1) 该热机的效率为21137.4%Q Q η=-= 如果是卡诺热机,则效率应该是21150%c T T η=-= 可见它不是可逆热机.(2) “尽可能地提高效率”是指热机的循环尽可能地接近理想的可逆循环工作方式.根据热机效率的定义,可得理想热机每秒吸热1Q 时所作的功为4410.50 3.3410 1.6710c A Q J J η==⨯⨯=⨯5第十三章 气体动理论一、选择题 13-1 D 13-2 B 13-3 D 13-4 D 13-5 C 13-6 C 13-7 A 二、填空题13-8 相同,不同;相同,不同,相同. 13-9 (1)分子体积忽略不计;(2)分子间的碰撞是完全弹性的; (3)只有在碰撞时分子间才有相互作用.13-10 速率大于p v 的分子数占总分子数的百分比,分子的平均平动动能,()d 1f v v ∞=⎰,速率在∞~0内的分子数占总分子数的百分之百.13-11 氧气,氢气,1T 13-12 3,2,013-13 211042.9-⨯J ,211042.9-⨯J ,1:2 13-14 概率,概率大的状态. 三、计算题13-15 分析:根据道尔顿分压定律可知,内部无化学反应的平衡状态下的混合气体的总压强,等于混合气体中各成分理想气体的压强之和.解:设氦、氢气压强分别为1p 和2p ,则12p p p =+.由理想气体物态方程,得1He He m RTp M V =, 222H H m RT p M V=所以,总压强为62255123334.010 4.0108.31(27230)()()4.010 2.010 1.010H He He H m m RT p p p Pa M M V -----⨯⨯⨯+=+=+=+⨯⨯⨯⨯ 47.5610Pa =⨯13-16 解:(1)=可得 氢的方均根速率3/ 1.9310/s m s ===⨯ 氧的方均根速率483/m s === 水银的方均根速率/193/s m s === (2) 温度相同,三种气体的平均平动动能相同232133 1.3810300 6.211022k kT J J ε--==⨯⨯⨯=⨯13-17 分析:在某一速率区间,分布函数()f v 曲线下的面积,表示分子速率在该速率区间内的分子数占总分子数的百分比.速率区间很小时,这个百分比可近似为矩形面积()Nf v v N∆∆=,函数值()f v 为矩形面积的高,本题中可取为()p f v .利用p v 改写麦克斯韦速率分布律,可进一步简化计算.解: ()Nf v v N∆=∆ 当300T K =时,氢气的最概然速率为1579/p v m s ==== 根据麦克斯韦速率分布率,在v v v →+∆区间内的分子数占分子总数的百分比为232224()2mvkT N m e v v N kTππ-∆=∆7用p v 改写()f v v ∆有223()2222()4()e ()()2pv mv v kTpp mv v f v v v v e kTv v ππ--∆∆=∆=由题意可知,10p v v =-,(10)(10)20/p p v v v m s ∆=+--=.而10p v ,所以可取p v v ≈,代入可得1201.05%1579p N e N-∆=⨯=13-18 解:(1) 由归一化条件204()d 1FF V V dN V AdV f v v N Nπ∞===⎰⎰⎰ 可得 334F NA V π= (2) 平均动能2230143()d d 24FV FV N f v v mv v N V πωωπ∞==⨯⨯⎰⎰423031313d ()2525FV F F F mv v mv E v =⨯==⎰13-19 分析:气体分子处于平衡态时,其平均碰撞次数于分子数密度和分子的平均速率有关.温度一定时,平均碰撞次数和压强成正比.解:(1) 标准状态为50 1.01310p Pa =⨯,0273T K =,氮气的摩尔质量32810/M kg mol -=⨯由公式v =kTp n =可得224Z d nv d d π===5102231.013104(10)/1.3810273s π--⨯=⨯⨯⨯次885.4210/s =⨯次(2) 41.3310p Pa -=⨯,273T K =4102231.331044(10)/1.3810273Z ds ππ---⨯==⨯⨯⨯次0.71/s =次13-20 分析:把加热的铁棒侵入处于室温的水中后,铁棒将向水传热而降低温度,但“一大桶水”吸热后的水温并不会发生明显变化,因而可以把“一大桶水”近似为恒温热源.把铁棒和“一大桶水”一起视为与外界没有热和功作用的孤立系统,根据热力学第二定律可知,在铁棒冷却至最终与水同温度的不可逆过程中,系统的熵将增加.熵是态函数,系统的熵变仅与系统的始末状态有关而与过程无关.因此,求不可逆过程的熵变,可在始末状态之间设计任一可逆过程进行求解. 解:根据题意有 1273300573T K =+=,227327300T K =+=.设铁棒的比热容为c ,当铁棒的质量为m ,温度变化dT 时,吸收(或放出)的热量为dQ mcdT =设铁棒经历一可逆的降温过程,其温度连续地由1T 降为2T ,在这过程中铁棒的熵变为2121d d 300ln 5544ln /1760/573T T T Q mc T S mc J K J K T T T ∆====⨯⨯=-⎰⎰9第十四章 振动学基础一、选择题 14-1 C 14-2 A 14-3 B 14-4 C 14-5 B 二、填空题 14-622 14-7 5.5Hz ,114-82411s ,23π 14-9 0.1,2π14-10 2222mA T π- 三、计算题14-11 解:简谐振动的振幅2A cm =,速度最大值为3/m v cm s =则 (1) 2220.024 4.20.033m A T s s s v ππππω⨯====≈ (2) 222220.03m/s 0.045m/s 4m m m a A v v T ππωωπ===⨯=⨯≈ (3) 02πϕ=-,3rad/s 2ω= 所以 30.02cos()22x t π=- [SI]14-12 证明:(1) 物体在地球内与地心相距为r 时,它受到的引力为2MmF Gr=- 负号表示物体受力方向与它相对于地心的位移方向相反.式中M 是以地心为中心,以r 为半径的球体内的质量,其值为10343M r πρ=因此 43F G m r πρ=-物体的加速度为43F aG r m πρ==- a 与r 的大小成正比,方向相反,故物体在隧道内作简谐振动. (2) 物体由地表向地心落去时,其速度dr dr dv dr v a dt dv dt dv=== 43vdv adr G rdr πρ==-043v r R vdv G rdr πρ=-⎰⎰ 所以v =又因为dr vdt == 所以tRdt =-⎰⎰则得1126721min 4t s ===≈14-13 分析:一物体是否作简谐振动,可从动力学方法和能量分析方法作出判断.动力学的分析方法由对物体的受力分析入手,根据牛顿运动方程写出物体所满足的微分方程,与简谐振动的微分方程作出比较后得出判断.能量法求解首先需确定振动系统,确定系统的机械能是否守恒,然后需确定振动物体的平衡位置和相应的势能零点,再写出物体在任意位置时的机械能表达式,并将其对时间求一阶导数后与简谐振动的微分方程作比较,最后作出是否作简谐振动的判断. 解:(1) 能量法求解取地球、轻弹簧、滑轮和质量为m 的物体作为系统.在物体上下自由振动的过程中,系统不受外力,系统内无非保守内力作功,所以系统的机械能守恒. 取弹簧的原长处为弹性势能零点,取物体受合力为零的位置为振动的平衡位11置,也即Ox 轴的坐标原点,如图14-13(a)所示.图14-13 (a)图14-13 (b)设物体在平衡位置时,弹簧的伸长量为l ,由图14-13(b)可知,有10mg T -=,120T R T R -=,2T kl =得 mgl k=当物体m 偏离平衡位置x 时,其运动速率为v ,弹簧的伸长量为x l +,滑轮的角速度为ω.由系统的机械能守恒,可得222111()222k x l mv J mgx ω+++-=常量 式中的角速度 1v dxR R dt ω==将机械能守恒式对时间t 求一阶导数,得2222d x k x x dt m J Rω=-=-+ 上式即为简谐振动所满足的微分方程,式中ω为简谐振动的角频率2km J R ω=+另:动力学方法求解物体和滑轮的受力情况如图14-13(c)所示.12图14-13 (c)1mg T ma -= (1)12()JT T R J a Rβ-==(2) 设物体位于平衡位置时,弹簧的伸长量为l ,因为这时0a =,可得12mg T T kl ===当物体对平衡位置向下的位移为x 时,2()T k l x mg kx =+=+ (3)由(1)、(2)、(3)式解得2ka x m J R =-+物体的加速度与位移成正比,方向相反,所以它是作简谐振动. (2) 物体的振动周期为222m J R T kππω+==(3) 当0t =时,弹簧无伸长,物体的位移0x l =-;物体也无初速,00v =,物体的振幅22200()()v mgA x l l kω=+=-==00cos 1x kl A mgϕ-===- 则得 0ϕπ=13所以,物体简谐振动的表达式为2cos()mg k x t k m J Rπ=++ 14-14 分析:M 、m 一起振动的固有频率取决于k 和M m +,振动的初速度0m v 由M 和m 的完全非弹性碰撞决定,振动的初始位置则为空盘原来的平衡位置.图14-14解:设空盘静止时,弹簧伸长1l ∆(图14-14),则1Mg k l =∆ (1)物体与盘粘合后且处于平衡位置,弹簧再伸长2l ∆,则12()()m M g k l l +=∆+∆ (2)将(1)式代入得2mg k l =∆与M 碰撞前,物体m 的速度为02m v gh =与盘粘合时,服从动量守恒定律,碰撞后的速度为02m m mv v gh m M m M==++取此时作为计时零点,物体与盘粘合后的平衡位置作为坐标原点,坐标轴方向竖直向下.则0t =时,02mg x l k =-∆=-,02mv v gh m M==+14ω=由简谐振动的初始条件,0000cos , sin x A v A ϕωϕ==-可得振幅A ===初相位0ϕ满足000tan v x ϕω=-== 因为 00x <,00v >所以 032πϕπ<<0ϕπ=+所以盘子的振动表式为cos x π⎤⎫=+⎥⎪⎪⎥⎭⎦14-15 解:(1) 振子作简谐振动时,有222111222k p E E E mv kx kA +==+= 当k p E E =时,即12p E E =.所以 22111222kx kA =⨯0.200.14141x m m ==±=±(2)由条件可得振子的角频率为/2/s rad s ω=== 0t =时,0x A =,故00ϕ=.动能和势能相等时,物体的坐标15x =即cos A t ω=,cos t ω= 在一个周期内,相位变化为2π,故3574444t ππππω=, , , 时间则为1 3.140.3944 2.0t s s πω===⨯ 213330.39 1.24t t s s πω===⨯=315550.39 2.04t t s s πω===⨯=417770.39 2.74t t s s πω===⨯=14-16 解:(1) 合成振动的振幅为A =0.078m== 合成振动的初相位0ϕ可由下式求出110220*********.05sin0.06sin sin sin 44tan 113cos cos 0.05cos 0.06cos 44A A A A ππϕϕϕππϕϕ⨯+⨯+===+⨯+⨯ 084.8ϕ=(2) 当0102k ϕϕπ-=± 0,1,2,k =时,即0103224k k πϕπϕπ=±+=±+时, 13x x +的振幅最大.取0k =,则 031354πϕ== 当020(21)k ϕϕπ-=±+0,1,2,k =时,即020(21)(21)4k k πϕπϕπ=±++=±++时,13x x +的振幅最小.取0k =,则 052254πϕ==(或031354πϕ=-=-) 14-17 分析:质点同时受到x 和y 方向振动的作用,其运动轨迹在Oxy 平面内,16质点所受的作用力满足力的叠加原理.解:(1) 质点的运动轨迹可由振动表达式消去参量t 得到.对t 作变量替换,令12t t '=-,两振动表达式可改写为0.06cos()0.06sin 323x t t πππ''=+=-0.03cos3y t π'=将两式平方后相加,得质点的轨迹方程为222210.060.03x y += 所以,质点的运动轨迹为一椭圆. (2) 质点加速度的两个分量分别为22220.06()cos()3339x d x a t x dt ππππ==-+=-22220.03()cos()3369y d y a t y dt ππππ==--=-当质点的坐标为(,)x y 时,它所受的作用力为22()99x y F ma i ma j m xi yj mr ππ=+=-+=-可见它所受作用力的方向总是指向中心(坐标原点),作用力的大小为223.1499F ma π====⨯=14-18 分析:充电后的电容器和线圈构成LC 电磁振荡电路.不计电路的阻尼时,电容器极板上的电荷量随时间按简谐振动的规律变化.振荡电路的固有振动频率由L 和C 的乘积决定,振幅和初相位由系统的初始状态决定.任意时刻电路的状态都可由振荡的相位决定. 解:(1) 电容器中的最大能量212e W C ε=线圈中的最大能量17212m m W LI =在无阻尼自由振荡电路中没有能量损耗,e m W W =.因此221122m C LI ε=21.4 1.410m I A A -===⨯(2) 当电容器的能量和电感的能量相等时,电容器能量是它最大能量的一半,即22124q C C ε= 因此661.010 1.41.0101.41q C C --⨯⨯==±=±⨯ (3) LC 振荡电路中,电容器上电荷量的变化规律为00cos()q Q t ωϕ=+式中0Q C ε=,ω=.因为0t =时,0q Q =,故有00ϕ=.于是q C ε=当首次q =时有C ε==,4π=53.147.85104t s -===⨯18第十五章 波动学基础一、选择题 15-1 B 15-2 C 15-3 B 15-4 A 15-5 C 15-6 C 二、填空题15-7 波源,传播机械波的介质 15-8B C,2B π,2C π,lC ,lC - 15-9 cos IS θ 15-10 0 15-11 0.45m 三、计算题15-12 分析:平面简谐波在弹性介质中传播时,介质中各质点作位移方向、振幅、频率都相同的谐振动,振动的相位沿传播方向依次落后,以速度u 传播.把绳中横波的表达式与波动表达式相比较,可得到波的振幅、波速、频率和波长等特征量.t 时刻0x >处质点的振动相位与t 时刻前0x =处质点的振动相位相同. 解:(1) 将绳中的横波表达式0.05cos(104)y t x ππ=-与标准波动表达式0cos(22)y A t x πνπλϕ=-+比较可得0.05A m =,52v Hz ωπ==,0.5m λ=,0.55/ 2.5/ u m s m s λν==⨯=. (2) 各质点振动的最大速度为0.0510/0.5/ 1.57/m v A m s m s m s ωππ==⨯=≈各质点振动的最大加速度为192222220.05100/5/49.3/m a A m s m s m s ωππ==⨯=≈(3) 将0.2x m =,1t s =代入(104)t x ππ-的所求相位为10140.29.2ϕπππ=⨯-⨯=0.2x m =处质点的振动比原点处质点的振动在时间上落后0.20.082.5x s s u == 所以它是原点处质点在0(10.08)0.92t s s =-=时的相位. (4) 1t s =时波形曲线方程为x x y 4cos 05.0) 4110cos(05.0πππ=-⨯=1.25t s =时波形曲线方程为)5.0 4cos(05.0) 425.110cos(05.0ππππ-=-⨯=x x y1.50t s =时波形曲线方程为) 4cos(05.0) 45.110cos(05.0ππππ-=-⨯=x x y1t s =, 1.25t s =, 1.50t s =各时刻的波形见图15-12.15-13 解:(1) 由于平面波沿x 轴负方向传播,根据a 点的振动表达式,并以a 点为坐标原点时的波动表达式为0cos[()]3cos[4()]20x xy A t t u ωϕπ=++=+(2) 以a 点为坐标原点时,b 点的坐标为5x m =-,代入上式,得b 点的振动表达式为53cos[4()]3cos(4)20b y t t πππ=-=- 若以b 点为坐标原点,则波动表达式为3cos[4()]20xy t ππ=+-s1s5.12015-14 解:由波形曲线可得100.1A cm m ==,400.4cm m λ==从而0.4/0.2/2u m s m s T λ===,2/rad s Tπωπ==(1) 设振动表达式为 0cos[()]xy A t uωϕ=++由13t s =时O 点的振动状态:2Ot Ay =-,0Ot v >,利用旋转矢量图可得,该时刻O 点的振动相位为23π-,即 10032()33Ot t t ππϕωϕϕ==+=+=-所以O 点的振动初相位为 0ϕπ=-将0x =,0ϕπ=-代入波动表达式,即得O 点的振动表达式为0.1cos()O y t ππ=-(2) 根据O 点的振动表达式和波的传播方向,可得波动表达式0cos[()]0.1cos[(5))]xy A t t x uωϕππ=++=+-(3) 由13t s =时Q 点的振动状态:0Qt y =,0Qt v <,利用旋转矢量图可得,该时刻Q 点的振动相位为2π,即013[()]30.22Q Qt t x x t u πππϕωϕπ==++=+-=可得 0.233Q x m =将0.233Q x m =,0ϕπ=-代入波动表达式,即得Q 点的振动表达式为0.1cos()6Q y t ππ=+(4) Q 点离O 点的距离为0.233Q x m =15-15 分析:波的传播过程也是能量的传播过程,波的能量同样具有空间和时间的周期性.波的强度即能流密度,为垂直通过单位面积的、对时间平均的能流.注意能流、平均能流、能流密度、能量密度、平均能量密度等概念的区别和联系.解:(1) 波中的平均能量密度为32235319.010/ 3.010/2300I w A J m J m u ρω--⨯====⨯最大能量密度为 532 6.010/m w w J m -==⨯ (2) 每两个相邻的、相位差为2π的同相面间的能量为25273000.14() 3.010() 4.621023002u d W wV w S w J v λππ--====⨯⨯⨯⨯=⨯15-16 分析:根据弦线上已知质点的振动状态,推出原点处质点振动的初相位,即可写出入射波的表达式.根据入射波在反射点的振动,考虑反射时的相位突变,可写出反射波的表达式.据题意,入射波和反射波的能量相等,因此,在弦线上形成驻波的平均能流为零.解:沿弦线建立Ox 坐标系,如图15-16所示.根据所给数据可得图15-16/100/u s m s ===,2100 /rad s ωπνπ==,100250u m m v λ===, (1) 设原点处质元的初相位为0ϕ,入射波的表达式为0cos[()]xy A t uωϕ=-+据题意可知,在10.5x m =处质元的振动初相位为103πϕ=,即有110001000.51003x u ωππϕϕϕ⨯=-+=-+=得 05326πππϕ=+=所以,入射波表达式为550.04cos[100()]0.04cos[100()]61006x x y t t u ππππ=-+=-+入考虑半波损失,反射波在2x 处质元振动的初相位为2010511100()10066ππϕππ=-++=反射波表达式为220cos[()]x x y A t uωϕ-=++反 ]611)100(100cos[04.0]611)10010(100cos[04.0ππππ++=+-+=x t x t(2)入射波和反射波的传播方向相反,叠加后合成波为驻波40.08cos()cos(100)23y y y x t ππππ=+=++入反波腹处满足条件 2x k πππ+=即 1()2x k =-因为010x m ≤≤,在此区间内波腹位置为0.5, 1.5, 2.5,,9.5x m = 波节处满足条件 (21)22x k πππ+=+即 x k = 在区间010x m ≤≤,波节坐标为0,1,2,,10x m = (3) 合成为驻波,在驻波中没有能量的定向传播,因而平均能流为零. 15-17 分析:运动波源接近固定反射面而背离观察者时,观察者即接收到直接来自波源的声波,也接收到来自固定反射面反射的声波,两声波在A 点的振动合成为拍.当波源相对于观察者静止,而反射面接近波源和观察者时,观察者接收到直接来自波源的声波无多普勒效应,但反射面反射的频率和观察者接收到的反射波频率都发生多普勒效应,因此,两个不同频率的振动在A 点也将合成为拍. 解:(1) 波源远离观察者而去,观察者接收到直接来自波源声音频率为1R S Suu v νν=+观察者相对反射面静止,接收到来自反射面的声波频率2R ν就是固定反射面接收到的声波频率,这时的波源以S v 接近反射面.2R S Suu v ννν==-反 A 处的观察者听到的拍频为21222S S R R S S S S Suv u uu v u v u v νννννν∆=-=-=-+- 由此可得方程2220S S S v uv u ννν∆+-∆=0.25/S v m s ≈(2) 观察者直接接收到的波的频率就是波源振动频率1RS νν'= 对于波源来说,反射面相当于接收器,它接收到的频率为S u vuνν+'=对于观察者来说,反射面相当于另一波源,观察者接收到的来自反射面的频率为2RS S u u u v u vu v u v u u vνννν++''===--- A 处的观察者听到的拍频为212RR S S S u v vu v u vνννννν+''∆=-=-=-- 所以波源的频率为3400.24339820.4S u v Hz Hz v νν--=∆=⨯= 15-18 解:平面电磁波波动方程的标准形式为222221y y E E x u t ∂∂=∂∂, 222221z zH H x u t ∂∂=∂∂ 与平面电磁波的标准方程相比较,可知波速为82.0010/u m s ==⨯ 所以介质的折射率为1.50cn u== 15-19 解:由电磁波的性质可得00E H =而 000B H μ=, 真空中的光速c =所以0E B c==从而可得 0008703000.8/0.8/310410B E H A m A m c μμπ-====⨯⨯⨯ 磁场强度沿y 轴正方向,且磁场强度和电场强度同相位,所以0.8cos(2)3y H vt ππ=+[SI ]第十六章 几何光学一、选择题 16-1 A 16-2 B 16-3 B 16-4 C 二、填空题16-5 6.0S cm '=,12V = 16-6 80f cm '=16-7 34s cm '=-,2V =- 16-8 左,2R 三、计算题16-9 解:设空气的折射率为n ,玻璃的折射率为n ',则 1n =, 1.5n '= 因为 2r = 所以物方焦距4nrf cm n n=='- 像方焦距6n rf cm n n ''=='- 又因为 1f fs s'+='而 8s cm = 所以 12s cm '=(实像)1ns y V y n s''==-=-' 其中 0.1y cm = 所以 0.1y Vy cm '==-16-10 分析:将球面反射看作n n '=-时球面折射的特例,可由折射球面的成像规律求解。
大学物理(吴柳主编)上册课后习题答案
说明:上册教材中,第5,6,7等章的习题有答案; 第1,2,4,8章的习题有部分答案; 第3,9,10,11章的习题没有答案。
为方便学生使用,现根据上学期各位老师辛苦所做的解答,对书上原有的答案进行了校对,没有错误的,本“补充答案”中不再给出;原书中答案有误的,和原书中没有给出答案的,这里一并给出。
错误之处,欢迎指正!第1章1.4.2.8×10-15m1.5.根据方程中各项的量纲要一致,可以判断:Fx= m v 2/2合理,F=mx v , Ft=mxa , F v = m v 2/2, v 2+v 3=2ax 均不合理.第2章2.1 (1) j i)2615()2625(-+-m;)/]()2615()2625[(451151020)2615()2625(s m j i j i t r v-+-=++-+-=∆∆=(2)52m; 1.16m/s2.2 (1) 4.1 m/s; 4.001m/s; 4.0m/s (2) 4m/s; 2 m.s -2 2.33m;m 34π; 140033-s .m π方向与位移方向相同; 1.0m/s 方向沿切线方向 2.5 2π (m); 0; 1(s)2.6 24(m); -16(m) 2.8222tv R vRdt d +=θ 2.10 (1) 1322=+y x (2) t v x 4sin 43ππ-=;t v y 4cos 4ππ=;t a x 4cos 1632ππ-=;t a y 4sin 162ππ-=(3) 26=x ,22=y ;π86-=x v ,π82=y v ;,2326π-=x a 2322π-=y a2.12 (1) ︒=7.382θ,4025.0=t (s),2.19=y (m)(2)︒=7.382θ,48.2=t (s),25.93=y (m)。
2.14 (1) 22119x y -= (2) j t i v 42-=;j a 4-= (3) 0=t 时,j r19=; 3=t 时,j i r+=6。
大学物理第二版下册课后习题答案
大学物理第二版下册课后习题答案【篇一:大学物理_上海交通大学_第四版-下册课后题全部答案】.直角三角形abc的a点上,有电荷q1q2??4.8?10?9?1.8?10?9c,b点上有电荷?0.03mc,试求c点的电场强度(设bc?0.04m,ac?i)。
解:q1在c点产生的场强:?e1?q14??0racq22,?j24??0rbq2在c点产生的场强:c?????44e?e?e?2.7?10i?1.8?10j; 12∴c点的电场强度:?e2?,?c点的合场强:e??3.24?104v1.8?33.7?3342?m,i2.7方向如图:。
11-2.用细的塑料棒弯成半径为50cm的圆环,两端间空隙为2cm,电量为3.12?10?9c和方向。
xl?2?r?d?3.12m解:∵棒长为,??arctanl∴电荷线密度:可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去d?0.02m长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷的塑料棒在o点产生的场强。
解法1:利用微元积分:deox?eo?14??0???q?1.0?10?9c?m?1?rd?r2cos?,?4??0r?2??∴解法2:直接利用点电荷场强公式:????cos?d??4??0r?2sin???d4??0r2?0.72v?m?1;由于d??r,该小段可看成点电荷:q???deo?q?2?2.0?10?11c,4??0r(0.5)则圆心处场强:。
方向由圆心指向缝隙处。
11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为?,四分之一圆弧ab的半径为r,试求圆?9.0?10?92.0?10?112?0.72v?m?1心o点的场强。
解:以o为坐标原点建立xoy坐标,如图所示。
①对于半无限长导线a?在o点的场强:???e?(cos?cos?)?ax4??r2?0????e?(sin?sin?)ay?4??r20有:?②对于半无限长导线b?在o点的场强:???e?(sin??sin)?bx4??r2?0? ???e?(cos?cos?)by?4??r20有:??ey③对于ab??eabx????e??aby??圆弧在o点的场强:有:?cos?d???20?4??0r4??0r2(sin?2?sin?)???4??0rsin?d????4??0r(cos?2?cos?)∴总场强:eox??4??0r,eoy??4??0r,得:?eo??4??0r??(i?j)。
大学物理第二版下册答案
0. 65
可知 A 与 B 振动系统的振动表达式为: x 0. 0447 cos( 10 t 0 .65 ) m
大学物理第二版下册答案
(3) 弹簧所受的最大拉力,应是弹簧最大形变时的弹力,最大形变为:
Mm
x OO A
g A 0 .1447 m
k
则最大拉力
F max k x 72 .4 N
8-6 解: (1) 已知 A=0.24m,
(1)
k
(1) A 物体共受三力;重 mg, 支持力 N, 张力 T.不计滑轮质量时,有
T=kx 列出 A 在任一位置 x 处的牛顿方程式
mg sin
T mg sin
2
dx k (l 0 x) m 2
dt
将( 1)式代入上式,整理后得
d2x k
2
x0
dt m
故物体 A 的运动是简谐振动,且
k 7 ( rad/s )
定理可知:
m u
Mm
不计摩擦,弹簧压缩过程中系统机械能守恒,即:
2.0 ( m/s)
1 (M
2
2
m )u
12 kx 0
2
( x0 为弹簧最大形变量)
Mm
2
x0
u 5 .0 10 m
k
由此简谐振动的振幅
2
A x 0 5 .0 10
系统圆频率
k Mm
40 ( rad/s)
大学物理第二版下册答案
若取物体静止时的位置 O(平衡位置)为坐标原点, Ox 轴水平向右为正,则初始条件为: t=0 时, x=0, 0 u 2 .0 m/s 0
2
2
a A cos
2
0 .60 5