主板各种信号说明(非常有用)

合集下载

(整理)电脑主板原理图

(整理)电脑主板原理图

1.主板上的英文字母都代表什么1.L----电感.电感线圈2.C----电容.3.BC---贴片电容4.R----电阻5.9231 芯片-----脉宽6.74 门电路-----它在主板南桥旁边7.PQ----场效应管8.VT 、Q、V----三级管9.VD 、D---二级管10.RN----排阻11. ZD----稳压二极管12.W-----电位器13.IC---稳压块14.IC 、N、U----集成电路15.X 、Y、G、Z----晶振16.S-----开关17.CM----频率发生器(一般在晶振14.31818 旁边)2. 计算机开机原理开机原理:插上ATX 电源后,有一个静态5V 电压送到南桥,为南桥里面的ATX 开机电路提供工作条件(ATX 电源的开机电路是集成南桥里面的),南桥里面的ATX 开机电路将开始工作,会送一个电压给晶体,晶体起振工作,产生振荡,发出波形。

同时ATX 开机电路会送出一个开机电压到主板的开机针帽的一个脚,针帽的另一个脚接地。

当打开开机开关时,开机针帽的两个脚接通,而使南桥送出开机电压对地短路,拉低南桥送出的开机电压,而使南桥里的开机电路导通,拉低静态5V 电压,使其变为0 电位。

使电源开始工作,从而达到开机目的。

(ATX 电源里还有一个稳压部分,它需要静态5V 变为0 电位才能工作)。

3. 主板时钟电路工作原理时钟电路工作原理:3.5 电源经过二极管和电感进入分频器后,分频器开始工作,和晶体一起产生振荡,在晶体的两脚均可以看到波形。

晶体的两脚之间的阻值在450---700 欧之间。

在它的两脚各有1V 左右的电压,由分频器提供。

晶体两脚常生的频率总和是14.318M 。

总频(OSC )在分频器出来后送到PCI 槽的B16 脚和ISA 的B30 脚。

这两脚叫OSC 测试脚。

也有的还送到南桥,目的是使南桥的频率更加稳定。

在总频OSC 线上还电容。

总频线的对地阻值在450---700 欧之间,总频时钟波形幅度一定要大于2V 电平。

台式电脑主板接口说明附详细图解

台式电脑主板接口说明附详细图解

电脑主板接口1.前言主板作为电脑的主体部分,提供着多种接口与各部件进行连接工作,而随着科技的不断发展,主板上的各种接口与规范也在不断升级、不断更新换代。

其中比较典型的就是CPU接口,Intel方面,有奔腾、酷睿2系列的LGA 775,酷睿i7的LGA 1366接口,i5、i3的LGA 1156;AMD方面也从AM2升级到了AM2+以及AM3接口。

其他如内存也从DDR升级到最新的DDR3,CPU供电接口也从4PIN扩展到8PIN等。

面对主板上如此多的接口,你都知道它们的用途吗?如此繁多的接口,你全都认识吗?在本文中,我们将对主流主板上的各种接口进行介绍,使用户能清楚、明白主板上各种接口的作用。

1、CPU接口首先是CPU接口部分,目前PC上只有Intel和AMD两个公司生产的CPU,它们采用了不同的接口,而且同品牌CPU 也有不同的接口类型。

Intel:Intel的LGA 775接口IntelLGA 1366和LGA 1156接口Intel的CPU采用的是LGA 775、LGA 1366和LGA 1156这三种接口。

除了酷睿i7系列采用的是LGA 1366接口,酷睿i5和i3采用的是LGA 1156,市面上其他型号的CPU都是采用LGA 775接口,可以说LGA 775仍是主流,各种接口都不兼容。

在安装CPU时,注意CPU上的一个角上有箭头,把该箭头对着图中黄色圆圈的方向装即可。

AMD:2009年2月中,AMD发布了采用Socket AM3接口封装的Phenom II CPU和AM3接口的主板,而AM3接口相比AM2+接口最大的改进是同时提供DDR2和DDR3内存的支持。

换句话说,以后推出的AM3接口CPU均兼容现有的AM2+平台,通过刷写最新主板BIOS,即可用在当前主流的AM2+主板(如AMD 770、780G、790GX/FX等)上,而用户也不必担心升级问题。

AM2+接口(左)与AM3接口(右)对比我们来比较一下AM3与AM2+两种接口的区别,上图左是Socket AM2+接口,拥有940个针脚;上图右是Socket AM3接口。

ITX 系列主板使用说明

ITX 系列主板使用说明

2.2.6 JP7 跳线说明 (1)针对 COM1 跳线
COM1 com 接(预设)
PIN9 5V 带电 PIN9 12V 带电
JP7 跳至 5-6 脚 跳至 1-2 脚 跳至 3-4 脚
11
2.2.7 JC26 插针 主机板提供了 1 组 JC26 插针,控制 COM2/COM3/COM4/COM5/
b.PWRLED 电源指示灯 d.PWRSW ATX 电源开关
主机板提供了 1 组 F_PANEL 插针,其信号定义图如下所示:
v SPEAKER 喇叭连接头 电脑的喇叭连接头(也称蜂鸣器)共有四个脚位,只要把机箱上的喇叭接头 接至此四脚位上即可使用。
v PWRLER 电源指示灯 电源指示灯为三个脚位的连接头,用来指示电脑的工作状态,当电脑一旦 上电时,指示灯常亮,反之,则不亮(注:有正负之分)。
当将风扇连接到风扇连接头上时,使用者必须将红色的线连接到 +12V 的电源针上,黑色的线连接到地线上。如果您想在 BIOS 或硬件监控 程序中观察风扇的工作状态,您必须使用支持能侦测转速功能的风扇。对 于具有速度感应器的风扇,风扇每一次转动都会产生 2 个脉冲波,系统硬 件监控将作统计逼供内产生一个风扇转动速度的报告,可在 CMOS 中显示 出风扇的转速。
结构及 尺寸
工作温度 工作湿度 应用范围
IP 3 0 X 3 产 品 规 格
Intel ATOM 230 双 核 处 理 器
FSB 533MHz INTEL 945GC +ICH7 1 x DDR2 6 6 7/53 3 M H z D IM M , 最 大 容 量 支 持 2GB 集 成 GMA950 图 形 加 速 器 板 载 Realtek ALC662 HD 音 效 芯 片 板 载 Realtek 8111D 双 网 卡 , 支 持 无 盘 2 x SATA 3 Gb/s 磁 盘 接 口 1 x PCI 插 槽 支 持 8 个 USB 2.0 端 口 (4 个 需 要 扩 展 ) 1 x 24-pin ATX 主 电 源 接 口 2 x SATA SATA 磁 盘 接 口 1 x CPU fan header CPU 风 扇 接 口 1 x SYS fan header 系 统 风 扇 接 口 1 x front panel header 前 置 面 板 插 针 1 x Audio header 前 置 音 频 跳 线 插 针 2 x USB 2.0 headers USB 扩 展 插 针 1 x Clear CMOS Header 清 CMOS 插 针 1 x VGA-H 插 针 , 1 x Mini IDE 接 口 5 x COM 扩 展 插 针 , 1 组 COM 状 态 控 制 插 针 1 x IR 红 外 线 扩 展 插 针 1 x PS/2 鼠 标 端 口 , 1 x PS/2 键 盘 端 口 1 x VGA 端 口 , 1 x COM 端 口 1 x LPT 端 口 4 x USB 2.0 端 口 2 x RJ-45 网 卡 端 口 2 x audio 接 口 (6 声 道 音 频 接 口 )

主板上各芯片的功能及名词解释 -回复

主板上各芯片的功能及名词解释 -回复

主板上各芯片的功能及名词解释-回复
主板上各芯片的功能及名词解释:
1. CPU(中央处理器):也称为微处理器,是计算机系统的核心部件,负责执行指令、处理数据和控制整个系统的运行。

2. 北桥芯片(Northbridge):在旧式的主板中,北桥芯片主要连接CPU 与高速设备,如内存控制器、显卡接口(AGP或PCI-E插槽)等,负责高速数据传输。

3. 南桥芯片(Southbridge):南桥芯片则负责低速外部设备的连接与管理,如PCI插槽、USB接口、SATA接口、声卡、网卡、键盘鼠标接口等。

4. BIOS芯片(基本输入输出系统):存储着主板硬件的基本配置信息以及自检、启动引导程序,用于初始化硬件并加载操作系统。

5. 晶振(Crystal Oscillator):为主板提供稳定的时钟信号,确保各个组件按照预定频率协调工作。

6. Super I/O芯片:负责处理串口、并口、软驱接口等传统I/O设备的信号。

7. 内存插槽及内存控制器:内存插槽用于安装内存条,内存控制器负责管理和控制内存与CPU之间的数据交换。

8. 电源管理芯片:负责主板上的电源管理,包括电压调整、电源状态转换等功能。

9. 闪存芯片(Flash ROM):用于存储可更新的BIOS程序,以便用户进行BIOS升级。

随着技术的发展,现代许多主板已经将北桥和南桥的功能集成到了CPU 内部或者主板上的一个单一芯片组中(比如Intel的PCH),使得数据传输效率更高,系统性能更强。

815E(P) T 主板 说明书

815E(P) T 主板 说明书

815E(P)/T主板前言版权此出版物,包括所有照片、插图和软件都被国际拷贝法保护,所有权利都被保留。

此说明书和其中所包含的任何材料都不可以在没有作者的书面许可下被复制。

否认声明在这本说明书里的信息没有注释需要改变。

生产厂商不做陈述或遵守基于此点内容的担保,并且明确放弃任何为了销售或利益性特殊目的的任何暗指的担保。

生产厂商保留随着时间的推移对本文内容做修订和改变的权力,基于此点厂商没有责任通知任何个人修订或改变。

联邦通讯委员会(FCC)此设备遵照B 级数位设备的限定而被测试和制造,即依据联邦通讯委员会(FCC)规则的第15 部分。

这些限定的制定是为了提出保护的原因,防止对用户的成套设备产生有害干扰。

该设备可产生,使用和能够辐射高频能量,如果没有按照这个规则来安装和使用,则对无线通信可以引起有害干扰。

然而没有保证此干扰不会在个别设备产生。

如果此设备对无线电或电视接收引起有害干扰,该干扰可以被确定是由设备的开关引起的,用户会试着用以下一种或多种方法来纠正这个干扰:重新调整和确定接收天线方向增大此设备与接收器间的距离连接设备到不同的电路的出口,从那进行接收器的连接与销售商协商或向有经验的无线电/电视技术人员寻求帮助该设备所采用的被屏蔽的互连电缆和动力电源电缆必须确保是依照相关的射频(RF)发射限度来进行管理的装置。

用户无权对此设备操作系统生产厂商所没有明确证明的改变或修正。

815E(P)/T主板依据的说明此设备遵照联邦通讯委员会(FCC)规则的第15 部分。

操作服从以下条件:此设备不会引起有害干扰。

此设备可以接受任何一般性的干扰,包括可以引起不需要操作的干扰。

加拿大通讯部门此B 类数字设备符合加拿大引发干扰设备规范的所有要求。

815E(P)/T主板给用户的说明本产品的所有部分,包括配件与软件等,其所有权都归本公司所有,未经本公司许可,不得任意地仿制、拷贝、摘抄或转译。

本用户手册没有任何形式的担保、立场表达或其它暗示。

笔记本上电时序及信号讲解

笔记本上电时序及信号讲解

Page 14
VGA&VRAM
既然VRAM是存放显示数据的地方,那么,当VRAM出现问题的时候,系统肯定 是不能正常显示的(主要是花屏),不过,问题点却有很多种. 1.VRAM本身的问题;不能正常储存数据,数据会丢失或者处理错误,都会出问 题; 2.VRAM电压和clock不正常(特别是参考电压);这点很容易理解, 电路中 传输的数据都是以0和1的二进制代码存在,而都必须以参考电压为参考,如果 参考电压不准确,显然,数据会失真,导致显示问题是必然的; 3.VGA的问题;包 括VGA本身的问题和VGA的周边电压和clock,特别是负责VRAM模块的参考 电压,白屏现象多是由VGA不良导致的; 4.VBIOS(这种现象非常少见,但个人 认为最好首先排除); 5.断线当然也是一种可能,但是这种情况几乎可以排除 在考虑之外,因为断线的主板实在太少. 有些机种VRAM多的时候有8颗,要找出哪颗出了问题是很头疼的问题,不过 幸运的是,ATI生产的每一种不同型号的VGA都有对应的检查软件,可以帮助 我们找出哪一组VRAM(主板上VGA只有AB两个64位的channel,该软件将AB 各分成两个channel(0~31;32~64),所以软件上显示为ABCD四组,每组分别对 应一对VRAM)出现了问题,条件是必须在DOS模式下运行.(以Vail为例)
Page 7
时序
在+V1.5S电压稳定之后,U9(TPS51124)会发出V1.5S_PG,这个 电是用来开启+VCCP的.从下图可以看出,只有左下角的电压都 正常,才能发出PWR_GOOD_3,图左上角显然也是调 PWR_GOOD_3和PWR_GOOD_KBC之间时序的,D1003在这 里的作用是在POW_GOOD_3关电时将它的电快速放掉,防止 U2误动作.

发那科数控系统主板-概述说明以及解释

发那科数控系统主板-概述说明以及解释

发那科数控系统主板-概述说明以及解释1.引言1.1 概述发那科数控系统主板是现代机械加工领域中一项非常重要的技术设备,它承担着控制整个数控系统运行的关键任务。

随着科技的进步和制造业的发展,数控系统主板不断升级和创新,为机械加工行业带来了更高的精度、效率和稳定性。

概括来说,发那科数控系统主板是一种集成电路板,其内部集成了多项功能模块和电子元件,包括控制模块、驱动模块、通信模块等。

它对数控机床进行控制与管理,通过将数字指令转化为电信号来实现对机床运动、加工过程等参数的控制和调节。

同时,发那科数控系统主板还具备着较高的处理能力和稳定性。

它能够通过内部的逻辑电路和微处理器实时处理和判断控制指令,确保机床按照预定的路径和速度进行工作。

此外,数控系统主板还具备着强大的自诊断和容错能力,能够快速发现和排除故障,提高机床的可靠性和稳定性。

总之,发那科数控系统主板在现代机械加工行业中扮演着不可或缺的角色。

它不仅为机械加工行业提供了更高的生产效率和加工精度,还为实现自动化加工、灵活制造和智能制造打下了坚实的基础。

因此,继续深入研究和发展发那科数控系统主板的技术,对于推动制造业的转型升级和提升国家制造实力具有重要意义。

1.2 文章结构文章结构部分的内容可以包括以下几个方面:首先,介绍文章的整体结构。

说明文章由引言、正文和结论三个部分组成,每个部分的内容和目的。

其次,详细介绍每个部分的内容。

引言部分主要概述文章的主题和背景,同时阐述数控系统主板在工业领域的重要性和应用情况。

正文部分将分为三个小节,分别介绍发那科数控系统主板的功能、组成和性能特点。

结论部分将总结发那科数控系统主板的重要性,展望其未来的发展,并强调本文的意义和价值。

最后,强调文章结构的合理性和逻辑性。

要说明每个部分之间的联系和衔接,以及本文的目的和要传达的主要信息。

最后,可以提醒读者在阅读本文时要按照文章结构的顺序进行阅读,以便更好地理解发那科数控系统主板的相关知识和信息。

主板光纤音频输出(SPDIF)使用详解

主板光纤音频输出(SPDIF)使用详解

主板光纤音频输出(SPDIF)使用详解在观看HDTV时想要获得和DVD一样的多声道影院效果,最好的方案肯定是将音频用SPDIF (Sony-Philips Digital Interface Format,索尼-飞利浦数字界面格式)输出到功放,然后由功放来解码播放。

从理论上来说,这样的效果肯定比从声卡上接出模拟信号到功放上的要好,事实也的确如此。

目前的HDTV影片中,音频部分基本上都是采用AC3,DTS,AAC这三种格式进行编码,这三种格式都可以提供多声道的影院效果。

在开始搭建HTPC家庭影院之前,先简单了解一下什么是什么是AC3,DTS和AAC:1. AC3, 全称为Audio Coding version 3,是Dolby实验室所发展的有损音频编码格式。

AC3最被广泛应用于5.1声道,是Dolby Pro Logic的继承者,不同的地方在于AC3提供6个独立的声道而Pro Logic混合其环绕声道。

AC3普及度很高,以384-448 kbps的码率应用于LaserDisc和DVD,也经常以640 kbps的码率广泛用在电影院。

2. DTS,全称为Digital Theater Systems(数字影院系统),是一种有损多声道家庭影院音频格式,但它用了很高的码率进行编码,通常为768-1536kbps,能够营造出比AC3更好的影院效果。

3. AAC,全称为Advanced Audio Coding(高级音频解码),是一种由MPEG-4标准定义的有损音频压缩格式,由Fraunhofer发展,Dolby, Sony和AT&T是主要的贡献者。

在使用MP4作为各种内容的容器格式的新多媒体MPEG-4标准中,它是MPEG Layer III( MP3)的天然后继者。

AAC能够在一条音轨中包括48条全带宽(直到96khz)音频声道,加上15条低频增强(LFE,限制到120Hz)声道,直到15条数据流并且更多。

蒂森mc2主板说明

蒂森mc2主板说明

蒂森mc2主板说明标识插头孔销类型信号备注诊断单元VI和监控(串行接口)(→MC)X11 -未使用2 E RXD 收到的数据3 A TXD 传送的数据4 -未使用5 - GND(接地)6 -未使用7 -未使用8 -未使用9 -未使用诊断单元I(并联接口)(→MC) X21 A +5V2 A +5V3 - GND(接地)4 - GND(接地)5 E输入端口1,位06 E输入端口1,位17 -未使用8 -未使用9 E输入端口1,位410 E输入端口1,位511 E输入端口1,位612 -n.c.13 A输出端口1,位014 A输出端口1,位115 A输出端口1,位216 A输出端口1,位317 A输出端口1,位418 A输出端口1,位519 A输出端口1,位620 A输出端口1,位7本地总线(→MZ)X31 E/A CAN-H2 E/A CAN-L3 - GND(接地)群控总线(→MZ) X41 E/A CAN-H2 E/A CAN-L3 - GND(接地)驱动CPI(→MC) X51 -未使用2 -未使用3 A +24V4 A SWF5 E Channel A(槽道A) A脉冲6 E Channel B(槽道B) B脉冲7 - 0V8 E/A CAN-L 本地总线9 -未使用10 E STR11 A FO12 A +5V13 E Channel A(槽道A) *A脉冲14 E Channel B(槽道B) *B脉冲15 E/A CAN-H 本地总线旋转脉冲(减速的及液压的)(→MC) X6 1 A +24V2 A +12V3 E Pulses(脉冲)4 - GND(接地)额外串行接口MC(→MC) X71 A +24V2 E +12V (V)3 A Pulses(脉冲)4 - GND(接地)液压式驱动(→MZ,MC) X81 A +24V 输出I≤40mA2 A V2 备用输出1,X39:23 A V14 A FO FO←MC(V0)5 A FJR FJR←MZ(V)6 A FUR FUR←MZ(向下)7 A FOR FOR←MZ(向上)8 A FLR FLR←MZ(V2)9 A FSR FSR←MZ10 -平稳启动完成(启动)11 E STR STR(X5:10)12 - 0V平稳启动(→MC) X91 A SWF SWF←MC2 平稳启动完成电压供应5V X101 E +5V2 GND(接地)电压供应24V X111 E +24V2 GND(接地)额外串行接口MZ(→MZ) X121 A +5V2 E R×D(TTL)3 A T×D(TTL)4GND(接地)随行电缆(→MZ,MC,SR模块) X131 E ZS ZS-区域开关→SR模块2 A +24V 24V3 - 0V 0V4 E LK1 LK1-光幕选择器1→MC5 E LK LK-光幕选择器→MC6 E/A CAN-H 井道总线→MZ7 E/A CAN-L 井道总线→MZ井道总线主端(→MZ) X141 A INIH 初始化(站层号的编码)2 E/A CAN-H 井道总线3 E/A CAN-L 井道总线4 - GND(接地) GND(接地)井道总线后进口端(→MZ) X151 A INIH 初始化2 E/A CAN-H 井道总线→MS2等3 E/A CAN-L 井道总线→MS2等4 - GND(接地) GND(接地)附加作用的插头优选权(→MZ) X201 A +24V2 E V 优选权温度监控 X211 A +24V2 E V 温度监控过载(→MZ) X221 A +24V2 E ül过载启动抱闸(→MZ) X231 A =24V2 A VRB 抱闸磁铁启动1) 直接连接到平稳启动插头上。

主板测试卡说明书(很详细)

主板测试卡说明书(很详细)

http://www.6113前 言非常感谢您选择奇冠公司的电脑故障诊断卡、电脑稳定性与故障诊断二合一卡系列产品,如果您有什么疑问,请登陆我司网站查询详情解答;您还可以将具体问题发E‐mail 到p678@,我们会及时回复您。

感谢您的信赖和支持!本用户手册第一部分主要对我司生产的新一代及准确王电脑故障诊断卡的特点、外观及使用方法做了简单介绍,并对目前主流三个BIOS制造商的POST代码做了详细说明和一些简单的排错处理方法,最后,列表说明了新一代及准确王诊断卡显示特有字符“no”时的处理方法。

第二部分着重介绍电脑稳定性与故障诊断二合一卡(本手册下简称“二合一卡”)的特点及使用方法。

二合一卡采用大规模IC集成模块,结构紧凑,稳定可靠,确保产品品质符合高标准要求。

内部资源更丰富,抗干扰性能更优越,自身故障率极低。

无须用户安装软件,软件全部内置,我们将前沿科技与使用者行为科学相结合,进行了人性化功能设计,使用非常方便。

它是一款高性能卡,即能对电脑故障诊断,又可对其稳定性测试。

功能二卡合一,方便适用。

本公司是一家专业研发、生产诊断卡的企业,生产的新一代、准确王、及二合一卡系列产品已获CE认证并受中国国家专利保护(专利号:03126857.9),侵权必究。

我公司已不再生产传统诊断卡,请广大用户在购买时认准“奇冠”字样商标及防伪标识。

本用户手册所提到的产品规格及资讯仅供参考,实际内容亦会随时更新,恕不另行通知。

如果您要了解最新产品资讯,请访问我公司网站。

欢迎访问广州奇冠电子公司网目 录第一部分:电脑故障诊断卡详细说明 (1)一、注意事项 (1)二、产品简介 (1)三、功能特点 (2)四、型号特征 (3)五、操作流程 (4)六、用户必读 (5)七、十六进制字符及本卡独有的特殊字符表 (9)八、POST代码含义表 (9)1. AMI BIOS (9)2. Award BIOS (16)3. Phoenix BIOS和Tandy 3000 BIOS (20)九、声音代码含义表 (25)十、常见问题及解决 (26)第二部分:二合一卡说明 (29)一、二合一卡部件介绍 (29)(1)二合一卡部件图(以MKCP6为例) (29)(2)主板连线图 (30)二、二合一卡与诊断卡的区别与功能特点 (30)三、二合一卡指示灯含义 (31)四、测试状态说明 (32)五、注意事项 (32)第一部分:电脑故障诊断卡详细说明 一、注意事项注意:只可按本说明书或在本产品能承受的保护范围内使用本系列产品;本产品安全等级符合IEC 61010-1(2001)、EN 61010-1(2001)标准,并已获国际CE认证。

电脑主板各接口及功能介绍(高清图解)

电脑主板各接口及功能介绍(高清图解)

电脑主板各接口及功能介绍(高清图解)主板内存插槽、扩展插槽及磁盘接口:DDR2内存插槽DDR3内存插槽内存规范也在不断升级,从早期的SDRAM到DDR SDRAM,发展到现在的DDR2与DDR3,每次升级接口都会有所改变,当然这种改变在外型上不容易发现,如上图第一副为DDR2,第二幅为DDR3,在外观上的区别主要是防呆接口的位置,很明显,DDR2与DDR3是不能兼容的,因为根本就插不下。

内存槽有不同的颜色区分,如果要组建双通道,您必须使用同样颜色的内存插槽。

目前,DDR3正在逐渐替代DDR2的主流地位,在这新旧接替的时候,有一些主板厂商也推出了Combo主板,兼有DDR2和DDR3插槽。

主板的扩展接口,上图中蓝色的为PCI-E X16接口,目前主流的显卡都使用该接口。

白色长槽为传统的PCI接口,也是一个非常经典的接口了,拥有10多年的历史,接如电视卡之类的各种各样的设备。

最短的接口为PCI-E X1接口,对于普通用户来说,基于该接口的设备还不多,常见的有外置声卡。

有些主板还会提供迷你PCI-E接口,用于接无线网卡等设备SATA2与IDE接口横向设计的IDE接口,只是为了方便理线和插拔SATA与IDE是存储器接口,也就是传统的硬盘与光驱的接口。

现在主流的Intel主板都不提供原生的IDE接口支持,但主板厂商为照顾老用户,通过第三方芯片提供支持。

新装机的用户不必考虑IDE设备了,硬盘与光驱都有SATA版本,能提供更高的性能。

SATA3接口SATA已经成为主流的接口,取代了传统的IDE,目前主流的规范还是SATA 3.0Gb/s,但已有很多高端主板开始提供最新的SATA3接口,速度达到6.0Gb/s。

如上图,SATA3接口用白色与SATA2接口区分。

主板其他内部接口介绍:4PIN CPU供电接口8PIN CPU供电接口随着CPU的功耗的升高,单靠CPU接口的供电方式已经不能满足需求,因此早在Pentium 4时代就引入了一个4PIN的12V接口,给CPU提供辅助供电。

ITX-M50 VER 2.2(2015.10.15)主板说明书

ITX-M50 VER 2.2(2015.10.15)主板说明书

Intel○R Bay Trail Processor ITX-M50 VER:2.2说明除列明随产品配置的配件外,本手册包含的内容并不代表本公司的承诺,本公司保留对此手册更改的权利,且不另行通知。

对于任何因安装、使用不当而导致的直接、间接、有意或无意的损坏及隐患概不负责。

订购产品前,请向经销商详细了解产品性能是否符合您的需求。

本手册所涉及到的其他商标,其所有权为相应的产品厂家所拥有。

本手册内容受版权保护,版权所有。

未经许可,不得以机械的、电子的或其它任何方式进行复制。

订购信息温馨提示1、产品使用前,务必请仔细阅读产品说明书。

2、对未准备安装的主板,应将其保存在防静电保护袋中。

3、在从包装袋中拿主板前,应将手先置于接地金属物体上一会儿,以释放身体及手中的静电4、在使用前,宜将主板置于稳固的平面上。

5、请保持主板的干燥,散热片的开口缝槽是用于通风,避免机箱内的部件过热。

请勿将此类开口掩盖或堵塞。

6、在将主板与电源连接前,请确认电源电压值。

7、请将电源线置于不会被践踏的地方,且不要在电源线上堆置任何物件。

8、当您需连接或拔除任何设备前,须确定所有的电源线事先已被拔掉。

9、为避免人体被电击或产品被损坏,在每次对整机、板卡进行拔插或重新配置时,须先关闭交流电源或将交流电源线从电源插座中拔掉。

10、请留意手册上提到的所有注意和警告事项。

11、为避免频繁开关机对产品造成不必要的损伤,关机后,应至少等待30秒后再开机。

12、设备在使用过程中出现异常情况,请找专业人员处理。

13、请不要将本设备置于或保存在环境温度高于70℃上,否则会对设备造成伤害。

注意:如果电池换置不当,会产生爆炸的危险。

请务必使用同一型号的或者相当类型的且为制造商推荐的电池。

目录第一章产品介绍................................................................................................... - 4 -1.1 产品规格 .................................................................................................. - 5 - 第二章安装说明................................................................................................. - 10 -2.1 主板尺寸图............................................................................................. - 10 -2.2 接口位置示意图...................................................................................... - 11 -2.3 安装步骤 ................................................................................................ - 12 -2.4 内存安装 ................................................................................................ - 12 -2.5 跳线功能设置 ......................................................................................... - 12 -2.5.1 CMOS内容清除/保持设置(JBAT1).................................................. - 12 -2.5.2 JPW1选择跳线..................................................................................... -12 -2.5.3 SATA2、SATA5接口功能设置(SATA1_SW1) .................................. -12 -2.6 接口说明 ................................................................................................ - 14 -2.6.1 SATA接口(SATA2、PWROUT1) .............................. 错误!未定义书签。

计算机主板超详细图解(图文版)

计算机主板超详细图解(图文版)

主板超详细图解(图文版)一块主板主要由线路板和它上面的各种元器件组成1.线路板PCB印制电路板是所有电脑板卡所不可或缺的东东。

它实际是由几层树脂材料粘合在一起的,内部采用铜箔走线。

一般的PCB线路板分有四层,最上和最下的两层是信号层,中间两层是接地层和电源层,将接地和电源层放在中间,这样便可容易地对信号线作出修正。

而一些要求较高的主板的线路板可达到6-8层或更多。

此主题相关图片如下:主板(线路板)是如何制造出来的呢?PCB的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的PCB“基板”开始。

制作的第一步是光绘出零件间联机的布线,其方法是采用负片转印(Subtractive transfer)的方式将设计好的PCB 线路板的线路底片“印刷”在金属导体上。

这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。

而如果制作的是双面板,那么PCB的基板两面都会铺上铜箔。

而要做多层板可将做好的两块双面板用特制的粘合剂“压合”起来就行了。

接下来,便可在PCB板上进行接插元器件所需的钻孔与电镀了。

在根据钻孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated-Through-Hole technology,PTH)。

在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。

在开始电镀之前,必须先清掉孔内的杂物。

这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。

清除与电镀动作都会在化学过程中完成。

接下来,需要将阻焊漆(阻焊油墨)覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份了。

然后是将各种元器件标示网印在线路板上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。

此外,如果有金属连接部位,这时“金手指”部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。

最后,就是测试了。

【每日听学】日立电梯HGP主板说明

【每日听学】日立电梯HGP主板说明

【每日听学】日立电梯HGP主板说明1、日立HGP主板结构组成(1)功率模块插接口:CN1(2)功率模块插接口:CN2(3)同步电机编码器扩展接口:CN9(4)变频控制CPU在线升级接口:CN5(5) INV键盘插口:CN3(6)RS232接口:CN12(7)异步电机旋转编码器接口:CN11(8)并联、群控TCAN/RS485接口:FR(9)板载+48V继电器:15BX(MY4)(10)板载+48V继电器:50B(MY4)(11)运行接触器驱动端子:Z10(12)板载+48V继电器:40D (MY4)(13)抱闸接触器驱动端子:Z15B(14)板载+48V继电器:100R(MY4)(15)+48V信号输出接口:FE(16)+24V信号输出接口:FD(17)上行强迫减速开关输入接口:SDSU (18)下行强迫减速开关输入接口:SDSD(19)+48V信号输入接口:FC(20)+24V信号输入接口: FB(21)+24V信号输入接口:FA(22)串行通讯接口:SCL(23)小键盘(3键)(24)七段LED显示(3位)(25)串行程序在线升级接口:CN302(26)变频控制CPU在线升级接口:CN2.小键盘介绍2.1硬件介绍在MCUB 的右上角有三个小按钮和三个7段数 码显示,称之为小键盘。

通过对小键盘的不同操 作,可以使三个7段数码显示出电梯的不同信息 以及对电梯进行一些操作。

小键盘的外观如右图所示:对应图中左中右三个键分别定义为MODE 、 INC/ST 、SET 键。

2.2 一般操作MCUB 板定义了7个状态号,分别为0、1、2、3、4、5、6,各状态对应的功能见下表(电梯小键盘功能列表)。

在任何状态下,按下MODE 键,显示的就是当前状态的状态号。

要进入某个状态时,先按下MODE 键,然后用INC/ST 键调状态号,这时LED3按照0、1、2、3、4、5、6、0、1、2…依次循环变化显示。

调到需要进入的状态号后,按下SET 键即可进入该状态。

主板结构与功能详解

主板结构与功能详解

主板结构与功能主板作为其他硬件运行的平台,起作用自然及其重要,下面我们来详细了解一下主板。

一主板的板型我们常说的主板的板型,是指主板上各元器件的布局排列方式。

主板结构分为A T、Baby-AT、A TX、Micro A TX、LPX、NLX、Flex A TX、EA TX、WATX以及BTX等结构。

其中,A T和Baby-A T是多年前的老主板结构,现在已经淘汰。

而LPX、NLX、Flex A TX 则是A TX的变种。

EA TX和WATX则多用于服务器/工作站主板。

A TX是目前市场上最常见的主板结构。

Micro A TX又称Mini A TX,是A TX结构的简化版,就是常说的“小板”而BTX则是英特尔制定的最新一代主板结构。

1.A T结构AT是最基本的板型,一般应用在586以前的主板上。

A T主板的尺寸较大,板上可放置较多元器件和扩充插槽。

它是采用直式的设计,键盘插座所处边为上沿,主板的左上方有8个I/O扩充插槽。

但是一些外设的接口(如:串口、并行口等)需要用电缆连接后再安装在机箱上,大量的线缆导致计算机内部结构复杂,视线混乱,布局不合理。

2.Baby-A T结构3.A TX结构(这也是我们最常见的板型)ATX是目前最常见的主板结构,它在Baby A T的基础上逆时针旋转了90度,这使主板的长边紧贴机箱后部,外设接口可以直接集成到主板上。

A TX结构中具有标准的I/O面板插座,提供有两个串行口、一个并行口、一个PS/2鼠标接口和一个PS/2键盘接口,其尺寸为159mm×44.5mm。

这些I/O接口信号直接从主板上引出,取消了连接线缆,使得主板上可以集成更多的功能,也就消除了电磁幅射、争用空间等弊端,进一步提高了系统的稳定性和可维护性。

另外在主板设计上,由于横向宽度加宽,内存插槽可以紧挨最右边的I/O槽设计,CPU插槽也设计在内存插槽的右侧或下部,使I/O槽上插全长板卡不再受限,内存条更换也更加方便快捷。

主板各种信号说明(非常有用)

主板各种信号说明(非常有用)

主板上各种信号说明一、CPU接口信号说明1。

A[31:3]# I/O Address(地址总线)ν这组地址信号定义了CPU的最大内存寻址空间为4GB。

在地址周期的第一个子周期中,这些Pin传输的是交易的地址,在地址周期的第二个子周期中,这些Pin传输的是这个交易的信息类型.2. A20M# I Adress—20 Mask(地址位20屏蔽)ν此信号由ICH(南桥)输出至CPU的信号.它是让CPU在Real Mode (真实模式)时仿真8086只有1M Byte(1兆字节)地址空间,当超过1 Mbyte 位空间时A20M#为Low,A20被驱动为0而使地址自动折返到第一个1Mbyte地址空间上。

3. ADS# I/O Address Strobe(地址选通)ν当这个信号被宣称时说明在地址信号上的数据是有效的。

在一个新的交易中,所有Bus上的信号都在监控ADS#是否有效,一但ADS#有效,它们将会作一些相应的动作,如:奇偶检查、协义检查、地址译码等操作。

4。

ADSTB[1:0]#I/O Address Strobes ν这两个信号主要用于锁定A[31:3]#和REQ[4:0]#在它们的上升沿和下降沿.相应的ADSTB0#负责REQ[4:0]#和A[16:3]#,ADSTB1#负责A[31:17]#.5。

AP[1:0]# I/O Address Parity(地址奇偶校验) ν这两个信号主要用对地址总线的数据进行奇偶校验.6。

BCLK[1:0] I Bus Clock(总线时钟)这两个Clock主要用于供应在Host Bus上进行交易所需的Clock。

ν7。

BNR# I/O Block Next Request(下一块请求) ν这个信号主要用于宣称一个总线的延迟通过任一个总线代理,在这个期间,当前总线的拥有者不能做任何一个新的交易.8。

BPRI# I Bus Priority Request(总线优先权请求)ν这个信号主要用于对系统总线使用权的仲裁,它必须被连接到系统总线的适当Pin .当BPRI#有效时,所有其它的设备都要停止发出新的请求,除非这个请求正在被锁定。

笔记本主板各种信号说明

笔记本主板各种信号说明

笔记本信号笔记本主板各种信号说明(其余的烦请各位达人继续补充,或者有什么错误的请指教)很多的人在看笔记本图纸时,对里面的各种代号,弄不清楚!其实这些都是英文缩写!首先说ALW,它的英文全称是Alway,意思是总是,如+5V ALW,它用在当电源插上后,这个电压就应该都有的,所以我们在插上电源后,只有是ALW,不管是3V ALW,还是5V ALW,只要是ALW,都应该有它相应的电压,它是给开机电路用的,如EC等。

其次是SUS,它的英文全称是Suspend,意思是延缓,挂起的意思,如+3VSUS(SLP_S5# CTRLD POWER这些将在上电时序中讲解)它的电压产生实在ALW的电压后面,当接收到SUS_on控制电压后就会产生此一系列的电压,此电压不是主要供给电压,只是为下一步的电压产生提供铺垫,但不代表这电压不重要,没有SUS电压,后面的电压就不会产生。

再次是RUN电压,RUN电压没有缩写,它的意思就是跑、运行的意思,这个才是南北桥工作的主要电压,当然南北桥也需要SUS电压。

系统真正运行的话就需要RUN电压正常,如果RUN电压不稳定会造成主板的不稳定。

PL TRST#总复位信号: PLTRST#是Intel® ICH9整个平台的总复位(如:I/O、BIOS芯片、网卡、北桥等等)。

在加电期间及当S/W信号通过复位控制寄存器(I/O 寄存器CF9h)初始化一个硬复位序列时ICH9确定PL TRST#的状态。

在PWROK和VRMPWRGD为高电平之后ICH9驱动PL TRST#最少1毫秒是无效的。

当初始化通过复位控制寄存器(I/O 寄存器CF9h)时ICH9驱动PL TRST#至少1毫秒是有效的。

注释: 只有VccSus3_3正常时PL TRST#这个信号才起作用.THRM# 热报警信号:激活THRM#为低电平信号使外部硬件去产生一个SMI#或者SCI 信号THRMTRIP#热断路信号: 当THRMTRIP#信号为低电平型号时,从处理器发出热断路型号,ICH9马上转换为S5状态。

史上最全的主板接口详解全认清你就是装机大师!

史上最全的主板接口详解全认清你就是装机大师!

史上最全的主板接口详解全认清你就是装机大师!主板接口你都认识吗?笔者认为在要想学会攒机,首先要了解主板,主板可以说是承载机箱内所有硬件的核心,了解了他之后才能更好的理解所有硬件之间的关系。

其中原理部分今天笔者不跟你们讲,讲了你们也听不懂(其实是笔者也不懂),咱们先看接口。

既然是主机中的核心载体,肯定是要与其他硬件连接的,了解每个接口的用途之后,想要装机就不再是什么难事了。

本篇教程分为两个部分,首先是背部接口的部分,这里的接口平时与日常使用息息相关,几乎每个用户都会用到,算是比较基础的接口了,不管是对装机是否有兴趣的都应该了解,不会修总要先会用。

然后就是进阶篇的内部接口部分,主板内部的接口功能十分丰富,一般来说大个头的接口更加容易识别也容易记住,就将大号接口当作中级难度吧,各种奇奇怪怪的小接口则归类到较高难度中,相信经过讲解之后,各位都将进化为DIY高级玩家。

华硕ROG RAMPAGE V EDITION 10主板本期内容我们以华硕推出的规格非常豪华的ROG十周年纪念主板为例,因为其接口非常丰富,几乎将目前市面上常见的接口都涵盖到了,感觉有必要给大家普及一下主板接口的知识,所以今天我们就以它为例为大家介绍一下目前市面上主流的主板产品的接口,常用的与不常用的都有,欢迎各位在评论中继续补充,如果需求够多,出个续集也说不定。

第一阶段,背部接口,非常简单,相信很多朋友都已经有所了解,下面简单介绍一下。

网络接口PS/2键鼠接口这是一种比较古老的输入设备接口了,特点就是彩色的,单一支持键盘或者鼠标的话会呈现单色,像下图这种双色并且伴有键鼠logo 的就是两用的了。

一定要注意的是这个接口不支持热插拔,开机状态下插拔很容易损坏硬件。

优点是对键鼠支持比较好(玄学),更方便键盘全键无冲。

PS/2键鼠接口USB接口USB接口中文名为“通用串行总线”,最常见的设备就是USB键鼠以及U盘等,大家也都见得多了。

这个接口目前有多种规格,需要大家了解,当前的100系列主板上有好多都配备了三个版本的USB接口,通常情况下可以通过颜色来区分,黑色一般为2.0,蓝色为3.0,红色为3.1。

各种主板跳线说明

各种主板跳线说明

【前置USB与音频的说明】机箱前置USB/音频线如何与主板进行连接,对于一些新手有一定难度,要知道一旦接线出错,轻则无法使用USB和音频设备,重则烧毁USB设备或主板。

§机箱前置USB接线的定义首先还是了解一下机箱上前置USB各个接线的定义。

通常情况下,红线:电源正极(接线上的标识为:+5V或VCC)、白线:负电压数据线(标识为:Data-或USB Port -)、绿线:正电压数据线(标识为:Data+或USB Port +)、黑线:接地(标识为:GROUND或GND)。

某些机箱厂商基于其本身的工艺设计要求,信号线的颜色会与上面介绍的不尽相同,而且考虑到与主板接线的方便性、准确性、通用性,有的机箱厂商将USB线做到一个模块上(诸如银河5GNO1、5GNO2、B01机箱,Lite-OnG525E机箱,嘉田5208机箱等),有的机箱厂商考虑到USB线与主板连接时的通用性,则将信号线进行分散并对每一根信号线作以标识(诸如爱特立机箱、富士康机箱、永阳YY5601机箱等),这样为了适应很多类型的USB接口(以下介绍)。

但无论机箱的USB线如何定义,只要明白主板上前置USB接口的每一根针是如何定义的,就不会将USB线接错!§主板USB针脚的定义下面再来看一下主板上的USB针脚定义,虽然目前各品牌主板上扩展的USB针脚定义各不相同,但不外乎以下几大类型与接线方法:第一类:8针型该类型的针脚是1999年以前生产的主板所用,不过目前少数P4级(低档)主板也有采用这种类型的针脚。

通常接线方法:将红线插入USB针脚1与针脚2,余下接线按Data-、Data +、GROUND顺序分别插入余下USB针脚(见图一),第二种接线方式是与第一组接线正好相反(见图二)。

第二类:9针型该类型的USB针脚多为最近新出的主板,多见于支持Pentium 4或Athlon XP芯片组的主板(如I845D、I845E、I865PE、SiS 650、VIA P4M266/A、VIA P4X266/E、VIA P4X400等),尤其是支持USB2.0的主板。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主板上各种信号说明一、CPU接口信号说明1. A[31:3]# I/O Address(地址总线)ν这组地址信号定义了CPU的最大内存寻址空间为4GB.在地址周期的第一个子周期中,这些Pin传输的是交易的地址,在地址周期的第二个子周期中,这些Pin传输的是这个交易的信息类型.2. A20M# I Adress-20 Mask(地址位20屏蔽)ν此信号由ICH(南桥)输出至CPU的信号.它是让CPU在Real Mode(真实模式)时仿真8086只有1M Byte(1兆字节)地址空间,当超过1 Mbyte位空间时A20M#为Low,A20被驱动为0而使地址自动折返到第一个1Mbyte地址空间上.3. ADS# I/O Address Strobe(地址选通)ν当这个信号被宣称时说明在地址信号上的数据是有效的.在一个新的交易中,所有Bus上的信号都在监控ADS#是否有效,一但ADS#有效,它们将会作一些相应的动作,如:奇偶检查、协义检查、地址译码等操作.4. ADSTB[1:0]# I/O Address Strobesν这两个信号主要用于锁定A[31:3]#和REQ[4:0]#在它们的上升沿和下降沿.相应的ADSTB0#负责REQ[4:0]#和A[16:3]#,ADSTB1#负责A[31:17]#.5. AP[1:0]# I/O Address Parity(地址奇偶校验)ν这两个信号主要用对地址总线的数据进行奇偶校验.6. BCLK[1:0] I Bus Clock(总线时钟)这两个Clock主要用于供应在Host Bus上进行交易所需的Clock.ν7. BNR# I/O Block Next Request(下一块请求)ν这个信号主要用于宣称一个总线的延迟通过任一个总线代理,在这个期间,当前总线的拥有者不能做任何一个新的交易.8. BPRI# I Bus Priority Request(总线优先权请求)ν这个信号主要用于对系统总线使用权的仲裁,它必须被连接到系统总线的适当Pin .当BPRI#有效时,所有其它的设备都要停止发出新的请求,除非这个请求正在被锁定.总线所有者要始终保持BPRI#为有效,直到所有的请求都完成才释放总线的控制权.9. BSEL[1:0] I/O Bus Select(总线选择)ν这两组信号主要用于选择CPU所需的频率,下表定义了所选的频率:10. D[63:0]# I/O Data(数据总线)ν这些信号线是数据总线主要负责传输数据.它们提供了CPU与NB(北桥)之间64 Bit的通道.只有当DRDY#为Low时,总在线的数据才为有效,否则视为无效数据.11. DBI[3:0]# I/O Data Bus Inversion(数据总线倒置)ν这些信号主要用于指示数据总线的极性,当数据总在线的数据反向时,这些信号应为Low.这四个信号每个各负责16个数据总线,见下表: 12. DBSY# I/O Data Bus Busy(数据总线忙)ν当总线拥有者在使用总线时,会驱动DBSY#为Low表示总线在忙.当DBSY#为High时,数据总线被释放.13. DP[3:0]# I/O Data Parity(数据奇偶校验)ν这四个信号主要用于对数据总在线的数据进行奇偶校验.14. DRDY# I/O Data Ready(数据准备)ν当DRDY#为Low时,指示当前数据总在线的数据是有效的,若为High时,则总在线的数据为无效.15. DSTBN[3:0]# I/O Data StrobeData strobe used to latch in D[63:0]#ν :16. DSTBP[3:0]# I/O Data StrobeData strobe used to latch inν D[63:0]# :17. FERR# O Floating Point Error(浮点错误)ν这个信号为一CPU输出至ICH(南桥)的信号.当CPU内部浮点运算器发生一个不可遮蔽的浮点运算错误时,FERR#被CPU驱动为Low.18. GTLREF I GTL Reference(GTL参考电压)这个信号用于设定GTLν Bus的参考电压,这个信号一般被设为Vcc 电压的三分之二.19. IGNNE# I Ignore Numeric Error(忽略数值错误)ν这个信号为一ICH输出至CPU的信号.当CPU出现浮点运算错误时需要此信号响应CPU.IGNNE#为Low时,CPU会忽略任何已发生但尚未处理的不可遮蔽的浮点运算错误.但若IGNNE#为High时,又有错误存在时,若下一个浮点指令是FINIT、FCLEX、FSAVE等浮点指令中之一时,CPU会继续执行这个浮点指令但若指令不是上述指令时CPU会停止执行而等待外部中断来处理这个错误.20. INIT# I Initialization(初始化)ν这个信号为一由ICH输出至CPU的信号,与Reset功能上非常类似,但与Reset不同的是CPU内部L1 Cache和浮点运算操作状态并没被无效化.但TLB(地址转换参考缓存器)与BTB(分歧地址缓存器)内数据则被无效化了.INIT#另一点与Reset不同的是CPU必须等到在指令与指令之间的空档才会被确认,而使CPU进入启始状态.21. INTR I Processor Interrupt(可遮蔽式中断)ν这个信号为一由ICH输出对CPU提出中断要求的信号,外围设备需要处理数据时,对中断控制器提出中断要求,当CPU侦测到INTR为High 时,CPU先完成正在执行的总线周期,然后才开始处理INTR中断要求. 22. PROCHOT# I/O Processor Hot(CPU过温指示)ν当CPU的温度传感器侦测到CPU的温度超过它设定的最高度温度时,这个信号将会变Low,相应的CPU的温度控制电路就会动作.23. PWRGOOD I Power Good(电源OK)ν这个信号通常由ICH(南桥)发给CPU,来告诉CPU电源已OK,若这个信号没有供到CPU,CPU将不能动作.24. REQ[4:0]# I/O Command Request(命令请求)ν这些信号由CPU接到NB(北桥),当总线拥有者开始一个新的交易时,由它来定义交易的命令.25. RESET# I Reset(重置信号)ν当Reset为High时CPU内部被重置到一个已知的状态并且开始从地址0FFFFFFF0H读取重置后的第一个指令.CPU内部的TLB(地址转换参考缓存器)、BTB(分歧地址缓存器)以及SDC(区段地址转换高速缓存)当重置发生时内部数据全部都变成无效.26. RS[2:0]# I Response Status(响应状态)ν这些信号由响应方来驱动,具体含义请看下表:27. STKOCC# O Socket Occupied(CPU插入)ν这个信号一般由CPU拉到地,在主机板上的作用主要是来告诉主机板CPU是不是第一次插入.若是第一次插入它会让你进CMOS对CPU进行重新设定.28. SMI# I System Management Interrupt(系统管理中断)ν此信号为一由ICH输出至CPU的信号,当CPU侦测到SMI#为Low 时,即进入SMM模式(系统管理模式)并到SMRAM(System Management RAM)中读取SMI#处理程序,当CPU在SMM模式时NMI、INTR及SMI#中断信号都被遮蔽掉,必需等到CPU执行RSM(Resume)指令后SMI#、NMI 及INTR中断信号才会被CPU认可.29. STPCLK# I Stop Clock(停止时钟)ν当CPU进入省电模式时,ICH(南桥)将发出这个信号给CPU,让它把它的Clock停止.28. TRDY# I/O Target Ready(目标准备)ν当TRDY#为Low时,表示目标已经准备好,可以接收数据.当为High时,Target没有准备好.29. VID[4:0] O Voltage ID(电压识别)ν这些讯号主要用于设定CPU的工作电压,在主机板中这些信号必须被提升到最高3V.二、VGA接口信号说明1. HSYNC O CRT Horizontal Synchronization(水平同步信号)ν这个信号主要提供CRT水平扫描的信号.2. VSYNC O CRT Vertical Synchronization(垂直同步信号)这个信号主要提供CRT垂直扫描的信号.ν3. RED O RED analog video output(红色模拟信号输出)ν这个信号主要为CRT提供红基色模拟视频信号.4. GREEN O Green analog video output(绿色模拟信号输出)这个信号主要为CRT提供绿基色模拟视频信号.ν5. BLUE O Blue analog video output(蓝色模拟信号输出)ν这个信号主要为CRT提供蓝基色模拟视频信号.6. REFSET I Resistor Set(电阻设置)ν这个信号将会连接一颗电阻到地,主要用于内部颜色调色板DAC.这颗电阻的阻值一般为169奥姆,精度为1%.7. DDCA_CLK I/O Analog DDC Clockν这个信号连接NB(北桥)与显示器,这个Clock属于I²C接口,它与DDCA_DATA组合使用,用于读取显示器的数据.8. DDCA_DATA I/O Analog DDC Clockν这个信号连接NB(北桥)与显示器,这个Data与Clock 一样也属于I²C接口,它与DDCA_CLK组合使用,用于读取显示器的数据.三、AGP接口信号说明1. GPIPE# I/O Pipelined Read(流水线读)ν这个信号由当前的Master来执行,它可以使用在AGP 2.0模式,但不能在AGP 3.0的规范使用.在AGP 3.0的规范中这个信号由DBI_HI(Dynamic Bus Inversion HI)代替.2. GSBA[7:0] I Sideband Address(边带地址)这组信号提供了一个附加的总线去传输地址和命令从AGPνMaster(显示卡)到GMCH(北桥).3. GRBF# I Read Buffer Full(读缓存区满)这个信号说明Master是否可以接受先前以低优先权请求的要读取的ν数据.当RBF#为Low时,中裁器将停止以低优先权去读取数据到Master.4. GWBF# I Write Buffer Full(写缓存区满)ν这个信号说明Master是否可以准备接受从核心控制器的快写数据.当WBF#为Low时,中裁器将停止这个快写数据的交易.5. ST[2:0] O Status Bus(总线状态)ν这组信号有三BIT,可以组成八组,每组分别表示当前总线的状态.6. ADSTB0 I/O AD Bus Strobe 0(地址数据总线选通)这个信号可以提供2X的时序为AGP,它负责总线AD[15:0].ν7. ADSTB0# I/O AD Bus Strobe 0(地址数据总线选通)ν这个信号可以提供4X的时序为AGP,它负责总线AD[15:0].8. ADSTB1 I/O AD Bus Strobe 1(地址数据总线选通)这个信号可以提供2X的时序为AGP,它负责总线AD[31:16].ν9. ADSTB1# I/O AD Bus Strobe 1(地址数据总线选通)ν这个信号可以提供4X的时序为AGP,它负责线总AD[31:16]. 10. SB_STB I SideBand Strobe(SideBand选通)这个信号主要为SBA[7:0]提供时序,它总是由AGPν Master驱动.11. SB_STB# I SideBand Strobe(SideBand选通)这个信号为SBA[7:ν0]提供时序只在AGP 4X 模式,它总是由AGP Master驱动.12. CLK O CLOCK(频率)ν为AGP和PCI控制信号提供参考时序.13. PME# Power Management Event(电源管理事件)这个信号在AGPν协议中不使用,但是它用在PCI协议中由操作系统来管理.关于PME#的详细定义请参加PCI协议规范.14. TYPEDET# Type Detect(类型检查)ν从AGP发展来看,有1X、2X、4X和8X四种模式,每种模式所使用的电压也不尽相同,那AGP控制器怎么知到你插的是什么样的显卡呢?就是通过这个信号来告诉AGP Control的.用这个信号来设定当前显卡所需的电压.15. FRAME# I/O Frame(周期框架)在AGP管道传输时这个信号不使用,这个信号只用在AGP的快写方式.ν16. IRDY# I/O Initiator Ready(起始者备妥)这个信号说明AGPνMaster已经准备好当前交易所需的数据,它只用在写操作,AGP Master不允许插入等待状态.17. TRDY# I/O Target Ready(目标备妥)这个信号说明AGPνTarget已经准备好整个交易所需要读的数据,这个Target可以插入等待状态.18. STOP# I/O Stop(停止)ν这个信号在AGP交易时不使用.对于快写方式,当STOP#为Low时,停止当前交易.19. DEVSEL# I/O Device Select(设备选择)ν在AGP交易时不使用.在快写方式,当在一个交易不能完成时,它就会被使用.20. REQ# I Request(请求)这个信号用于向中裁器请求当前总线使用权为开始一个PCI orνAGP交易.21. GNT# O Grant(保证)ν当中裁器收到Initiator发出请求后,若当前总线为空闲,中裁器就会通过GNT#把总线控制权交给Initiator.22. AD[31:0] I/O Address Data Bus(数据地址总线)ν这些信号用来传输地址和数据.23. C/BE[3:0]# I/O Command/Byte Enable(命令/位致能)当一个交易开始时,提供命令信息.在AGPν Master做写交易时,提供有效的位信息.四、Memory 接口信号说明1. SCMDCLK[5:0] O Differential DDR Clock(时钟输出)νSCMDCLK与SCMDCLK#是差分时钟输出对,地址和控制信号都在这个两个Clock正负边沿的交叉点采样.每个DIMM共有三对.2. SCMDCLK[5:0]# O Differential DDR Clock(时钟输出)ν这个Clock信号的意义同上.3. SCS[3:0]# O Chip Select(芯片选择)当这些信号有效时,表示一个Chip已被选择了,每个信号对应于SDRAM的一行.ν4. SMA[12:0] O Memory Address(内存地址)ν这些信号主要用于提供多元的行列地址给内存.5. SBA[1:0] O Bank Address(Bank选择)ν这个些信号定义了在每个内存行中哪个Bank被选择.Bank选择信号和内存地址信号联合使用可寻址到内存的任何单元.6. SRAS# O Row Address(行地址)ν行地址,它和SCAS#、SWE#一起使用,用来定义内存的命令.7. SCAS# O Column Address(列地址)ν列地址,它和SRAS#、SWE#一起使用,用来定义内存的命令.8. SWE# O Write Enable(写允许)写允许信号,它与SRAS#、SCAS#一起使用,用来定义内存的命令.ν9. SDQ[63:0] I/O Data Lines(数据线)ν这些信号线用于传输数据.10. SDM[7:0] O Data Mask(数据屏蔽)当在写周期有效时,在内存中传输的数据被屏蔽.在这八个信号中每个信号负责八根数据线.ν11. SDQS[7:0] I/O Data Strobe(数据选通)ν这些信号主要用于捕获数据.这八个信号每个信号负责八根数据线.12. SCKE[3:0] O Clock Enable(时钟允许)这个信号在上电时对内存进行初始化,它们也可以用于关闭不使用的内存数据行. ν五、HUB 接口信号说明1. HL[10:0] I/O Packet Data(数据包)这些信号主要用于Hub Interface读写操作时传输数据.ν2. HISTRS I/O Packet Strobe(数据选通)3. HISTRF I/O Packet Strobe Complement这个信号与HISTRS一起在HUBν inteface上传输与接收数据.六、LAN LINK接口信号说明1. LAN_CLK I Lan I/F Clock(网络时钟)这个信号由Lanν Chipset驱动输出,它的频率范围在5~50Mhz.2. LAN_RXD[2:0] I Received Data(接收数据)这些信号是由Lan Chipset驱动输出到南桥.ν3. LAN_TXD[2:0] O Transmit Data(传输数据)这些信号是南桥驱动输出到Lan Chipset.ν4. LAN_RSTSYNC O Lan Reset(Lan Chip 复位信号)七、EEPROM 接口信号说明1. EE_SHCLK O EEPROM Shift Clock(EEPROM时钟)ν这个信号由南桥驱动输出到EEPROM.2. EE_DIN I EEPROM Data In(EEPROM数据输入)这个信号是由EEPROM传数据到南桥.ν3. EE_DOUT O EEPROM Data Out(EEPROM数据输出)ν这个信号是由南桥传数据到EEPROM.4. EE_CS O EEPROM Chip Select(片选信号)当这个信号有效时EEPROM被选择.ν八、PCI接口信号说明1. AD[31:0] I/O Address Data Bus(地址数据总线)ν是用来传送起始地址.在内存或组态的交易期间,此地址的分辨率是一个双字组(Double Word)(即地址可被四整除),在读取或写入的交易期间,它是一个字节特定地址.2. PAR I/O Parity Signal(同位信号)ν在地址阶段完成后一个频率,或是所有写入交易的数据阶段期间,在IDRY#被驱动到僭态后一个频率,由Initiator驱动.所有读取交易的数据阶段期间,在TRDY#被驱动到僭态后一个频率,它也会被目前所寻址的Target驱动.在地址阶段完成后的一个频率,Initiator将PAR驱动到高或低态,以保证地址总线AD[0:31]与四条指令/位组致能线C/BE#[0:3]是偶同位(Even Parity).3. C/BE[3:0]# I/O Command/Byte Enable(指令或字节致能)由Initiator驱动,在AD Bus上传输地址时,用来表示当前要动作的指令.在ADν Bus上传输数据时,用来表示在目前被寻址之Dword 内将要被传输的字节,以及用来传输数据的数据路径.4. RST# O PCI Reset(复位信号)当重置信号被驱动成低态时,它会强迫所有PCI组态缓存器ν Master 及Target状态机器与输出驱动器回到初始化状态.RST#可在不同步于PCI CLK边缘的状况下,被驱动或反驱动.RST#的设定也将其它的装置特定功能初始化,但是这主题超出PCI规格的笵围.所有PCI输出信号必须被驱动成最初的状态.通常,这表示它们必须是三态的.5. FRAME# I/O Cycle Frame(周期框架)ν是由目前的Initiator驱动,它表示交易的开始(当它开始被驱动到低态时)与期间(在它被驱动支低态期间).为了碓定是否已经取得总线拥有权,Master必须在同一个PCI CLK信号的上边缘,取样到FRAME#与IRDY#都被反驱动到高态,且GNT#被驱动到低态.交易可以是由在目前的Initiator 与目前所寻址的Target间一到多次数据传输组成.当Initiator准备完成最后一次数据阶段时,FRAME#就会被反驱动到高态.6. IRDY# I/O Initiator Ready(备妥)Initiatorν备妥被目前的Bus Master(交易的Initiator)驱动.在写入期间,IRDY#被驱动表示Initiator准备接收从目前所寻址的Target传来的资料.为了确定Master已经取得总线拥有权,它必须在同一个PCI CLK信号的上升边缘,取样到FRAME#与IRDY#都被反驱动到高态,且GNT#被驱动到低态.7. TRDY# I/O Target Ready(目标备妥)ν Target备妥被目前所寻址的Target驱动.当Target准备完成目前的数据阶段(数据传输)时,它就会被驱动到低态.如果在同一个PCI CLK信号的上升边缘,Target 驱动TRDY#到低态且Initiator驱动IDRY#到低态的话,则此数据阶段便告完成.在读取期间,TRDY#被驱动表示Target正在驱动有效的数据到数据总线上.在写入期间,TRDY#被驱动表示Target准备接收来自Master的资料.等待状态会被插入到目前的资料阶段里,直到取样到TRDY#与IRDY#都被驱动到低态为止.8. STOP# I/O Stop(停止)ν Target驱动STOP#到低态,表示希望Initiator停止目前正在进行的交易.9. DEVSEL# I/O Device Select(设备选择信号)ν该信号有效时,表示驱动它的设备已成为当前防问的目标设备.换言之,该信号的有效说明总在线某处的某一设备已被选中.如果一个主设备启动一个交易并且在6个CLK周期内设有检测到DEVSEL#有效,它必须假定目标设备没能反应或者地址不存在,从而实施主设备缺省.10. IDSEL I Initialization Device Select(初始化设备选择)IDSEL是PCI装置的一个输入端,并且在存取某个装置的组态缓存器期间,它用来选择芯片.ν11. LOCK# I/O Lock(锁定)ν这是在一个单元(Atomic)交易序列期间(列如:在读取/修改/写入操作期间),Initiator用来锁定(Lock)目前所寻址的Target的.12. REQ# I Request(请求)ν表示管理者要求使用总线,此为一对一之信号,每一管理者都有与其相对应之REQ#信号.13. GNT# O Grant(保证)ν表示管理者对总线使用之要求已被同意,此为一对一之信号,每一管理者都有与其相对应之GNT#信号.九、Serial ATA接口信号说明1. SATA0TXP O Serial ATA 0 Transmit(串行ATA0 传送)2. SATA0TXN O Serial ATA 0 Transmit(串行ATA0 传送)这个信号与SATA0TXP组成差分信号对,用于传输数据.ν3. SATA0RXP I Serial ATA 0 Receive(串行ATA0 接收)4. SATA0RXN I Serial ATA 0 Receive(串行ATA0 接收)ν这个信号与SATA0RXP组成差分信号对,用于接收数据.5. SATARBIAS I Serial ATA Resistor Bias(串行ATA电阻偏置)6. SATARBIAS# I Serial ATA Resistor Bias(串行ATA电阻偏置)这个信号与SATARBIAS一样外接一颗与GND相接的电阻,为SATA 提供一个电压偏置. ν7. SATALED# OD SATA Drive Activity Indicator(SATA 读写指示)ν当这个信号为Low时,表示当前的SATA硬盘正在读写数据.十、IDE 接口信号说明1. DCS1# O Device Chip Select(设备芯片选择)ν这个信号为设备选择信号For Rang 100 .2. DCS3# O Device Chip Select(设备芯片选择)这个信号为设备选择信号For Rang 300.ν3. DA[2:0] O Device Address(设备地址)这些信号用于传输地址信号.ν4. DD[15:0] I/O Device Data(设备数据)ν这些信号用于传输数据信号.5. DREQ I Device Request(设备请求)当IDE Device要做一个DMA读写动作时,就会驱动这个信号向南桥发DMνA请求.6. DACK# O Device DMA Acknowledge(设备DMA确认)当IDEν Device已做了一个DMA请求后,若当前总线空闲,南桥就会驱动个信号,把控制权受权给IDE Device.7. DIOR# O Disk I/O Read(磁盘I/O读)ν这个信号由南桥来驱动,当它有效时,表示要对磁盘进行一个读操作.8. DIOW# O Disk I/O Write(磁盘I/O写)这个信号由南桥来驱动,当它有效时,表示要对磁盘进行一个写操作.ν9. IORDY I I/O Channel Ready(I/O通道备妥)这个信号由IDEν Device来驱动,当它有效时,表示IDE Device已经准备OK.十一、LPC接口信号说明1. LAD[3:0] I/O LPC Command、Address、Data这四信号线用来传输LPCν Bus的命令、地址和数据.2. LFRAME# I/O LPC Frame(LPC框架)ν当这个信号有效时,指示开始或结束一个LPC周期.3. LDRQ# I DMA Request(DMA请求)当Super I/O上的Device需要用DMA Channel时,就会驱动这个信号向南桥发出请求. ν十二、USB 接口信号说明1. USBP+ I/O USB Signal(USB 信号)2. USBP- I/O USB Signal(USB 信号)ν这个信号与USBP+组成差分信号对,组成一个USB Port,用来传输地址、数据和命令.3. OC# I Over Current(过电流保护)当有USBνDevice过电流时,这个信号会拉Low,告知南桥有过电流发生.十三、SMBus接口信号说明1. SMBDATA I/O SMBus Data(数据线)2. SMBCLK I/O SMBus Clock(时钟线)ν上面两个信号线为系统管理总线,以南桥为控制中心,对主机板的一些Device进行读写操作,如时钟IC、SPD等等.这两个信号在外部必须通过电阻进行Pull High.十四、AC-Link接口信号说明1. RST# O Reset(复位信号)这个讯信号由南桥驱动,对Audioν Chip进行初始化.2. SYNC O Sync(同步信号)3. BIT_CLK I Bit Clock(时钟输入)ν这是一个由Codec产生一个12.288Mhz串行数据时钟给南桥. 4. SDOUT O Serial Data Out(串行数据输出)由南桥发出数据到Codec.ν5. SDIN I Serial Data In(串行数据输入)ν由Codec发出数据到南桥.十五、FDC接口信号说明1. DRVDEN0 OD Drive Density Select Bit(驱动器密度选择位)ν驱动器密度选择信号.2. INDEX# I INDEX(索引)ν此Pin为施密特触发器输入,当这个为Low(有效时),通过索引孔把磁头定位起始磁道.3. MOA# OD Motor A On(马达A打开)当此信号为Low时,马达A起动.ν4. DSA# OD Drive Select A(驱动A选择)当此信号为Low时,驱动器A被选择.ν5. DIR# OD DIR(列目录)ν磁头步进马达移动方向,为High时,向外移动,为Low时向内移动.6. STEP# OD Step(步进)步进输出脉冲,当此信号为Low时,将产生一个脉冲移动磁头到另一个磁道.ν7. WD# OD Write Data(写数据)ν写数据,当此信号为Low时,写数据到被选择的驱动器.8. WE# OD Write Enable(写允许)写允许,当为Low表示允许写入盘片.ν9. TRACK0# I Track 0(0磁道)0磁道,当此信号为Low时,磁头将被定位到最外的一个磁道(0磁道).ν10. WP# I Write Protected(写保护)ν写保护,当此信号为Low时,磁盘片被写保护,只能读出数据不能写入.11. RDATA# I Read Data(读数据)当为Low时从软盘读数据.ν12. HEAD# OD Head(磁头)磁头选择,当为High时选择0面的磁头,当为Low时选择1面的磁头.ν13. DSKCHG# I Diskette Change(更换磁盘)ν盘片更换,当此信号为Low时,在上电状态可随时取出盘片.十六、Parallel Port 接口信号说明1. SLCT I Printer Select Status(打印机状态选择)ν这个Pin主要用于选择打印机模式,为High时,表示打印机被选择.打印有两种模式可以被设定ECP和EEP.2. PE I Page End(页面结束)当这个信号为High时,表示打印机已检测到页面结束.ν3. BUSY I Busy(打印机忙)ν当这个信号为High时,表示打印机很忙没有准备去接收数据. 4. ACK# I Acknowledge(确认)当这个信号为Low时,表示打印机已接收数据,并准备接受更多的数据.ν5. ERR# I Error(错误)ν当这个信号为Low时,表示打印机在打印时出错.6. SLIN# O Printer Select(打印机选择)这个信号为打印机输出线检查.ν7. INIT# O Initialization(初始化)当这个信号为Low时,表示对打印机进行初始化.ν8. AFD# O Auto Line Feed(自动走线)ν当打印机打印针出问题时,这个信号会被拉Low,打印机会自动再打一遍.9. STB# O Strobe(锁定)当这个信号为Low时,表示要把并行数据锁定到打印机里.ν10. PD[7:0] I/O Printer Data(打印机数据)ν这些信号用于传输打印机数据.十七、Serial Port 接口数据说明1. CTS# I Clear To Send(清楚发送)ν这个信号用于Modem控制输入,这个功能可以通过读握手状态寄存器Bit 4来测试.2. DSR# I Data Set Ready(数据准备)这个信号为Low时,表示Modem或数据放置已准备可以传输数据.ν3. RTS# I/O Request To Send(请求发送)ν这个信号为Low时,表示Modem或调制解调器可准备去发送数据.4. DTR# I/O Data Terminal Ready(数据终端准备)这个信号为Low时,表示数据终端已准备可以进行通信.ν5. SIN I Serial Data In(串行数据输入)ν这个信号用于去接收数据.6. SOUT O Serial Data Out(串行数据输出)这个信号用于去发送数据.ν。

相关文档
最新文档