材料科学与工程基础实验讲义
工程材料教案范文
工程材料教案范文课程名称:工程材料课程时间:40学时课程目标:1.了解各种工程材料及其在不同工程领域的应用;2.掌握工程材料的常见性能和特点;3.培养学生对工程材料的分析和应用能力。
教学内容:第一周:导论1.工程材料的定义和分类;2.工程材料在建筑、桥梁、交通、电子等领域的应用。
第二至四周:金属材料1.常见金属材料的性质和特点;2.金属材料的结构与性能;3.金属材料的加工和应用。
第五至六周:无机非金属材料1.常见无机非金属材料的性质和特点;2.无机非金属材料的结构与性能;3.无机非金属材料的制备和应用。
第七至九周:高分子材料1.常见高分子材料的性质和特点;2.高分子材料的结构与性能;3.高分子材料的制备和应用。
第十至十一周:复合材料1.复合材料的概念和分类;2.复合材料的性能和特点;3.复合材料的制备和应用。
第十二至十四周:新型工程材料1.纳米材料的性质和应用;2.纳米材料在能源、环境、医疗等领域的应用。
教学方法:1.理论授课:通过讲授理论知识,概述工程材料的基本概念、分类和应用;2.实验教学:通过实验展示材料的性能和特点,培养学生的实验操作能力;3.案例分析:通过分析工程实际案例,引导学生分析工程材料的选择和应用。
评估方式:1.平时成绩:包括课堂表现、作业和实验报告等;2.期中考试:考察对课程内容的理解和掌握程度;3.期末考试:综合考察对于工程材料知识的综合应用能力。
教学资源:1.教材:工程材料学,高等教育出版社;2.实验设备和材料:金属样品、塑料样品、纤维样品等;3.计算机和多媒体设备:用于展示课程相关案例和理论知识。
教学反馈和调整:1.根据学生的学习成绩和反馈情况,调整教学内容和进度,保证学生的学习效果;2.定期与学生进行交流和沟通,了解他们的学习需求和问题,及时进行解答和指导。
材料科学基础-实验指导-实验10塑性变形和再结晶(精)
实验十塑性变形和再结晶一、实验目的1. 研究金属冷变形过程机器组织性能的变化。
2. 研究冷变形金属在加热时组织性能的变化。
3. 了解金属的再结晶温度和再结晶后晶粒大小的影响因素。
4. 初步学会测定晶粒度的方法。
二、实验内容说明金属经冷加工变形后,其组织和性能均发生变化:原先的等轴晶组织,随着塑性变形量的增大,其晶粒沿变形方向逐渐伸长,变形度越大,则伸长也越显著;当变形度很大时,其组织呈纤维状。
随着组织的变化,金属的性能也发生改变:强度硬度增高,塑性则逐渐下降,即产生了“加工硬化”。
经冷变形后的金属加热到再结晶温度时,又会发生相反转变。
新的无应变的晶粒取代原先变形的晶粒,金属的性能也恢复到变形前的情况,这一过程称为再结晶。
再结晶温度与金属本性、杂质含量、冷变形程度、保温时间、材料的原始晶粒度等有关。
再结晶所产生的晶粒大小在很大程度上取决于冷变形程度的大小,在某一变形度变形,再经退火处理后晶粒异常粗大,该变形度称为临界变形度,它使材料性能恶化,是压力加工中切忌的问题。
本实验主要以低碳钢为对象,分析其塑性变形和再结晶过程中显微组织的变化。
观察经一定冷变形后不同退火温度下低碳钢的显微组织,测定再结晶度,此外对不同冷变形度的低碳钢材料进行高温退火,测定晶粒度,从而确定临界变形度。
三、实验步骤1. 教师讲解金属塑性变形与再结晶的组织状态,介绍用对照法、割线法测定晶粒度的方法。
2. 观察纯铁经10%,15%,20%,50%,70%变形度变形后的显微组织。
描绘其组织特征。
3. 观察纯铁经70%变形度在400℃,450℃,500℃,600℃,850℃退火半小时后的试样,一组五只,从中找得再结晶后晶粒大小与退火温度之间的定性关系。
4. 观察纯铁经10%,20%,30%,50%,70%五种变形度变形后在850℃退火半小时后组织,分别用对照法和割线法测得其晶粒度,确定其临界变形度的大致范围。
5. 观察并描绘纯铁冷变形的滑移线和冲击载荷下产生的机械双晶及纯锌压延后机械双晶、黄铜的退火双晶。
讲义(导热系数)
导热系数的测定【实验目的】1、感知热传导现象的物理过程。
2、学习用稳态法测量不良导体的导热系数。
3、学习测量冷却速率的方法。
【实验仪器】TC-3型导热系数测定仪、温度传感器、橡皮版、电子秒表、游标卡尺、电子天平【实验原理】1、傅立叶热传导方程导热系数(热导率)是反映材料导热性能的物理量,测定材料的导热系数在设计和制造加热器、散热器、传热管道、冰箱、节能房屋等工程技术和很多科学实验室中都有非常重要的应用。
如图一所示,设粗细均匀的圆柱形导体横截面面积为S ,高为h ,加热后上端温度为T 1, 下端温度为T 2,T 1> T 2,热量从上端流向下端。
若加热一段时间后,内部各个截面处的温度达到恒定,此时虽然各个截面的温度并不相等,但相等的时间内流过各个截面的热量必然相等(设侧面热损失可以忽略不计),这时热传递达到动态平衡,整个导体处于热稳定状态。
法国数学家、物理学家傅立叶给出了此状态下的热传递方程:hT T S t Q21-=∆∆λ (1) Q ∆是t ∆时间内流过导体横截面的热量,tQ∆∆叫传热速率。
比例系数λ就是材料的导热系数或叫热导率,单位是W/K m ⋅.(瓦/米•开)。
在此式中,s 、h 、T 1、T 2容易测得,关键是如何测出传热速率tQ∆∆。
2、用稳态法间接测量传热速率tQ∆∆ 如图二所示,将待测样品夹在加热盘和散热盘之间,设热传递已达到稳态,由(1)式可知,加热盘的传热速率为:hT T S t Q 21-=∆∆λ=2214-d h T T πλ, (2) d 为样品盘的直径,h 为样品盘的厚度。
散热盘的散热速率为:t Q ∆∆=cm 2T T tT=∆∆ , (3)图一图二c 为散热盘材料的比热,m 为散热盘的质量,2T T tT=∆∆表示散热盘在温度为T 2时的冷却速率。
(2),(3)式的右边相等:22214h -T T tTcm d T T =∆∆=πλ,所以2)(4212T T t TT T d cmh =∆∆⋅-=πλ 。
8讲义(杨氏模量)
实验十拉伸法测金属杨氏模量【实验简介】杨氏模量是工程材料的重要参数,它是描述材料刚性特征的物理量,杨氏模量越大,材料越不易发生变形,杨氏模量可以用动态法来测量,也可以用静态法来测量。
本实验采用静态法。
对于静态法来说,既可以用金属丝的伸长与外力的关系来测出杨氏模量,也可以用梁的弯曲与外力的关系来测量。
静态法的关键是要准确测出试件的微小变形量。
杨氏模量是重要的物理量,它是选定构件材料的依据之一,是工程技术常用参数,在工程实际中有着重要意义。
托马斯.杨生(Thomas Y oung ,1773-1829)是英国物理学家,考古学家,医生。
光的波动说的奠基人之一。
1773年6月13日生于米尔费顿,曾在伦敦大学、爱丁堡大学和格丁根大学学习,伦敦皇家学会会员,巴黎科学院院士。
1829年5月10日去世。
早期提出和证明了声波和光波的干涉现象(著名杨氏双缝干涉实验),并用光的干涉原理解释了牛顿环现象等。
1807年提出了表征弹性体的量——杨氏模量。
【实验目的】1、学会测量杨氏模量的一种方法(静态法);2、掌握用光杠杆法测量微小长度变化的原理(放大法);3、学习用逐差法处理实验数据。
图10-1 托马斯.杨【实验仪器及装置】杨氏模量测定仪、光杠杆、望远镜标尺组、螺旋测微器(25mm、0.01mm)、游标卡尺(125mm、0.02mm)及钢卷尺(2m、1mm)等L图10-2 望远镜标尺图10-3 杨氏模量测定仪图10-4 实验装置放置图【实验原理】1、静态法测杨氏模量一根均匀的金属丝或棒,设其长度为L ,截面积为S,在受到沿长度方向的外力F 的作用下伸长L ∆。
根据胡克定律可知,在材料弹性范围内,其相对伸长量L L /∆(应变)与外力造成的单位面积上受力F/S(应力)成正比,两者的比值LL S F Y //∆=(10-1)称为该金属丝的弹性模量,也称杨氏模量,它的单位为2/N m (牛顿/平方米)。
实验证明,杨氏模量与外力F 、物体的长度L 和截面积S 的大小无关,只取决于被测物的材料特性,它是表征固体性质的一个物理量。
新能源器件设计实验-材料科学与工程 教学大纲
《新能源器件设计实验》课程教学大纲一、课程基本信息二、课程目标及对毕业要求指标点的支撑三、教学内容及进度安排四、课程考核注:各类考核评价的具体评分标准见《附录:各类考核评分标准表》五、教材及参考资料教材:自编讲义参考书:[1] 《锂离子电池材料合成与应用》冯传启,王石泉,吴慧敏编著,科学出版社2017,第31版,ISBN:9787030512031[2] 《锂离子电池》郭炳焜,徐徽,王先友,肖立新编著,中南大学出版社,2002,第一版,ISBN:9787810615631[3] 《锂离子电池原理与关键技术》黄可龙,王兆翔,刘素琴编著,-北京:化学工业出版社,2007,第一版,ISBN:9787122016720[4] 《锂离子电池-应用与实践》吴宇平,戴晓兵,马军旗,程预江编著,-北京:化学工业出版社,2004,第一版,ISBN:9787502552664六、教学条件硬件条件:实验场地:实验室面积不小于60 m2,配有电教设备,有供水,供电(供电须有短路及漏电保护),实验室须配备灭火器;通用仪器:精度0.01g电子天平2台,精度0.1 mg电子天平2台;实验室用纯水装置1台;CHI660E电化学工作站(配有一台一体机电脑)20台;电磁加热搅拌器20台;锂离子电池测试仪1 mA量程的4台,10 mA量程的2台;用于封装锂离子纽扣电池的手套箱一台(双工位操作)实验室需要配备两台简易的办公用电脑,用于特殊情况(尤其是家庭困难)学生使用现代用具撰写实验报告;实验用到的相关化学药品及试剂。
软件条件:6个专业教师(每人负责一个实验);专业数据分析软件(电化学工作站自带)、Origin 9.0实验绘图软件、文献数据库(知网、Web of Science)。
大纲执笔人:马国强审核人(专业负责人/系主任):制定时间:2022年8月16日附录:各类考核评分标准表1、新能源器件设计实验课程共6个实验,学生最后总成绩为所有实验内容的平均成绩;2、实验报告要求使用现代化办公软件按照课程所提供的模板撰写,每晚交一周扣10分;3、如有发现伪造实验数据,全部实验成绩直接记为零分。
材料科学教案
材料科学教案尊敬的教师:材料科学是一门研究材料性质、组成和应用的学科。
它对于培养学生的实践能力、创新能力以及对材料技术的认识具有重要作用。
为了帮助您制定一份优秀的材料科学教案,本文将以简洁明了的方式,介绍教案的基本结构和内容。
一、教学目标教学目标是教案的基石,它明确了本节课学生需要掌握的知识、技能和意识。
在材料科学教案中,我们可以设置如下目标:1. 学生能够理解材料科学的基本概念和原理;2. 学生能够熟悉不同材料的特性和应用;3. 学生能够运用所学知识解决实际问题。
二、教学内容教学内容是教案中的重点部分,它包括所用教材的章节、课时分配、教学方法和教学资源等。
以下是一个材料科学教案的内容示例:第一课时:材料科学基础概念的引入- 引导学生了解材料科学的定义及其研究范围;- 探讨材料的分类及其特性;- 关联生活中的材料应用实例,引发学生对材料科学的兴趣。
第二课时:材料性能与测试方法- 研究不同材料的物理、化学性质;- 学习常用的材料测试方法,如拉伸试验、冲击试验等;- 分析测试结果,比较不同材料的性能差异。
第三课时:材料加工与表面处理- 探究常见材料的加工方法,如铸造、锻造、焊接等;- 介绍不同材料的表面处理技术,如涂层、镀膜等;- 分析加工和表面处理对材料性能的影响。
第四课时:材料在工程中的应用- 结合实际工程案例,探讨材料选择的考虑因素;- 建立材料应用与性能需求之间的联系;- 总结不同材料在工程中的应用领域。
三、教学方法教学方法是达成学习目标的途径和手段。
在材料科学教案中,我们可以采用以下教学方法:1. 实验探究法:通过实验让学生亲自体验材料科学的原理和应用。
2. 问题导入法:以具体问题引导学生思考和探索,激发他们的学习兴趣。
3. 小组合作学习法:通过小组合作,培养学生的合作意识和团队精神。
4. 案例分析法:通过分析实际案例,培养学生解决实际问题的能力。
四、教学评估教学评估是教学质量的衡量标准,它有助于教师了解学生的学习状况和教学效果。
新材料技术概论南京理工大学材料科学与工程系21页PPT
线膨胀系数是指由室温至试验温度间,每升高1度, 样品长度的相对变化率。
通过对材料的热膨胀性能的测量,得到材料的热膨 胀曲线,从而确定材料的特征温度。
α=α石英+ΔL/(L0×ΔT)
(1)
ΔL—— 试样从温度T1至T2时的伸长量
L0 —— 试样在温度T1时的原长 ΔT—— 温度变化的区间
谢谢!
xiexie!
谢谢!
xiexie!
❖ 装上热电偶,使其处在样品正上方。
❖ 接通电源,调整电流,使其按设定的速度 (5℃/min)均匀升温。每5℃作为一个数据记 录点,记录相应的温度和试样的长度。
❖ 结果计算,测定样品线膨胀率和线膨胀系数。 ❖ 绘出材料的热膨胀曲线,确定其特征温度。 ❖ 关闭电源。
五、数据记录及处理 1)数据记录
ห้องสมุดไป่ตู้
三、实验器材
激光粒度分析仪 玛瑙研钵/球磨罐 球磨机 电热磁力搅拌器 高温硅钼棒电炉 分析天平等
四、实验步骤
采用甘氨酸-硝酸盐法制备陶瓷氧化物粉体,按既定组成化 学计量比称料、配成溶液,加入金属离子总量2倍左右 的甘氨酸,快速搅拌,加热至200℃至发生自燃烧反 应,燃烧产物在高温炉中900℃煅烧,煅烧产物研磨 后即得氧化物粉体。
散射理论和实验结果都告诉我们,散射角θ的大小与颗粒的 大小有关,颗粒越大,产生的散射光的θ角就越小;颗粒 越小,产生的散射光的θ角就越大。
进一步研究表明,散射光的强度代表该粒径颗粒的数量。在 不同的角度上利用光电探测器测量散射光的强度,将这些 包含粒度分布信息的光信号转换成电信号并传输到电脑中, 通过专用软件用Mie散射理论对这些信号进行处理,就可 以准确地得到所测试样品的粒度分布。
材料科学与工程基础实验指导书
3
实验一
普通光学金相显微镜的构造及使用
一、实验目的 1.了解普通光学显微镜的构造,各主要部件及元件的效用。 2.掌握正确的使用操作规程及维护方法。 二、金相显微镜的原理及使用 1.原理 正常人眼看物体时, 最适宜的距离大约在 250mm 左右, 在这一距离眼睛可以很好地区 分物体的细微部分而不易疲劳,这个距离称为“明视距离” 。物体上的两点要能被眼睛分辨 清楚,必须使它们的像落在人眼视网膜的两个不同的感光细胞上,从眼睛的光心到物体两 端所引的两条直线的夹角叫视角,人眼可分辨清楚的最小视角为 2′∼4′,在 250mm 处能分 辨的最小距离约 0.15∼0.30mm。为了增大视角,就在物体与眼睛间置一放大镜,其放大倍 数为:
M =
250 f
f 为放大镜的焦距,从上式可见,f 愈小、M 愈大,但实际上不可能用焦距很短的放大镜 来观察。透镜的曲率半径太小,眼睛所观察 的范围就更小,且象差愈显著,所以放大镜 一般在 20 倍以下, 若要再提高放大倍数以观 察更细微的物体,就必须用显微镜。 显微镜通过物镜及目镜两次放大而得到 倍数较高的放大像。图 1-1 是它的放大原理 图。 若将试样置于物镜下方的焦点 F1 外少 许,则物镜将试样上被观察的物体(以箭头 所指 WS 表示)放大,而在物镜的上方得到 一个倒立的实像 W1S1, 在设计显微镜时就已 安排好使这个实像刚好落在目镜的焦点 F2 以 内,因而再经过目镜放大后,人眼在目镜上 观察时, 在 250mm 的明视距离处, 看到一个 经再次放大的虚像 W2S2。 所以观察到的像是 经物镜和目镜两次放大的结果。总的放大倍 数 M 应为物镜放大倍数 M 物与目镜放大倍数 M 目的乘积,即:
6
5.调整和维护 1)光源的调整 光源的调整包括径向调整与轴向调整,前者的目的是让发光点调到仪器的光学系统的 光轴上;后者主要是让灯丝通过聚光镜后汇聚在孔径光阑上,以得到“平行光照明” 。光源 精确调整好后应达到视野照明最明亮且均匀,视野内无灯丝像。 2)光阑的调整 在金相显微镜的照明系统中常有两个孔径可变的光阑。孔径光阑装在光源聚光透镜之 后,视域光阑装在孔径光阑之后。 (1)孔径光阑 孔径光阑用以控制射向物镜的入射光束的粗细。孔径光阑若开得太大,则入射光过强, 增加了镜筒内部的反射与炫光,降低影像的衬度。缩小孔径光阑可避免上述弊病,且可消 除由透镜边缘引起的球面像差并提高映像的景深。但若孔径光阑缩得太小,光束只通过物 镜的中心部分,使实际的数值孔径减小,使物镜的分辨能力降低。因此,应按观察的要求 适当调节孔径光阑的大小。一般是调到刚好使光线充满物镜的后透镜为宜,此时物镜的分 辨能力最高。有人认为可以将试样调焦后,去掉目镜,观察镜筒内的光斑,以刚好充满镜 筒底部的四分之三为准。一般却是调节到观察时物像最清晰、不产生浮雕,晶界不变形、 不弯曲,光的强弱使人眼舒适为原则。物镜的数值孔径不同,透镜组尺寸也不同,更换物 镜后必须重新调节孔径光阑。 (2)视场光阑 视场光阑用以改变视场大小、减小镜筒内部的反射与炫光以提高映像的衬度而不影响 物镜的分辨能力。视场光阑的调节方法是在显微镜调焦后,缩小视场光阑,在目镜中观察 其像,然后扩大它,使其边缘正好包围整个视物。有时为了观察某一试样的局部细致组织, 也可将视场光阑缩小到刚好包围此局部组织,以收到更好的效果。 总之,孔径光阑与视场光阑,都是为了提高成像质量而加入到光线系统中去的。通过 调节这些光阑可最大限度地利用物镜的鉴别率并得到良好的衬度。 3)维护要点 金相显微镜是精密光学仪器,使用时必须了解其基本原理及操作规程,要认真维护、 保管,细心谨慎使用。 (1)操作显微镜时双手及样品干净,绝不允许把侵蚀剂未干的试样在显微镜下观察, 以免腐蚀物镜。 (2)操作时应精力集中,小心谨慎。接电源时应通过变压器,装卸或调换镜头时必须 放稳后才可松手,不可粗心大意。 (3)调焦距时,应先转动粗调螺丝,使物镜尽量接近试样(目测) ,然后一边从目镜 中观察,一边调节粗调螺丝使物镜慢慢上升直到逐渐看到组织时,再用微调螺丝调至清晰 为止。 (4)显微镜的光学系统部分严禁用手或手帕等去擦,而必须用专用的驼毛刷或镜头纸 轻轻擦试。 (5)使用过程中,若发生故障,应立即报告老师,不得自行拆动。
材料结构性能实验讲义
材料结构性能实验讲义实验教学指导书学院名称材料科学与⼯程学院课程名称材料结构与性能开课实验室材料性能实验室执笔⼈陈⽟清审定⼈修(制)订⽇期2012-4-10实验⼀系列陶瓷试样的制备与烧结本实验主要是为后续试验准备所需系列陶瓷试样,并了解陶瓷材料的基本制备过程,掌握陶瓷的造粒、⼲法成型及烧结原理。
⼀、⽬的要求1.掌握陶瓷材料的配⽅设计及配制过程;2.学会陶瓷材料的⼲法成型⽅法;3.掌握陶瓷材料的常压烧结⽅法及烧结制度。
⼆、主要原料和设备氧化铝粉体、氧化钙粉体、氧化镁粉体、氧化锆粉体及其它原料;或者已经配制好的氧化铝粉体;钢制成型模具两套;⼲燥箱⼀台;1600℃硅钼棒电炉⼀台;万能试验机。
三、实验步骤1.氧化铝陶瓷强度试样的制备⾸先进⾏配⽅设计,然后根据配⽅将氧化铝粉体与适量氧化钙粉体及氧化镁粉体按照⽐例加⼊球磨机中进⾏混合,取出后⼲燥,过筛造粒。
然后将造粒粉体加⼊模具中,在万能试验机上进⾏⼲压成型。
成型试样放进⼲燥箱中⼲燥,⼲燥试样经修坯、检查⽆缺陷后,待烧结。
2. 将待烧结系列试样放⼊1600℃硅钼棒电炉中,按照设定的烧结制度烧成试样。
3.烧结制备好的各系列氧化铝陶瓷试样,经检查⽆缺陷后备⽤。
四、实验报告实验报告严格按照⼭东轻⼯业学院实验报告格式总结填写,并分析制备过程中造粒的作⽤、⼲燥坯体与烧结陶瓷试样产⽣缺陷的原因。
实验⼆陶瓷材料的抗压强度⼯业陶瓷抗压强度系指⼀定尺⼨和形状的试样在规定的试验条件下受轴向压⼒破碎时,单位⾯积上所承受的最⼤试验⼒,是⼯业陶瓷重要的⼒学性能之⼀。
压缩试验⽤的试样通常为圆柱形,为了防⽌试验时试样的纵向失稳,陶瓷试样的⾼度和直径之⽐⼀般⼤于2,最好为1—2之间。
⼀、⽬的要求1.了解抗压试样制备要求;2.掌握⼯业陶瓷抗压强度的测定⽅法。
⼆、主要试验设备1. 试验机:能保证⼀定的试验⼒施加速率,试验⼒⽰值相对误差不应超过±1%。
试样压碎时的最⼤压⼒应在试验机使⽤量程的20%--90%之间。
混凝土试验培训讲义
混凝土试验培训讲义一、引言混凝土是建筑领域中常用的一种建筑材料,其性能的优劣直接影响到建筑物的质量和安全。
为了保证混凝土的质量,我们需要对混凝土进行各项试验,从而掌握混凝土的性能指标和工程应用要求。
本次培训将重点介绍混凝土试验的基本知识和操作技巧,希望能够帮助大家更好地了解混凝土试验的重要性和方法。
二、混凝土试验的目的1. 通过试验了解混凝土的物理性质和材料特性。
2. 评定混凝土的质量和性能,为建筑工程提供依据。
3. 检验混凝土的强度、变形、耐久性等重要指标,以及影响因素。
三、混凝土试验的基本内容1. 混凝土的成分试验:主要包括水泥、骨料、粉煤灰等成分的试验。
2. 混凝土的新鲜混凝土性能试验:包括坍落度试验、流动度试验等。
3. 混凝土的强度试验:包括抗压强度试验、抗折强度试验等。
4. 混凝土的耐久性试验:包括抗渗试验、抗冻融试验等。
5. 混凝土的应力-应变关系试验:包括受拉试验、受压试验等。
四、常用的混凝土试验设备和方法1. 抗压强度试验机:用于测试混凝土的抗压强度,操作简单,结果准确可靠。
2. 抗折强度试验机:用于测试混凝土的抗折强度,适用于较粗骨料的混凝土试验。
3. 包装试验:通过包装试验机测试混凝土的收缩性能和抗渗性能,可较为真实地模拟混凝土在不同环境条件下的性能。
4. 变形试验:通过变形试验仪测试混凝土的变形性能,可用于评估混凝土的变形特性和工作性能。
5. 硬度试验:通过超声波硬度计测试混凝土的硬度指标,可以帮助评估混凝土的装配性能和工程适用性。
五、混凝土试验的操作技巧1. 试验前的材料准备:需要准备好试验所需的混凝土样品和试验设备,在操作前要对设备进行检查和保养。
2. 试验操作的准确性:在进行试验操作时,应严格按照试验方法进行,确保操作的准确性和结果的可靠性。
3. 试验数据的记录和分析:要及时记录试验数据,并对结果进行分析和总结,为工程提供准确的数据支持。
六、混凝土试验的注意事项1. 安全第一:在进行混凝土试验时,要严格遵守操作规程,保证试验操作的安全性。
金属材料学实验讲义
《金属材料学》课程实验指导书西安科技大学材料科学与工程学院《金属材料学》课程实验说明一、实验目的与任务金属材料学是金属材料工程专业的一门综合性、应用性较强的必修课,本课程的实验教学是配合教师课堂教学内容加深对理论知识的理解,并联系实际对学生进行实验技能训练而开设的,其目的是使学生掌握常见金属材料合金化原理、显微组织及大致性能,从而为以后金属材料研究和正确选材打下基础。
二、实验教学的基本要求1.搞清合金化原理。
2.加深理解金属材料成分、热处理工艺、组织与性能的关系。
3.观察与分析典型的显微组织。
三、本课程开设的实验项目实验名称、内容及学时分配表四、实验成绩的考核与评定办法:本门课程实验成绩的考核是根据实验操作和实验报告综合评定的,其中实验操作成绩占50%,实验报告成绩占50%,最后实验成绩占课程成绩的20%。
五、大纲说明实验一、常用合金钢的显微组织观察与分析一、实验目的1. 观察和研究各种不同类型合金钢的显微组织特征。
2.了解几种合金钢的成分,显微组织对性能的影响。
二、实验概述合金钢的显微组织比碳钢复杂,在合金钢中存在基本相有:合金铁素体,合金奥氏体,合金碳化物(包括合金渗碳体及特殊碳化物)及金属化合物等,其中合金铁素体与合金渗碳体及大部分的合金碳化物的组织特征,与碳钢中的铁素体和渗碳体无明显区别,而合金钢中的金属化合物的组织形态则随种类不同而各异,合金奥氏体在晶粒内常常存在滑移线和孪晶的特征。
合金钢按用途可分为结构钢,工具钢、特殊性能钢三大类。
合金钢的显微组织因其处理方法不同,处于不同状态下则有不同的组织,如退火状态有亚共析钢、共析钢、过共析钢及莱氏体钢,正火状态有珠光体类、贝氏体类、马氏体类及奥氏体类钢,还有些钢在固态下具有铁素体组织,故称之为铁素体钢,如高铬不锈钢。
1.调质钢(合金结构钢40Cr)合金调质钢是指调质处理后的合金结构钢,调质处理后具有高强度与良好的塑性及韧性。
40 表示含碳量0.4 % , Cr 是加入的合金元素,起着增加淬透性,使调质后的回火索氏体组织得到强化。
《DNA 的粗提取及鉴定》 讲义
《DNA 的粗提取及鉴定》讲义一、DNA 粗提取及鉴定的原理1、 DNA 在不同浓度氯化钠溶液中的溶解度不同在 014mol/L 的氯化钠溶液中,DNA 的溶解度最小;随着氯化钠溶液浓度的升高,DNA 的溶解度逐渐增大。
利用这一原理,可以将 DNA 与其他杂质分离。
2、 DNA 不溶于酒精溶液但细胞中的某些蛋白质则溶于酒精溶液。
利用这一特点,可以进一步提纯 DNA。
3、 DNA 遇二苯胺试剂会呈现蓝色这是鉴定 DNA 的常用方法。
二、实验材料的选择1、材料选取的原则应选取 DNA 含量相对较高的生物组织,以保证实验能够提取到足够量的 DNA。
同时,材料应新鲜,以避免 DNA 降解。
2、常见的实验材料鸡血细胞是进行本实验的常用材料之一。
鸡血细胞中 DNA 含量丰富,且取材方便。
三、实验步骤1、制备鸡血细胞液将新鲜的鸡血加入柠檬酸钠溶液中,防止血液凝固。
然后离心或静置,使血细胞沉淀,去除上清液,留下鸡血细胞液。
2、破碎细胞,释放 DNA向鸡血细胞液中加入蒸馏水,使细胞吸水涨破,释放出细胞内的物质,包括 DNA。
3、去除杂质(1)过滤:用纱布过滤,去除较大的杂质。
(2)溶解:向滤液中加入 2mol/L 的氯化钠溶液,使 DNA 充分溶解。
(3)析出:缓慢加入蒸馏水,使氯化钠溶液浓度降低至014mol/L,此时 DNA 溶解度最小,析出白色丝状物。
(4)过滤:用多层纱布过滤,收集 DNA 黏稠物。
4、 DNA 的进一步提纯将 DNA 黏稠物放入 2mol/L 的氯化钠溶液中溶解,然后加入等体积冷却的酒精溶液,轻轻搅拌,DNA 会析出,而蛋白质等杂质则溶解在酒精溶液中。
再次过滤,得到较纯净的 DNA。
5、 DNA 的鉴定取两支洁净的试管,分别编号为 1、2。
向 1 号试管中加入 2mL 氯化钠溶液(0015mol/L),作为对照。
向 2 号试管中加入 2mL DNA 提取液。
然后向两支试管中各加入 4mL 二苯胺试剂,混合均匀后,在沸水浴中加热 5 分钟。
材料的光学性能测试
材料科学实验讲义(一级实验指导书)东华大学材料科学与工程中心实验室汇编2009年7月一、实验目的和要求1、掌握透过率、全反射和漫反射测定的基本原理;2、掌握透过率、全反射和漫反射测定的操作技能;3、测定聚合物膜和无机非金属材料的薄膜的透过率和全反射率,学会测定无机材料粉末的漫反射光谱。
4、针对不同的材料形式(如薄膜,粉末等)能判断该如何选择不同的测试模式。
二、实验原理光学性能是材料的重要也是最常用的性能之一,薄膜、陶瓷、玻璃、粉末、聚合物、人工晶体甚至胶体的性能评价都离不开光学性能的表征。
本实验中所涉及到材料的光学性能主要是指透过率、反射率尤其是漫反射模式测定的反射率等光学性能的测定,涉及的材料包括聚合物、粉末和玻璃等。
在通常所用的分光光度法中,常常将待测定的物质溶解在溶剂中,通过比色来定性或定量物质的含量或浓度等。
一些无机粉末或者聚合物本身并不溶于常见的溶剂中,将这些不溶解的物质分散在液体介质中得到的是消光光谱而不是吸收光谱,测定的是消光(Extinction)而不仅仅是吸收(Absorption)。
另外,对薄膜材料来说,能进行原位测定是重要的,因为在溶解过程中往往改变了材料的状态,所测定的也不再是实际应用中所要知道的结果。
薄膜、粉末等是实际应用中常见的材料形式,这些材料的光学性能的测定对材料提出了更高的要求。
目前中高档的紫外-可见分光光度计均可选配积分球附件来测定物质的漫反射光谱(UV-vis diffuse reflenctance spectrum,UV-vis DRS),UV-vis DRS特别适用粉末样品的测定。
聚合物、聚合物与无机物的杂化材料、多种无机化合物半导体均可用UV-vis DRS进行测定。
带积分球的分光光度计还可测定玻璃、有机玻璃、塑料制品的透过率和反射率等。
下面就有机物、无机物和化合物的紫外-可见光谱的原理作详细的介绍:1、有机物的紫外—可见吸收光谱:分子的紫外—可见吸收光谱是基于物质分子吸收紫外辐射或可见光,其外层电子跃迁而成,又称分子的电子跃迁光谱。
材料科学基础实验Ⅰ---实验大纲
实验教学大纲:材料学基础实验Ⅰ教学大纲课程名称:材料学基础实验Ⅰ课程编码:050242021课程类别:专业基础课课程性质:必修适用专业:金属材料工程课程总学时:8实验(上机)计划学时:8开课单位:材料学院一、大纲编写依据本实验教学大纲依据:我校材料类本科生培养计划和培养目标,综合本专业的特点,制定本大纲,指导实践教学环节。
二、实验课程地位及相关课程的联系本实验课程是金属材料工程专业本科生必修的一门独立实验课,让学生熟悉和掌握金属材料的有关常用实验技术和方法;在学习本课程前应先学完《材料工程基础》、《材料科学基础》,《物理化学》《普通物理》等课程,可以为后期的专业课程实验、课程设计、毕业论文(设计)以及毕业后从事相关工作打下坚实的理论及实践基础。
三、实验目的、性质和任务实验目的:1、了解金相显微镜的构造与掌握基本使用方法;掌握教学互动系统操作,会利用图像分析软件对某些参数进行测定。
学会最基本的晶粒度的测定(二选一)2、掌握金相显微试样的一般制备方法,独立完成金相试样的基本操作,熟练操作抛光机。
3、结合理论教学,对典型的二元合金组织进行观察和分析;掌握铁碳合金的平衡组织观察和分析,了解含碳量对铁素体、珠光体和渗碳体对组织及相对量的影响。
实验性质:操作性、观察性、验证、综合性实验。
实验任务:完成实验项目中规定的各项实验要求。
通过验证、综合实验,培养学生观察问题、分析问题和运用综合知识独立解决问题的能力通过实验操作、观察、结果分析,培养正确处理实验数据和分析实验结果的能力,以及正确书写实验报告的能力。
四、实验基本要求1、实验项目和实验内容的选定及其选定原则说明材料学基础实验是材料研究的重要组成部分。
为了使学生能更好地把理论知识与实践知识结合起来,独立开设8学时实验。
通过实验让学生熟悉和掌握金属材料的有关常用实验技术和方法,为以后开展实验工作和研究打下基础。
2、每个实验项目应达到的教学要求和具体规定第一个实验:了解金相显微镜的构造与掌握基本使用方法,学会光学显微镜的维护,初步认识并绘出组织示意图;掌握教学互动系统操作,会利用图像分析软件对某些参数进行测定。
《材料科学与基础实验》
4
四、实验内容和步骤 1、 每人轮流在置有各种标准样品的显微镜下观察样品的形貌特征并绘图。 2、 调节显微镜的放大倍数,观察珠光体特征变化情况。 3、 对某一碳钢试样,估计它各组织所占的面积百分比,估算出它的含碳量,并 和标准样品含碳量对比估算误差。 五、思考讨论题 1、 什么是平衡组织?怎样得到平衡组织? 2、 铁碳合金中主要有几个相?几个基本组织? 3、 根据相图,叙述不同含碳量的铁碳合金的结晶过程。 4、 根据各铁碳合金的显微组织,估计它们的机械性能。 5、 决定铁碳合金组织的因素是什么?为什么? 6、 在哪些铁碳合金中出现三次渗碳体?如何产生? 六、显微组织照片
2
坚硬而脆,抗浸蚀能力很强,经 4%硝酸酒精浸蚀后成白亮色。在过共晶白口铸 铁中的一次渗碳体是从液态中直接结晶成的,故呈条状分布(如图 1-10 所示) 。 在过共析钢和亚共晶白口铸铁中的二次渗碳体(如图 1-11 所示)是从奥氏体中 沿晶界析出的,所以呈网状分布在珠光体的周围。由于渗碳体硬度很高,所以在 磨面上是突起的。 铁素体和渗碳体经 4%硝酸酒精浸蚀后都呈白亮色,为了加以区别,可改用 苦味酸钠溶液浸蚀(苛性钠 25 克,苦味酸 2 克,加水 100 毫升,在 100℃煮沸 5 —10 分钟) 。这时渗碳体被染成暗褐色(接近黑色) ,铁素体仍呈白亮色。如图 1-12 所示。 (3)珠光体:是铁素体和渗碳体的两相混合物,有片状珠光体和球状珠光 体两类。如图 1-7,1-11。 片状珠光体是经一般退火后得到的铁素体和渗碳体的片层交叠组织,经 4% 硝酸酒精浸蚀后,这种组织在显微镜下由于放大倍数不同而有不同的特征,在 600 倍以上观察时,可见珠光体中平行相间的宽条铁素体和细条渗碳体都呈白亮 色,而边界呈黑色;在 400 倍左右观察时,由于显微镜鉴别率降低,白亮的细条 渗碳体被黑色的边界所“吞没”而呈黑色,这时看到的珠光体是宽条白亮色铁素 体和细条渗碳体相间; 在 200 倍以下观察时, 宽条白亮色的铁素体也难以区分了, 这时的珠光体特征是暗黑色,低碳钢中的珠光体量很少,片间距细小,即使在较 高倍观察时也是暗黑色的。 球状珠光体是过共析钢球化退火后的组织,片状分布的渗碳体变成了球状, 经 4%硝酸酒精浸蚀后,球状珠光体的特征是在白亮色的铁素体基体上分布着白 色的渗碳体颗粒,它们的边界是黑色的。 (4)莱氏体:是奥氏体和渗碳体的共晶体,刚由液体中结晶出来的莱氏体 是渗碳体的基体上分布着颗粒状的奥氏体。从共晶温度冷却时,从奥氏体中析出 二次渗碳体,二次渗碳体和基体渗碳体连接起来,所以在组织中很难区分。当冷 却到共析温度时, 奥氏体转变为珠光体。在常温中观察到的组织已不是渗碳体和 奥氏体,而是渗碳体和珠光体,但一般仍称为莱氏体酒精浸蚀后, 莱氏体的组织特征是在白色的渗碳体基体上分布着 许多黑色颗粒状的小条状珠光体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华南农业大学材料与能源学院现代材料科学与工程基础实验讲义供材料科学专业本科生使用胡航2016-02-30实验一 金属纳米颗粒的化学法制备一、实验内容与目的1. 了解并掌握金属纳米颗粒的化学法制备过程并制备Au 或Ag 纳米颗粒。
2. 了解金属纳米颗粒的光学特征。
二、实验原理概述化学制备法是制备金属纳米微粒的一种重要方法,在基础研究和实际应用中被广泛采用。
贵金属纳米颗粒的化学法制备主要有溶胶凝胶法、电镀法、氧化还原法等。
其中氧化还原法又包括热分解和辐照分解等。
贵金属纳米颗粒具有广泛的应用,如生物医学领域的杀菌,物理化学领域的催化等。
本实验以金胶为例介绍交替法制备贵金属纳米颗粒,并以硝酸银在烷基胺中的热分解为例介绍表面活性剂中氧化还原法制备贵金属纳米颗粒。
1. 胶体金属(Au 、Ag )的成核与生长总的来说,化学法制备金属纳米粒子都是让还原剂提供电子给溶液中带正电荷的金属离子形成金属原子。
如,对于制备胶体金,如果采用柠檬酸三钠作为还原剂,其反应过程如下:2H O -42223222222ΔHAuCl + HOC(CH )(CO )Au +Cl +CO +HCO H+CO(CH )(CO )+......−−→粒子 2. 硝酸银热分解法制备银纳米粒子热分解法制备金属纳米颗粒原理简单,实验过程易操作。
对制备数纳米到数十纳米尺寸范围的纳米颗粒有较大优势。
硝酸银在烷基胺中加热搅拌可形成澄清透明溶液。
温度上升到150~200 °C 时,溶液颜色由浅色到深色快速变化,生成的银纳米颗粒被烷基胺包裹,稳定在溶液中。
通过对样品洗涤、离心沉淀,可获得烷基胺包裹的银纳米粒子。
三、实验方法与步骤(一)实验仪器与材料硝酸银,柠檬酸三钠,油胺或十八胺,十八烯(ODE ),无水乙醇,配有温度调控和磁力搅拌的油浴加热器,三颈瓶,抽气头,滤膜,温度计套管,10 mL 量筒,分析天平,玻璃滴管,离心管,离心机,电热干燥箱(二)实验方法与操作步骤1. 贵金属胶体的制备(1)对所有所需用的容器用硫酸清洗,用去离子水冲洗3遍,放入干燥箱烘干。
(2)配置0.01%的氯金酸(硝酸银)溶液和1%的柠檬酸三钠溶液。
(3)把50 mL的氯金酸(硝酸银)溶液加热至沸腾后加入1 mL的柠檬酸三钠溶液,再加热5~10 min。
(4)停止加热后把制得的胶体金用过滤薄膜过滤。
(5)重复(3)、(4)步骤制备氯金酸(硝酸银)溶液和柠檬酸三钠溶液体积比为(50:2)~(50:10)的胶体金属。
(6)将制得的胶体金用紫外-可见分光光度计测其吸收光谱。
(7)清洗使用过的仪器,药品放回原处。
2. 硝酸银热分解制备Ag纳米颗粒(1)对所有所需用的容器用硫酸清洗,用去离子水冲洗3遍,然后用无水乙醇冲洗,放入干燥箱烘干。
(2)称取0.5 g硝酸银,放入三颈瓶。
(3)分表量取ODE5 mL,油胺5mL(或者称取4g十八胺)加入三颈瓶。
(4)三颈瓶连接抽气头通入Ar放入油浴。
(5)在磁力搅拌下,油浴升温到180 °C并保持10 min。
(6)用玻璃滴管取0.5 mL样品放入离心管,加入5mL无水乙醇并振荡使混合均匀以清洗烷基胺。
(7)离心沉淀并重复加入5 mL无水乙醇反复清洗3遍。
(8)把所获得的Ag纳米颗粒分散于甲苯中并测量吸收光谱。
(9)对所用的容器进行清洗,再用去离子水冲洗3遍,放入干燥箱烘干后放回原处。
四、思考与讨论1. 在制备Ag纳米颗粒的过程中,所用容器为什么用去离子水清洗?2. 制备过程中,Ag纳米颗粒的生长受什么因素影响?如何获得不同尺寸的Ag纳米颗粒?3. 在分解硝酸银制备纳米颗粒的实验中为什么要用烷基胺?实验二水热法合成TiO2纳米材料一、实验内容与目的1. 了解水热法制备无机氧化物纳米材料的原理和特点。
2. 掌握水热法制备TiO2纳米材料的方法和步骤。
3. 熟悉纳米材料的表征方法如X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等。
二、实验原理概述纳米材料具有不同寻常的物理和化学性能,是目前材料科学研究领域的热点。
由于纳米材料强烈的尺寸和形貌依赖性,因此控制纳米材料尺寸和形貌称为当前纳米材料研究的重要方向。
现阶段用于纳米粒子合成的方法主要有物理方法和化学方法,其中化学方法合成得到的纳米粒子纯度更高,粒度分布更均匀,而且形貌可控,从而应用更广。
在众多方法中,水热法作为无机合成化学中的一个重要分支,成为纳米粒子的尺寸形貌控制合成的常用方法。
水热法最初是模拟然界中某些矿石的形成过程而发展起来的,通常是指在密闭的反应体系中,以水作为反应介质,将反应器加热到一定的温度(100~1000 °C),是反应器中具有一定填充度的水溶剂膨胀充满整个容器而产生很高压力的条件下,进行无机合成和材料制备的一种有效方法。
在水热条件下,水主要起到两个作用:液态或气态的水是传递压力的媒介;同时水作为溶剂,由于在高压下绝大多数反应物都能溶于水,可促使反应在气相或液相中进行。
水热法合成氧化物纳米材料中,一般都是以金属盐、氧化物或氢氧化物作为反应物,以水作为溶剂,在加热过程中,这些金属盐、氧化物或氢氧化物的溶解度随文帝、压力的升高二增加,形成所需的氧化物的过饱和溶液,并逐渐成核生长,最终获得所需的氧化物纳米材料。
整个反应过程的驱动力就是可溶的前驱体或中间产物与最后稳定的氧化物之间的溶解度差。
因此可以说,水热法的实质是使纳米粒子在高温高压下从过饱和溶液中生长出来。
这种发发在分子设计上具有其特有的有事,可以通过对前驱体材料结构中的次级结构单元拆开、修饰并重新组装;也可以通过选择反应条件加入适当的“模板剂”或“矿化剂”控制产物的结构。
二氧化钛(TiO2)是一种非常重要的化工原理,被广泛用于颜料、造纸、涂料、油漆、橡胶、陶瓷等各种行业中。
随着粒子尺寸的降低,纳米二氧化钛显示出许多特殊效果,如表面效应、小尺寸效应和宏观量子隧道效应,因而在光学、热学、电学、磁学、力学以及化学等方面与普通二氧化钛有着显著的不同。
如,纳米二氧化钛具有独特的抗紫外线、抗菌、光催化等特性,已广泛应用于光触材料、抗菌陶瓷、抗紫外化妆品、抗菌涂料、汽车漆等。
本实验将直接以普通的TiO2粉末为原料,采用水热法,在碱性条件小利用水热条件产生的高温、高压环境来重结晶合成TiO2纳米粉体,并通调节反应条件如反应温度和反应时间来调节所得TiO2纳米粉体的尺寸和形貌。
三、实验方法和步骤(一)主要实验试剂及仪器实验试剂:二氧化钛、氢氧化钠、蒸馏水、无水乙醇等。
实验仪器:烧杯、量筒等玻璃仪器若干、电子天平、水热反应釜、磁力搅拌器、程序控温恒温箱、离心机等。
表征仪器:X射线粉末衍射仪、扫描电子显微镜、透射电子显微镜等。
(二)实验步骤(1)称取0.2 g二氧化钛粉末,加入到10 mL2 mol/L的NaOH水溶液中,搅拌,(2)搅拌10 min后,将上述溶液转移入带聚四氟乙烯内衬的高压釜中,旋紧密闭后将高压釜放入烘箱中。
(3)调节烘箱温度为180 °C,使之加热到180 °C并保持6 h后将反应釜取出。
(4)待反应釜冷却至室温,打开分反应釜,取出溶液得白色细小微粒沉淀为所得产物,产物经李鑫分离并相继用蒸馏水和无水乙醇多次洗涤后,在空气中干燥。
(5)所得产物用X射线粉末衍射来确定其物相,用扫描电子显微镜和透射电子显微镜来观察其尺寸和形貌。
(6)改变实验条件,如反应温度和反应时间,在120~220 °C下分表保持4~72 h,研究不同反应条件对TiO2纳米粉体尺寸和形貌的影响。
四、思考与讨论1. 水热法合成纳米材料具有哪些特点?2. 利用水热法,如何控制所得氧化物纳米粉体的尺寸和形貌?3. 查阅资料简要说明水热法取向生长一维纳米材料的原因。
实验三金属有机物热分解法制备LaNiO3导电氧化物薄膜一、实验内容与目的1. 掌握金属有机物热分解法的基本原理,了解其在材料合成、制备领域的应用。
2. 了解导电氧化物的导电特性及其应用。
3. 掌握浸渍法(dip-coating)制备薄膜的方法。
二、实验原理(一)金属有机物分解法的原理金属有机物分解法(metalorganic decomposition, MOD)是湿化学法沉积薄膜的一种重要方法,近年来得到了很大发展,已成功地用于一系列薄膜的制备,包括铁电薄膜、超导薄膜和导电氧化物薄膜。
其中最成功的应用就是SrBi2Ta2O9(SBT)铁电薄膜的制备,其前体溶液已经商业化。
其基本过程是将不同的金属有机源(主要为金属羧酸盐,如异辛酸盐等)溶入适当有机溶剂,将其混合成所需的阳离子浓度的前体溶液,再以适当技术(如甩胶法、浸渍法、喷涂法)沉积到衬底,制成湿膜,烘干后,去掉不必要的溶剂,并分解掉金属有机物,得到无机薄膜。
达到所需厚度后,经过进一步热处理,来控制薄膜结构。
通常要求金属有机源易合成、纯化,无毒或低毒,稳定性好,具有合适的分解温度,高的金属含量及在常用的溶剂中具有良好的溶解性能。
(二)导电氧化物的背景介绍导电聚合物种类丰富,最著名的当属透明导电氧化物ITO(In2O3:Sn),已经大规模地应用于平板显示器领域。
导电氧化物最主要是作为电极材料来使用,包括电池、燃料电池、磁流体发电的电极等。
LaNiO3是一种局域钙钛矿结构的导电金属氧化物,其赝立方晶胞参数为0.384 nm,与PbTiO3、PZT、BaTiO3等铁电薄膜的晶格参数相匹配。
使用LaNiO3作为电极,有利于铁电薄膜的择优取向和外延生长,有利于改善铁电薄膜的疲劳问题。
(三)浸渍法简介浸渍法镀膜就是把需镀膜的样品,放入配置好的前体溶液中,然后拿出烘干,热处理。
这种镀膜方法,工艺简单,是室温下操作,无需昂贵的设备,可以再复杂的样品形状表面镀膜。
多次重复上述过程,就获得所需厚度的膜。
三、实验方法与步骤(一)实验仪器与材料电子天平,磁力搅拌器,红外快速烘箱(或鼓风干燥箱),管式炉,热台,玻璃仪器,X射线衍射仪。
异辛酸(化学纯),乙酸镍(分析纯),乙酸镧(分析纯),乙酸丁酯(分析纯),氨水(分析纯),双氧水(分析纯),盐酸(分析纯),(100)硅片(ρ>5 Ω·cm),石英烧杯,石英清洗架,石英舟。
(二)实验方法与操作步骤1. 基片清洗(1)按照半导体工艺的RCA配方,在通风橱里配置碱性、酸性清洗剂。
碱性清洗剂:NH3·H2O:H2O2:H2O=1:2:5;酸性清洗剂:HCl:H2O2:H2O=1:2:6。
(2)将硅片放在石英清洗架上,放入石英烧杯中,加碱性清洗剂至浸过基片约1 cm处,盖上培养皿,放在通风橱内的电炉上加热至沸腾。
滚沸5 min后,关闭电源。
将残余溶液导入废液缸,用去离子水淋洗石英烧杯和石英清洗架上的基片3遍。