开关电源反馈电路

合集下载

开关电源电路组成及常见各模块电路分析

开关电源电路组成及常见各模块电路分析

开关电源电路组成及常见各模块电路分析开关电源电路是一种将输入电流转换为高频脉冲的电路,通过变压器进行变换和滤波,最终将电源提供给负载。

它由多个模块组成,包括输入滤波器、整流器、功率变换器、输出滤波器和反馈控制器等。

下面我将对这些模块进行详细分析。

1.输入滤波器:开关电源电路的输入端通常会接入输入电源,因此需要一个输入滤波器来滤除输入电源中的高频噪声和电磁干扰。

输入滤波器通常由电容和电感构成,能够将输入电压平滑成纯直流信号,并提供稳定的电压给后续电路。

2.整流器:整流器的作用是将交流信号转换为直流信号,并提供稳定的电压给功率变换器。

常见的整流器有全波整流和半波整流两种方式。

全波整流使用四个二极管,能够将输入电压的正半周期和负半周期都转换为直流信号,效率更高。

而半波整流只使用两个二极管,仅将输入电压的正半周期转换为直流信号。

3.功率变换器:功率变换器是开关电源电路的核心部分,主要负责将直流信号转换为高频脉冲信号,通过变压器变换和带宽控制,将电源提供给负载。

常见的功率变换器有多种类型,包括单端交错式、反激式、降压升压式等。

这些变换器均具有高效率、可靠性和短路保护等特点。

4.输出滤波器:输出滤波器用于平滑功率变换器输出的高频脉冲信号,并将其转换为稳定的直流电压。

通常由电感和电容构成,能够滤除高频噪声和纹波,提供稳定的输出电压给负载。

5.反馈控制器:反馈控制器用于监测输出电压,并通过控制开关管的开关状态来实现自动调整电路的输出电压。

当输出电压低于设定值时,反馈控制器会调整开关管的开关状态,使电路输出电压回到设定值。

常见的控制方式有PID控制、PWM控制等。

以上是开关电源电路的常见模块。

这些模块通过相互协作,能够将输入电源转换为稳定的高频输出电压,并提供给负载。

开关电源电路具有高效率、小体积、轻量化等优点,在电子设备中得到广泛应用。

(完整)光耦合TL431联合用在开关电源中的电压反馈电路

(完整)光耦合TL431联合用在开关电源中的电压反馈电路

光耦通常与TL431一起使用。

下面是led电源驱动芯片(开关电源芯片)TMG0321/TMG0165/TMG0265/TMG03655的部分电路。

两电阻串联取样到431R端与内部比较器进行比较.然后根据比出的信号再控制431K端(阳极接光耦那一端)对地的电阻,然后达到控制光耦内部发光二极管的亮度.(光耦内部一边是一发光二极管,一边是一光敏三极管)通过发光的强度.控制另一端三极管的CE端的电阻也就是改变了led电源驱动芯片(开关电源芯片)TMG0321/TMG0165/TMG0265/TMG0365检测脚的电流(1脚:电压反馈引脚,通过连接光耦到地来调整占控比)。

根据电流的大小,led电源驱动芯片(开关电源芯片)TMG0321/TMG0165/TMG0265/TMG0365就会自动调整输出信号的占空比,达到稳压的目的TL431是这样工作的:上图中的431不是用于稳压,而是用作一个电压门限开关。

它与R10、R11一起监测+12V电源的变化,当+12V升高时,431的K极和A极短接,然后将光耦发光二极管的阴极接地,光耦导通,电源芯片TMG0165的第一管脚(FB)被拉低,芯片便调整输出占空比,使+12V电压降低。

当+12V降低时,光耦不导通,电源芯片FB端为高电平,它就调整输出占空比,使+12V升高。

TL431的原理框图如下TL431用作稳压电路时,典型电路如下当输入电压变化时,431会将变化的电压通过电流的作用转化到输入端的电阻上。

其过程为:当输入端电压升高时,431的K极和A极间的三极管CE极电流增大,即电流Ik变大(而R1和R2上的电流不变),输入端的电阻上的压降升高,从而保证Vka不变;当输入端电压降低时,431的K极和A极间的三极管CE极电流减小,即电流Ik减小(而R1和R2上的电流不变),输入端的电阻上的压降减小,从而使Vka不变.。

PSR原边反馈开关电源电路设计

PSR原边反馈开关电源电路设计

PSR原边反馈开关电源电路设计此线路是采用目前兼容很多国内品牌IC的回路,如:OB2535、CR6235.1. RCD吸收回路,即:R2,C4,D2,R6PSR线路设计需特别注意以下几处:2. Vcc供电和电压检测回路,即:D3,R3,R4,R10,C23. 输出回路,即:C3,C7,D5,R11,LED1下面分别说明以上几点需注意的地方:1. RCD吸收回路,即:R2,C4,D2,R6大家可以看出,此RCD回路比普通的PWM回路的RCD多了一个R6电阻,或许有人会忽略他的作用,但实际它对产品的稳定性起着很大的作用。

看下图VDS的波形:当开关管截止后因漏感引起的振玲会随漏感的增大而使电压跌得更低,更低的电压回复需要更长的时间,VDS的波形此时和VCC的波形是同步的,PSR检测电压是通过IC内部延时4~6uS 避开这个振玲来检测后面相对平滑的电压,电压恢复时间过长导致IC检测开始时检测到的是振玲处的电压,最总导致的结果是输出电压不稳定,甚至荡机。

当然也有因变压器漏感比较小,无此电阻也可以正常工作,但一致性较难控制。

此电阻的取值与RCD回路和EMC噪音有关,一般建议取值为150~510R,推荐使用220~330R,D2建议使用恢复时间较慢的1N4007具体可根据漏感结合RCD来调试。

2. Vcc供电和电压检测回路,即:D3,R3,R4,R10,C2R4与R10的取值是根据IC的VFB来计算的。

但阻值取值对一般USB直接输出的产品来说,以IFB=0.5mA左右来计算。

若为带线式产品,因考虑到线损带来的负载调整率差,可保持VFB电压不变,同时增大R4和R10的阻值,减小IFB的电流,具体IFB的电流取值需根据输出线材的压降来调试,如设计为5V/1A的产品,假设输出空载为5.10V,调试的最佳状态是负载0.5A时,输出电压达到最低值,如4.90V,再增加负载,电压会因IC内部补偿功能唤醒使输出电压回升,当负载达到1.0A时,输出电压回升到5.10V左右。

开关电源各功能电路详解

开关电源各功能电路详解

开关电源各功能电路详解一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对 C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、 DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4 为安规电容,L2、L3为差模电感。

② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于 C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使 Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

一种应用于双路输出开关电源的闭环反馈电路的制作方法 -回复

一种应用于双路输出开关电源的闭环反馈电路的制作方法 -回复

一种应用于双路输出开关电源的闭环反馈电路的制作方法-回复亲爱的读者,欢迎阅读本篇文章,主题为"一种应用于双路输出开关电源的闭环反馈电路的制作方法"。

我将一步一步为你解释这个过程,帮助你理解闭环反馈电路的制作和运作原理。

首先,我们需要了解闭环反馈电路的定义和原理。

闭环反馈电路是一种电路配置,其中输出信号被反馈到输入端,以修正误差并提供稳定性。

在双路输出开关电源中,这种反馈电路是至关重要的,可以确保输出电压和电流的稳定性和准确性。

接下来,我们需要准备制作闭环反馈电路所需的材料和工具。

这些包括:1. 开关电源电路板:选择适合你的需求的开关电源电路板,它将为我们提供基本的电源功能。

2. 反馈电路元件:电阻、电容、电感等元件将用于创建反馈回路。

3. 运算放大器:选择合适的运算放大器作为反馈电路的核心组件。

4. 其他电子元器件:例如稳压二极管、二极管等,以辅助实现闭环反馈电路的功能。

5. 配件和线缆:选择适合的电线、连接器和其他配件。

现在,我们可以按照以下步骤制作双路输出开关电源的闭环反馈电路:第一步:确定设计要求和参数。

在开始制作闭环反馈电路之前,我们需要确定输出电压和电流的要求,并选择合适的电源电路板。

根据这些参数,选择相应的电阻、电容和电感作为反馈电路的元件。

第二步:设计反馈电路。

根据设计要求,我们可以使用运算放大器和其他元件设计一个合适的反馈电路。

反馈电路的目标是将输出信号与参考信号进行比较,并产生相应的修正信号,以减小误差并使输出电压和电流稳定。

第三步:制作和连接电路。

根据设计好的电路图,将元件焊接在电路板上。

确保连接正确,并注意不同元件之间的相互连接。

使用电线和连接器来连接不同的部分,以确保电路的良好连接。

第四步:进行测试和调整。

在完成焊接和连接工作之后,我们需要测试电路的性能。

连接所需的电源和负载,观察输出电压和电流是否稳定在设计要求范围内。

如果发现误差或不稳定性,可以通过调整反馈电路中的元件值或其他参数来进行修正。

tl431在开关电源中稳压反馈电路的应用电路设计

tl431在开关电源中稳压反馈电路的应用电路设计

tl431在开关电源中稳压反馈电路的应用电路设计
TL431是一种常用的精密可调节稳压器件,通常用于开关电源中的稳压反馈电路。

它可以作为一个误差放大器,用于控制开关电源的输出电压。

以下是一个简单的TL431稳压反馈电路的应用电路设计示例:
在这个电路中,TL431被用作误差放大器,它通过比较参考电压和反馈电压来控制输出电压。

具体的设计步骤如下:
设置参考电压:TL431的参考电压通过外部电阻网络进行调节,根据需要选择合适的参考电压值。

连接反馈回路:将TL431的输出与开关电源的反馈回路相连,通过比较输出电压和参考电压,控制开关电源的输出电压稳定在设定值。

选择外部元件:根据具体的需求,选择合适的外部电阻、电容等元件,以确保稳压反馈电路的性能和稳定性。

稳压调节:通过调节外部电阻来调节输出电压的设定值,使得开关电源的输出电压符合要求。

需要注意的是,具体的电路设计需要考虑到开关电源的整体设计和控制要求,以及TL431的工作特性和参数。

此外,为了确保电路的性能和稳定性,建议在设计过程中进行仿真和实际测试验证。

开关电源PWM的五种反馈控制模式

开关电源PWM的五种反馈控制模式

一、引言PWM开关稳压或稳流电源基本工作原理就是在输入电压变化、内部参数变化、外接负载变化的情况下,控制电路通过被控制信号与基准信号的差值进行闭环反馈,调节主电路开关器件的导通脉冲宽度,使得开关电源的输出电压或电流等被控制信号稳定。

PWM的开关频率一般为恒定,控制取样信号有:输出电压、输入电压、输出电流、输出电感电压、开关器件峰值电流。

由这些信号可以构成单环、双环或多环反馈系统,实现稳压、稳流及恒定功率的目的,同时可以实现一些附带的过流保护、抗偏磁、均流等功能。

对于定频调宽的PWM闭环反馈控制系统,主要有五种PWM反馈控制模式。

下面以VDMOS开关器件构成的稳压正激型降压斩波器为例说明五种PWM反馈控制模式的发展过程、基本工作原理、详细电路原理示意图、波形、特点及应用要点,以利于选择应用及仿真建模研究。

二、开关电源PWM的五种反馈控制模式1. 电压模式控制PWM (VOLTAGE-MODE CONTROL PWM):如图1所示为BUCK降压斩波器的电压模式控制PWM反馈系统原理图。

电压模式控制PWM是六十年代后期开关稳压电源刚刚开始发展起就采用的第一种控制方法。

该方法与一些必要的过电流保护电路相结合,至今仍然在工业界很好地被广泛应用。

电压模式控制只有一个电压反馈闭环,采用脉冲宽度调制法,即将电压误差放大器采样放大的慢变化的直流信号与恒定频率的三角波上斜波相比较,通过脉冲宽度调制原理,得到当时的脉冲宽度,见图1A中波形所示。

逐个脉冲的限流保护电路必须另外附加。

主要缺点是暂态响应慢。

当输入电压突然变小或负载阻抗突然变小时,因为有较大的输出电容C及电感L相移延时作用,输出电压的变小也延时滞后,输出电压变小的信息还要经过电压误差放大器的补偿电路延时滞后,才能传至PWM比较器将脉宽展宽。

这两个延时滞后作用是暂态响应慢的主要原因。

图1A电压误差运算放大器(E/A)的作用有三:①将输出电压与给定电压的差值进行放大及反馈,保证稳态时的稳压精度。

uc3842电流型开关电源中电压反馈电路的设计

uc3842电流型开关电源中电压反馈电路的设计

uc3842电流型开关电源中电压反馈电路的设计在传统的电压型控制中,只有一个环路,动态性能差。

当输入电压有扰动时,通过电压环反馈引起占空比的改变速度比较慢。

因此,在要求输出电压的瞬态误差较小的场合,电压型控制模式是不理想的。

为了解决这个问题,可以采用电流型控制模式。

电流型控制既保留了电压型控制的输出电压反馈,又增加了电感电流反馈,而且这个电流反馈就作为PWM控制变换器的斜坡函数,从而不再需要锯齿波发生器,使系统的性能具有明显的优越性。

电流型控制方法的特点如下:1、系统具有快速的输入、输出动态响应和高度的稳定性;2、很高的输出电压精度;3、具有内在对功率开关电流的控制能力;4、良好的并联运行能力。

di直接跟随输入电压和输出电压的变化而变化。

电压反由于反馈电感电流的变化率dt馈回路中,误差放大器的输出作为电流给定信号,与反馈的电感电流比较,直接控制功率开关通断的占空比,所以电压反馈是电流型电源设计中很重要的问题。

本文介绍使用电流型控制芯片uc3842时,电压反馈电路的设计。

一、uc3842简介图1为UC3842PWM控制器的内部结构框图。

其内部基准电路产生+5V基准电压作为UC3842内部电源,经衰减得2.5V电压作为误差放大器基准,并可作为电路输出5V/50mA的电源。

振荡器产生方波振荡,振荡频率取决于外接定时元件,接在4脚与8脚之间的电阻R 与接在4脚与地之间的电容C共同决定了振荡器的振荡频率,f=1.8/RC。

反馈电压由2脚接误差放大器反相端。

1脚外接RC网络以改变误差放大器的闭环增益和频率特性,6脚输出驱动开关管的方波为图腾柱输出。

3脚为电流检测端,用于检测开关管的电流,当3脚电压≥1V 时,UC3842就关闭输出脉冲,保护开关管不至于过流损坏。

UC3842PWM控制器设有欠压锁定电路,其开启阈值为16V,关闭阈值为10V。

正因如此,可有效地防止电路在阈值电压附近工作时的振荡。

图1UC3842的内部结构框图如下:UC3842具有以下特点:1、管脚数量少,外围电路简单,价格低廉;2、电压调整率很好;3、负载调整率明显改善;4、频响特性好,稳定幅度大;5、具有过流限制、过压保护和欠压锁定功能。

3842开关电源不起振维修技巧

3842开关电源不起振维修技巧

3842开关电源不起振维修技巧3842开关电源是一种常见的电子设备,用于将输入电源转换为稳定的输出电压。

然而,有时候这种开关电源可能会出现不起振的问题,导致无法正常工作。

本文将介绍一些关于3842开关电源不起振的维修技巧,帮助读者解决这个问题。

当3842开关电源不起振时,我们需要进行一些基本的检查。

首先检查电源输入端的电压是否正常,确保其在额定范围内。

然后检查输出端的各个电压是否正常,确保其稳定在所需的数值范围内。

如果这些基本的检查都正常,那么我们可以继续进行下一步的维修工作。

一种常见的原因是3842开关电源的反馈电路出现问题。

在开关电源中,反馈电路起着监测输出电压的作用,一旦输出电压过高或过低,反馈电路将调整开关管的工作状态,以保持输出电压稳定。

如果反馈电路损坏或连接不正确,就会导致开关电源无法起振。

因此,我们可以检查反馈电路的连接是否正确,是否有损坏的元件,如电容或电阻。

如果发现问题,可以更换相应的元件或重新连接电路,以修复开关电源。

3842开关电源的保护电路也可能导致不起振的问题。

保护电路是为了防止过流、过压、过温等情况发生而设计的。

如果保护电路触发,开关电源将停止工作,以保护电路和负载。

但有时候保护电路可能出现故障,误判了正常的工作状态,导致开关电源无法起振。

因此,我们可以检查保护电路的元件是否正常,是否有短路或开路现象。

如果发现问题,可以更换相应的元件或调整保护电路的参数,以修复开关电源。

3842开关电源的负载也可能影响其起振情况。

如果负载电流过大或发生突变,可能会导致开关电源无法起振。

因此,我们可以检查负载的电流是否正常,是否有异常情况发生。

如果负载电流过大,可以考虑增大开关电源的输出功率或调整负载的电流需求,以适应实际情况。

如果以上的方法都没有解决问题,我们可以考虑使用示波器来进一步分析开关电源的工作状态。

通过观察开关管的驱动信号和输出电压的波形,我们可以判断是否存在异常情况,从而进一步确定问题所在。

开关电源反馈电路原理

开关电源反馈电路原理

开关电源反馈电路原理开关电源是一种将输入电源信号通过开关管的通断来实现输出稳定电压或电流的电源装置。

在开关电源中,反馈电路起着至关重要的作用,它可以实现对输出电压或电流的精确控制和稳定性。

开关电源反馈电路的原理是通过对输出信号进行采样,将采样信号与设定的参考信号进行比较,然后通过控制开关管的通断来调节输出电压或电流,使其与设定值保持一致。

具体来说,开关电源反馈电路通常由三部分组成:采样电路、比较电路和控制电路。

首先是采样电路,它的作用是将输出电压或电流进行采样,得到一个反映实际输出情况的信号。

采样电路通常采用分压电阻或电流互感器等元件来实现,根据需要选择合适的采样点。

接下来是比较电路,它将采样信号与设定的参考信号进行比较,得到一个误差信号。

比较电路通常采用运算放大器等元件来实现,通过调整参考信号和采样信号的比较方式,可以实现对输出电压或电流的精确控制。

最后是控制电路,它根据比较电路输出的误差信号来控制开关管的通断。

控制电路通常采用反馈控制的方式,通过调整开关管的导通时间或频率,来实现对输出电压或电流的调节。

控制电路中通常包含一个脉宽调制(PWM)控制器,用于产生开关管的控制信号。

开关电源反馈电路的工作原理可以简单描述为:首先,采样电路对输出信号进行采样,得到采样信号;然后,比较电路将采样信号与设定的参考信号进行比较,得到误差信号;最后,控制电路根据误差信号来调节开关管的通断,实现对输出电压或电流的精确控制。

开关电源反馈电路的设计和调试是开关电源设计中的重要环节。

合理选择采样点、设计恰当的比较电路和控制电路,可以实现开关电源的高效、稳定工作。

反馈电路的稳定性和准确性对于开关电源的输出质量和可靠性至关重要。

总结起来,开关电源反馈电路通过对输出信号进行采样和比较,以及控制开关管的通断,实现对输出电压或电流的精确控制和稳定性。

这一原理在开关电源设计中起着至关重要的作用,对于保证开关电源的性能和可靠性具有重要意义。

开关电源电路组成及各部分详解

开关电源电路组成及各部分详解

一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC输入整流滤波电路原理:12①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净3的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4为安规电容,L2、L3为差模电感。

②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

开关电源自激正反馈电路原理

开关电源自激正反馈电路原理

开关电源自激正反馈电路原理一、开关电源自激正反馈电路概述开关电源自激正反馈电路是一种用于控制开关电源输出电压的电路。

它通过将电源的输出电压反馈到输入端,形成一个正反馈环路,以维持输出电压的稳定。

这种电路通常采用晶体管、可控硅等开关元件,通过调节开关元件的导通时间来控制输出电压。

二、开关电源自激正反馈电路原理开关电源自激正反馈电路的工作原理可以分为以下几个步骤:1.输入与输出电压采样:自激正反馈电路首先从电源的输出端采样输出电压,并将该电压反馈到输入端。

采样通常通过电阻分压器或电压互感器等元件实现。

2.电压比较与误差放大:采样得到的输出电压与参考电压进行比较,产生误差信号。

误差信号被放大后,用于控制开关元件的导通时间。

3.开关元件控制:放大后的误差信号用于控制开关元件(如晶体管或可控硅)的导通与截止。

当输出电压高于参考电压时,误差信号会使开关元件的导通时间缩短,降低输出电压;反之,当输出电压低于参考电压时,开关元件的导通时间会延长,提高输出电压。

4.正反馈环路:由于输出电压被反馈到输入端,并与参考电压进行比较,这种反馈机制形成了一个正反馈环路。

正反馈环路使输出电压迅速稳定在设定值,提高了电源的稳定性和动态响应速度。

三、开关电源自激正反馈电路的优缺点1.优点:(1) 结构简单:自激正反馈电路结构相对简单,没有外部控制器,降低了系统成本。

(2) 快速响应:由于采用了正反馈机制,输出电压调整速度快,动态响应性能好。

(3) 效率高:自激正反馈电路减少了外部元件数量,降低了损耗,提高了电源效率。

2.缺点:(1) 稳定性差:由于正反馈环路的特性,电路容易受到外部干扰和参数变化的影响,导致输出电压不稳定。

(2) 控制精度低:由于误差信号的放大和开关元件的非线性特性,自激正反馈电路的控制精度相对较低。

(3) 调节范围有限:自激正反馈电路的调节范围通常较小,难以适应不同负载条件下的电压调整需求。

四、开关电源自激正反馈电路的应用场景尽管存在一些缺点,但由于其结构简单、成本低廉等优势,开关电源自激正反馈电路在某些应用场景中仍具有实际价值。

开关电源光耦反馈原理

开关电源光耦反馈原理

开关电源光耦反馈原理
开关电源光耦反馈原理是通过光耦结构实现电源开关控制回路的反馈控制。

在开关电源中,开关管负责实现输入电源的开关控制,通过对开关管的驱动控制,可以实现电源输出的稳定性和保护功能。

光耦是一种将输入和输出电路隔离的器件,它由发光二极管和光敏三极管组成。

在光采集端,发光二极管根据控制信号的输入情况,发出特定的光强度。

而在光发射端,则有光敏三极管检测和接收到的光信号,进而转化为电信号,用于反馈回路的控制。

在开关电源中,光耦通常被用于反馈控制回路的隔离和保护功能,其工作原理可以简单描述如下:
1. 控制信号输入:控制信号传递给发光二极管,通过改变二极管的电流或电压,从而实现光强度的调节。

2. 光信号传输:发光二极管发射的光束经过隔离介质(如空气或透明塑料)传输到光敏三极管的接收端。

3. 光-电转换:光敏三极管接收到光信号后,会产生相应的电流或电压,将光信号转化为电信号。

4. 反馈控制:光敏三极管输出的电信号用于反馈回路的控制,通过与输入信号进行比较、调整,从而实现对开关管的驱动控制。

通过光耦反馈控制,开关电源可以实现对输出电压、电流、功率等参数的精确控制和保护,提高了电源的稳定性和可靠性。

此外,光耦的隔离功能还可以减少输入和输出电路之间的相互影响和干扰,提高系统的抗干扰能力和安全性。

开关电源反馈电路原理

开关电源反馈电路原理

开关电源反馈电路原理一、电压反馈原理电压反馈是开关电源反馈电路中最常用的一种控制方法,通过测量输出电压与参考电压之间的差值,得到一个误差信号,并将其经过放大、滤波等处理,反馈给控制器进行调整,使输出电压稳定在设定值。

电压反馈的核心部分是误差放大器,它的作用是将输入信号进行放大,并将放大后的信号与参考电压进行比较,得到误差信号。

同时,误差放大器还具有较低的输出阻抗,以便能够快速响应输出电压的波动。

误差放大器的输出信号经过滤波器进行低通滤波,以去除高频噪声,并且具有较高的稳定性和快速响应的特点。

得到的误差信号会经过控制器的处理,输出一个控制信号给开关管,控制开关管的导通和截止,从而调整输出电压。

二、电流反馈原理电流反馈是对开关电源输出电流进行控制的一种方法,其原理与电压反馈类似,通过测量输出电流与参考电流之间的差值,得到一个误差信号,并将其经过放大、滤波等处理,反馈给控制器进行调整,使输出电流稳定在设定值。

电流反馈的核心部分也是误差放大器和滤波器,其功能和电压反馈的类似,不同的是测量的是输出电流而不是输出电压。

通过电流反馈,可以实现对输出电流的精确控制,防止电流过大或过小而导致的电源故障。

三、双回路反馈原理在一些高要求的开关电源中,需要同时对输出电压和输出电流进行控制,提高整个系统的稳定性和可靠性。

这时,可以采用双回路反馈原理。

双回路反馈原理就是在电压反馈和电流反馈的基础上,同时测量输出电压和输出电流,得到误差信号,并分别对其进行放大、滤波等处理,然后反馈给控制器进行调整。

通过双回路反馈,可以实时监测和控制输出电压和电流,有效保护负载设备,并提高整个系统的稳定性和可靠性。

总之,开关电源反馈电路是一种常用的控制方法,通过测量输出电压、电流与参考值之间的差值,得到误差信号,并通过控制器进行处理,从而控制开关管的导通和截止,保持输出电压、电流稳定在设定值。

通过采用电压反馈、电流反馈或双回路反馈等原理,可以实现对开关电源输出电压、电流和功率的精确控制,提高系统的稳定性和可靠性。

原边反馈开关电源原理

原边反馈开关电源原理

原边反馈开关电源原理1.输入电压稳定器:输入电压经过整流和滤波后形成一个稳定的直流电压。

该电压经过一个输入电压稳定器,用于保持输入电压的稳定性,以应对输入电压波动的情况。

2.开关电源控制芯片:原边反馈开关电源通过控制芯片进行开关过程的调控,实现输出电压的稳定控制。

控制芯片通过监测反馈信号和输出电压,控制开关电源的开关周期和占空比,以保持输出电压稳定。

3.开关管:开关管是原边反馈开关电源的关键组件,它根据控制芯片的指令,周期性地切换工作状态,在导通和截断状态之间进行快速切换。

开关管的导通和截断状态决定了电源输出电压的大小。

4.变压器:原边反馈开关电源的变压器是通过配置不同的绕组比来实现输入电压和输出电压之间的转换。

输入电压经过变压器的一端,经过变压器绕组后,形成输出电压。

5.输出滤波器:在输出电路中,通常还有一个输出滤波器,它用于滤除开关电源产生的高频噪声,使得输出电压更加平稳。

1.初始状态:当开关电源处于开启状态时,输入电压通过变压器产生输出电压。

2.反馈信号:通过电流传感器或电压传感器,监测输出电流或输出电压,得到反馈信号。

3.控制芯片工作:控制芯片根据反馈信号和参考电压进行比较,计算出误差信号。

4.开关触发:控制芯片将误差信号转化为开关管的控制信号,驱动开关管的导通和截断状态。

5.开关过程:开关管在一段时间内导通,使得输入电压经过变压器传递到输出端。

在另一段时间内截断,断开输入电压的通路。

6.输出电压调节:通过改变开关管导通和截断的时间占比,控制输出电压的高低,以使输出电压稳定在预设值。

整个循环不断重复,通过控制开关管的导通和截断,使得输入电压转换为稳定的输出电压。

总结起来,原边反馈开关电源通过控制芯片、开关管、变压器等关键组件的相互作用,将输入电压转换为稳定的输出电压。

通过不断调节开关管的工作状态,控制输出电压的稳定性,实现对电子设备的供电。

其高效、稳定的特点使得原边反馈开关电源成为各种电子设备中非常重要的电源转换解决方案。

一种应用于双路输出开关电源的闭环反馈电路的制作方法 -回复

一种应用于双路输出开关电源的闭环反馈电路的制作方法 -回复

一种应用于双路输出开关电源的闭环反馈电路的制作方法-回复闭环反馈电路是一种广泛应用于双路输出开关电源的重要电路。

它能够实现对输出电压和电流进行精确控制和稳定调节,提高电源的稳定性和性能。

本文将以制作闭环反馈电路的方法为主题,详细介绍从原理设计到电路制作的一系列步骤。

第一步:设计闭环反馈电路的原理图在开始制作闭环反馈电路之前,首先需要根据双路输出开关电源的要求,设计出闭环反馈电路的原理图。

原理图是电路设计的基础,它描述了各个组件的连接方式和工作原理。

在设计原理图时,需要考虑输出电压和电流的精确控制要求,以及对电路稳定性和效率的要求。

可以使用电路设计软件进行原理图的绘制,确保符合设计要求。

第二步:选择合适的电子元件在制作闭环反馈电路时,需要选择合适的电子元件,如运放(Operational Amplifier)、电阻、电容和二极管等。

选取元件时,需要根据原理图的要求,考虑元件的参数和特性,确保其能够满足电路设计的要求。

并且,选择元件时应尽量选择耐压和耐功率较高的元件,以保证电路的稳定性和可靠性。

第三步:进行电子元件的布局和焊接根据原理图和选取的电子元件,需要进行元件的布局和焊接。

在进行布局时,需要根据电路的整体结构和元件之间的连接关系,合理安排元件的位置。

同时,需要考虑元件之间的电气隔离和散热问题,尽量避免元件之间的干扰和过热现象。

在进行焊接时,需要注意焊接的工艺参数和方法,确保焊点的质量和稳定性。

第四步:进行电路的调试和测试在完成闭环反馈电路的制作后,还需要进行电路的调试和测试。

通过使用万用表等测试仪器,可以对电路的各个节点进行测量,检查电路的工作状态和参数是否符合设计要求。

如果发现电路存在问题或参数偏差,可以通过调整元件的参数或更换元件来修正问题,确保电路的正常工作。

第五步:对闭环反馈电路进行优化和改进在进行闭环反馈电路的制作和测试后,可以根据实际使用情况对电路进行优化和改进。

根据实际工作需求,可以对闭环反馈电路的参数、元件和电路结构等进行调整和改进,以提高电路的性能和稳定性。

tl494型开关电源,3脚反馈4脚死区控制功能和原理

tl494型开关电源,3脚反馈4脚死区控制功能和原理

tl494型开关电源,3脚反馈4脚死区控制功能和原理TL494是一种固定频率的脉冲宽度调制(PWM)电路,广泛应用于开关电源设计中。

其3脚反馈和4脚死区控制功能及原理如下:
1. 3脚反馈:TL494的3脚是一个相位校正和增益控制端。

通过连接外部元件,可以对电路的增益和相位进行校正,实现更好的性能。

在反馈控制环路中,如果检测到的输出电压高于期望值,3脚会接收到这个信息,并相应地调整脉宽调制器的输出,从而降低输出电压。

反之,如果检测到的输出电压低于期望值,3脚会发送一个信号,使脉宽调制器的输出增加,从而提高输出电压。

2. 4脚死区控制:死区控制是一种用于防止开关电源中开关管频繁切换的方法。

它通过在开关管的开启和关闭之间设置一个短暂的延迟,防止开关管在输入电压或输出电压的小幅波动下频繁开启和关闭。

在TL494中,4脚是间歇期调理端,可以接受0~
3.3V的电压。

当4脚上加的电压越高,截止时间从2%线怀变化到100%的时间就越长。

通过调整4脚上的电压,可以设置死区时间。

总之,TL494的3脚反馈和4脚死区控制功能及原理是开关电源设计中非常重要的部分。

通过合理地调整这些参数,可以优化电源的性能,提高其稳定性和可靠性。

开关电源电路图及工作原理

开关电源电路图及工作原理

开关电源电路图及工作原理
以下是一种常见的开关电源电路图及其工作原理:
该电路图包括输入端(Vin)、输出端(Vout)、开关管(Q)、变压器(T)、二极管(D)和滤波电容(C)。

工作原理如下:
1. 当输入电压Vin为正常工作范围时,通过开关管Q的导通
和截止,实现开关管Q的开关,从而实现电流的导通和截止。

当开关管Q截止时,开关电源工作于不工作(断开)状态。

2. 当开关管Q导通时,输入电压Vin通过变压器T的反馈,
经过变换,输出到输出端Vout。

输出端Vout的电压将根据变
压器T的变压比进行转换。

变压器T的变压比可以通过设计
和调整变压器T的结构和参数来实现。

3. 在开关管Q导通时,二极管D导通,使电流流过滤波电容C,从而实现电流的稳定和平滑输出。

当开关管Q截止时,二
极管D截止,断开电流通路。

通过以上工作原理,开关电源能够以高效率实现输入电压到变换输出电压的转换。

由于开关管Q的开关动作,可以快速控
制电流的导通和截止,从而实现高效的电能转换和节能效果。

电路中的各个元器件相互配合,实现了开关电源的正常工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电流型开关电源中电压反馈电路的设计2007-11-29 09:35:15| 分类:电源| 标签:|字号大中小订阅尚修香侯振义空军工程大学电讯工程学院在传统的电压型控制中,只有一个环路,动态性能差。

当输入电压有扰动时,通过电压环反馈引起占空比的改变速度比较慢。

因此,在要求输出电压的瞬态误差较小的场合,电压型控制模式是不理想的。

为了解决这个问题,可以采用电流型控制模式。

电流型控制既保留了电压型控制的输出电压反馈,又增加了电感电流反馈,而且这个电流反馈就作为PWM控制变换器的斜坡函数,从而不再需要锯齿波发生器,使系统的性能具有明显的优越性。

电流型控制方法的特点如下:1、系统具有快速的输入、输出动态响应和高度的稳定性;2、很高的输出电压精度;3、具有内在对功率开关电流的控制能力;4、良好的并联运行能力。

由于反馈电感电流的变化率直接跟随输入电压和输出电压的变化而变化。

电压反馈回路中,误差放大器的输出作为电流给定信号,与反馈的电感电流比较,直接控制功率开关通断的占空比,所以电压反馈是电流型电源设计中很重要的问题。

本文介绍使用电流型控制芯片uc3842时,电压反馈电路的设计。

一、uc3842简介图1为UC3842PWM控制器的内部结构框图。

其内部基准电路产生+5V基准电压作为UC3842内部电源,经衰减得2.5V电压作为误差放大器基准,并可作为电路输出5V/50mA的电源。

振荡器产生方波振荡,振荡频率取决于外接定时元件,接在4脚与8脚之间的电阻R与接在4脚与地之间的电容C共同决定了振荡器的振荡频率,f=1.8/RC。

反馈电压由2脚接误差放大器反相端。

1脚外接RC网络以改变误差放大器的闭环增益和频率特性,6脚输出驱动开关管的方波为图腾柱输出。

3脚为电流检测端,用于检测开关管的电流,当3脚电压≥1V时,UC3842就关闭输出脉冲,保护开关管不至于过流损坏。

UC3842PWM 控制器设有欠压锁定电路,其开启阈值为16V,关闭阈值为10V。

正因如此,可有效地防止电路在阈值电压附近工作时的振荡。

图1UC3842的内部结构框图如下:UC3842具有以下特点:1、管脚数量少,外围电路简单,价格低廉;2、电压调整率很好;3、负载调整率明显改善;4、频响特性好,稳定幅度大;5、具有过流限制、过压保护和欠压锁定功能。

UC3842具有良好的线性调整率,因为输入电压Vi 的变化立即反应为电感电流的变化,它不经过任何误差放大器就能在比较器中改变输出脉冲宽度,再增加一级输出电压Vo至误差放大器的控制,能使线性调整率更好;可明显地改善负载调整率,因为误差放大器可专门用于控制由于负载变化造成的输出电压变化,特别使轻负载时电压升高的幅度大大减小。

误差放大器的外电路补偿网络得到简化,稳定度提高并改善了频响,具有更大的增益带宽乘积。

电流限制电路得到简化,由于电阻上感应出尖峰电感电流,故能自然形成逐个脉冲限制电路,只要Rs上电平达到1V,PWM就立即关断,而且这种峰值电感电流检测技术可以灵敏地限制输出的最大电流。

二、UC3842常用的电压反馈电路1.输出电压直接分压作为误差放大器的输入输出电压Vo经两电阻分压后作为采样信号,输入UC3842脚2(误差放大器的反向输入端)。

如图2。

图2 输出电压直接分压采样这种电路的优点是采样电路简单,缺点是输入电压和输出电压必须共地,不能做到电气隔离。

势必引起电源布线的困难,而且电源工作在高频开关状态,容易引起电磁干扰,必然带来电路设计的困难,所以这种方法很少使用。

2. 辅助电源输出电压分压作为误差放大器的输入单端反激式变压器T的辅助绕组上产生的感应电压随着输出电压升高而升高,该电压经过整流、滤波和稳压网络后得到一直流电压,给UC3842供电。

同时该电压经两电阻分压后作为采样电压,送入UC3842的脚2。

当UC3842启动后,若反馈绕组不能提供足够的UF,电路就会不停地起动,出现打嗝现象。

另外,根据笔者的经验,若UF大于17.5V时,也会引起UC3842工作异常,导致输出脉冲占空比变小,输出电压变低。

故而反馈绕组匝数的选取及其缠绕是非常重要的,一般可按13~15V设计,使UC3842正常工作时,7脚的电压维持在13V左右。

这种电路的优点是采样电路简单,副边绕组、原边绕组和辅助绕组之间没有任何的电气通路,容易布线。

缺点是并非从副边绕组直接得到采样电压,稳压效果不好,实验中发现,当电源的负载变化较大时,基本上不能实现稳压。

该电路适用于针对某种固定负载的情况。

3.采用线性光耦改变误差放大器的输入误差电压如图4所示,该开关电源的电压采样电路有两路:一是辅助绕组的电压经D1,D2,C1,C2,C3,R9组成的整流、滤波和稳压后得到16V的直流电压给UC3842供电,另外,该电压经R2及R4分压后得到一采样电压,该路采样电压主要反映了直流母线电压的变化;另一路是光电耦合器、三端可调稳压管Z 和R4,R5,R6,R7,R8组成的电压采样电路,该路电压反映了输出电压的变化;当输出电压升高时,经电阻R7及R8分压后输入Z的参考电压也升高,稳压管的稳压值升高,流过光耦中发光二极管的电流减小,流过光耦中的光电三极管的电流也相应的减小,误差放大器的输入反馈电压降低,导致UC3842脚6输出驱动信号的占空比变小,于是输出电压下降,达到稳压的目的。

该电路因为采用了光电耦合器,实现了输出和输入的隔离,弱电和强电的隔离,减少了电磁干扰,抗干扰能力较强,而且是对输出电压采样,有很好的稳压性能。

缺点是外接元器件增多,增加了布线的困难,增加了电源的成本。

4.线性光耦改变误差放大器增益电压反馈电路为了满足负载变化较大时的供电要求。

提高输出电压的稳定度,设计了一种从副边绕组输出端取样进行反馈控制的电路。

电路如图4所示:电压采样及反馈电路由光耦PC8I7、TL431及与之相连的阻容网络构成。

其控制原理如下:输出电压经RIJ、R⋯分压后得到采样电压,此采样电压与TL431提供的2.5 V参考电压进行比较。

当输出电压正常(5 V)时,采样电压与TL431提供的2.5V参考电压相等,则TL431的K极电位不变。

流过光耦二极管的电流不变,流过光耦CE的电流不变。

UC3842的脚1电位稳定,输出驱动的占空比不变,输出电压稳定在设定值不变。

当输出5 V电压因为某种原因偏高时,经分压电阻RIJ、R⋯分压值就会大于2.5 V,则TL431的K极电位下降,流过光耦二极管的电流增大,则流过光耦CE的电流增大。

UC3842的脚1电位下降,脚6输出驱动脉冲的占空比下降,输出电压降低,这样就完成了反馈稳压的过程。

在使用UC3842来控制开关电源的占空比时,常规的用法是在UC3842的脚1、2之间加R 网络,用光耦和TL431等元件组成电源的反馈控制回路,把光耦的C极接到UC3842的脚2作为输出电压的反馈。

图5所示的电路没有采用这种接法,而是把光耦的C极直接连到UC3842的脚1作为输出的电压反馈,脚2直接接地。

UC3842的脚2是其内部误差放大器的反向输入端,脚1是误差放大器的输出端。

这种接法略过了UC3842内部的放大器,这是因为放大器用作信号传输时都有它的传输时间,输出与输入并不是同时建立,不用UC3842的内部放大器。

其好处是把反馈信号的传输耗时缩短了一个放大器的传输时间,从而使电源的动态响应更快。

另外,TL431内部本身就有一个高增益误差放大器,只不过它与高压侧隔离了,因此反馈信号经TL431内的放大器和光耦后直接控制UC3842内部误差放大器的输出端(脚1),其控制精度并不会降低。

而使用UC3842内部误差放大器,则反馈信号连续通过了两个高增益误差放大器,增加了传输时间。

该电路通过输出端采样然后通过光电隔离反馈到UC3842的脚1,略过了UC3842内部的放大器,缩短了传输时间使电源的动态响应更快。

同时利用TL431内部的高增益误差放大器,保证了高控制精度。

这种电路拓扑结构简单、外接元件较少,而且在电压采样电路中采用了三端可调电压基准,使得输出电压在负载发生较大的变化时,输出电压基本上没有变化。

实验证明该电路具有很好的稳压效果。

如图5所示,该电压采样及反馈电路由R2,R5,R6,R7,R8,C1,光电耦合器、三端可调稳压管Z组成。

当输出电压升高时,输出电压经R7及R8分压得到的采样电压(即Z的参考电压)也升高,Z的稳压值也升高,流过光耦中发光二极管中的电流减小,导致流过光电三极管中的电流减小,相当于C1并联的可变电阻的阻值变大(该等效电阻的阻值受流过发光二极管电流的控制),误差放大器的增益变大,导致UC3842脚6输出驱动信号的占空比变小,输出电压下降,达到稳压的目的。

当输出电压降低时,误差放大器的增益变小,输出的开关信号占空比变大,最终使输出电压稳定在设定的值。

因为,UC3842的电压反馈输入端脚2接地,所以,误差放大器的输入误差总是固定的,改变的是误差放大器的增益(可将线性光耦中的光电三极管视为一可变电阻),其等效电路图如图6所示。

该电路通过调节误差放大器的增益而不是调节误差放大器的输入误差来改变误差放大器的输出,从而改变开关信号的占空比。

这种拓扑结构不仅外接元器件较少,而且在电压采样电路中采用了三端可调稳压管,使得输出电压在负载发生较大的变化时,输出电压基本上没有变化。

实验证明与上述三种反馈电路相比,该电路具有很好的稳压效果。

三、结语可以根据具体要求选取不同的反馈方式。

但对于多路输出的反馈电路,由于对于每个输出应用场合的不同,要求输出精度不同,所以在反馈中各个正极性输出端占反馈量的比例也不同。

要根据具体要求具体设计以满足应用要求,例如要求输出+5v +12v两种正电压时,由于前者经常用于精度比较高的场合,所以在反馈中占的比例比较大,可取为60%,而后者取为40%。

由于有多路输出,故在副边绕组中可以采用叠加技术,以减少变压器绕组匝数。

相关文档
最新文档