事故后果模拟分析
事故后果模拟分析

事故后果模拟分析事故后果模拟分析的特点事故后果模拟分析即泄露、火灾、爆炸、中毒评价模型。
火灾、爆炸、中毒是常见的重大事故,经常造成严重的人员伤亡和巨大的财产损失,影响社会安定。
这里重点介绍有关火灾、爆炸和中毒事故(热辐射、爆炸波、中毒)后果分析,在分析过程中运用了数学模型。
通常一个复杂的问题或现象用数学模型来描述,往往是在一个系列的假设前提下按理想的情况建立的,有些模型经过小型试验的验证,有的则可能与实际情况有较大的出入,但对辨识危险性来说是可参考的。
泄露模型由于设备损坏或操作失误引起泄露,大量易燃、易爆、有毒有害物质的释放,将会导致火灾、爆炸、中毒等重大事故发生。
因此,事故后果分析由泄露分析开始。
火灾模型易燃、易爆的气体、液体泄露后遇到引火源就会被点燃而着火燃烧。
它们被点燃后的燃烧方式有池火、喷射火、火球和突发火4种。
爆炸模型爆炸是物质的一种非常急剧的物理、化学变化,也是大量能量在短时间内迅速释放或急剧转化成机械功的现象。
它通常是借助于气体的膨胀来实现。
从物质运动的表现形式来看,爆炸就是物质剧烈运动的一种表现。
物质运动急剧增速,由一种状态迅速地转变成另一种状态,并在瞬间内释放出大量的能。
中毒模型有毒物质泄露后生成有毒蒸汽云,它在空气中飘移、扩散,直接影响现场人员,并可能波及居民区。
大量剧毒物质泄露可能带来严重的人员伤亡和环境污染。
<!--内容关联投票-->毒物对人员的危害程度取决于毒物的性质、毒物的浓度和人员与毒物接触时间等因素。
有毒物质泄露初期,有毒气体形成气团密集在泄露源周围、随后由于环境温度、地形、凤梨和湍流等影响气团飘移、扩散,扩散范围变大,浓度减小。
在后果分析中,往往不考虑毒物泄露的初期情况,即工厂范围内的现场情况,主要计算毒气气团在空气中飘移、扩散的范围、浓度、接触毒物的人数等。
事故后果模拟分析举例

事故后果模拟分析举例事故后果模拟分析是指通过模拟工具和方法,对各种事故的可能后果进行定量分析和评估。
这种分析可以帮助决策者了解事故对环境、人员和财产造成的影响,为事故预防和应急救援提供科学依据。
下面以一起化学品泄漏事故为例,进行事故后果模拟分析举例。
化学品泄漏事故是一种常见的危险事故,它可能造成环境污染、人员伤害和财产损失。
为了评估事故后果,我们可以运用事故后果模拟分析方法。
首先,我们需要了解事故发生的具体情况。
假设一家化工厂的一个储罐发生泄漏,泄漏物质为一种有毒有害气体。
我们需要获取泄漏速率、泄漏时间和泄漏物质的性质等数据,这些数据可以通过现场监测仪器、事故现场勘察和相关文献等途径获取。
其次,我们使用事故后果模拟软件对事故后果进行模拟分析。
根据泄漏物质的性质和事故现场环境条件,模拟软件可以计算事故区域内的物质浓度分布、毒性影响范围、人员紧急撤离时间等。
通过模拟可以直观地了解事故带来的影响和损失。
接着,我们可以根据模拟结果,对事故后果进行评估和分析。
比如模拟结果显示,在事故发生后的第一小时,泄漏物质的浓度达到了可燃极限,存在火灾和爆炸的风险。
此时,我们可以评估火灾和爆炸对厂区以及附近居民的影响,进一步采取措施避免或减轻火灾和爆炸的发生。
此外,模拟结果还可以帮助我们预测事故对环境和生态系统的影响。
比如模拟结果显示,泄漏物质会污染附近地下水和土壤,对当地生态环境造成潜在威胁。
借助模拟结果,我们可以进行环境风险评估,决定合适的应急措施和防护措施,从而减少环境污染的扩散范围。
最后,模拟分析结果还可以用于指导事故应急救援工作和决策制定。
模拟结果可以用于制定撤离计划,为紧急情况下的人员疏散提供科学依据;可以用于确定救治措施,为中毒人员的救治提供参考;还可以用于指导应急物资的调配,确保应急救援工作的高效进行。
总之,事故后果模拟分析是一种重要的工具和方法,可以为预防事故、应对事故提供科学依据。
通过对事故后果的模拟分析,我们可以更好地了解事故的可能后果,预测事故对环境和人员造成的影响,有针对性地采取措施减轻事故损失。
2事故后果模拟分析讲解

2事故后果模拟分析讲解事故后果模拟分析是指通过对事故发生后可能产生的各种后果进行系统模拟和分析,以评估事故对环境、人员和财产等方面可能造成的影响和损失。
通过这样的分析,可以帮助企业和政府机构采取相应的应对措施,减少潜在的事故风险。
事故后果模拟分析的目的是对事故后可能发生的各种后果进行全面、客观的评估和预测,以便为事故应急预案和风险管理提供科学依据。
其基本思路是通过建立适当的模型,模拟分析事故发生后可能引发的各种后果,如物质泄漏、火灾爆炸、环境污染、人员伤亡等,从而揭示事故的潜在影响范围和强度,并提出相应的控制和应对措施。
事故后果模拟分析的方法主要分为定量方法和定性方法两种。
定量方法是通过建立适当的物理、数学或统计模型,对事故发生后可能产生的后果进行量化分析。
这种方法需要充分考虑各种因素的影响和相互作用,如事故规模、周围环境、气象条件等。
通常通过模拟和计算来得到事故后的后果值,如损失金额、人员伤亡数量等。
定量方法可以提供比较准确的数值结果,但对数据和模型的要求较高。
定性方法是通过专家经验和专业知识来对事故后果进行评估和预测。
这种方法主要依靠专家的判断和分析,通过专家讨论、问卷调查、案例分析等方式来获取相关信息。
然后通过专家评价或专家打分等方法,对事故后果进行定性描述和排序。
定性方法具有灵活性强、成本较低的优点,但受主观因素的影响较大,结果可能存在一定的不确定性。
事故后果模拟分析的实施过程主要包括以下几个步骤:第一步,确定分析目标和范围。
明确需要分析的事故类型、区域范围、关注的后果等,以便有针对性地采集和处理相关数据。
第二步,收集和整理所需数据。
收集和整理有关事故和后果的数据,包括事故发生地的地理信息、设备参数、周围环境信息、气象数据、人员伤亡和财产损失等。
数据的准确性和完整性对分析结果的可靠性起着决定性作用。
第三步,建立模型和参数设定。
根据分析目标和范围,建立适当的模型和计算方法,将数据应用于模型中,设定相应的参数和假设条件,以便进行后续的模拟和分析。
事故后果模拟分析

t
K ( Nu ) A1 HL
(T 0 T b )
泄漏后的扩散
• • • • • • • • • • • • 1)液体的扩散 (2)蒸发量 ②热量蒸发 式中A1——液池面积,m2; T0——环境温度,K; Tb——液体沸点,K; H——液体蒸发热,J/kg; L——液池长度,m; α——热扩散系数,m2/s,见表2; K——导热系数,J/(m· K),见表2; t——蒸发时间,s; Nu——努塞尔(Nusselt)数。
泄漏量的计算
• 1)液体泄漏量
• 按上式计算的结果,几乎总是在0~1之间。 • 事实上,泄漏时直接蒸发的液体将以细小烟 雾的形式形成云团,与空气相混合而吸热蒸 发。如果空气传给液体烟雾的热量不足以使 其蒸发,有一些液体烟雾将凝结成液滴降落 到地面,形成液池。 • 根据经验,当F>0.2时,一般不会形成液池; 当F<0.2时,F与带走液体之比有线性关系, 即当F=0时,没有液体带走(蒸发);当F=0.1 时,有50%的液体被带走。
泄漏量的计算
• 当发生泄漏的设备的裂口是规则的,而且 裂口尺寸及泄漏物质的有关热力学、物理 化学性质及参数已知时,可根据流体力学 中的有关方程式计算泄漏量。 • 当发生泄漏的设备的裂口不规则时,可采 取等效尺寸代替;当遇到泄漏过程中压力 变化等情况时,往往采用经验公式计算。
泄漏量的计算
• 1)液体泄漏量 • 液体泄漏速度可用流体力学的柏努利方 程计算,其泄漏速度为:
• • • • •
Cp——两相混合物的比定压热容,J/(kg· K); T——两相混合物的温度,K; Tc——临界温度,K; H——体的气化热,J/kg。 当F>1时,表明液体将全部蒸发成气体,这时 应按气体泄漏公式计算;如果Fv很小,则可近 似按液体泄漏公式计算。
2024年注册安全工程师安全生产事故案例分析模拟试题及答案

2024年注册安全工程师安全生产事故案例分析模拟试题及答案一、试题某大型化工企业发生一起严重的火灾爆炸事故,造成10人死亡,50人受伤,直接经济损失约5000万元。
以下是事故调查组对该起事故的描述:1. 事故背景该化工企业主要生产有机化工产品,拥有多条生产线,员工约1000人。
事故发生在2024年3月15日,下午3点30分左右,该企业一分厂的车间内发生火灾爆炸。
2. 事故经过当天下午,一分厂的车间内正在进行一项设备检修工作。
检修期间,一名员工操作不当,导致一根管道发生泄漏,泄漏的气体迅速扩散至车间内。
由于车间内存在火源,泄漏的气体遇到火源后发生爆炸,引发火灾。
3. 事故原因经调查,事故原因如下:(1)设备老化,安全防护设施不完善;(2)员工操作不当,安全意识不强;(3)企业安全生产管理不到位,对设备检修工作监管不力;(4)事故应急预案不完善,应急响应不力。
二、问题请根据事故描述,分析以下问题:1. 事故的直接原因是什么?2. 事故的间接原因是什么?3. 针对该起事故,企业应采取哪些整改措施?三、参考答案1. 事故的直接原因:事故的直接原因是员工操作不当,导致管道泄漏,泄漏的气体遇到火源后发生爆炸。
2. 事故的间接原因:(1)设备老化,安全防护设施不完善;(2)企业安全生产管理不到位,对设备检修工作监管不力;(3)员工安全意识不强,操作不规范;(4)事故应急预案不完善,应急响应不力。
3. 针对该起事故,企业应采取以下整改措施:(1)加强设备维护和检修,确保设备安全运行;(2)提高员工安全意识,加强安全培训,规范操作行为;(3)完善安全生产管理制度,加强对设备检修工作的监管;(4)制定完善的应急预案,提高应急响应能力;(5)加大安全投入,提高安全生产水平。
以下为详细解答:一、事故直接原因分析1. 员工操作不当:根据事故描述,事故发生时,一名员工在操作设备时操作不当,导致管道泄漏。
这是事故的直接原因。
池火灾事故后果模拟分析

池火灾事故后果模拟分析一、引言近年来,随着城市化进程的加快,公共场所的安全问题越来越受到人们的关注。
其中,池火灾事故成为了一大隐患,是严重威胁人民生命财产安全的一种灾害事件。
因此,对于池火灾事故后果的模拟分析显得尤为重要,有助于科学预测和应对可能发生的灾害,减少灾害损失,维护社会稳定和人民安全。
二、池火灾事故概述池火灾是指由于各种原因导致池中的易燃易爆物质发生一系列燃烧爆炸后引发的事故。
此类事故常常涉及的场所有游泳池、温泉池、水上乐园等,一旦发生事故将会对人民生命和财产造成严重影响。
因此,池火灾事故的后果模拟分析将对事故预防和防控工作起到至关重要的作用。
三、池火灾事故后果模拟分析的方法1.数据收集在进行池火灾事故后果模拟分析前,首先需要收集大量相关的数据,包括池的建造材料、周围环境情况、池中存储的易燃易爆物质种类及数量、人员密集程度等信息,以便进行后续的模拟分析。
2.事故模拟利用现代科学技术手段,采用计算机模拟等方法对可能发生的池火灾事故进行模拟。
通过对事故发生的过程和后果进行模拟,可以更加清晰地了解事故的可能发展情况和影响范围。
3.分析结果根据模拟结果,对事故可能造成的后果进行详细的分析。
主要包括事故对人员和设施的影响、对环境及周围建筑的影响、对经济损失的影响等。
四、池火灾事故后果模拟分析的结果1.对人员的影响在池火灾事故中,人员是最直接的受害者。
一旦发生事故,火势将迅速蔓延,人员将面临生命危险。
根据模拟分析结果,如果事故发生在池内人员密集的情况下,可能造成大量人员伤亡,对社会稳定和人民生命安全造成极大的威胁。
2.对设施的影响池火灾事故发生后,周围设施和建筑很可能受到严重损毁。
燃烧和爆炸会导致池内和周围的建筑物受损程度不同程度,对当地的经济建设和社会环境造成严重的影响。
3.对环境的影响池火灾事故的发生将导致大量的烟尘和有害气体排放到空气中,对周围的环境造成污染。
大量有害气体的扩散还有可能对当地居民的生活造成一定的影响,有可能引发公共安全事件。
事故后果模拟分析

事故后果模拟分析事故后果模拟分析是指通过使用数学、物理学、化学等相关理论和方法,对事故后果进行定量分析和模拟,以便更好地预防事故并制定应急预案。
本文将从概念、方法和实践案例三个方面展开,深入介绍事故后果模拟分析的意义和应用。
概念事故后果模拟分析是指通过模拟和预测事故发生后的影响范围、危害程度和后果,以便在事故发生前就能采取相应的措施进行预防和应急处理的一种技术手段。
它是结合相关技术和工具,运用数学模型和计算机仿真等技术手段对事故的后果进行系统性、定量化的分析和预测。
方法1.系统分析方法:通过研究事故的发生机理、影响因素及其相互关系,构建事故后果的评估指标体系,对事故影响的各个方面进行定量分析和评估。
2.危险源模拟方法:对事故可能发生的危险源进行建模和模拟,通过引入概率统计方法,分析事故的发生概率和可能的后果范围,以便提前采取相应的预防和控制措施。
3.仿真模拟方法:通过在计算机上对事故发生后的各种可能情况进行模拟,并对其后果进行定量分析,以获得事故的影响范围、可能的伤亡人数、环境污染程度等信息。
实践案例以石油化工行业为例,该行业存在着重大事故发生的风险,因此事故后果模拟分析非常重要。
1.模拟溢油事故:通过对石油储罐泄漏的溢油事故进行模拟,预测泄漏量、扩散面积和影响范围,以便制定合理的应急预案,有效减少事故造成的损失。
2.模拟火灾事故:通过对石化企业发生火灾事故的可能性和后果进行模拟分析,评估烟气扩散的范围和浓度,对火灾事故的灭火措施和疏散逃生进行优化设计。
3.模拟爆炸事故:通过对化工装置中的爆炸事故进行模拟分析,预测爆炸震荡波的传播范围和破坏程度,以及可能的伤亡人数和财产损失,以便在事故发生前采取相应的控制措施和预防措施。
意义与应用1.事故防范决策:通过模拟分析,及早发现和解决事故隐患,对可能发生的事故进行预防和控制。
2.应急预案制定:根据模拟分析结果,合理安排应急资源,明确应急救援措施,提高事故处理的效率和准确性。
事故后果模拟分析

事故后果模拟分析(1)物理爆炸能量计算液化气体和高温饱和水一般在容器内以气液两态存在,当容器破裂发生爆炸时,除了气体的急剧膨胀做功外,还有过热液体激烈的蒸发过程。
在大多数情况下,这类容器内的饱和液体占有容器介质重量的绝大部分,它的爆破能量比饱和气体大得多,一般计算时考虑气体膨胀做的功。
过热状态下液体在容器破裂时释放出爆破能量可按下式计算:[]W T )S S ()H H (E 12121---= 式中,E ——过热状态液体的爆破能量,kJ ;H 1——爆炸前饱和液体的焓,kJ/kg ;H 2——在大气压力下饱和液体的焓,kJ/kg ;S 1——爆炸前饱和液体的熵,kJ/(kg ·℃);S 2——在大气压力下饱和液体的熵,KJ/(kg ·℃); T 1——介质在大气压力下的沸点,℃;W ——饱和液体的质量,kg 。
(2)物理爆炸冲击波的伤害范围(危险性区域)估算 冲击波对人体造成的伤害是由于其超压引起的,显然,超压越大,伤害作用就越大。
对爆炸的冲击波超压,采用比例法则模拟标准TNT炸药爆炸之冲击波超压进行估算,即两个爆炸源若在某一地点形成同样的冲击波超压,则此超压点与两爆炸源距离之比,等于两爆炸源爆炸药量之比的三次方根。
也就是说,当R/ R0= ( Q /Q 0 )1/ 3= α时,有ΔP= ΔP0式中:R ——实际爆炸源至超压点的距离,m;R0——标准炸药爆炸源至超压点的距离,m;q ——实际爆炸物的TNT当量,TNT,kg;q0——标准TNT炸药量,TNT,kg;α——爆炸模拟比;ΔP ——实际爆炸源至超压点的超压,MPa;ΔP0——标准炸药爆炸源至超压点的超压,MPa。
根据用标准炸药量Q0试验得出的在不同R0处的超压ΔP0,求得实际危险源Q 在不同R处的超压ΔP。
最后,再根据冲击波超压的大小与人体伤害程度的关系,求出储气罐发生物理爆炸致人死亡和重伤的半径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2事故后果模拟分析法火灾、爆炸、中毒是常见的重大事故,经常造成严重的人员伤亡和巨大的财产损失,影响社会安定。
这里重点介绍有关火灾、爆炸和中毒事故(热辐射、爆炸波、中毒)后果分析,在分析过程中运用了数学模型。
通常一个复杂的问题或现象用数学模型来描述,往往是在一个系列的假设的前提下按理想的情况建立的,有递增模型经过小型试验的验证,有的则可能与实际情况有较大出入,但对辨识危险性来说是可参考的。
2.2.1 泄漏由于设备损坏或操作失误引起泄漏,大量易燃、易爆、有毒有害物质的释放,将会导致火灾、爆炸、中毒等重大事故发生,因此,后果分析由泄漏分析开始。
2.2.1.1 泄漏情况分析2.1.1.1.1泄漏的主要设备根据各种设备泄漏情况分析,可将工厂(特别是化工厂)中易发生泄漏的设备归纳为以下10类:管道、挠性连接器、过滤器、阀门、压力容器或反应器、泵、压缩机、储罐、加压或冷冻气体容器,火炬燃烧装置或放散管等。
⑴管道。
它包括管道、法兰和接头,其典型情况和裂口尺寸分别取管径的20%~100%、20%和20%~100%。
⑵挠性连接器。
它包括软管、波纹管和铰接器,其典型泄漏情况和裂口尺寸为:①连接器本体破裂泄漏,裂口尺寸取管径的20%~100%;②接头处的泄漏,裂口尺寸取管径的20%;③连接装置损坏泄漏,裂口尺寸取管径的100%。
⑶过滤器。
它由过滤器本体、管道、滤网等组成,其典型泄漏情况和裂口尺寸分别取管径的20%~100%和20%。
⑷阀。
其典型泄漏情况和裂口尺寸为:①阀壳体泄漏,裂口尺寸取管径的20%~100%;②阀盖泄漏,裂口尺寸取管径的20%;③阀杆损坏泄漏,裂口尺寸取管径的20%。
⑸压力容器或反应器。
包括化工生产中常用的分离器、气体洗涤器、反应釜、热交换器、各种罐和容器等。
其常见的此类泄漏情况和裂口尺寸为:①容器破裂而泄漏,裂口尺寸取容器本身尺寸;②容器本体泄漏,裂口尺寸取与其连接的粗管道管径的100%;③孔盖泄漏,裂口尺寸取管径的20%;④喷嘴断裂而泄漏,裂口尺寸取管径的100%;⑤仪表管路破裂泄漏,裂口尺寸取管径的20%~100%;⑥容器内部爆炸,全部破裂。
⑹泵。
其典型泄漏情况和裂口尺寸为:①泵体损坏泄漏,裂口尺寸取与其连接管径的20%~100%;②密封压盖处泄漏,裂口尺寸取管径的20%;⑺压缩机。
包括离心式、轴流式和往复式压缩机,其典型泄漏情况和裂口尺寸为:①压缩机机壳损坏而泄漏,裂口尺寸取与其连接管道管径的20%~100%;②压缩机密封套泄漏,裂口尺寸取管径的20%。
⑻储罐。
露天储存危险物质的容器或压力容器,也包括与其连接的管道和辅助设备,其典型泄漏情况和裂口尺寸为:①罐体损坏而泄漏,裂口尺寸为本体尺寸;②接头泄漏,裂口尺寸为与其连接管道管径的20%~100%;③辅助设备泄漏,酌情确定裂口尺寸。
⑼加压或冷冻气体容器。
包括露天或埋地放置的储存器、压力容器或运输槽车等,其典型泄漏情况和裂口尺寸为:①露天容器内部气体爆炸使容器完全破裂,裂口尺寸取本体尺寸;②容器破裂而泄漏,裂口尺寸取本体尺寸;③焊接点(接管)断裂泄漏,取管径的20%~100%。
⑽火炬燃烧器或放散管。
它们包括燃烧装置、放散管、多通接头、气体洗涤器和分离罐等,泄漏主要发生在筒体和多通接头部位,裂口尺寸取管径的20%~100%。
表2-1 典型泄漏情况和裂口尺寸取值表2.1.1.1.2造成泄漏的原因从人-机系统来考虑造成各种泄漏事故的原因主要有四类:⑴设计失误①基础设计错误,如地基下沉,造成容器底部产生裂缝,或设备变形、错位等;②选材不当,如强度不够、耐腐蚀性差、规格不符等;③布置不合理,如压缩机和输出管道没有弹性连接,因振动而使管道破裂;④选用机械不合适,如转速过高,耐温、耐压性能差等;⑤选用计测仪器不合适;⑥储罐、储槽未加液位计,反应器(炉)未加溢流管或放散管等。
⑵设备原因①加工不符合要求,或未经检验擅自采用代用材料;②加工质量差,特别是不具有操作证的焊工焊接质量差;③施工和安装精度不高,如泵和电动机不同轴,机械设备不平衡,管道连接不严密等;④选用的标准定型产品质量不合格;⑤对安装的设备未按《机械设备安装工程及验收规范》进行验收;⑥设备长期使用后未按规定检修期进行检修,或检修质量差造成泄漏;⑦计测仪表未定期校验,造成计量不准;⑧阀门损坏或开关泄漏,又未及时更换;⑨设备附件质量差,或长期使用后材料变质、腐蚀或破裂等。
⑶管理原因①没有制定完善的安全操作规程;②对安全漠不关心,已发现问题不及时解决;③没有严格执行监督检查制度;④指挥错误,甚至违章指挥;⑤让未经培训的工人上岗,知识不足,不能判断错误;⑥检修制度不严,没有及时检修已出现故障的设备,使设备带病运转。
⑷人为失误①误操作,违反操作规程;②判断失误,如记错阀门位置或开错阀门;③擅自离岗;④思想不集中;⑤发现异常现象不知如何处理;2.1.1.1.3泄漏后果泄漏一旦出现,其后果不单与物质的数量、易燃性、毒性有关,而且与泄漏物质的相态、压力、温度等状态有关。
这些状态可有多种不同的结合,在后果分析中,常见的可能结合有4种:①常压液体;②加压液化气体;③低温液化气体;④加压气体。
泄漏物质的物性不同,其泄漏后果也不同。
⑴可燃气体泄漏可燃气体泄漏后与空气混合达到爆炸极限时,遇到引火源就会发生燃烧或爆炸。
泄漏后起火的时间不同,泄漏后果也不相同。
①立即起火。
可燃气体从容器中往外泄出时即被点燃,发生扩散燃烧,产生喷射性火焰或形成火球,它能迅速地危及泄漏现场,但很少会影响到厂区的外部。
②泄后起火。
可燃气体泄出后与空气混合形成可燃蒸气云团,并随风飘移,遇火源发生爆炸或爆轰,能引起较大范围的破坏。
⑵有毒气体泄漏有毒气体泄漏形成云团在空气中扩散,有毒气体的浓密云团将笼罩很大的空间,影响范围大。
⑶液体泄漏一般情况下,泄漏的液体在空气中蒸发而生成气体,泄漏后果与液体的性质和储存条件(温度、压力)有关。
①常温常压下液体泄漏。
这种液体泄漏后聚集在防液堤内或地势低洼处形成液池,液体由于持表面风的对流而缓慢蒸发,若遇引火源就会发生池火灾。
②加压液化气体泄漏。
一些液体泄漏时将瞬间蒸发,剩下的液体将形成一个液池,吸收周围的热量继续蒸发。
液体瞬时蒸发的比例决定于物质的性质及环境温度。
有些泄漏物可能在泄漏过程中全部蒸发。
③低温液体泄漏。
这种液体泄漏时将形成液池,吸收周围热量蒸发,蒸发量低于加压液化气体的泄漏量,高于常温常压下液体的泄漏量。
无论是气体泄漏还是液体泄漏,泄漏量的多少都是决定后果严重程度的主要因素,而泄漏量又与泄漏时间长短有关。
2.2.1.2 泄漏量的计算当发生泄漏的设备的裂口是规则的,而且裂口尺寸及泄漏物质的有关热力学、物理化学性质及参数已知时,可根据流体力学中的有关方程式计算泄漏量。
当裂口不规则时,可采取等效尺寸代替;当遇到泄漏过程中压力变化等情况时,往往采用经验公式计算。
(1)液体泄漏计算液体泄漏速度可用流体力学的伯努利方程计算,其泄漏速度为:()gh 2ρp p 2A ρC Q 0d 0++=Q 0=C d A ρ(2[p+P 0]/ρ+2gh)1/2 (1) 式中 Q 0——液体泄漏速度,kg/s ;C d ——液体泄漏系数,按表2-1选取; A ——裂口面积,m 2; ρ——泄漏液体密度,㎏∕m 3; p ——容器内介质压力,Pa ; p 0——环境压力,Pa ; g ——重力加速度,9.8m ∕s 2; h ——裂口之上液位高度,m ;表2-2 液体泄漏系数Cd对于常压下的液体泄漏速度,取决于裂口之上液位的高低;对于非常压下的液体泄漏速度,主要取决于容器内介质与环境压力之差和液位高低。
当容器内液体是过热液体,即液体的沸点低于周围环境温度,液体流过裂口时由于压力减小而突然蒸发。
蒸发所需热量取自于液体本身,而容器内剩下液体的温度将降至常压沸点。
在这种情况下,泄漏时直接蒸发的液体所占百分比F 可按下式计算:F=Cp(T-T 0)/H (2)式中 Cp——液体的定压比热,J∕kg·K;T ——泄漏前液体的温度,K;T0——液体在常压下的沸点,K;H ——液体的气化热,J∕kg;按式(2)计算的结果,几乎总是在0~1之间。
事实上,泄漏时直接蒸发的液体将以细小烟雾的形式形成云团,与空气相混合而吸收蒸发。
如果空气传给液体烟雾的热量不足以使其蒸发,有一些液体烟雾将凝结成液滴降落到地面,形成液池。
根据经验,当F>0.2时,一般不会形成液池;当F<0.2时,F与带走液体之比有线性关系,即当F=0时没有液体带走(蒸发),当F=0.1时有50%的液体被带走。
(2)气体泄漏量计算气体从裂口泄漏的速度与其流动状态有关。
因此,计算泄漏量时首先要判断泄漏时气体流动属于音速还是亚音速流动,前者称为临界流,后者称为次临界流。
当式(3)成立时,气体流动属音速流动:p0/p≤[2/(k+1)]k/(k-1)(3)当式(4)成立时,气体流动属亚音速流动:p0/p≥[2/(k+1)]k/(k-1) (4)式中p0、p——符号意义同前;k——气体的绝热指数,即定压比热Cp与定容比热Cv之比。
气体呈音速流动时,其泄漏量为:Q0=C d Aρ[(Mk/RT)×(2/(k+1))k+1/(k-1)]1/2 (5) 气体呈亚音速流动时,其泄漏量为:Q0=YC d Aρ[(Mk/RT)×(2/(k+1))k+1/(k-1)]1/2 (6)上两式中 Cd——气体泄漏系数,当裂口形状为圆形时取1.00,三角形时取0.95,长方形时取0.90;Y——气体膨胀因子,它由下式计算:Y={(1/(k-1))((k+1)/2)k+1/k-1(p0/p)2/k[1-(p0/p)(k-1)/k]}1/2(7)M——分子量;ρ——气体密度,kg/m3;R——气体常数,J/mol•K;T——气体温度,K。
当容器内物质随泄漏而减少或压力降低而影响泄漏速度时,泄漏速度的计算比复杂。
如果流速小或时间短,在后果计算中可采用最初排放速度,否则应计算等效泄漏速度。
(3)两相流动泄漏量计算在过热液体发生泄漏时,有时会出现气、液两相流动。
均匀两相流动的泄漏速度可按下式计算:Q0=C d A[2ρ(p-p c)]1/2 (8)式中Q0——两相流动混合物泄漏速度,kg/s;C d——两相流动混合物泄漏系数,可取0.8;A ——裂口面积,m2;p ——两相混合物的压力,Pa;p c ——临界压力,Pa,可取p c=0.55Pa;ρ——两相混合物的平均密度,kg/m3,它由下式计算:ρ=1/(Fv/ρ1+(1-Fv)/ρ2)(9)ρ1——液体蒸发的蒸气密度,kg/m3;ρ2——液体密度,kg/m3 ;Fv ——蒸发的液体占液体总量的比例,它由下式计算:Fv=C p(T-T c)/H (10)C p——两相混合物的定压比热,J/kg•K;T —— 两相混合物的温度,K ; T c —— 临界温度,K ; H —— 液体的气化热,J/g 。