荧光染料基础知识大全

合集下载

几种常见荧光素极其特性介绍

几种常见荧光素极其特性介绍
几种常见荧光素极其特性介绍
荧光素(英语:Fluorescein,又称为荧光黄)是一种合成有机化合物,它是具有光致荧光特性的染料,外观为暗橙色/红色粉末,可溶于乙醇,微溶于水,在蓝光或紫外线照射下,发出绿色荧光。荧光染料种类很多,目前常用于标记抗体的荧光素有以下几种:异硫氰酸荧光素,四乙基罗丹明,四甲基异硫氰酸罗丹明,酶作用后产生荧光的物质。目前荧光素广发应用在免疫荧光、免疫荧光染色实验中。
4、其它荧光素
单激光束三色荧光分析时,要求单激光激发,所选择的三种荧光素的发射光波长应该有所不同。除FITC(发射绿光)、PE(发射橙光)外,还应选择发射红光或深红光的藻红蛋白-花青素(phycoerythrin and cyanidinPC5)、叶绿素蛋白(peridinin chorophyll protein,PerCP)或藻红蛋白-德克萨斯红(phycoerythrin and Texas Red tandem,ECD)。因为这些荧光素在受到488nm的蓝光激发CD是由在空间结构上互补的两个荧光素分子通过共价键结合而成,组成一个荧光分子。PC5由PE和cyanidin 5组成,ECD由PE和Texas Red组成。他们前一个分子的发射光波谱与后一个分子的激发光波谱相重合,这样,当前一个分子受激光激发后,产生的发射光可直接激发后一个分子,最后由后一个分子的发射光体现出整个组合的荧光特性。因此,此组成上说是两个分子,但表现为一个分子的物理性质。
(2)PerCP是从一种生活于深海区域的鞭毛虫中发现的色素,其功能为将可渗透入深海的落光传递至鞭毛虫的叶绿素发色基团,进而发出红光。需注意的是PerCP为单个分子。
(3)别藻蓝蛋白(allophycocyanin,APC)和花青素5(cyanidin 5,Cy5)这两种荧光素的激发光波长要求在630nm左右,需第二根激光来激发。

有机荧光染料分子

有机荧光染料分子

有机荧光染料分子
有机荧光染料分子是一类能够产生荧光的化学结构,其中最常见的有机荧光染料分子包括偶氮染料、螺环芘、芴、喹啉、苯并二氮杂苯、铝酞菁等。

它们通过吸收光子能量后发生激发态跃迁,从而产生荧光,荧光的颜色和强度取决于染料分子的化学结构和环境。

偶氮染料是一类含有偶氮化合物的大分子结构的有机染料,具有特殊的色谱和光学性质。

其中最常见的是罗丹明B和甲基红等。

螺环芘是一种含有螺环结构的多环芳香族化合物,具有较强的光稳定性和发光强度,常用于生物荧光标记和光致变性材料。

芴、喹啉和苯并二氮杂苯等也是常见的有机荧光染料分子,具有不同的化学结构和光学性质,被广泛应用于传感器、荧光染料、荧光探针等领域。

铝酞菁是一类含有铝离子的酞菁类荧光染料分子,具有较强的光稳定性和发光强度,被广泛应用于荧光显微镜、分析化学等领域。

此外,还有许多其他种类的有机荧光染料分子,如杜邦染料、染料颜料等。

总之,有机荧光染料分子是一类功能多样、应用广泛的化学物质,已经成为现代生物医学、环境监测、光电器件等领域的重要工具和材料。

荧光颜料成分

荧光颜料成分

荧光颜料成分荧光颜料成分1 .荧光颜料:分为无机荧光颜料和有机荧光颜料两类,无机荧光颜料具有一般无机材料所具有的耐久性优良的特性,其户外耐久性超过7年,而且其耐热性和耐化学品性也很优良。

无机荧光颜料有金属氧化物、硫化物等结晶晶体和稀土类或金属类等活化剂。

2 .基料:可以用作荧光涂料基料的成膜物质有丙烯酸树脂、聚氨酯树脂、有机硅・丙烯酸酯树脂等。

由于荧光涂料是高档功能性涂料,相比较基料的成本不占主导地位,因而一般不使用耐久性太差的树脂做基料。

但是,应该根据用户要求或底材的适应性等情况选用合适的基料。

根据所用分散介质的不同,无机荧光涂料还分溶剂型和水性两种。

溶剂型无机荧光涂料既可以用于室外,也可以用于室内;有机荧光涂料一般只用于室内。

3 .助剂:为了保证荧光涂料具有所需要的各种涂料性能,配制涂料时选用相应的助剂也是必不可少的,例如分散剂、流平剂和防沉淀剂等。

对于双组分涂料,还需要配套相应的固化剂。

4 .稀释剂:由于这类涂料中无机荧光颜料密度较高,易沉淀,因而在涂料配制时黏度设计的较高,在施工时需用相应的稀释剂进行稀释。

涂料一般配套专用稀释剂。

由于需要利用高分子的性质,日光荧光颜料有非常多的类别。

5 .按照载体树脂性质分类,可分为:a热塑性荧光颜料:线型;b热固性荧光颜料:体型;C可溶解色精荧光颜料;d水乳型荧光颜料。

按照载体树脂类别分类,可分为:a胺基树酯;b聚酰胺树酯;c聚酯树酯;d丙烯酸乳液。

按照应用领域分类,可分为塑胶类和涂料类.再细分又有:a塑胶类:彳氐温型;中温型;高温型;b涂料类:水性涂料;油性涂料;粉末涂料。

按照环保指标分类,有:a含甲醛;b不含甲醛。

荧光粉荧光粉(也叫夜光粉),通常分为光致储能夜光粉和带有放射性的夜光粉两类。

光致储能夜光粉是荧光粉在受到自然光、日光灯光、紫外光等照射后,把光能储存起来,在停止光照射后,再缓慢地以荧光的方式释放出来,也就是在白天的环境下吸光,在晚上比较黑暗的地方发光。

传统荧光染料概念

传统荧光染料概念

传统荧光染料概念
传统荧光染料是指那些在紫外光激发下能够发出明亮荧光的染料。

这些染料可以用于多种应用领域,如荧光显微镜、生物学研究、材料科学、化学分析等。

传统荧光染料的工作原理是基于荧光共振能量转移(FRET)效应。

当染料分子吸收紫外光时,电子跃迁至激发态,并迅速发生非辐射性能量转移过程,将能量传递给另一个相邻染料分子。

激发态的能量最终被转移到接受者染料分子,使其发出荧光。

传统荧光染料的特点包括广泛的吸收光谱和窄的发射光谱。

它们通常具有良好的抗光漂白性能、较高的荧光量子产率和稳定性。

此外,传统荧光染料还可以通过化学修饰来调控其光谱和荧光性能,以满足特定应用的需求。

然而,传统荧光染料也存在一些局限性,如较短的寿命、易受氧化和光漂白的影响、不能同时发出多种颜色等。

这些限制驱动了对新型荧光材料的研发,如量子点、有机发光二极管(OLED)等,以提高荧光效果和功能性能。

荧光染料波长查询

荧光染料波长查询

荧光染料波长查询
荧光染料是一种能够吸收光能并发射出更长波长的荧光的染料。

每种荧光染料都有其特定的吸收和发射波长。

以下是一些常见的荧光染料及其对应的吸收和发射波长:
1. 荧光素(Fluorescein):
- 吸收波长:494-495 nm
- 发射波长:518-520 nm
2. 罗丹明B(Rhodamine B):
- 吸收波长:540-550 nm
- 发射波长:565-580 nm
3. 二甲基琼脂绿(Ethidium Bromide):
- 吸收波长:518-530 nm
- 发射波长:605-625 nm
4. 亚甲基蓝(Methylene Blue):
- 吸收波长:600-660 nm
- 发射波长:660-740 nm
需要注意的是,荧光染料的波长可能因厂商和实验条件而略有差异。

因此,在具
体实验中,最好参考相关荧光染料的技术说明书或与供应商联系以获取准确的波长信息。

荧光染料

荧光染料

AlexaFluor 荧光素是市场上效果最好的荧光素,比较传统荧光素,它具有以下优点:·多色彩选择的灵活性- 染料颜色区广,从蓝色到远红外;·更亮- 荧光强度明显高于近似波长的对应染料,可高达20 倍,镜下可持续3 分钟;·更不容易光淬灭;·对PH 变化极不敏感,可耐受PH2.5-10 广泛的PH 环境;·仪器适配性佳- 荧光显微镜、流式细胞仪等。

AlexaFluor 488 和FITC 的荧光强度对比AlexaFluor488 的荧光强度随时间降低的速度要远小于FITCAlexaFluor 488 的荧光强度几乎不随pH 变化,而FITC 变化显著麦生物™ AlexaFluor 荧光标记抗体实验推荐稀释浓度:使用前先离心,只使用上清,这样能避免保存过程中可能出现的任何微小的蛋白沉淀带来的背景染色。

染色步骤根据应用不同而有差异,所以抗体稀释精确倍数也需要摸索。

一般来说,可使用下表的荧光二抗浓度来进行初始实验:流式细胞术0.06-1.0 ug/106细胞免疫荧光1-10 ug/ml您需根据不同实验需要滴定抗体的最适稀释比例,即最佳工作浓度。

用PBS 进行稀释。

普通荧光素和Alexa Fluor® 替换对应表(括弧中为激发/ 发射波长最值)如果您使用... 那么您可以尝试...AMCA, coumarin (350/445) A lexa Fluor® 350 (346/442)Cascade Blue® (4000/423)Alexa Fluor® 405 (402/421) Alexa Fluor® 430 (434/539)Cy®2, FITC (488/519)Alexa Fluor® 488 (495/519) Alexa Fluor® 532 (531/554)PE, TRITC, TAMRA(547/572)Alexa Fluor® 546 (556/573) Cy®3 (550/570)Alexa Fluor® 555 (555/565) Rhodamine Red (570/576) Alexa Fluor® 568 (578/603)Texas Red® (589/615)Alexa Fluor® 594 (590/617) Alexa Fluor® 633 (632/647)Cy®5, APC (650/670,660)Alexa Fluor® 647 (650/668) Alexa Fluor® 660 (663/690)Cy®5.5 (675/694)Alexa Fluor® 680 (679/702) Alexa Fluor® 700 (696/719)Cy®7 (743/767) Alexa Fluor® 750 (752/779)。

流式细胞仪测定常用的荧光染料

流式细胞仪测定常用的荧光染料

流式细胞仪测定常用的荧光染料
流式细胞仪测定常用的荧光染料有多种,他们分子结构不同,激发光谱和发射光谱也各异,选择荧光染料时必须依据流式细胞仪所配备的激光光源的发射光波长(如氩离子气体激光管,它的发射光波488ηm,氦氖离子气体激光管发射光波长633ηm)。

488ηm激光光源常用的荧光染料有FITC(异硫氰酸荧光素)、PE (藻红蛋白)、PI(碘化丙啶)、CY5(化青素)、preCP(叶绿素蛋白)、ECD(藻红蛋白-得克萨斯红)等。

他们的激发光和发射光波长分别是:
激发光波长(ηm)发射光峰值(ηm)
FITC 488 525(绿)
PE 488 575(橙红)
PI 488 630(橙红)
ECD 488 610(红)
CY5 488 675(深红)
PreCP 488 675(深红。

荧光染料分类

荧光染料分类

荧光染料:猝不及防的五大种类荧光染料是一类可以在紫外光或蓝光激发下发出明亮的颜色或光的化学染料,被广泛地应用于生命科学、材料科学、医学与环境监测等领域。

相较于传统染料,荧光染料有更亮、更稳定的发光效果,使得研究者们可以在实验中获得更精准的结果。

然而,由于类型繁多,新手常常会被五花八门的荧光染料种类搞得晕头转向。

今天,让我们来剖析一下荧光染料的五大种类,帮助大家猝不及防地选出最适合自己实验的染料吧!一、荧光普通染料荧光普通染料是最常见的一种荧光染料,通常在化学与生命科学领域广泛使用。

其发射的荧光主要由它们的分子中的芳香环基团产生,因此常常被用于荧光免疫分析、免疫印迹和荧光染色等。

二、pH指示荧光染料pH指示荧光染料可以根据生物体液中的pH值发出不同颜色的荧光信号,因此在生物医学研究和医学诊断中得到广泛应用。

它们的收集窗口位于甲酰胺或亚胺键附近,pH的变化会导致该结构的变化,进而使荧光性质发生改变。

三、光动力学荧光染料光动力学荧光染料可以用于癌症治疗,这些染料在光照下能够被物质所激发,并且会发出特定的荧光信号。

在照射后,它们可以通过生物体的普通代谢途径排出体外。

四、DNA标记荧光染料DNA标记荧光染料可以和目标DNA结合,形成稳定的复合物,并且以稳定的荧光信号显示出来。

因此,用于 DNA 的荧光标记,是基因克隆、PCR体外扩增和原位杂交等领域的常用手段。

五、光谱比对荧光染料光谱比对荧光染料可以根据染料的反应性和化学性质发出多个波长的荧光信号,并且可以与其他荧光染料进行配对,以增加其特异性。

因此,在分析和鉴定复杂混合物的时候,经常会使用光谱比对荧光染料。

总之,在选择荧光染料的时候,需要根据实验需求、染色失真、照射条件、荧光信号等方面进行考虑。

希望以上五大种荧光染料的分类,能够帮助大家在实验中更好地选择染料,并取得更精准的实验结果。

常见荧光染料及用途

常见荧光染料及用途

常见荧光染料及用途《常见荧光染料及用途》荧光染料是一种能够吸收可见光或紫外光,并在吸收能量的激发下发射可见光的化学物质。

它们的应用非常广泛,涵盖了许多领域,例如生物医学、材料科学、环境监测等。

以下介绍几种常见的荧光染料及其主要用途。

1. 墨水蓝(BR):墨水蓝是一种具有强烈蓝色荧光的染料,常用于生物实验中的DNA染色。

它与DNA结合后能发出强烈的荧光信号,从而在实验中方便地观察和分析DNA的存在和定位。

2. 罗丹明B(RhB):罗丹明B是一种红色荧光染料,广泛用于组织切片和细胞染色。

它能够与细胞核和胞浆中的核酸结合,以显示细胞和组织的结构,帮助科研人员研究细胞分裂和组织结构变化。

3. 草酸罗丹明G(OG):草酸罗丹明G是一种绿色荧光染料,主要应用于蛋白质和核酸的定量分析。

在分光光度计中配合荧光检测器使用,可以精确测定溶液中蛋白质和核酸的浓度。

4. 罗丹明110(Rh110):罗丹明110是一种黄绿色荧光染料,常用于细胞活性检测。

通过与细胞内的酶或细胞膜结合,罗丹明110可以用来评估细胞的活力和存活情况,特别适用于细胞毒性测试和细胞增殖研究。

5. 荧光素(FITC):荧光素是一种与生物相容性极高的荧光染料,常用于免疫染色和分子生物学实验。

它能与抗体特异性结合,在免疫组化和流式细胞术中用于检测蛋白质的表达以及细胞表面标记。

以上只是常见的荧光染料中的几种,它们的应用还远不止于此。

随着科学技术的不断进步,新型的荧光染料不断问世,为各个领域的研究提供了更多更有力的工具。

通过荧光染料的运用,科学家们能够更好地理解和研究生物、物质和环境,进一步推动科学的发展。

荧光染料有哪些

荧光染料有哪些

荧光染料有哪些
荧光染料是一种特殊的染料,它具有一种发光的性质,当它受到一定的光照时,能够发出特定的色彩,具有特殊的美感。

在电子行业,荧光染料用于制备各种液晶屏,以实现屏幕
的彩色显示;在医学保健行业,荧光染料用于生物标记物质,检测病原体,分析各种物质
以及进行药物检测;在生物行业,荧光染料应用于进一步研究生物应激反应,如分子医学、植物病害诊断等。

常见的荧光染料有:荧光绿B(EGFP)、荧光红(DsRed)、荧光黄(YFP)、荧光紫(CFP)、荧光橙(CFTR)等,它们的类型和颜色不完全一样。

前三类荧光染料具有荧光现象,可以被相应的可视光照耀,大致可以得到红、绿或蓝色荧光;后三类荧光染料在不可见的紫外线的照射下,也能发出不同的荧光色,其中荧光紫和荧光橙是比较常用的。

荧光染料作为一种特殊的染料,它的主要特性是高灵敏度和亮度,能够有效的反映一个物质的定性和定量的结果,因此应用在检测、分析、生物医学治疗等领域是十分成功的,使用荧光染料的益处在于能够加快以及改善医疗检测、药物检测及疾病检测的过程,其中荧
光检测技术是一项迅速发展的现代诊断技术。

通过生物标记,荧光染料和抗原物质结合在
一起,在特定的激发光照射下发出某种色彩的荧光,从而及早发现病毒、细菌、血液病等
微生物,以便即将的治疗及控制。

总之,荧光染料作为一种新型的染料,在电子行业、医疗卫生行业以及生物行业都有极其重要的应用,同时它还具有较高的精度和准确性,所以在检测、分析、生物学研究等领域
中起到了重要作用。

常用荧光染料的激发和发射波长

常用荧光染料的激发和发射波长

常用荧光染料的激发和发射波长荧光染料广泛应用于生物医学、材料科学、光电子学等领域,其特点是在受到激发后会发出可见光,具有较高的荧光量子产率和灵敏度。

在实际应用中,荧光染料的激发和发射波长显得尤为重要,因此本文将整理常用荧光染料的激发和发射波长,方便读者在实验或研究中的选择。

常用荧光染料1. FITC (荧光同型素-异硫氰酸酯)FITC是一种广泛应用于生物学实验的荧光染料,常用于标记蛋白质、抗体、药物等分子,其最大吸收波长和最大发射波长分别为495 nm和519 nm。

FITC的分子量小,荧光量子产率高,这使得它成为一种理想的荧光标记分子。

2. Rhodamine 123Rhodamine 123是一种阳离子荧光染料,可在细胞中标记线粒体,同时也可在许多生物学应用中标定其他细胞器。

Rhodamine 123的最大吸收波长和最大发射波长分别为507 nm和529 nm,其荧光量子产率高,荧光亮度高。

3. Texas RedTexas Red是一种常用的激发波长长达596 nm的荧光染料,在荧光共振能量转移等实验中被广泛应用。

Texas Red的最大发射波长在610 nm左右,其在荧光共振能量转移实验中能够提供强烈的荧光标记。

4. PE (腺苷酸酰基酯)PE是一种被广泛用于流式细胞仪实验中的荧光染料,其最大激发波长为488 nm,最大发射波长在575 nm左右。

PE作为一种非常亮的荧光染料,可用于标记和鉴定特定类型的细胞。

荧光染料的选择在实验或研究中,需要根据具体的情况选择合适的荧光染料。

对于激发波长和发射波长的选择,一些因素应该被考虑,如:•研究对象的荧光信号贡献;•其他染料的交叉激发和发射波长;•激发和发射波长的设备可用范围。

一般来说,应选择滤光片相对集中并且有较高吸收的荧光染料,以确保设备需要的能量和检测返回信号的量达到最大程度。

总结本文简要介绍了几种常用的荧光染料及其特性,这些荧光染料可以分别从不同角度用于生物学、光学、材料学等领域的研究和实验中。

生物荧光染料波长

生物荧光染料波长

生物荧光染料波长荧光染料是一种能够吸收特定波长的光并发射出不同波长的光的化合物。

它们在生物科学研究、医学诊断、药物开发等领域中起着重要作用。

本文将介绍几种常见的生物荧光染料及其波长特性。

一、荧光染料的波长定义荧光染料的波长通常由其吸收峰和发射峰决定。

吸收峰是指荧光染料能够吸收的最大波长,而发射峰则是指荧光染料在受到激发后发射的最大波长。

二、常见的荧光染料及其波长特性1. Alexa Fluor 488(波长:495 nm/519 nm)Alexa Fluor 488是一种常用的荧光染料,其吸收峰位于495 nm,发射峰位于519 nm。

它在细胞免疫荧光染色、蛋白质定位研究等方面广泛应用。

2. Cy3(波长:550 nm/570 nm)Cy3是一种红色荧光染料,其吸收峰位于550 nm,发射峰位于570 nm。

它常用于DNA、RNA等核酸的荧光标记,也可用于蛋白质荧光标记。

3. Texas Red(波长:595 nm/615 nm)Texas Red是一种红色荧光染料,其吸收峰位于595 nm,发射峰位于615 nm。

它在细胞荧光染色、分子探针等方面有广泛应用,常用于免疫荧光标记和显微镜观察。

4. FITC(波长:492 nm/520 nm)FITC是一种绿色荧光染料,其吸收峰位于492 nm,发射峰位于520 nm。

它常用于细胞免疫荧光染色、蛋白质标记等研究中。

5. Rhodamine B(波长:554 nm/576 nm)Rhodamine B是一种橙红色荧光染料,其吸收峰位于554 nm,发射峰位于576 nm。

它在细胞荧光染色、荧光显微镜观察等方面有广泛应用。

6. DAPI(波长:358 nm/461 nm)DAPI是一种蓝色荧光染料,其吸收峰位于358 nm,发射峰位于461 nm。

它可用于染色体核型分析、细胞核染色等。

三、荧光染料的应用领域荧光染料在生物科学领域中有着广泛的应用。

它们可以被用于细胞荧光染色、蛋白质定位、基因表达分析、药物荧光标记等方面。

发光材料化学知识点总结

发光材料化学知识点总结

发光材料化学知识点总结1. 发光材料的基本原理发光材料的发光机理主要有激活态退火、电子跃迁、荧光共振能量转移等。

其中,激活态退火是最基本的发光机理,它是指激活态的能量转化为可见光的过程。

在这一过程中,激活态的能量由高能级向低能级转移,差值能量转化为光能,从而产生发光。

2. 发光材料的分类根据发光机理和使用范围,发光材料可以分为无机发光材料和有机发光材料两大类。

其中,无机发光材料主要包括稀土发光材料、半导体发光材料和夜光材料等;有机发光材料主要包括荧光染料、有机发光分子和有机发光聚合物等。

3. 无机发光材料的特点(1)稀土发光材料稀土发光材料是指以稀土元素为主要掺杂离子的发光材料。

它具有发光强度高、发光色彩丰富、发光时间长等特点,广泛应用于LED、显示器、荧光体系等领域。

(2)半导体发光材料半导体发光材料是指以半导体材料为基础的发光材料。

它具有尺寸小、发光效率高、发光波长可调等特点,是目前LED制备的主要材料。

(3)夜光材料夜光材料是指在光照条件下能够吸收光能,并在光照消失后以可见光形式慢慢释放出来的发光材料,它广泛应用于夜光表盘、夜光玩具等方面。

4. 有机发光材料的特点(1)荧光染料荧光染料是指具有荧光性质的有机分子化合物,它具有发光效率高、发光波长可调、化学稳定性好等特点,在生物成像、光学传感、显示器等领域有着广泛的应用。

(2)有机发光分子有机发光分子是指具有特定结构的有机分子,在受到外界激发后能够产生发光。

它通常具有较大的摩尔吸光系数和摩尔发光系数,因此在荧光探针、荧光标记、生物成像等方面有重要应用。

(3)有机发光聚合物有机发光聚合物是指由含有发光基团的聚合物合成而成的材料,它具有柔韧性好、加工性强、发光波长可调等特点,在柔性显示器、照明器件等方面有广泛应用。

5. 发光材料的制备方法发光材料的制备方法主要包括溶液法、溶胶-凝胶法、蒸发法、固相法、激光化学气相沉积法等。

在这些方法中,溶液法是最常用的制备方法,它具有简单、成本低、可扩展性强等优点。

常见细胞核荧光染料

常见细胞核荧光染料

细胞核常用荧光染料有:吖啶橙(Acridine Orange,AO)、溴化乙锭(Ethidium Bromide,EB)和碘化丙啶(Propidium Iodide,PI),DAPI、Hoechst染料、EthD III、7-AAD、RedDot1、2 等等。

透膜的染料如下:AO:具有膜通透性,能透过细胞膜,将核DNA和RNA分别染成绿色和红色,因此使细胞核呈绿色或黄绿色荧光。

EB:一种高度灵敏的荧光染色剂,在标准302nm处激发出橙红色信号。

DAPI:蓝色一种可以穿透细胞膜的蓝色荧光染料,其与DNA结合后可以产生比DAPI自身强20多倍的荧光,而与单链DNA结合无荧光的增强。

DAPI对双链DNA的染色灵敏度要高于EB和PI,荧光强度比Hoechst低,但光稳定性高于Hoechst。

Hoechst染料:蓝色一类在显微观察中标记DNA的荧光染料,最常见的两种是Hoechst33342和Hoechst33258。

这两种染料都在紫外350nm处被激发,在461nm处最大发射光附近发射青/蓝色荧光。

与DAPI相比,Hoechst33342加有乙基,具有更强的亲脂性,因此能更好的透过完整的细胞膜,并且细胞毒性更小。

RedDot 1染料:红色,超强的细胞核选择性,其光谱相似于Draq?5 和Draq?7。

RedDot?染料可被几种常见的激光激发并可在远红外区激发荧光。

RedDot? 的红色近红外荧光有效的与其他常用荧光探针区分开来。

不透膜的染料,如下:PI:不同通过活细胞膜,但却能穿过破损的细胞膜而对核染色。

PI作为红色荧光复染剂首选,PI经常与Calcein-AM或者FDA等荧光探针合用,区分死/活细胞。

EthD III、7-AAD、RedDot 2:不能透过细胞膜,但能将坏死细胞区分开来;更适合凋亡坏死实验的检测;细胞核荧光染料(PI DAPI Hoechst33342)细胞核荧光染料PI碘化丙啶(简称PI)是一种常用的细胞核荧光染色剂。

荧光染料标记法

荧光染料标记法

荧光染料标记法1. 介绍荧光染料标记法是一种常用的生物化学实验技术,用于研究细胞、蛋白质、核酸等生物分子的定位、追踪和可视化。

通过将荧光染料与目标分子结合,可以利用荧光显微镜观察和记录目标分子在细胞或组织中的位置和运动。

2. 荧光染料的选择选择合适的荧光染料对于实现有效的标记至关重要。

常用的荧光染料包括荧光素、罗丹明、偶氮染料等。

选择荧光染料时需要考虑以下要素:•发射波长:根据实验需求选择适当的发射波长,以便在显微镜下观察到目标分子。

•激发波长:激发波长应与显微镜所配备的激发源相匹配,以确保荧光信号的最大强度。

•荧光稳定性:选择具有较高稳定性的荧光染料,以减少信号衰减或消失。

•细胞渗透性:某些荧光染料可以穿透细胞膜直接染色,而其他染料则需要使用特殊方法使其进入细胞。

3. 荧光染料的标记方法3.1 直接标记法直接标记法是将荧光染料直接与目标分子结合。

这种方法简单快捷,适用于一些较小的分子和化合物。

一般步骤如下:1.准备目标分子:根据实验需求,提取或合成目标分子。

2.染色剂激活:将荧光染料与激活剂反应,使其具有反应性。

3.染色剂与目标分子结合:将激活后的荧光染料与目标分子反应,形成共价键。

4.去除未反应的荧光染料:通过洗涤等方法去除未结合的荧光染料。

3.2 间接标记法间接标记法是利用特定的抗体或亲和素与目标分子结合,再通过与荧光染料结合来实现对目标分子的检测。

这种方法常用于检测蛋白质或细胞表面分子。

一般步骤如下:1.准备目标分子:根据实验需求,提取或合成目标分子。

2.制备抗体或亲和素:通过免疫技术制备与目标分子结合的抗体或亲和素。

3.抗体或亲和素与目标分子结合:将抗体或亲和素与目标分子反应,形成特异性的结合。

4.荧光染料与抗体或亲和素结合:将荧光染料与抗体或亲和素反应,形成共价键。

5.检测目标分子:通过荧光显微镜等方法观察和记录目标分子的位置和运动。

4. 荧光显微镜观察荧光染料标记法的最终目的是通过荧光显微镜观察目标分子在细胞或组织中的位置和运动。

荧光有机染料

荧光有机染料

荧光有机染料是一类能够吸收特定波长的光并以较短时间间隔发出较长波长(通常比激发光更长)荧光的有机化合物。

这些染料广泛应用于生物医学、化学分析、材料科学以及光学和显示技术等领域。

荧光有机染料的特点包括:
1. 激发与发射:在受到紫外光或可见光照射后,荧光染料从基态跃迁到激发态,随后非辐射性地回到第一单重激发态最低能级,并迅速释放能量,以较低能量的光子形式发出荧光。

2. 光稳定性:荧光染料需要具有一定的光稳定性,即在持续光照下保持其荧光性能的能力。

3. 量子产率:荧光量子产率是指单位时间内产生的荧光光子数与被激发的染料分子数之比,是评价荧光染料效率的重要参数。

4. 选择性标记:由于不同结构的荧光染料对不同的物质具有特异性的结合能力,因此常用于细胞生物学中蛋白质、核酸、糖类以及其他生物分子的选择性标记和成像。

5. 颜色调节:通过改变染料分子的结构设计,可以实现对荧光波长的调控,从而产生各种颜色的荧光信号,满足不同应用需求。

6. 环境响应性:某些荧光染料还具有pH敏感性、离子浓度敏感性等特性,可以在特定条件下改变其荧光强度或光谱性质。

常见的荧光有机染料有荧光素、罗丹明、花青素、酞菁类等多种类型。

荧光颜料是以热固性树脂为基础的颜料

荧光颜料是以热固性树脂为基础的颜料

荧光颜料是以热固性树脂为基础的颜料,具有较高的着色力、较强的抗褪色性、极细的粒径、及较强的抗溶剂性能, 荧光颜料属功能性发光颜料,这类颜料当外来光(含紫外线)照射时,能吸收一定形态的能量,不转化成热能,而是激发光子,以低可见光形式吸收的能量释放出来,从而产生不同色相的荧光现象。

所以在白天看来,它比其它种类的颜料要鲜艳得多.但是荧光并不是夜光,夜光粉是吸收光线(阳光或灯光都可以)之后,在黑暗的地方将其放出来.荧光颜料并不能在暗处发光.当然也有客户将两者混合使用,这样的话白天鲜艳,晚上醒目,效果很不德国诺贝尔化学颜料国际集团有限公司网址:www。

Shdaorui。

com。

cn 上海代表处:上海道瑞颜料有限公司电话:技术支持:张工反光颜料反光粉产品特性:反光材料制品采用高折射率玻璃珠后半表面镀铝作为后向反射器,具有极强的逆向回归反射性能,能将85%的光线直接反射回光源处,回归反射所造成的反光亮度,可使驾驶人员和带光源的夜间作业人员在夜间或视野不佳的情况不清楚地看见行人和障碍目标,确保双方安全中国永辉(金属粉)集团生产的反光粉具有流动性好、色度纯、透明度高。

反光粉应用范围:反光粉是生产反光布,反光贴膜,反光涂料、反光标牌、广告宣传材料、服饰材料、标准赛场跑道、鞋帽、书包、水陆空救生用品等新型光功能复合材料的核心原材料,它具有回归反光的特性并由此产生较强的回归反射效应,无需外加电源,可广泛用于道路、港口、矿山,消防等领域,作为安全标志,大大地提高了使用者的安全可靠性。

永辉(金属粉)集团的反光粉性能:颜色: 白色灰色折射率:粒径: 250目、300目、400目、450目、500目荧光粉产品的详细介绍:永辉集团生产的FA系列荧光颜料,具有非常强的耐溶剂性能和非常亮丽的荧光色彩,易分散,能适用于各种极性的溶剂体系中,尤其特别适用于含环已酮及其它强极性溶剂的油漆,PVC,PET丝印刷油墨,PVC,PET溶胶中.耐溶剂性:具有非常强的耐溶剂性能够适用于包括:环已酮,无水乙醇及芳烃和醋酯类几乎所有的各种极性的常规有机溶剂中.超细粒径3um以下的细微颗粒,丝网印刷时不会出现堵网眼现象,有利于提高生产效率.永辉集团荧光粉颜色:橙红,绿色,大红,橙色,柠檬黄,橙黄,帝皇黄,桃红,粉红,玫瑰红,宝石红,紫色,白色,蓝色等颜色.永辉集团荧光粉广泛用于:涂料,油墨,塑胶,硅胶,印刷,皮革,工艺品,圣诞礼品,喷涂,玩具,印染,广告牌,安全标志,交通护栏,地下停车场,舞厅装璜,建筑装饰,鱼具等需要鲜艳明亮色彩的领域中,具有不可替代的代用.中国永辉(金属粉)集团生产的耐高温220℃的荧光粉在高温下具有优良的色安定性,耐色迁移性及耐溶剂性极佳.物理性质:热固性荧光颜料平均粒径:比重:分解点: 300℃吸油性: 56应用范围:涂布或成型、PP等之射出或碾压成型3.高品质之油漆或粉体涂装使用荧光油墨应注意以下几点:★由于荧光油墨的耐光性差,不适合在室外长期使用,因而室外使用的网版印刷品不宜选用荧光油墨。

常见的荧光染料(FITCICGCyPE)标记抗体及影响多色分析的三大因素_还需要改

常见的荧光染料(FITCICGCyPE)标记抗体及影响多色分析的三大因素_还需要改

常见的荧光染料(FITCICGCyPE)标记抗体及影响多色分析的三大因素_还需要改常见的荧光染料(FITC/ICG/Cy/PE)标记抗体及影响多色分析的三大因素在进行流式细胞仪多色分析时,如果想得到理想的分析结果,就需要选择好抗体的荧光搭配。

常考虑的影响因素有以下几点。

1荧光素的荧光强度一个特定抗体,能否区分阴性与阳性结果,取决于该抗体用何种荧光素标记。

每一种荧光素的光量子释放能力不同,相对荧光强度不一样,一般用染色指数(stainingindex)来比较不同荧光标记的光信号强度。

染色指数是阳性信号和阴性信号差异与阴性峰分布宽度比值,是判断该荧光染料辨别弱阳性表达的能力。

如下图显示了用8种不同的荧光素标记相同的单克隆抗体,得到了不同的染色结果,我们需要从中寻找染色指数较高的荧光染料,去标记表达弱的信号。

由此可以看出:对于特定的单克隆抗体,由于使用了不同的荧光素标记,其阴性细胞核阳性细胞的S/N比值(信噪比)可以相差4-6倍。

一般来讲,荧光信号由强到弱的的排序是:PE>APC>PE-CY5>PERCP-CY5.5>FITC>PERCP。

在选择荧光标记抗体时,需要综合以下方面的因素:荧光素标记效率:抗体上标记荧光素的数量(F/P)值也会影响相对荧光强度。

每一个抗体上可标记几个FITC或PERCP分子(通常为2-9个),而APC和PE的标记量约为每个抗体标记一个荧光分子。

FITC 为小分子化合物,而PE,PERCP和APC则是分子量较大的荧光蛋白。

受荧光标记物的化学性质要求限制,IGM型抗体通常只用小分子的荧光素进行标记,如FITC、TEXASRED、CY3和CY5。

抗体检测的抗原密度:高表达的抗原几乎可以用任何荧光素标记的抗体检测,而较低表达的抗原则需要用较高S/N比值的荧光素标记的抗体检测,从而达到有效区分阳性细胞群和阴性细胞的目的。

细胞自发荧光:每个细胞群体的自发荧光水平都不同,尽管可以观察到高荧光强度的细胞,但自发荧光在高波长范围里(>600nm)迅速降低。

荧光染料的分类与介绍

荧光染料的分类与介绍

荧光染料分类荧光染料是在荧光剂的帮助下对细胞成分进行高度特异性的可视化。

可以是一种荧光蛋白、例如 GFP在基因上与感兴趣的蛋白质相关联。

接下来,新研博美的小编带大家了解一下我们公司荧光染料的分类。

一、花菁染料1、Cyanines(Cyanine dyes花菁染料)花青素(Cyanines)是在两个具有离域电荷的氮原子之间含有聚甲炔桥的分子:花青素(Cyanines)染料主要用于通过光学方法监测细胞、细胞器和囊泡中的膜电位差。

用于通过光学方法监测细胞、细胞器和囊泡中的膜电位差。

这些对电位敏感的染料在分子结构、电荷和通过膜的渗透性方面有所不同。

根据染料的不同,涉及到与膜的电位依赖性结合以及二聚体和更高聚集体的形成。

花菁染料有两种:非磺化花菁和磺化花菁。

对于许多应用,它们是可互换的,因为它们的光谱特性几乎相同。

磺化和非磺化染料均可用于标记生物分子,例如DNA和蛋白质。

染料之间的区别在于它们的溶解度:硫化染料是水溶性的,并且它们在水性环境中不使用有机助溶剂进行标记。

它们不易在水中聚集。

在某些情况下,需要使用一种类型的花菁。

非磺化花菁染料Cyanine3 NHS esterCyanine3.5 carboxylic acidCyanine5 azideCyanine5.5 hydrazideCyanine7 amineCyanine7.5 tetrazine磺化花菁染料sulfo-Cyanine3 DBCOSulfo-Cyanine3.5 alkyneSulfo-Cyanine5 NHS esterSulfo-Cyanine5.5 azideSulfo-Cyanine7 maleimideSulfo-Cyanine7.5 carboxylic acid2、ICG吲哚菁绿Indocyanine Green,ICG,吲哚菁绿CAS:3599-32-4是一种三碳菁染料,具有良好的水溶性,分子量为775,吲哚菁绿完全可以在血浆和全血液中几乎完全与血浆蛋白结合,可以保证其几乎完全留在血管中,不易向外扩散,因此被作为一种常用的血管造影剂使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

荧光染料基础知识大全
益阳纺织染整团队今天
荧光显微镜技术的基本原理是借助荧光剂让细胞成分呈现高度具体的可视化效果,比如在目的蛋白后面连一个通用的荧光蛋白—GFP。

在组织样本中,目的基因无法进行克隆,则需要用免疫荧光染色等其他技术手段来观察目的蛋白。

为此,就需要利用抗体,这些抗体连接各种不同的荧光染料,直接或间接地与相应的靶结构相结合。

此外,借助荧光染料,荧光显微镜技术不只局限于蛋白质,它还可以对核酸、聚糖等其他结构进行染色,即便钙离子等非生物物质也可以检测出来。

1免疫荧光 (IF)
2FITC 和TRITC
3青色素
4Alexa Fluor®染料
5DNA 染色
6区室和细胞器特异性染料
7离子成像
阅读 58在看1。

相关文档
最新文档