高中数学思维导图:数列
《数列》主题单元设计及思维导图
C. D.
※当堂检测(时量:5分钟满分:10分)计分:
1.下列说法正确的是().
A.数列中不能重复出现同一个数
B. 1,2,3,4与4,3,2,1是同一数列
C. 1,1,1,1…不是数列
D.两个数列的每一项相同,则数列相同
2.下列四个数中,哪个是数列 中的一项().
A. 380 B. 392 C. 321 D. 232
5.数列的分类:
1)根据数列项数的多少分数列和数列;
2)根据数列中项的大小变化情况分为数列,
数列,数列和数列.
※典型例题
例1写出下面数列的一个通项公式,使它的前⑵1,0,1,0.
变式:写出下面数列的一个通项公式,使它的前4项分别是下列各数:
⑴ , , , ;
⑵1,-1,1,-1;
小结:要由数列的若干项写出数列的一个通项公式,只需观察分析数列中的项的构成规律,将项表示为项数的函数关系.
例2已知数列2, ,2,…的通项公式为 ,求这个数列的第四项和第五项.
变式:已知数列 , , , , ,…,则5 是它的第项.
小结:
※动手试试
练1.写出下面数列的一个通项公式,使它的前4项分别是下列各数:
专题一
数列的概念与简单表示法
所需课时
2课时
专题一概述(介绍本专题在整个单元中的作用,以及本专题的主要学习内容、学习活动和学习成果)
本专题旨在通过学生自主探究,合作交流,尝试解决,电脑演示等形式,
探究任务:数列的概念
⒈数列的定义:的一列数叫做数列.
⒉数列的项:数列中的都叫做这个数列的项.
反思:
⑴如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列?
⑵同一个数在数列中可以重复出现吗?
高中数学必修全思维导图
调性不同,则 y f [g(x)] 是减函数。
4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。 5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作 函数图象。 六、函数奇偶性的常用结论:
1、如果一个奇函数在 x 0 处有定义,则 f (0) 0 ,如果一个函数 y f (x) 既是
高一数学必修 1 知识网络
集合
( 1)元素与集合的关系:属于()和不属于()
集合与元素
( 2)集合中元素的特性:确定性、互异性、无序性 ( 3)集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集 ( 4)集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法
C.
4、空集是任何集合的(真)子集。
集合
真子集:若A
B且A
B(即至少存在x0
B但x0
A),则A是B的真子集。
集合与集合
运算集并交合集集Ca相r定定性性d等(义义质质A:::::ABAAAA)BBBC且AAaArdAAxx,(,A//BxAxA) CAAa或且rAdxx(AB,B,)BB-AACarBdB(ABBBA)A,,AABBAA,, AABB
定义
按照某个对应关系f , y都有唯一确定的值和它对应。那么y就是x的函数。记作y f ( x ).
近代定义:函数是从一个数集到另一个数集的映射。
定义域 函数及其表示 函数的三要素 值域 对应法则
解析法
函数的表示方法 列表法
函数
几类不同的增长函数模型 函数模型及其应用 用已知函数模型解决问题 建立实际问题的函数模型
数列-高中数列知识梳理思维导图脑图
数列等差与等比等差数列通项公式是?_______________________________性质若m+n=p+s,则:_______________________________若m+n=2p,则:_______________________________求和公式的两种形式①_______________________________S=n②_______________________________S=n求和公式的特点:_______________________________等比数列通项公式是?_______________________________性质若m+n=p+s,则:_______________________________若m+n=2p,则:_______________________________求和公式的两种形式①_______________________________S=n②_______________________________S=n求和公式的特点:_______________________________数列中常用结论若,则_______________________________a=mn,a=nm(m= n)a=m+n若 ,则_______________________________S=mn,S=nm(m= n)S=m+n已知{}为等差数列,{}又成等比,则公比 _______________________________a n a n q=已知{}为等比数列,若{+}(0 )也成等比,则公比 _________________a n a nλλ= q=已知 分别是等差(或等比)数列的前m、2m、3m······项和,则结论是:_______________________________S,S,S⋅⋅⋅⋅⋅⋅m2m3m数列求通项方法一:累加,所适用题型是:_______________________________方法二:累乘,所适用题型是:_______________________________方法三:构造辅助数列①题型一: 构造方法:_______________________________a−n a=n+1pa⋅an n+1②题型二: 构造方法:_______________________________a=n+1pa+nq③题型三: 构造方法:_______________________________a=n+1pa+nqn+r④题型四: 构造方法:_______________________________a=n+1pa+nq n⑤题型五: 构造方法:_______________________________a=n+1qa+rnpa n题型四:_______________________________, 方法是_______________________________数列求和分组求和,所适用题型是:_______________________________并项求和,所适用题型是:_______________________________裂项相消形式1:_______________________________形式2:_______________________________形式3:_______________________________形式4:_______________________________形式5:_______________________________形式6:_______________________________形式7:_______________________________形式8:_______________________________错位相减,所适用题型是:_______________________________倒序相加,所适用题型是:_______________________________。
高中数学全套思维导图(高清版)
23/59
请关注微信公众号“名师伴你学”获取更多精品资源
24/59
请关注微信公众号“名师伴你学”获取更多精品资源
25/59
请关注微信公众号“名师伴你学”获取更多精品资源
26/59
请关注微信公众号“名师伴你学”获取更多精品资源
27/59
请关注微信公众号“名师伴你学”获取更多精品资源
28/59
56/59
请关注微信公众号“名师伴你学”获取更多精品资源
57/59
请关注微信公众号“名师伴你学”获取更多精品资源
58/59
请关注微信公众号“名师伴你学”获取更多精品资源
59/59
请关注微信公众号“名师伴你学”获取更多精品资源
29/59
请关注微信公众号“名师伴你学”获取更多精品资源
30/59
请关注微信公众号“名师伴你学”获取更多精品资源
31/59
请关注微信公众号“名师伴你学”获取更多精品资源
32/59
请关注微信公众号“名师伴你学”获取更多精品资源
33/59
请关注微信公众号“名师伴你学”获取更多精品资源
6/59
请关注微信公众号“名师伴你学”获取更多精品资源
7/59
请关注微信公众号“名师伴你学”获取更多精品资源
8/59
请关注微信公众号“名师伴你学”获取更多精品资源
9/59
请关注微信公众号“名师伴你学”获取更多精品资源
10/59
请关注微信公众号“名师伴你学”获取更多精品资源
11/59
请关注微信公众号“名师伴你学”获取更多精品资源
请关注微信公众号“名师伴你学”获取更多精品资源
18/59
请关注微信公众号“名师伴你学”获取更多精品资源
高中数学知识框架思维导图(整理版)
柯西不等式
第四部分
位置关系
截距
解析几何
斜率公式、倾斜角的变化与斜率的变化: = tan , =
倾斜角和斜率
重合
A1B2-A2B1=0,C1B2-C2B1=0
平行
A1B2-A2B1=0,C1B2-C2B1≠0
相交
A1B2-A2B1≠0
垂直
直线的方程
z 的几何意义:
过可行域内一点(, )
向直线 = , = 作
复合函数
函数与方程
2
二次函数、基本不等式、双勾函数、三角函
数有界性、数形结合、单调性、导数.
基本初等函数
分段函数
, )
零点
求根法、二分法、图象法、二次及三次方程根的分布
建立函数模型
平移变换: = () → = ( ± ), = () → = () ± ,, > 0
对称性
y=Asin(x+)+b
化简、求值、
证明(恒等变形)
)
值域
图象
对称轴(正切函数除外)经过函数图象
的最高(或低)点且垂直 x 轴的直线,
对称中心是正余弦函数图象的零点,正
切函数的对称中心为( ,0)(k∈Z).
最值
2
①图象可由正弦曲线经过平移、伸缩得到,但要注意先平移后伸缩与先伸缩后平移不同;
2.
3.
分组求和法
2
=
1
−
−1)(2+1 −1)
2 −1
+1
1 1
1
= (
2 (+2)2
(−1) ∙4
4 2
(2−1)(2+1)
1
2+1 −1
高中数学思维导图(新课标)
'
f x 与 f x 0 的区别
vt S , at vt
'
0 0
第 二 部 分 映 射 、 函 数 、 导 数 、 定 积 分 与 微 积 分
导 数
导数概念
运动的平均速度 曲线的割线的斜率
'
0
k f
'
'
x
0
' '
; x
n
nx 1 x
定
映
A中元素在B中都有唯一的象;可一对一 (一一映射),也可多对一,但不可一对多 定义 函数的概念 表示 定义域
列表法 解析法 图象法 使解析式有意义及实际意义
第 二 部 分 映 射 、 函 数 、 导 数 、 定 积 分 与 微 积 分
射
三要素
区间 单调性 奇偶性 周期性 对称性
对应关系 值域
常用换元法求解析式 观察法、判别式法、分离常数法、单调性法、最值法、 重要不等式、三角法、图象法、线性规划等
函数的 基本性质
函 数
函数常见的
最值
几种变换
基本初等函数 分段函数 复合函数 抽象函数 函数与方程 函数的应用
平移变换、对称变换 翻折变换、伸缩变换
三角函数 单调性:同增异减 赋值法,典型的函数 零点 建立函数模型 求根法、二分法、图象法;一元二次方程根的分布 退出 上一页
函数的平均变化率
函数的瞬时变化率 运动的瞬时速度 曲线的切线的斜率
第一部分 第二部分 第三部分 第四部分 第五部分 第六部分
集合与简易逻辑 映射、函数、导数、定积分与微积分 三角函数与平面向量 数列 不等式 立体几何与空间向量
高中数学 第二章 数列 2.4 等比数列思维导图素材 新人教A版必修5(2021年最新整理)
高中数学第二章数列2.4 等比数列思维导图素材新人教A版必修5 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章数列2.4 等比数列思维导图素材新人教A版必修5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章数列2.4 等比数列思维导图素材新人教A版必修5的全部内容。
第4节 等比数列【思维导图】【微试题】 1。
已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =( )A 。
21 B. 22 C 。
2 D.2 【答案】B2。
对任意等比数列{a n},下列说法一定正确的是()A。
a1,a3,a9成等比数列 B. a2,a3,a6成等比数列C。
a2,a4,a8成等比数列 D. a3,a6,a9成等比数列【答案】D3. 在等比数列{a n}中,若a3a5a7a9a11=32,则错误!的值为()A.4 B.2 C.-2 D.-4【答案】B4. 数列{a n }中,a 1=2,a 2=3,且{a n a n+1}是以3为公比的等比数列,记b n =a 2n-1+a 2n (n ∈N *).(1)求a 3,a 4,a 5,a 6的值;(2)求证:{b n }是等比数列。
【答案】(1)a 3=2232a ⋅=6,a 4=3332a ⋅=9,a 5=4432a ⋅=18,a 6=5532a ⋅=27【解析】解: (1)∵{a n a n+1}是公比为3的等比数列,∴a n a n+1=a 1a 2·3n —1=2·3n ,∴a 3=2232a ⋅=6,a 4=3332a ⋅=9,a 5=4432a ⋅=18,a 6=5532a ⋅=27。
高中数学知识框架思维导图(整理版)
点斜式:y-y0=k(x-x0)
注意:截距可正、
可负,也可为 0.
2 −1
注意各种形式的转化和运用范围.
x y
截距式: + =1
a b
两直线的交点
距离
一般式:Ax+By+C=0
两点间的距离公式|1 2 | = √(1 − 2 )2 + (1 − 2 )2 .
2.
3.
分组求和法
2
=
1
−
−1)(2+1 −1)
2 −1
+1
1 1
1
= (
2 (+2)2
(−1) ∙4
4 2
(2−1)(2+1)
1ቤተ መጻሕፍቲ ባይዱ
2+1 −1
− (+2)2 )
= (−1) (
1
2−1
+
错位相加法: = ( + )−1 → = ( + ) −
复合函数
函数与方程
2
二次函数、基本不等式、双勾函数、三角函
数有界性、数形结合、单调性、导数.
基本初等函数
分段函数
, )
零点
求根法、二分法、图象法、二次及三次方程根的分布
建立函数模型
平移变换: = () → = ( ± ), = () → = () ± ,, > 0
与 的关系
1 ,
= 1,
= {
− −1 , ≥ 2.
构造等差数列
an+1 p an
= · +1 转为③
qn q qn-1
⑤an + 1=pan+qn
等比数列 知识框架 高中数学知识点
前n项和公式
数列的应用 通项公式
前n项和公式
2.数列知识框架图
按项数 分类
有穷数列 无穷数列 递增数列 增减性
一 般 数 列 表示方法
递减数列 列表法 通项公式法 解析法 递推公式法 图象法
数 列 定义 通项公式 等差数列 等差中项
定义
性质
应用
特 殊 数 列 等比数列
等差数列的前n 项和
定义 通项公式 等比中项 等比数列的前n 项和
公式推导
基本运算性质应用性质定义 公式推导 基本运算
应用
性质
应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
倒序相加
为等差列, 数列
为等比数列 求和
适用题型
写
表达式
错位
相减
错位对齐
计算
方法
求
适用题型:
裂项法 并项法 分组求和
求 方法
猜想 证明
数学归纳法
换元法
叠乘法
叠加法
项项间关系
横向
观察法
与 关系
纵向
如果一个数列从第2项起,每一项与它的前一项 的比等于同一个常数,这个数列就叫做等比数 列。常数叫做等比数列的公比,用字母“q"表示
定义
且
基础
等差中项 通项公式
性质
前n项和 技巧运用
三数成等差,设为a-d,a,a+d 四数成等差,设为a-3d,a-d,a+d,a+3d
单调性:d>0,单调递增,d<0,单调递减,d=0,常数列
若
则
项数有限:
中 (项数为奇数)
距离为 的项:
为等差数列,公差
定义法 通项法 中项公式法 前n项和法
判定
项数
有穷数列 无穷数列
递增数列
分类
增减
递减数列 摆动数列
常数列
界限
有界数列 无界数列
列举法
1,3,5,7,...
表示方法
图象法
用(
孤立的点
解析法
通项公式
单调递增
定义
单调递减
单调性
已知通项公式 求最值
性质
应用
若
周期性
则周期
基础
定义
2
等差中项
1
通项公式
1
前n项和
1
技巧运用
2
单调性:d>0,单调递增,d<0,单调递减,d=0,常数列
数列中的每一个数都叫做这个数的项,记作
定义
排在第一位的数称为这个数列的第一项,通常叫做首项
分类
项数 增减 界限
有穷数列 无穷数列 递增数列 递减数列 摆动数列 常数列 有界数列 无界数列
定义法 通项法 中项公式法 前n项和法
判定方法
若 若
若
则 则
则
常用结论
等差数列
如果一个数从第2项起,每一项与它的前一项的 差等于同一个常数,这个数列叫等差数列,这个 常数叫做等差数列的公差,用字母“d"表示
定义
求通项
设为:
比例中项 (假设等比数列为:a,G,b)
通项公式
基础知识
前项和
三数成等比
四数成等比
1
技巧运用
定义法 通项法 中项公式法 前n项和法
判定
等比数列
数列
基础知识 等差数列
以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。
定义 数列中的每一个数都叫做这个数的项,记作 排在第一位的数称为这个数列的第一项,通常叫做首项
猜想
数学归纳法
证明
换元法
为等差列,
为等比数列
数列
求和
适用题型
写
表达式
错位对齐
错位 相减
计算
方法
求
适用题型:
裂项法
并项法
分组求和
求 方法
公式法 倒序相加
等比数列
定义
如果一个数列从第2项起,每一项与它的前一项 的比等于同一个常数,这个数列就叫做等比数 列。常数叫做等比数列的公比,用字母“q"表示
基础知识
比例中项 (假设等比数列为:a,G,b) 通项公式
前项和
技巧运用
三数成等比 四数成等比
设为: 设为:
叠乘法
叠加法
项项间关系
横向
与 关系
纵向
观察法
求通项
若
则
性质
项数有限:
中 (项数为奇数)
距离为 的项:
为等差数列,公差
判定方法
定义法 通项法 中项公式法
前n项和法
若
常用结论
若 若
则 则
则
用(
1,3,5,7,...
孤立的点
通项公式
列举法
图象法 解析法
表示方法
单调递增
定义
单调递减
单调性
已知通项公式 求最值
应用
性质
若
则周期
周期性
基础知识
以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。