三效催化剂的应用
三效催化转化器研发生产方案(一)
三效催化转化器研发生产方案一、实施背景随着中国产业结构的不断转型与升级,对环保和能源效率的要求也在日益提高。
传统的产业结构已不能满足现代社会的需求,因此,我们需要寻求新的技术手段,以提高生产效率,同时减少对环境的影响。
三效催化转化器技术的研发与生产,正是在这样的背景下应运而生。
二、工作原理三效催化转化器是一种先进的发动机尾气处理技术,其工作原理主要依赖于贵金属催化剂的作用。
在适宜的温度和压力条件下,贵金属催化剂能够将发动机尾气中的有害物质进行高效转化,转化为无害或低害的物质。
例如,一氧化碳、碳氢化合物和氮氧化物等有害物质,在催化剂的作用下,可转化为二氧化碳、水和氮气等。
三、实施计划步骤1.研发阶段:成立专门研发团队,进行催化剂的配方设计、实验室测试、模拟运行等。
此阶段需要投入大量的人力、物力和财力。
2.样品制作与测试:根据研发阶段的结果,制作原型机,并进行严格的测试。
测试包括性能测试、寿命测试、环境适应性测试等。
3.小批量生产与实地测试:在原型机测试成功后,进行小批量生产,并在不同的实际运行环境中进行实地测试。
4.批量生产与市场推广:经过实地测试验证有效后,开始批量生产,并进行市场推广。
四、适用范围三效催化转化器技术主要应用于汽车、摩托车、工业用发动机等领域。
对于那些需要提高能源效率、减少尾气排放的行业来说,这项技术具有极高的价值。
五、创新要点1.高效催化技术:三效催化转化器技术的核心是高效催化剂,这需要研发团队不断探索和优化催化剂配方。
2.全自动化生产:为了确保产品的质量和性能的一致性,我们需要引入先进的自动化生产线进行生产。
3.模块化设计:为了满足不同发动机型号和排放标准的需求,三效催化转化器应采用模块化设计,方便用户根据需要进行定制。
4.远程监控与故障诊断:通过物联网技术,实现对三效催化转化器的远程监控和故障诊断,提高产品的可靠性和使用寿命。
5.环保材料应用:在产品的设计和制造过程中,尽可能选择环保材料,以降低对环境的影响。
三元催化器作用是什么
三元催化器作用是什么三元催化器作用是什么三元催化器是过滤排气中有害成份的重要部件,是安装在汽车排气系统中最重要的机外净化装置。
那么,下面是由店铺为大家整理的三元催化器作用,欢迎大家阅读浏览。
一、什么是三元催化器?三元催化器又叫“催化转换器”,是过滤排气中有害成份的重要部件,是安装在汽车排气系统中最重要的机外净化装置。
即过滤排气中的二氧化碳、二氧化硫、碳氢化合物三种有害成份。
由于这种催化器可同时将废气中的三种主要有害物质转化为无害物质,故称三元催化器。
二、三元催化器结构:三元催化器由壳体、含氧传感器接口、催化剂本体组成,催化剂本体就是由很细小的蜂窝结构的铱或铑一类的稀有金属材料组成,通常催化转换器的蜂窝结构密度为1200目/平方英寸左右,可以将排气中大部分的有害物质转换成无害物质。
什么是三元催化器三元催化器类似消声器。
它的外面用双层不锈薄钢板制成筒形。
在双层薄板夹层中装有绝热材料----石棉纤维毡。
内部在网状隔板中间装有净化剂。
净化剂由载体和催化剂组成。
载体一般由三氧化二铝制成,其形状有球形、多棱体形和网状隔板等。
净化剂实际上是起催化作用的,也称为催化剂。
催化剂用的是金属铂、铑、钯。
将其中一种喷涂在载体上,就构成了净化剂。
三、三元催化器工作原理:三元催化器及其催化剂大多为铂(Pt)、钯(Pd)、铑、(Rn)等稀有金属制成,价格昂贵。
发动机通过排气管排气时,CO、HC、和NOx三种气体通过三元催化反应器中的净化剂时,增强了三种气体的活性,进行氧化—还原化学反应。
其中CO在高温下氧化成无色、无毒的二氧化碳(CO2)气体。
HC化合物在高温下氧化成水(H2O)和CO2 。
NOx还原成氨气(N2)和(O2 )。
三种有害气体变成无害气体,使排气得以净化。
四、三元催化器的作用:都说三元催化器有化腐朽为神奇的特殊作用,那么三元催化器的作用是什么呢?当汽车点火启动那一刻,发动机就轰隆隆的运转起来,发动机在运转的过程中会产生一定的能量,同时也会排出一定量的废气,如CO、HC、NOx等有害气体,这时,三元催化器就起到了净化此类气体的作用,让尾气得以净化,减少对人体及空气的污染。
三效催化剂的应用
汽车尾气处理——三效催化剂(实习报告)【前言】20 世纪70 年代,汽车尾气污染物已成为城市大气主要的人工污染源[1]。
造成城市大气污染的主要物质有总悬浮颗粒TSP、二氧化硫SQ、氮氧化物NO x、臭氧O3、一氧化碳CO重金属和有机污染物等。
其中,因汽车排放形成的污染物包括CO NO x、碳氢化合物HC硫氧化物SQ、铅Pb和细微颗粒物等⑵。
这些污染物严重损害了人类的健康、破坏了人类赖以生存的自然环境。
【摘要】贵金属铂(Pt)、铑(Rh)钯(Pd)因其优异的三效催化性能而在国内外被广泛用作三效催化剂的活性成分。
Rh促进NO x还原,使NO x选择性地还原为N2,对CO有不亚于Pt、Pd的氧化能力;Rh 有较好的抗硫中毒能力。
Pt和Pd对CO HC氧化活性高,Pd对不饱和烃的活性比Pt好,对饱和烃效果稍差,抗S Pb中毒能力差[9],易高温烧结,与Pb 形成合金。
其中Pd一般作为氧化型催化剂,但是研究表明,Pd也可作为还原型催化剂,对NQ进行净化。
【关键词】三效催化剂化学组成催化原理制备工艺改进措施【正文】一、三效催化剂应用领域20 世纪70 年代,汽车尾气污染物已成为城市大气主要的人工污染源⑴。
造成城市大气污染的主要物质有总悬浮颗粒TSR二氧化硫SQ、氮氧化物NO x、臭氧O3、一氧化碳CO重金属和有机污染物等。
其中,因汽车排放形成的污染物包括CO NO x、碳氢化合物HC硫氧化物SQ、铅Rb和细微颗粒物等[2]。
这些污染物严重损害了人类的健康、破坏了人类赖以生存的自然环境。
我汽车保有量及需求量增长迅速,但目前我国的排放法规对汽车尾气控制要求相对较宽松,汽车整体性能和路况又相对较差,因此,尽管汽车的总保有量与发达国相比还较小,但汽车尾气主要污染物在大气污染物中的分担率却与发达国家相当[2]。
2001年11月10日,我国正式成为“世界贸易组织成员”。
入世后,我国汽车保有量和需求量将进一步增加,而入世对国内的环境质量要求将更为严格。
开题报告:三效催化剂的制备及研究
开题报告:三效催化剂的制备及研究一、背景化学催化是一种常用的工业技术,它利用催化剂降低反应活化能,提高反应速率和选择性。
三效催化剂是一种通过自由基反应制备的催化剂,具有催化活性高、选择性好和反应速率快等特点,被广泛应用于石油化工、有机合成和生物化学等领域。
目前,三效催化剂的制备和研究仍存在一些问题和挑战。
例如,催化剂的纯度、晶体结构、晶格畸变和催化剂与基底相互作用等方面都需要进一步探索和研究。
因此,本次研究旨在探究三效催化剂的制备方法和催化机理,为其在工业应用中的发展提供理论和实验基础。
二、研究方法本次研究将采用以下方法:1.纯化原料:采用柱层析法和溶剂结晶法,分离和纯化催化剂中的杂质和不纯物。
2.催化剂的制备:通过自由基反应制备三效催化剂,包括催化剂的合成、结构表征和表面性质分析等步骤。
3.催化性能测试:通过催化剂的活性测试、选择性测试和反应动力学研究,探究三效催化剂的催化性能及其与反应机理之间的关系。
三、预期结果通过对三效催化剂的制备和研究,预期可以得到以下结果:1.成功制备高纯度的三效催化剂,实现催化剂的结构和表面性质的控制。
2.探究三效催化剂的催化性能和反应机理,以及催化剂中的相关物理化学过程。
3.为三效催化剂在工业生产和科学研究中的应用提供理论和实验基础,促进其在相关领域的发展。
四、研究意义本次研究对于三效催化剂的制备和研究具有重要的意义和价值,具体如下:1.深入探究三效催化剂的催化机理和物理化学过程,为其在工业应用中的发展提供基础和支持。
2.提高催化剂的纯度和稳定性,长期促进相关领域的科学研究和产业发展。
3.开发出新型的三效催化剂,满足不同领域的应用需求,推动相关领域的技术进步和产业升级。
五、结论本次研究旨在探究三效催化剂的制备方法和催化机理,通过纯化原料、催化剂的制备和催化性能测试等步骤,实现对三效催化剂的结构控制和性能优化。
本次研究的预期结果和意义都具有重要的科学研究和工业应用价值,为相关领域的发展提供可靠的理论和实验基础。
三效催化剂
4 三效催化剂反应机理4.1 参与反应的物种和反应条件汽油车排气组成成份非常复杂,除和燃料和机油的品质有关外,还受发动机和整车的状况、运行工况及环境条件等因素影响。
除氧气O2和氮气N2外,目前已检测到的汽油车排气中的物种约有130多种,其中多数为碳氢化合物及其燃烧、热解的中间产物(丙烷、丙烯、甲醛、丙烯醛等);另外还有水蒸气、氢气H2、CO、CO2、NO2、NO、N2O、SO2、SO3及磷P、铅Pb、锰Mn、钙Ca、锌Zn的化合物和硫酸盐等。
三效催化剂的目标反应物主要有丙烷C3H8、丙烯C3H6、CO和NO x等,三效催化目标反应物的浓度一般在10-9─10-6范围内,远小于障碍物N2(>80%)和CO2(>10%)的浓度。
这就要求三效催化剂具有很好的选择性,这也是三效催化剂区别于一般工业催化剂的主要特征之一。
图35对比了工业催化剂和三效催化剂的工作环境。
如图35所示,与工业催化剂相比,车用三效催化剂的工作温度范围在0 ℃以下(冬天冷启动)至1 000 ℃以上,且温度升、降速率很大(骤冷骤热);空速在0~30000 h-1范围内变化;工作压力的变化范围也很大。
尤其是三效催化剂目标反应物的浓度一般在10-9~10-6范围内,而有碍物(指不参加反应的惰性组份、杂质及对催化剂有毒害作用的污染物等)浓度大多数在10%以上。
因此,相对而言三效催化剂的工作环境更为恶劣。
同时,受装车及实际使用条件所限,车用催化剂在使用空间、再生与更换等方面都不如工业催化剂。
所以对车用催化剂要求其具有更高的活性、更好的选择性、更强的抗中毒能力及更长的使用寿命。
从理论上说,图2所示的电喷闭环控制系统能精确控制排气气氛空燃比为14.63。
但实际上采用图2所示控制系统发动机排气气氛在14.63左右振荡,振荡的频率与幅度与电喷系统的性能有关。
如图36所示,电喷系统匹配较好的发动机空燃比变化幅度很小,排气气氛基本维持在理论空燃比附近。
三效催化
19
γ-Al O 涂 层
2 3
涂层(第二载体、多孔活性水洗涂层):扩大催化剂载体 的比表面积(扩表)。 γ -Al 2 O 3 (不溶于水,但吸水性很强,有强吸附能力与催 化活性):三效催化技术的第二载体,高比表面积,高温 水热稳定性。长期运行,会产生烧结(粉状物料转变为致 密体)现象和转晶(晶型转变)现象,使三效催化剂比表 面积和活性降低。 600 ℃时,按照γ - β - α顺序进行晶型 转变, 1000 ℃时完全转变成α -Al 2O 3(熔点高,硬度高, 不溶于酸碱耐腐蚀,绝缘性好)。
14
CO 与 NO 反 应
(1)吸附步骤:
(2)解离步骤: M-NO+M→M-N+M-O (3)表面重组和表面反应: M-N+M-N→N2(g)+2M M-N+M-NO→N2O(g)+2M M-N+NO(g)→N2O(g)+M M-O+CO(g)→CO2(g)+M M-N+CO(g)→M-NCO
CO+M→M-CO NO+M→M-NO
26
CeO -ZrO 固 溶 体
2 2
加入少量的Ce(0.1%~1.3%)到Al2O3中,可以增加CO在催 化剂上的活性。但加入过多或温度过高时效果则相反。在 1000℃左右的高温下,CeO2的热稳定性不如涂层中的氧化 铝,很容易发生高温烧结,加入ZrO2可显著提高其热稳定 性,又提高了其储氧能力。
变氧的吸附量,这种储氧能力随着升温至 1173K(约900℃) 而逐渐降低。
24
CeO 的 特 性
2
提高贵金属分散度:Pt与CeO2表面的作用强于Al2O3。
三效催化剂名词解释
三效催化剂名词解释
三效催化剂是一种用于汽车排放控制的催化剂,能够有效地降低汽车尾气中的有害物质含量。
三效催化剂是一种用于汽车排放控制的催化剂,主要作用是降低汽车尾气中的有害物质含量。
它能够将尾气中的二氧化碳、氮氧化物和碳氢化合物转化为无害的二氧化碳、水和氮气,从而减少对环境的污染。
三效催化剂通常由贵金属钯、铂和铑等材料制成,是一种高效的催化剂。
它在汽车排气系统中安装,位于排气管内部,能够有效地降低汽车尾气中的有害物质含量。
- 1 -。
催化剂氧化铝涂层
汽油车用催化剂--三效催化剂助剂2.3 三效催化剂助剂2.3.2 助剂的作用助剂也称作助催化剂,是三效催化剂的核心技术之一。
三效催化剂主要由活性组分、助剂和氧化铝涂层三大部分组成,其活性组分主要为贵金属铂Pt、铑Rh和钯Pd,可选择余地不大,可见涂层和助剂是主要研究对象。
三效催化剂助剂的作用主要有:(1)提高催化剂的高温稳定性。
三效催化剂的工作温度高达800-1000℃,紧耦合催化剂的表面的温度甚至能达到1100℃以上。
这就要求催化剂要有很好的高温稳定性及抗高温烧结能力,用于氧化铝涂层的热稳定助剂就属这一类助剂。
用作三效催化剂热稳定助剂的主要有碱土和稀土金属的氧化物等(2)促进贵金属的分散。
三效催化剂的转化效率主要取决于活性组分的分散程度。
贵金属活性组分的分散程度越大,金属粒子越小,就能提供更多的催化反应活性位,催化剂比活性就越高,转化效率越大。
在实际制备过程中,应根据所采用的贵金属原料及制备工艺选择合适的分散助剂。
稀土金属铈Ce和La等对贵金属具有很好的分散作用,常被作用三效催化剂的分散助剂;(3)增加催化剂的低温催化活性。
为缩短催化转化器的起燃时间、降低汽车在冷起动阶段污染物的排量,要求三效催化剂具有很好的低温催化活性。
当然可以通过增加催化剂中贵金属的含量来提高催化剂低温活性,但成本较高。
另一个途径就是使用过渡金属铜Cu、铁Fe等金属氧化物助剂;(4)提高催化剂的储──放氧能力。
储氧能力是三效催化剂一个重要的性能指标,储氧能力越强催化剂空燃比窗口越宽、催化活性越高。
三效催化剂常用的储氧助剂有铈Ce、锰Mn及镨Pr的氧化物等,其中氧化铈CeO x用得最广;(5)促进水煤气反应。
稀土金属氧化物等能促进水煤气反应,从而提高三效催化剂的催化转化效率;(6)改善催化剂界面吸附特性及表面酸碱性。
有些助剂可改变催化剂对不同反应物种的吸附特性,从而提高催化剂的对目标反应物种的选择性催化能力或提高对目标反应产物的选择性。
ZrxTixAl1-2xO2的制备及其在三效催化剂上的应用
2 制备 及 其在 三效 催 化 剂上 的应 用 的
喻 瑶 龚 茂 初 郭 家 秀 林 涛 袁 书华 陈耀 强
( 川 大学化 学 学院 , 都 四 成
关 键词 : R T D; X D; P z i o 0 氧 化 物 ; t 三 效 催 化 剂 fwC 2 P; r )
606) 104
中 图 分 类号 : 6 3 0 4
文献标识码 : A
文 章 编 号 :10 -8 1 070 —4 30 0 14 6 ( 0 )81 5 -4 2
ZFTi l ie ie: e a ain a d Ap l ain i rewa tlss r o2 x d Oxd Pr p r t n pi t Th e - y Caay t M o c o n
维普资讯
第 8期
20 0 7年 8月
无
机
化
学
学
报
C NE E J RNAL OF I HI S OU NORG I HE S RY AN C C MIT
V 1 3 No8 o . . 2 Aug,2 . 007
Z  ̄i I r x TA
Z A a ay t u o t e e c l n e t r , t cu a , u f c c d t d t e ma t b l y T c t s d e t h x e l t xu a sr t r s r e a i i a h r l sa i t . l s e t l u l a yn i
02 aayt a v u tdu igtesmuae ae . h e ut s o h t T a ls x ii hg e tlssw se a ae sn i ltd g s s T er s l h w ta A smpe hbt ih r c l h s Z e
汽车尾气三效催化剂
反应的进行,能快速发生氧活化和烃类的吸附。而由过 及其他非贵金属在催化剂中的作用有以下几个方面:
渡元素等非贵金属为活性组分的催化剂 ,则可以通过金
①存 储 及 释放氧,拓宽了空燃比工作窗口
属离子变价 ,利用晶格氧来达到催化氧化的 目的,而气
贵金 属 三 效催化剂对三种污染物的转化效率 只有
相中的氧不能吸附补充进来,需要较高的温度才能加速 在空燃比在化学计量比的附近时,才一能保持 良好的效
种助剂,提高热稳定性。NaotoMyoshi等提出半径为
0.n 一0.15nm的金属离子对氧化铝载体的热稳定性提
0「_
13.5 14.0 14.5 15.0 15.5
高很大,认为这样的离子占据 丫一A1203的表面空位,能
空燃 比 ( A/ F ) . 有 效 地 阻 止铝离子和氧离子的表面迁移 ,稳定晶格结
三 260一
。
厂
标准 状; 扩、 岁 }.
40 60 80 100(Pt)
(100% Rh) Pt原子的百分含量%
图 4 Pt一Rh的协同作用
上,45%的铂和 85%的锗用于汽车催化。由于铂和锗的
当空 燃 比 在理论空燃 比附近时 ,3种活性组分的单
朱振 忠 ’, 田 群 2, 陈 宏 德 2
(1. 中 国 矿 业 大 学 ,北 京 1 00083;2.中国科学院生态环境研究中心,北京 10085)
摘 要 : 本文介绍 了汽车尾 气三效催化剂的基本工作原理 、结构和性能,概述 了汽车尾气催化剂的发展历程和
和氧化铝的相互作用,可以显著提高其热稳定性。另外, 面元素的价态。Tomcrona等研究表明,经过预还原处理
加人 zrOZ能提高 Ce02的储氧能力。研究表明,在向新鲜 后,含 Co 、Ce 的催化剂的 CO、HC起燃温度有显著的下
三元催化器汽车尾气处理
三元催化器概述:三元催化器,是安装在汽车排气系统中最重要的机外净化装置,它可将汽车尾气排出的CO、HC和NOx等有害气体通过氧化和还原作用转变为无害的二氧化碳、水和氮气。
当高温的汽车尾气通过净化装置时,三元催化器中的净化剂将增强CO、HC和NOx三种气体的活性,促使其进行一定的氧化-还原化学反应,其中CO在高温下氧化成为无色、无毒的二氧化碳气体;HC化合物在高温下氧化成水(H20)和二氧化碳;NOx还原成氮气和氧气。
三种有害气体变成无害气体,使汽车尾气得以净化。
失效原因有:温度过高、慢性中毒、表面积碳。
工作原理:增强气体活性三元催化器的工作原理是:当高温的汽车尾气通过净化装置时,三元催化器中的净化剂将增强CO、HC和NOx三种气体的活性,促使其进行一定的氧化-还原化学反应,其中CO 在高温下氧化成为无色、无毒的二氧化碳气体;HC化合物在高温下氧化成水(H20)和二氧化碳;NOx还原成氮气和氧气。
三种有害气体变成无害气体,使汽车尾气得以净化。
[3]催化喷涂载体三元催化反应器类似消声器。
它的外面用双层不锈薄钢板制成筒形。
在双层薄板夹层中装有绝热材料----石棉纤维毡。
内部在网状隔板中间装有净化剂。
净化剂由载体和催化剂组成。
载体一般由三氧化二铝制成,其形状有球形、多棱体形和网状隔板等。
净化剂实际上是起催化作用的,也称为催化剂。
催化剂用的是金属铂、铑、钯。
将其中一种喷涂在载体上,就构成了净化剂。
性能特点:三元催化器性能稳定、质量可靠、寿命长,其产品广泛适用于本田、别克、奥迪、大众、现代、铃木、昌河等车型。
三元催化器的载体部件是一块多孔陶瓷材料,安装在特制的排气管当中。
称它是载体,是因为它本身并不参加催化反应,而是在上面覆盖着一层铂、铑、钯等贵重金属。
它可以把废气中的HC、CO变成水和CO2,同时把Nox分解成氮气和氧气。
HC、CO是有毒气体,过多吸入会导致人死亡,而NOX会直接导致光化学烟雾的发生。
经过研究证明,三元催化器是减少这些排放物的最有效的方法。
三效催化剂中氧化铝的作用
三效催化剂中氧化铝的作用氧化铝是一种常见的载体材料,广泛应用于催化剂中。
在三效催化剂中,氧化铝扮演着至关重要的角色,它的作用主要包括以下几个方面:1.载体作用:氧化铝具有良好的热稳定性和机械强度,作为三效催化剂的载体,它能够提供一个稳定的基质,为催化剂活性组分的分散和固定提供良好的支撑。
同时,氧化铝具有较高的比表面积和孔隙结构,可以增加催化剂的接触面积和负载量,提高催化剂的反应活性。
2.酸碱性调节:氧化铝表面具有酸碱性,可以用于调节催化剂的酸碱性。
在三效催化剂中,酸碱性的调节对于催化剂的活性和选择性至关重要。
氧化铝的酸性主要来自于其表面的羟基(-OH)和表面氧化铝的氧空位(O2-)。
酸性的调节可以通过改变氧化铝的制备方法、改变钝化剂的种类和浓度等来实现。
此外,氧化铝的碱性主要来自于表面的未配位的氧化铝阳离子(Al3+)。
调节氧化铝的酸碱性可以改变催化剂的表面反应活性以及触媒反应机理。
3.稳定活性组分:氧化铝可以在其表面吸附和固定活性组分,使其保持良好的分散性和稳定性。
活性组分通常是一种过渡金属或贵金属,它们在催化反应中起到催化剂的主要活性中心。
通过将活性组分负载在氧化铝上,可以使其具有较高的催化活性和选择性。
氧化铝可以通过物理吸附、化学吸附、离子交换等方式与活性组分相互作用,形成稳定的活性组分-载体界面。
这种界面具有良好的稳定性,可以减少活性组分的聚集和游离,延长催化剂的使用寿命。
此外,氧化铝还可以影响催化反应的热学性质、传质性质和反应动力学等方面。
通过调节氧化铝的物理和化学特性,可以改变催化剂的性能和反应机理,实现对催化反应的精确控制和优化。
综上所述,氧化铝在三效催化剂中发挥着重要的作用。
它不仅作为催化剂的载体,提供稳定的基质和较高的负载量,还可以调节催化剂的酸碱性、稳定活性组分,并影响催化反应的热学性质和动力学特性。
因此,氧化铝的合理选择和调控对于催化剂的性能和应用具有重要意义。
一种降低thc排放的三效催化剂及其制备方法
文章标题:一种降低THC排放的三效催化剂及其制备方法在当前社会环保意识不断提高的背景下,对于汽车尾气中的有害气体排放日益受到重视。
其中,THC(Total Hydrocarbon,总烃)是一种重要的大气污染物,其高浓度排放对环境和人体健康都会造成不良影响。
研发一种能够降低THC排放的三效催化剂成为了当前环保研究的热点之一。
本文将着重探讨一种降低THC排放的三效催化剂及其制备方法,并对其进行全面深入的评估和探讨。
1. 介绍在现代汽车尾气处理系统中,催化转化器被广泛应用于降低有害气体的排放。
其中,三效催化系统被认为是一种效果较好的排气净化技术,具有对CO、NOx和THC等多种有害气体进行高效转化的特点。
针对THC的排放控制,一种高效的三效催化剂显得尤为关键。
本文将从其制备方法、催化性能和环境效应等方面进行全面分析。
2. 三效催化剂的制备方法针对降低THC排放的需求,研究人员提出了多种三效催化剂的制备方法,包括物理混合法、化学共沉淀法、溶胶-凝胶法等。
其中,溶胶-凝胶法因其制备过程可控性强、合成条件温和等优点而备受关注。
通过该方法可以制备出具有高比表面积和较好分散性的催化剂,从而提高其催化性能和稳定性。
3. 催化性能评价对于三效催化剂的催化性能评价是一个复杂的过程,通常需要考虑其对THC的转化效率、稳定性以及耐久性等方面的指标。
实验结果表明,采用溶胶-凝胶法制备的三效催化剂在低温下即可实现对THC的高效转化,且具有较好的耐久性,可长期稳定工作。
这为控制汽车尾气中THC排放提供了一种有效的途径。
4. 环境效应通过使用这种降低THC排放的三效催化剂,汽车尾气中THC的排放量将显著降低,从而减少大气污染物对环境的影响。
这不仅有利于改善城市空气质量,减少光化学烟雾和臭氧的生成,还能有效保护生态环境,降低人体对有害气体的暴露。
总结一种降低THC排放的三效催化剂及其制备方法具有明显的环保效益和应用价值。
当前,对于这种催化剂的研究仍在不断深入,未来可以进一步优化其合成工艺和催化性能,使其在汽车尾气处理领域发挥更大的作用。
浅谈三元催化转化器的使用和检测+(1)
浅谈三元催化转化器的使用和检测摘要全球的环境越来越严峻,汽车排放污染成为主要污染源之一。
汽车排放污染物主要来源于内燃机,其中有害成分包括CO、HC、NOx、微粒及硫化物等,其中汽油车的主要污染物包括CO、HC和NOx。
各国都出台了法律严格控制汽车的排放,实践证明仅靠汽车发动机前处理和机内净化已不能满足法规要求,对于汽油机,催化转化技术作为降低其排气污染的后处理最为有效的措施,已越来越受到各国重视,其中三元催化转化器广泛应用于各类汽车上。
在了解三种有害气体产生原因及汽车排放对人类和环境的主要影响后,重点介绍了三元催化转化器的结构、原理作用及使用注意。
还重点介绍了三元催化器是如何检测的。
关键词:三元催化转化器的作用;三元催化转化器的影响因素;三元催化转化器使用;三元催化转化器的检测1三元催化转化器的简介三元催化转化器(Three-way Catalytic Converter)简称TWC,也称三效催化转化器。
催化转化器是对发动机排气管排出的废气进行净化的装置,是一种机外净化技术。
汽油机中有害气体的产生与燃料燃烧过程是密不可分的,其中对人类最有影响的主要有CO、HC和NOx三种污染物,而三元催化转化器主要作用是将尾气中的3种有害气体经过氧化反应和还原反应变成为无害气体。
三元催化转化器的催化剂本身并不发生化学反应,它的作用是加快有害物质的化学反应速度。
在我国汽油车用三元催化转化器得到很好的应用。
三元催化器与电控发动机良好匹配的催化器的稳态转化效率在90%以上实际装车的运行寿命在8万km以上,作为降低废气排放的有效措施。
但从现在使用来看三元催化转化器存在着转化效率低和使用不稳定及耐久性差。
这主要是没有重视三元催化器的使用与检测。
为了是三元催化转化器得到更可靠更有效的工作状态,必须首先重视它的使用检测。
2三元催化转化器的结构、作用和原里及使用条件2.1催化转化器排气系统的简介2-1汽车排气系统如图2-1排气系统由排气管、催化转化器、消音器和排气尾管等部分组成。
汽车尾气三效净化催化剂生产中称重仪表的运用
汽车尾气三效净化催化剂生产中称重仪表的运用一、引言随着国内汽车工业的发展给大气带来的污染也越发的严重,因此汽车尾气的出来也受到了高度的重视。
因为汽车尾气三效净化催化剂属高新技术产业,实施产业化将会给稀土工业及环保产业带来巨大的经济效益,推动高技术含量的新型稀土材料的出口创汇,彻底扭转我国长期以来稀土初级产品出口的局面,并可以提高我国环保产业在国际上的竞争地位,促进高新技术产业的发展,培育新的经济增长点,使产业结构更趋合理。
实施本项目,既可以大大降低汽车等机动车尾气对空气的污染,同时由于许多其它废气处理催化剂也大量使用稀土,本项目亦可推动工业废气的治理。
二、工艺流程简介汽车尾气三效净化催化剂生产工艺流程主要包括稀土氧化物的制备、氧化铝的制备、贵金属盐的制备、三效净化催化剂的合成。
前三个过程制备的产品为三效净化催化剂的合成所需的原料。
(一)稀土氧化物工艺流程本工艺是将铈盐、锆盐加沉淀剂控制沉淀和控制老化,经过滤、洗涤、干燥和煅烧,制备铈锆复合氧化物。
在此过程中,两种盐的溶液和模板剂按比例加到反应器中,通蒸汽加热,控制沉淀和老化。
(二)贵金属盐的制备铑粉在氯气通入情况下,反应生成高氯铑盐,然后经过溶解、过滤、沉淀、洗涤等多步操作制备成沉淀物,再在硝酸中溶解,制备成硝酸铑盐。
在此过程中,溶液需按比例加到反应器中,通蒸汽加热,控制沉淀。
在上述两个过程中,物料的配比显得尤为重要,它直接关系到物料的消耗和影响产品的质量。
因为在此工艺生产过程中,所需的原料价格昂贵,原料消耗的增加对生产成本的影响很大。
在中试过程中,此部分的计量采用转子流量计检测,控制物料的配比,但经常出现计量不准,造成消耗偏高,产品质量不稳定。
因此在本项目实施产业化的工程设计中称重仪表,通过近两年的运行使用,效果良好。
三、系统的构成每台称重计量罐配备四个FW-5型称重模块,并配置一台PANTH ER称重显示仪,可即时反映每种物料的加入量,并配有开关量输出模板,可实现阀门自动开关或输送泵的自动启动和关停,从而实现物料的精确配比。
三效催化剂资料
对稀燃条件下汽车尾气催化净化是有关汽车排污控制的世界性难题。
由于发动机在稀燃条件下工作时,空燃比远大于理论值,燃烧充分,提高燃油经济性,其排放的污染物中CO和HC的含量大幅度下降,但富氧使得尾气中O2及NOx含量较高。
目前的铂族金属三效催化剂不适用氧过量条件下的尾气净化,在富氧下NOx还原性能大幅度降低,因而研究稀燃(富氧)条件下的催化净化技术成为控制汽车尾气污染排放的关键技术之一。
并且稀燃条件下的催化净化技术对柴油车、压缩天然气和液化石油气车的尾气排放控制也可提供相应的技术平台。
目前,世界各国均是以铂族金属(铂、钯、铑等)或铂族金属与稀土为活性组份,其中铂族金属用量1.5克~2.5克/升。
全球每年在汽车催化剂上耗用铂、钯、铑152.1吨,占总消耗量的58.9%。
为降低催化剂生产成本,部分取代或全部取代铂族金属的三效催化剂成为近年来研究发展趋势。
近年来,我国以研究、开发低含量铂族金属稀土基三效催化剂为主,工作集中在尽量降低铂族金属含量上,目前铂族金属含量已降至1g/L左右。
但由于我国铂族金属资源非常短缺,每年都需花费大量的外汇进口铂族金属;并且近年来国际市场铂族金属价格上涨迅猛,因此研究进一步降低铂族金属用量和以稀土为主,添加其它贱金属氧化物制成非铂族金属汽车尾气净化催化剂已成为当今世界各国研究的重要方向之一。
针对国内燃油稀燃条件和汽车尾气排放的特点,研制开发具有自主知识产权的非铂族金属汽车尾气净化催化剂及配套技术,主要分为以下6个方面:1)纳米稀土基复合催化剂活性组分和助剂的制备技术汽车尾气净化催化剂的制备关键技术一是配方,二是工艺。
近年来在非铂族金属催化剂上最终确定了几种较为成熟的、三效催化性能较好的催化剂配方。
如Ag系列、Au系列催化剂等,这几种催化剂已显示出良好的开发应用前景。
同时为给催化剂提供良好的催化环境,并提高催化剂的高温稳定性与使用寿命,我们现已将纳米粉体制备技术等先进技术用于制备活性组分与涂层助剂,由于纳米粉体的尺寸效应,使得催化剂、活性涂层助剂组分更容易达到均质、稳定。
机理(三效)
N2O(g)→N2O(a) (I1)
并且他们认为在高分散的催化剂上 N2 的生成按(R4)(R5)及(I1)(I2)来进行, 因为这时高度分散的 Rh 颗粒不能再使 NO 迅速分解。 综上所述,在三效催化剂对 CO+NO 的催化反应中,Pt 和 Pd 对 CO 的催化氧化 应起主要作用,而 Rh 对 NO 的解离(NO 还原的关键步骤)有很好的活化作用。氧原 子的存在可能会影响覆盖度并进而对 CO 的吸附与氧化及 NO 的吸附和解离有影响。 大量的实验事实表明 L-H 反应机理和实验事实相符。(陈秀敏版)
(陈秀敏版,接上面反应方程式)TPD 研究表明解离态吸附的氧较难脱附,只 有在催化剂温度高于氮气生成的温度时氧原子才能生成分子氧脱附。 氮气的生成 则被认为是通过两个反应途径: 低温下: 高温下: NO(a)+N(a)→N2+O(a)+S 2N(a)→N2+2S
Bell(Hecker W C,Bell AT.J.Catalysis,1983,84:200~215.)的工作表明 气相的 NO 和吸附态的 NO 的交换速度快于 NO 的还原速度。 CO 一经生成会立即脱附,N2 一经生成会立也即脱附 Kortluke(Kortluke O,von Niessen W.J.Chem.Phys,1996,105(11):4764~ 4774.)提出一种 L-H 型反应机理: 吸附与脱附步骤: CO(g)↔ CO(a) (A1) (D1) (R1) 2NO(a)→N2(g)+2O(a) (R4) 2NO(a)→N2O(a)+O(a) NO(g)↔ NO(a) (A2)
通常认为 NO 在催化剂表面的离解是 NO 还原反应的第一步骤。这一步骤在 Rh 上较 Pt 和 Pd 上进行的更容易,这就是为什么 Rh 在 NO 的催化还原反应 中起重要作用的原因。 使尾气催化剂交替处在贫氧和富氧的状态。为了使催化剂在贫氧状态下更好 的氧化 HC 和 CO,以及在富氧状态下更好的还原 NOX,常借助于催化剂涂层中 的氧化铈改善在此尾气条件下的氧化-还原反应,起到吸氧和释放氧的作用。
汽车尾气处理中的三效催化剂技术进展
汽车尾气处理中的三效催化剂技术进展作者:王宏达来源:《科技创新导报》2011年第11期摘要:采用催化反应器和再循环技术(EGR)对汽车尾气进行处理,可以减低有害物质的含量。
催化反应器在排气温度下借助于尾气在催化剂表面进行氧化还原反应,将尾气中的中的CO、HC、NOX转变为无害的CO2、N2等,从而减少环境污染。
本文综述了催化剂在国内外汽车尾气排放中的处理技术,比较和分析了各种催化剂及其载体的应用情况。
关键词:汽车尾气三效催化剂技术进展中图分类号:X73 文献标识码:A 文章编号:1674-098X(2011)04(b)-0056-021 引言随着世界各国环保意识的不断增强,汽车尾气的排放受到越来越严格的限制。
当前采用催化反应器和废气在循环技术(EGR)对尾气进行再处理、降低有害物质的含量。
这种方法直接、经济、有效、应用非常广泛。
催化技术处理汽车尾气主要是通过氧化还原反应,将尾气中的CO、HC、NOX转变为无害的CO2、N2等,从而减少环境污染。
该技术的核心是催化剂,本文重点讨论汽车尾气处理过程中常见的三效催化剂及载体技术和反应机理。
2 三效催化剂2.1 贵金属催化剂20世纪80年代,美国首先推出了含有Pt、Rh、Pd的贵金属三效催化剂。
随着技术的发展,以堇青石蜂窝陶瓷为载体、活性氧化铝为涂层的贵金属三效催化剂已经发展成熟。
到90年代,贵金属三效催化剂的功能涉及面更广,还能解决汽车启动时的污染控制。
但该类催化剂必须使用无铅汽油,并要求实现发动机的闭环控制,精确控制比在理论值的14.7∶1附近。
2.2 钙钛矿型催化剂由于贵金属资源有限、价格高昂,减少贵金属用量或替代贵金属,成为汽车尾气净化催化剂的发展趋势。
早在1971年,Libby就首先发表文章指出,钙钛矿型稀土催化剂可以用于净化汽车尾气,他通过实验,用LaCoO3催化剂对甲烷、乙烷和乙烯的催化氧化进行了研究。
钙钛矿型催化剂的化学式一般以ABO3表示,A通常是碱金属、碱土金属或稀土等离子半径较大的金属,B 则是离子半径较小的过渡金属,如Co、Mn、Cu、Ni等。
三效催化剂催化反应条件优化和改进
三效催化剂催化反应条件优化和改进催化剂在化学反应中发挥着至关重要的作用,可以提高反应速率和选择性。
针对三效催化剂催化反应条件的优化和改进,以下是一些建议:
1.催化剂的选择:根据具体反应的需求,选择合适的催化剂是优化反应条件的关键。
通常可以考虑金属催化剂、酸碱催化剂、酶催化剂等。
在选择催化剂时,要考虑其催化活性、稳定性和成本等因素。
2.温度和压力的控制:温度和压力是优化催化反应条件的关键参数。
通过合理控制温度和压力,可以实现更高的反应速率和选择性。
在优化过程中,需要进行多次实验,以找到最佳的温度和压力条件。
3.反应物浓度和摩尔比的优化:反应物浓度和摩尔比对催化反应的影响也非常重要。
通过调整反应物的浓度和摩尔比,可以控制反应的速率和选择性。
在优化过程中,可以逐步改变反应物浓度和摩尔比,观察反应的变化,找到最佳的条件。
4.催化剂的修饰和改进:对三效催化剂进行修饰和改进,可以提高其催化性能。
例如,可以通过引入辅助物质或改变催化剂的结构,提高其活性和选择性。
在修饰和改进过程中,需要进行多次实验和表征,以确定最佳的改进方案。
在进行三效催化剂催化反应条件的优化和改进时,要严格遵守实验室的安全规范,并避免使用可能存在环境和健康风险的物质。
同时,要遵守知识产权的相关法律法规,确保研究成果的合法性和可持续发
展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车尾气处理——三效催化剂(实习报告)【前言】20世纪70年代,汽车尾气污染物已成为城市大气主要的人工污染源[1]。
造成城市大气污染的主要物质有总悬浮颗粒TSP、二氧化硫SO2、氮氧化物NO x、臭氧O3、一氧化碳CO、重金属和有机污染物等。
其中,因汽车排放形成的污染物包括CO、NO x、碳氢化合物HC、硫氧化物SO x、铅Pb和细微颗粒物等[2]。
这些污染物严重损害了人类的健康、破坏了人类赖以生存的自然环境。
【摘要】贵金属铂(Pt)、铑(Rh)、钯(Pd)因其优异的三效催化性能而在国内外被广泛用作三效催化剂的活性成分。
Rh促进NO x还原,使NO x选择性地还原为N2,对CO有不亚于Pt、Pd的氧化能力;Rh 有较好的抗硫中毒能力。
Pt和Pd对CO、HC氧化活性高,Pd对不饱和烃的活性比Pt好,对饱和烃效果稍差,抗S、Pb中毒能力差[9],易高温烧结,与Pb形成合金。
其中Pd一般作为氧化型催化剂,但是研究表明,Pd也可作为还原型催化剂,对NO x进行净化。
【关键词】三效催化剂化学组成催化原理制备工艺改进措施【正文】一、三效催化剂应用领域20世纪70年代,汽车尾气污染物已成为城市大气主要的人工污染源[1]。
造成城市大气污染的主要物质有总悬浮颗粒TSP、二氧化硫SO2、氮氧化物NO x、臭氧O3、一氧化碳CO、重金属和有机污染物等。
其中,因汽车排放形成的污染物包括CO、NO x、碳氢化合物HC、硫氧化物SO x、铅Pb和细微颗粒物等[2]。
这些污染物严重损害了人类的健康、破坏了人类赖以生存的自然环境。
我汽车保有量及需求量增长迅速,但目前我国的排放法规对汽车尾气控制要求相对较宽松,汽车整体性能和路况又相对较差,因此,尽管汽车的总保有量与发达国相比还较小,但汽车尾气主要污染物在大气污染物中的分担率却与发达国家相当[2]。
2001年11月10日,我国正式成为“世界贸易组织成员”。
入世后,我国汽车保有量和需求量将进一步增加,而入世对国内的环境质量要求将更为严格。
汽车尾气治理分机内治理和机外治理。
三效催化剂(器)是汽车尾气机外治理的主流产品之一。
到1998年底,世界上已有三千多亿辆汽车安装有三效催化剂产品,占汽车总量的60%。
其中,世界上生产三效催化剂的三大公司——英国的Johnson-Matthey、美国的Engelhard和德国的Degussa占据了该市场的75%的份额[11]。
现在国内使用的三效催化剂大多依赖于进口,进口产品价格约在300-400美元每套不等。
二、车用三效催化剂的发展历程1943和1954美国洛杉矶两次光化学烟雾事件后,各国科研工作者开始关注汽车尾气的污染与防治问题。
20世纪60~70年代大多数的文献只集中于对尾气中CO和HC的氧化,即氧化型“二元“催化剂(第1代车用催化剂)的开发与研究[14-18]。
当时汽车使用的是含铅汽油。
1963年Hofer、Shultz和Feenan[14]首次报道了铅对车用催化剂活性的影响。
美国1980年实施的排放法规开始对NO x的排量作严格的限制,促进了车用三效催化器(剂)产品的开发与应用。
这一时期先后出现了第2代的单床或双床的Pt/Rh双金属催化剂及Pt/Rh/Pd 三金属催化剂[21-22]。
蜂窝陶瓷载体在这一时期得到了广泛使用,各国在实施严格的排放标准的同时也对燃油中有害杂质含量作了明确的限制。
三效催化剂的制备技术和应用已趋成熟:主要以堇青石(2MgO·2Al2O3·5SiO2)蜂窝陶瓷为第一载体;γ-型的活性氧化铝γ-Al2O3为第二载体;贵金属为活性组分;铈Ce、镧La等稀土元素为助剂;通过浸渍法制成。
为进一步降低成本,使用Pd作为三效催化剂的主要活性成分。
20世纪80年代中期出现了第3代的Pt/Rh/Pd组成的三效催化剂[23-24]。
这种三效催化剂,利用了Pd的耐高温性能和Rh优异的NOx催化还原性能(Pt可同时起协调作用),大大提高了三效催化剂的催化活性。
到20世纪80年未期,安装有三效催化剂的汽车的数量不断增加,三效催化剂所消耗的贵金属的量也随之迅速增加。
同时,贵金属的价格,尤其是Rh的价格迅速攀升。
因此,当时有更多的研究旨在尽可能减少三效催化剂中贵金属的含量及开发单钯型三效催化剂[25]。
赫崇衡和汪仁[26]对这一时期三效催化剂的发展作了很好的综述。
到20世纪后期,各国的排放法规对三效催化剂的冷起动特性和耐高温性能等提出了更为严格的要求;同时为节能及改善汽油车的排放性能,要求开发稀燃(Lean-Burn)型三效催化剂。
这一时期的三效催化剂研究大都集中于:1)提高抗高温老化性能;2)降低起燃温度;3)稀燃条件下对NO x的催化还原等。
国外三效催化剂发展的方向主要体现在以下几个方面:1) 提高三效催化剂在稀燃条件下对NO x的选择还原活性。
为提高燃油的燃烧效率、节约能源及减少温室气体排量,汽油车发动机也将采用贫燃技术(空燃比A/F在17-22之间)。
在贫燃条件下氧气将过剩,对NO x的催化还原将变得更加困难。
目前国外的研究现主要集中于:NO x捕集-还原技术、提高三效催化剂在氧化性气氛中对NO x 催化还原的选择性、两段式催化剂以及氨循环—还原法等。
2) 降低发动机在冷启动阶段尾气污染物的排放量。
机动车排放污染物有80%是在发动机冷启动阶段形成的。
如何更进一步降低发动机在冷启动阶段的排放量,一直是三效催化剂研究的重点和难点所在。
目前国外的研究主要集中于:降低三效催化剂的起燃温度、将催化剂安装在靠近于发动机排气口的位置(紧凑耦合催化剂Close Coulped Catalysts, CCC)或采用两段式催化剂(器)、增强催化剂包覆材料的绝热性能、冷启动阶段直接采用电加热以促使三效催化剂快速起燃等。
3) 开发单钯型三效催化剂。
为应对不断上涨的贵金属的价格(尤其是铑的价格),20世纪80年代未开始研制单钯型三效催化剂。
另外,由于钯的抗高温性能要优于铂和铑,所以更适合用作CCC型催化剂的活性组分。
三、车用三效催化剂的组成(贵金属三效催化剂)贵金属三效催化剂由四部分组成:载体、涂层、活性组分和助剂。
3.1载体与其研究现状载体主要是用来承载有催化活性的材料。
贵金属三效催化剂载体作用是:提供有效表面和合适孔结构;使催化剂获得一定的机械强度;提高催化剂的热稳定性能;与活性组分和助剂作用而形成新化合物;节省贵金属的用量,这对贵金属催化剂是非常重要的。
现在使用的大部分都是整体式载体,它是由许多薄壁平行小通道构成的整体,其气流阻力小、几何表面积大、无磨损、适于高温、催化转化率高[5]。
整体式载体主要有陶瓷和金属材料两种,目前最常用的是整体蜂窝状堇青石陶瓷(2MgO:2AI2O3:5SiO2)。
另外,高孔密度、薄壁的载体是整体式载体的发展趋势。
因为它可以明显改善催化剂的起燃特性和空燃比特性;它的低热质特性和对催化剂起燃特性的改善,可以缩短催化剂达到起活的时间,从而对CO、HC s和NO x进行更好的排放控制,尤其对HC s的排放控制效果十分显著;同时可以通过应用高孔密度、薄壁的载体所具有的大开孔面积和低热质特性改善催化剂对HC的储存和催化转化能力,但也要充分考虑互作氧化还原剂的HC s与NO x的动态平衡问题,从而做出相应适当的调整[6]。
3.2涂层与其研究现状涂层附着于载体的表面,可以提供较大的比表面来附着贵金属并为其创造的良好催化环境[7]。
涂层浆液物性、pH、粒子大小、固含量及粘度都影响涂层性质并间接影响催化活性。
由于涂层是附着在载体的表面,所以要求它对载体附着性能要好且附着均匀,比表面大,高温稳定性好。
涂层材料通常采用,γ~Al2O3—Al2O3八种变体中的一种,其有很强吸附能力和大比表面,但大于1000℃就变的不稳定,而且相变会向比表面很小a ~Al2O3,使催化剂活性下降。
为防止γ~Al2O3高温相变,通常加人Ce、La、Ba、Sr、Zr等稀土或碱土元素氧化物作为助剂[8]。
由于涂层是用来衔接载体与活性组分的,所以它的兼容性与稳定性显得非常重要。
通过添加适当的助剂来提高它的性能是今后主要的研究方向之一。
3.3活性组分与其研究现状贵金属铂(Pt)、铑(Rh)、钯(Pd)因其优异的三效催化性能而在国内外被广泛用作三效催化剂的活性成分。
Rh促进NO x还原,使NO x选择性地还原为N2,对CO有不亚于Pt、Pd的氧化能力;Rh有较好的抗硫中毒能力。
Pt和Pd对CO、HC氧化活性高,Pd对不饱和烃的活性比Pt好,对饱和烃效果稍差,抗S、Pb中毒能力差[9],易高温烧结,与Pb形成合金。
其中Pd一般作为氧化型催化剂,但是研究表明,Pd也可作为还原型催化剂,对NO x进行净化。
钯的化学特性更接近于铑,而它的价格仅为铑的1/20~1/8,成为替代铑的首选金属。
另外Pd比Pt、Rh资源更丰富、良好的低温活性及催化氧化活性,抗高温烧结性,能大大降低成本、提高催化剂寿命,甚至在某些性能上超过Pt、Rh,因此全Pd催化剂已经成为三效催化剂研究发展的一个重要方向。
3.4助剂与其研究现状稀土金属十分活泼,将其加入催化剂活性组分中,能提高催化剂的抗铅、硫中毒性能和耐高温稳定性,并能改善催化剂的空燃比工作特性。
纳米级稀土化合物具备一些奇特的催化特性。
这是由于稀土元素功能独特,原子结构特殊,内层4f轨道未成对电子多,原子磁矩高,电子能级极其丰富,比周期表中所有其它元素电子能级跃迁的数目多1—3个数量级;稀土金属几乎可与所有元素发生作用形成化合物,容易失去电子形成多种价态、多配位数(3—12)的化合物,从而具有独特的催化性质,将其加入贵金属三效催化剂中会表现出一些重要的作用。
可以提高催化剂的机械强度,提高催化剂的活性、高温稳定性和储氧能力,提高催化剂的抗中毒能力,具有三效催化剂的效果[12]。
四、车用三效催化剂的原理三效催化剂的工作原理是:当高温的汽车尾气通过净化装置时,三元催化器中的净化剂将增强CO、碳氢化合物和NOx三种气体的活性,促使其进行一定的氧化-还原化学反应,其中CO在高温下氧化成为无色、无毒的二氧化碳气体;碳氢化合物在高温下氧化成水(H20)和二氧化碳;NOx还原成氮气和氧气。
三种有害气体变成无害气体,使汽车尾气得以净化。
氧化反应(氧化催化剂):2CO+O2→2CO24H m C n+(m+4n)O2→2mH2O+4nCO2(8n+2m)NO+4H m C n→(4n+m)N2+2mH2O+4nCO2三元反应(三效催化剂):2NO+2CO→N2+CO24NH3+5O2→4NO+6H2O五、三效催化剂的制备工艺及各自特点目前来说纳米贵金属三效催化剂的涂层与助剂的制备方法主要有:传统的共沉淀法,表面活性剂模板法,微乳法,溶胶凝胶法,氧化物高能球磨法,溶液燃烧法川,化学削锉法和水热合成法等[18]。