数学实验-实验报告-概率与频率
数学实践活动教案1频率与概率
初中数学实践课教案1课题频率与概率教学目标:1、知识目标:学习用列表法计算涉及两步实验的随机事件发生的概率。
2、能力目标:(1)培养学生合作交流的意识和能力。
(2)提高学生对所研究问题及所用方法进行反思和拓广的能力,以及将实际问题化归为数学问题的能力。
3、情感目标:积极参与数学活动,经历成功与失败,获得成就感,提高学生学习数学的兴趣。
教学重点:用列表法计算涉及两步实验的随机事件发生的概率。
教学难点:正确地用列表法计算涉及两步实验的随机事件发生的概率。
教学方法:引导——探索法教具准备:多媒体课件教学过程:一、创设情境,引入新课[师]也许你曾被大幅的彩票广告所吸引,也许你曾经历过各种摇奖促销活动,不少同学会感到十分神秘,其实这只是一个概率问题。
针对这一问题,我们一起做一个有趣的游戏:玲玲和倩倩是一对好朋友,她俩都想去观看周杰伦的演唱会,可手头只有一张票,怎么办呢?玲玲对倩倩说:“我向空中抛2枚同样的一元硬币,如果落地后一正一反,就我去;如果落地后两面一样,就你去!”结果倩倩欣然答应。
请问:你觉得这个游戏公平吗?(学生思考、讨论,教师巡视,并不时对部分学生进行启发)。
[生1]我觉得不公平。
理由如下:向空中掷两枚硬币有三种情形出现:正、正;反、反;一正一反。
出现一正一反的概率为1/3,因此,倩倩听了当然非常高兴,因为他获胜的概率为2/3。
[生2]我觉得这个游戏对双方是公平的。
玲玲和倩倩获胜的概率都为1/2,分析如下:开始正反正反正反(正,正) (正,反) (反,正) (反,反)所以由上面的树状图可知,向空中抛两枚同样的一元硬币,出现(正,正),(正,反),(反,正),(反,反)的可能性是相同的,而出现两面一样的概率为1/2,出现一正一反的概率也为1/2。
[师]两位同学积极思考,大胆发言的精神值得肯定。
不过这只是个数学游戏,老师只是想用此介绍一些概率问题,国家规定中小学生是不能参与购买彩票的,而赌博更是有百害而无一益的噢!那么谁的分析正确呢?(引导学生分析,生1分析的三种情形发生的可能性是不相等的,(正,反)、(反,正)是两种不同情况;生2的分析是正确的。
实验报告2
图 2-1 2、通过这个对话框,我们可以在指定的单元格区域生成按一定统计分布的随机变 量,这里主要包括均匀分布、正态分布、贝努里分布、二项分布、泊松分布、 模式分布和离散分布,点击均匀分布. 3、在图 3-1 对话框中“变量个数”文本框指定输出表中数值列数,输入 1. “随机 数个数”文本框中用来输入要查看的数据个数,输入 100. 分布“下拉列表用 来选择创建随机数的方法”. “随机数基数”文本框输入用来构造随机数的可 选项,可在以后重新使用该数值来生成相同的随机数. 4、点击确定,就得到 100 个均匀分布的随机数,如图 2-2.
随机事件的模拟-----模拟掷均匀硬币的随机试验
实验所用软件及版本:
主要内容(要点):
实验过程: (含解决方法和基本步骤,主要程序清单及异常情况记录等)
(1)产生随机数
1、打开 Excel,选取主菜单栏上【工具|数据分析】 ,弹出【数据分析】对话框,选 取“随机数发生器”选项,然后单击确定,弹出【随机数发生器】对话框,如 图 2-1.
ห้องสมุดไป่ตู้
图 2-2 (2)统计频数和频率 用“直方图”进行统计. 方法步骤看实验一,结果如图 2-3.
图 2-3
实验结果与实验总结(体会): 输出结果表示:抛 100 次硬币,有 54 次出现“正面” ,46 次出现“反面”.
进一步讨论或展望:
教师评语与成绩:
数学实验报告
实验序号:2 班级 实验 名称 问题的背景: 抛硬币实是一个古老而现实的问题,我们可以从中得出许多结论.但要做这个简单 而重复的试验,很多人没有多余的时间或耐心来完成它,现在有了计算机的帮助,人 人都可很短的时间内完成它. 抛硬币试验:抛掷次数为 n . 对于 n=20,50,100,1000,2000 各作 5 次试验.观察有没 有什么规律,有的话,是什么规律. 实验目的: (1)学习和掌握 Excel 的有关命令 (2)了解均匀分布随机数的产生 (3)理解掌握随机模拟的方法. (4)体会频率的稳定性. 实验原理与数学模型: 假设硬币是均匀的,由概率的定义知,出现正面的概率与出现反面概率都是 0.5. 所以我们可以利用计算机中的 Excel 软件来产生[0,1]上随机数,若随机数小于等于 0.5 就赋值为“正面” ,否则,就赋值为“反面”. 这样,我们利用计算机就模拟了抛 均匀硬币的试验. 我们还可以利用 Excel 软件整理试验结果,从而发现试验结果与试验次数的关系, 两次相同的试验结果未必相同,多次试验结果的频率具有稳定性等规律 E班 姓名 宋刚 日期: 学号 年 月 日 114080384
概率论实验报告_2
概率论试验报告试验一:随机掷硬币1、模拟掷一枚硬币的随机试验(可用0——1随机数来模拟试验结果),取n=100,模拟掷n次硬币的随机试验。
记录试验结果,观察样本空间的确定性及每次试验结果的偶然性,统计正面出现的次数,并计算正面的出现的频率;试验结果如下:测试中出现零代表正面,出现一代表反面,其中共计50次正面50次反面。
2、取试验次数n=1000,将过程(1)重复三次,比较三次试验结果试验结果如下3、三次结果分别是0.501,0.503,0.521 。
这充分说明模拟情况接近真实情况,频率接近概率0.5。
试验二:高尔顿钉板试验1、自高尔顿钉板上端放一个小球, 任其自由下落. 在其下落过程中,当小球碰到钉子时从左边落下的概率为p , 从右边落下的概率为,1p -碰到下一排钉子又是如此, 最后落到底板中的某一格子. 因此任意放入一球, 则此球落入哪个格子事先难以确定. 设横排共有20=m 排钉子, 下面进行模拟实验:(1) 取,5.0=p 自板上端放入一个小球, 观察小球落下的位置; 将该实验重复作5次, 观察5次实验结果的共性及每次实验结果的偶然性;(2) 分别取,85.0,5.0,15.0=p 自板上端放入n 个小球, 取,5000=n 观察n 个小球落下后呈现的曲线我们分析可知,这是一个经典的古典概型试验问题2、具体程序:3、我们分析实验结果可知,若小球碰钉子后从两边落下的概率发生变化, 则高尔顿钉板实验中小球落入各个格子的频数发生变化, 从而频率也相应地发生变化. 而且, 当,5.0p曲线峰值的格子位置向右偏; 当><p曲线峰值的格子位置向左偏。
,5.0试验三:抽签试验1、我们做模拟实验,用1-10的随机整数来模拟实验结果。
在1-10十个随机数中,假设10代表抽到大王,将这十个数进行全排,10出现在哪个位置,就代表该位置上的人摸到大王。
每次随机排列1-10共10个数,10所在的位置随机变化,分别输出模拟实验10次, 100次,1000次的结果, 将实验结果进行统计分析, 给出分析结果。
随机事件的频率与概率
随机事件的频率与概率概率论与数理统计就是研究随机现象的统计规律的数学学科,因随机现象具有普遍性特点,概率论和数理统计也因此具有广泛的应用环境。
而在研究概率之前,我们必须先要清楚随机试验中关于随机事件发生可能性大小的度量问题,这就涉及随机事件的概率和频率。
首先必须明确随机事件的概念,即,在条件一定时,测验或观察研究对象,每进行一次条件组称为一次性试验,得到的结果为事件,在一次试验中对无法准确判断发生结果的事件为随机事件。
接着我们来分别了解频率及概率:一、频率的概念及性质举例引入:一个盒子中有10个相同的球,但5个是白色的,另外5个是黑色的,搅匀后从中任意摸取一球。
在该实验中,未将球取出来前,我们无法对实验结果进行判断,即取出的球是黑是白是未知的,但是实践经验告诉我们,如果我们从盒子中反复多次取球,会获得这样一种结果:当实验次数足够多,即n足够大时,黑、白两球出现次数几乎是相等的,即,黑、白球出现次数的比值趋于1。
条件相同时,如试验次数为n,那么这n次试验中事件A共发生的次数为nA,nA为事件A的发生频数。
而事件A的发生频率用nA/n这一比值表示,记作fn(A),即,不同对象出现的次数和总次数间的比值。
当试验次数n不断增大时,频率逐渐趋向于稳定,并与某常数接近,这一常数就是所说的时间A的概率,而频率稳定性即为统计规律性(统计规律性是指在大量试验中呈现出的数量规律),但频率与概率并不相同,由伯努利大数理论可知,当n为无穷大时,在一定意义下频率fn(A)和概率P(A)较为接近。
其中频率的值即为频数与总体数量的比值。
在n次试验中随机事件发生m次的相对频率为m/n。
而在物理学中频率用于衡量每秒物体振动次数的多少是确定的。
二、概率的概念及性质概率用于衡量事件发生的可能性大小,而随机事件A发生概率表示为P(A),取值范围在0和1之间。
在一定条件下,当P (A)=1时表示事件A一定发生;当P(A)=0时,表示事件A 没有发生的可能。
原创1:10.3 频率与概率
10.3 频率与概率
问题引入
我们知道,事件的概率越大,意味着事件发生的可能性越大,
在重复试验中,相应的频率越大;
事件的概率越小,则事件发生的可能性越小,
在重复试验中,相应的频率就越小.
那么,在重复试验中,
频率的大小是否就决定了概率的大小呢?
频率与概率之间是一种什么样的关系呢?
观察历史上抛掷硬币的试验统计,尝试回答这个问题.
=1.192 5a.
因此,续保人本年度平均保费的估计值为1.192 5a.
典例精析
题型三:利用随机模拟法估计概率
例3 盒中有大小,形状相同的5个白球,2个黑球,用随机模拟法求下列事件的概率:
(1)任取一球,得到白球. (2)任取三球,都是白球.
解 用1,2,3,4,5表示白球,6,7表示黑球.
(1)步骤:①利用计算器或计算机可以产生1到7的整数随机数,
续保人本年度的保费与其上年度出险次数的关联如表所示:
上年度出
险次数
0
1
2
3
4
≥5
保费
0.85a
a
1.25a
1.5a
1.75a
2a
随机调查了该险种的200名续保人在一年内的出险情况,得到统计表:
出险次数
0
1
2
3
4
≥5
频数
60
50
30
30
20
10
(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值.
中奖概率为0.2是说中奖的可能性为0.2,当摸5张票时,可能都中奖,
也可能中一张、两张、三张、四张,或者都不中奖,所以B不正确;
10张票中有1张奖票,10人去摸,每人摸到的可能性是相同的,
高中概率数学实验报告
高中概率数学实验报告实验目的通过进行概率实验,加深对概率理论的理解,探究概率实验和理论概率的关系。
实验器材- 骰子- 纸牌- 两个硬币实验步骤1. 首先,我们进行了一个简单的抛硬币实验。
通过抛两个硬币,我们观察到硬币的正反面朝上的情况,并记录下来。
共进行了100次抛硬币实验。
2. 接着,我们进行了掷骰子实验。
我们使用一个六面骰子,进行了300次掷骰子实验。
记录下了每次出现的骰子点数。
3. 最后,我们进行了一次纸牌实验。
我们使用了一副标准的扑克牌,包括52张牌,不计大小王。
我们从中抽取了30张牌,记录下了每张牌的花色和点数。
结果分析抛硬币实验我们进行了100次抛硬币实验,记录下了每次抛硬币的结果。
通过统计,我们发现正面朝上的次数为56次,反面朝上的次数为44次。
根据统计学原理,我们得出正面和反面朝上的概率分别为0.56和0.44。
实验结果与理论概率相差较小,这说明我们的实验结果与理论概率一致,加深了我们对硬币抛掷的概率理解。
掷骰子实验我们进行了300次掷骰子实验,记录下了每次点数的结果。
通过统计,我们得出每个点数出现的频次分别如下:- 点数1出现了48次- 点数2出现了54次- 点数3出现了52次- 点数4出现了50次- 点数5出现了49次- 点数6出现了47次通过进一步计算,我们得到了每个点数出现的频率如下:- 点数1的频率为0.16- 点数2的频率为0.18- 点数3的频率为0.17- 点数4的频率为0.16- 点数5的频率为0.16- 点数6的频率为0.15与理论概率进行对比发现,实验结果与理论概率也符合得较好,加深了我们对骰子点数的概率理解。
纸牌实验我们从一副标准扑克牌中抽取了30张牌,记录下了每张牌的花色和点数。
通过统计,我们得出了每个花色和点数出现的频次。
花色频次- -黑桃8红桃 6方块9梅花7点数频次- -A 32 43 24 55 66 37 18 29 1J 1Q 2K 0根据实验结果,我们可以进一步计算出每个花色和点数出现的频率。
初中数学 频率和概率之间有什么关系
初中数学频率和概率之间有什么关系频率和概率是统计学中两个相关但不完全相同的概念。
它们之间的关系可以通过大数定律来解释。
下面我们详细介绍频率和概率之间的关系。
频率是指某个事件在一定条件下重复出现的次数。
通过观察和统计事件发生的次数,我们可以得到频率。
频率是通过实验数据来计算的,是实际观测到的相对频数。
概率是指某个事件在理论上发生的可能性大小。
概率是一个理论上的数值,表示某个事件发生的可能性。
概率是基于某种假设或模型来计算的,是一种推断或估计。
频率和概率之间的关系可以通过大数定律来理解。
大数定律是统计学中的一个重要定律,它指出当实验次数足够多时,频率会逐渐接近概率。
也就是说,当实验次数足够多时,频率的平均值会趋近于概率的理论值。
大数定律的数学表达如下:lim(n→∞) P(|频率-概率| < ε) = 1其中,n表示实验次数,ε表示一个很小的正数。
这个定律表明,当实验次数足够多时,频率与概率之间的差异会趋于很小,几乎可以认为它们相等。
举个例子来说明频率和概率之间的关系。
假设我们要计算投掷一个骰子出现数字6的概率。
我们进行了100次实验,记录下骰子出现数字6的次数为20次。
那么频率为20/100=0.2。
根据大数定律,当实验次数足够多时,频率会逐渐接近概率。
也就是说,当我们进行足够多次的实验时,骰子出现数字6的频率会逐渐接近真实的概率。
因此,通过频率我们可以估计出概率的大小。
需要注意的是,频率是通过实验数据来计算的,具有一定的随机性,而概率是一个理论上的数值,不受具体实验数据的影响。
因此,在实际应用中,我们通常会根据频率来估计概率的大小,但不能认为频率就等于概率。
频率只是一种用来近似概率的方法,而概率是一个理论上的数值。
数学实验综合实验报告
数学实验综合实验报告数学实验综合实验报告摘要:本实验旨在通过实际操作和数据分析,探究数学实验的应用和意义。
实验过程中,我们选择了两个数学实验题目进行研究,分别是概率与统计实验和几何实验。
通过实验,我们发现数学实验可以帮助我们更好地理解和应用数学知识,提高数学思维能力和问题解决能力。
引言:数学实验作为一种新颖的教学手段,已经受到越来越多教育工作者的重视。
数学实验通过操作、观察和数据分析等手段,使学生能够更加深入地理解数学知识,培养数学思维能力和问题解决能力。
本次实验我们选择了概率与统计实验和几何实验两个题目进行研究。
实验一:概率与统计实验实验目的:通过实际操作,探究概率与统计在实际生活中的应用,并加深对概率与统计知识的理解。
实验步骤:1. 设计一个抛硬币的实验,记录抛硬币的结果。
2. 统计抛硬币结果的频率,并计算出正面朝上的概率。
3. 设计一个抽签的实验,记录抽签的结果。
4. 统计抽签结果的频率,并计算出每个结果的概率。
实验结果与分析:通过实验,我们得到了抛硬币和抽签的结果数据,并进行了统计和分析。
我们发现,抛硬币的结果中正面朝上的概率约为50%,与理论概率相符。
而抽签的结果中,每个结果的概率基本相等,符合随机性的特点。
实验结论:通过本次实验,我们深入了解了概率与统计在实际生活中的应用,并通过实际操作加深了对概率与统计知识的理解。
实验结果表明,概率与统计理论与实际生活中的现象是相符的。
实验二:几何实验实验目的:通过实际操作,探究几何知识在实际生活中的应用,并加深对几何知识的理解。
实验步骤:1. 设计一个测量房间面积的实验,记录测量结果。
2. 根据测量结果计算房间的面积。
3. 设计一个测量三角形面积的实验,记录测量结果。
4. 根据测量结果计算三角形的面积。
实验结果与分析:通过实验,我们得到了房间面积和三角形面积的测量结果,并进行了计算和分析。
我们发现,通过几何知识和测量工具,我们可以准确地计算出房间和三角形的面积。
数学实验报告概率统计
一、实验目的1. 理解概率统计的基本概念和原理;2. 掌握运用概率统计方法解决实际问题的能力;3. 提高数据分析和处理能力。
二、实验内容1. 随机数生成实验2. 抽样实验3. 假设检验实验4. 估计与预测实验三、实验方法1. 随机数生成实验:使用计算机生成随机数,并分析其分布情况;2. 抽样实验:通过随机抽样,分析样本数据与总体数据的关系;3. 假设检验实验:根据样本数据,对总体参数进行假设检验;4. 估计与预测实验:根据历史数据,建立预测模型,对未来的数据进行预测。
四、实验步骤1. 随机数生成实验(1)设置随机数生成器的参数,如范围、种子等;(2)生成一定数量的随机数;(3)分析随机数的分布情况,如频率分布、直方图等。
2. 抽样实验(1)确定抽样方法,如简单随机抽样、分层抽样等;(2)抽取一定数量的样本数据;(3)分析样本数据与总体数据的关系,如样本均值、标准差等。
3. 假设检验实验(1)根据实际需求,设定原假设和备择假设;(2)计算检验统计量,如t统计量、卡方统计量等;(3)根据临界值表,判断是否拒绝原假设。
4. 估计与预测实验(1)收集历史数据,进行数据预处理;(2)选择合适的预测模型,如线性回归、时间序列分析等;(3)利用历史数据训练模型,并对未来数据进行预测。
五、实验结果与分析1. 随机数生成实验(1)随机数分布呈现均匀分布,符合概率统计的基本原理;(2)随机数的频率分布与理论分布相符。
2. 抽样实验(1)样本均值与总体均值接近,说明抽样效果较好;(2)样本标准差略大于总体标准差,可能受到抽样误差的影响。
3. 假设检验实验(1)根据检验统计量,拒绝原假设,说明总体参数存在显著差异;(2)根据临界值表,确定显著性水平,进一步分析差异的显著性。
4. 估计与预测实验(1)预测模型具有较高的准确率,说明模型能够较好地拟合历史数据;(2)对未来数据进行预测,结果符合实际情况。
六、实验结论1. 概率统计方法在解决实际问题中具有重要作用,能够提高数据分析和处理能力;2. 随机数生成实验、抽样实验、假设检验实验和估计与预测实验均取得了较好的效果;3. 通过本次实验,加深了对概率统计基本概念和原理的理解,提高了运用概率统计方法解决实际问题的能力。
概率统计基础实验报告
概率统计基础实验报告实验报告:概率统计基础实验1. 引言概率统计是一门研究随机现象的学科,广泛应用于各个领域,如金融、医疗、工程等。
本实验旨在通过设计一个简单实验,来理解概率统计的基本概念和方法。
2. 实验目的通过投掷一个均匀骰子,进行概率统计的实验,探索概率、事件、样本空间、频数、频率等基本概念及其计算方法。
3. 实验步骤1) 准备一个均匀骰子。
2) 进行一定次数的投掷,并记录每次投掷的结果。
3) 统计各种投掷结果的频数和频率。
4) 分析并总结实验结果。
4. 实验结果本实验进行了100次骰子投掷,记录了每次投掷的结果。
投掷结果为1的次数:15次投掷结果为2的次数:14次投掷结果为3的次数:17次投掷结果为4的次数:20次投掷结果为5的次数:18次投掷结果为6的次数:16次5. 计算与分析(1) 频数的计算投掷结果为1的频数= 15投掷结果为2的频数= 14投掷结果为3的频数= 17投掷结果为4的频数= 20投掷结果为5的频数= 18投掷结果为6的频数= 16(2) 频率的计算投掷结果为1的频率= 频数/ 投掷次数= 15 / 100 = 0.15 投掷结果为2的频率= 频数/ 投掷次数= 14 / 100 = 0.14投掷结果为3的频率= 频数/ 投掷次数= 17 / 100 = 0.17投掷结果为4的频率= 频数/ 投掷次数= 20 / 100 = 0.20投掷结果为5的频率= 频数/ 投掷次数= 18 / 100 = 0.18投掷结果为6的频率= 频数/ 投掷次数= 16 / 100 = 0.166. 结论与讨论通过实验结果的统计与计算,我们可以得到以下结论:(1) 在这100次的投掷中,每个骰子数字出现的频数并不完全一样,即每个数字的出现机会并不相同。
(2) 在这100次的投掷中,投掷结果为4的次数最多,也就是数字“4”的概率最大。
(3) 这个结果符合理论上均匀骰子的预期,即每个数字出现的概率应该相等,为1/6或约0.1667。
10.3频率与概率
现,称n次试验中事件A出现的次数nA为事件A出现的频数
,称事件A出现的比例
fn
(
A)
nA n
为事件A出现的频率.
事件的概率越大,意味着事件发生的可能性越大,,
在重复试验中,相应的频数一般也越大;
事件的概率越小,则事件发生的可能性越小,在重
复试验中,相应的频数一般也越小.
在初中,我们利用频率与概率的这种关系,通过大
练习
- - - - - - - -教材-25-4页
1.判断下列说法是否正确,并说明理由: (1) 抛掷一枚硬币正面朝上的概率为0.5,则抛掷两枚硬币, 一定是一次正面朝上,一次反面朝上; (2) 抛掷一枚质地均匀的硬币10次,结果是4次正面朝上, 所以事件“正面朝上”的概率为0.4; (3) 当试验次数很大时,随机事件发生的频率接近其概率; (4) 在一次试验中,随机事件可能发生也可能不发生,所以 事件发生和不发生的概率各是0.5.
练习
- - - - - - - -教材-25-4页
3. 据统计ABO血型具有民族和地区差异. 在我国H省调查 了30488人,四种血型的人数如下:
血型
A
B
O
AB
人数/人 7704 10765 8970 3049
频率 0.253 0.353 0.294 0.100
(1)计算H省各种血型的频率并填表(精确到0.001);
(2)根据估计结果,你认为“生男孩和生女孩是等可能
的”这个判断可靠吗?
115.88
解:(1)2014年男婴出生频率为 115.88100 0.537
113.51
2015年男婴出生频率为 113.51100 0.532
由此估计,2014年男婴出生率约为0.537,2015年男婴出生率约为
小学数学实验报告概率
一、实验目的通过本次实验,让学生了解概率的基本概念,掌握计算概率的方法,培养学生的动手操作能力和观察分析能力。
二、实验原理概率是反映随机事件发生可能性大小的一个数值。
事件发生的概率是介于0和1之间的一个数,0表示事件不可能发生,1表示事件必然发生。
在本次实验中,我们将通过抛掷硬币、掷骰子等随机实验来观察和计算事件的概率。
三、实验材料1. 硬币一枚2. 骰子一个3. 记录表格4. 计算器四、实验步骤1. 抛掷硬币实验(1)将硬币抛掷10次,记录正面向上和反面向上的次数。
(2)计算正面向上的概率:正面向上次数/总次数。
(3)计算反面向上的概率:反面向上次数/总次数。
2. 掷骰子实验(1)将骰子掷10次,记录每个数字出现的次数。
(2)计算每个数字出现的概率:该数字出现次数/总次数。
五、实验结果与分析1. 抛掷硬币实验结果正面向上次数:5次反面向上次数:5次正面向上的概率:5/10 = 0.5反面向上的概率:5/10 = 0.52. 掷骰子实验结果数字1出现次数:2次数字2出现次数:1次数字3出现次数:2次数字4出现次数:2次数字5出现次数:2次数字6出现次数:1次数字1出现的概率:2/10 = 0.2数字2出现的概率:1/10 = 0.1数字3出现的概率:2/10 = 0.2数字4出现的概率:2/10 = 0.2数字5出现的概率:2/10 = 0.2数字6出现的概率:1/10 = 0.1通过本次实验,我们可以得出以下结论:1. 抛掷硬币实验中,正反两面出现的概率相等,均为0.5。
2. 掷骰子实验中,每个数字出现的概率不相等,但总体上接近相等。
3. 随着实验次数的增加,事件的概率趋于稳定。
六、实验心得本次实验让我深刻理解了概率的概念,学会了如何计算事件的概率。
在实验过程中,我注意到了以下几点:1. 实验次数越多,事件的概率越稳定。
2. 在实际操作中,要确保实验的随机性,减少人为因素的影响。
3. 通过实验,我们可以更好地理解数学知识,提高自己的动手操作能力和观察分析能力。
概率数学实验实验报告
一、实验目的1. 了解概率数学的基本概念和原理。
2. 掌握概率数学在现实生活中的应用。
3. 培养学生的实验操作能力和数据分析能力。
二、实验内容1. 抛掷硬币实验2. 抛掷骰子实验3. 箱子抽球实验4. 概率计算与应用三、实验器材1. 硬币一枚2. 骰子一个3. 箱子一个4. 球若干5. 记录表四、实验步骤1. 抛掷硬币实验(1)将硬币抛掷10次,记录正面朝上和反面朝上的次数。
(2)计算正面朝上和反面朝上的概率。
(3)分析实验结果,验证概率理论。
2. 抛掷骰子实验(1)将骰子抛掷10次,记录每个面出现的次数。
(2)计算每个面出现的概率。
(3)分析实验结果,验证概率理论。
3. 箱子抽球实验(1)将不同颜色的球放入箱子中,共5个球,其中红球2个,蓝球2个,黄球1个。
(2)从箱子中随机抽取球,记录抽取结果。
(3)计算每种颜色球被抽中的概率。
(4)分析实验结果,验证概率理论。
4. 概率计算与应用(1)根据实验结果,计算每种情况的概率。
(2)分析概率在现实生活中的应用,如彩票、保险等。
五、实验结果与分析1. 抛掷硬币实验实验结果显示,正面朝上的次数为5次,反面朝上的次数为5次。
计算概率为:P(正面朝上) = 5/10 = 0.5P(反面朝上) = 5/10 = 0.5实验结果与概率理论相符。
2. 抛掷骰子实验实验结果显示,每个面出现的次数如下:1面1次,2面1次,3面1次,4面1次,5面1次,6面1次。
计算概率为:P(1面) = 1/10 = 0.1P(2面) = 1/10 = 0.1P(3面) = 1/10 = 0.1P(4面) = 1/10 = 0.1P(5面) = 1/10 = 0.1P(6面) = 1/10 = 0.1实验结果与概率理论相符。
3. 箱子抽球实验实验结果显示,红球被抽中的次数为2次,蓝球被抽中的次数为2次,黄球被抽中的次数为1次。
计算概率为:P(红球) = 2/5 = 0.4P(蓝球) = 2/5 = 0.4P(黄球) = 1/5 = 0.2实验结果与概率理论相符。
概率大学实验报告
一、实验目的1. 理解概率论的基本概念,掌握概率的基本性质。
2. 熟悉概率论中的一些常用公式和定理。
3. 通过实验,加深对概率论理论知识的理解,提高实际应用能力。
二、实验原理概率论是研究随机现象规律性的数学分支。
在实验中,我们通过模拟随机事件,观察其发生的频率,进而估计事件发生的概率。
三、实验内容1. 抛硬币实验2. 抛骰子实验3. 抽签实验四、实验步骤1. 抛硬币实验(1)将一枚均匀硬币抛掷若干次,记录正面朝上的次数。
(2)计算正面朝上的频率。
(3)根据频率估计正面朝上的概率。
2. 抛骰子实验(1)将一枚均匀骰子抛掷若干次,记录每个点数出现的次数。
(2)计算每个点数出现的频率。
(3)根据频率估计每个点数出现的概率。
3. 抽签实验(1)准备若干张卡片,分别写上不同的数字或字母。
(2)将卡片放入一个袋子中,搅拌均匀。
(3)从袋子中抽取一张卡片,记录其上的数字或字母。
(4)计算抽到某个数字或字母的频率。
(5)根据频率估计抽到某个数字或字母的概率。
五、实验结果与分析1. 抛硬币实验(1)实验次数:100次(2)正面朝上次数:53次(3)正面朝上频率:53%(4)根据频率估计正面朝上的概率为0.53。
2. 抛骰子实验(1)实验次数:100次(2)每个点数出现的次数:1,2,3,4,5,6(3)每个点数出现的频率:1%,2%,3%,4%,5%,6%(4)根据频率估计每个点数出现的概率为1/6。
3. 抽签实验(1)实验次数:100次(2)抽到某个数字或字母的次数:10次(3)抽到某个数字或字母的频率:10%(4)根据频率估计抽到某个数字或字母的概率为0.1。
通过实验,我们可以看到,在实际操作中,频率与概率具有一定的关联性。
随着实验次数的增加,频率逐渐趋于稳定,接近于理论概率。
六、实验结论1. 在抛硬币实验中,正面朝上的频率为53%,与理论概率0.5接近。
2. 在抛骰子实验中,每个点数出现的频率为1/6,与理论概率一致。
用频率估计概率实验报告
用频率估计概率实验报告
要解决这个问题首先要了解频率和概率的定义以及它们之间的相互关系:
在相同的条件下做大量重复试验,一个事件A出现的次数和总的试验次数n之比,称为事件A在这n次试验中出现的频率.当试验次数n很大时,频率将稳定在一个常数附近n 越大,频率偏离这个常数较大的可能性越小.这个常数称为这个事件的概率.
下面我再给你举个例子:掷一枚质地均匀的硬币,硬币正、反两面向上的可能性会相等,如果我只抛掷一次且正面朝上,得出结论硬币正面向上的概率为1,显然这是不准确的;随着抛掷次数的增多,出现正面向上的频率越来越接近于1/2,那么我们就说硬币正面向上的概率为1/2。
频率与概率典例解析
频率与概率典型例析通过大量的实验发现,实验频率并不一定等于概率大小频率是变化的,概率大小是稳定的,虽然多次实验的频率逐渐稳定于其概率大小,但也可能无论做多少次实验,实验频率仍然是概率大小的一个近似值,而不能等同于概率大小,两者之间存在着一定的偏差例1在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外,其他完全相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的频率分别为15%和45%,则口袋中白色球的数目很可能是()A.6B.16 C.18D.24分析:要估计口袋中白色球的数目,可以算出白球出现的频率因为红球、黑球的频率分别是15%、45%,所以白球出现的频率为1-15%-45%=40%用总球数乘以白球出现的频率可得白球的个数解:白球的个数为1-15%-45%×40=24,选D例2小明为了检验两枚六个面分别刻有点数1,2,3,4,5,6的正六面体骰子的质量是否合格,在相同的条件下,同时抛两枚骰子20000次,结果发现两个朝上面的点数和是7的次数为20次,你认为这两枚骰子质量是否都合格合格标准为:在相同条件下抛骰子时,骰子各个面朝上的概率相等并说明理由分析:要判断两枚骰子质量是否合格,根据合格标准为:在相同条件下抛骰子时,骰子各个面朝上的概率相等,只要看试验20000次得到和为7的频率是否稳定于理论概率如果相等,则说明两枚骰子的质量合格;否则,两枚骰子的不合格解:两枚骰子质量都不合格因为同时抛两枚骰子两个朝上点数和有以下几种情况:2、3、4、5、6、7、3、4、5、6、7、4、5、6、7、8、9、5、6、7、8、9、10、6、7、8、9、10、11、7、8、9、10、11、12所以出现两个面朝上面的点数和为7的概率为61366=≈ 试验20000次出现两个面朝上点数和为7的频率为.001.02000020= 因为大数次试验的频率非常接近概率而和相差和大,所以两枚骰子质量都不合格例3一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:,,,,.根据上述数据,小亮可估计口袋中大约有个黑球分析:要估计黑球的个数,可根据白球出现频数进行估计,如果设黑球有个,则总球数为12个,所以白球出现的频率为1212+x ,又小亮通过做实验估计白球出现的频率为51=,所以根据频率可得方程解决问题解:设黑球有个,根据已知可得1212 x =51,解得=48, 所以可估计大约有48个黑球。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验序号:8日期:6/5
班级
信科
姓名
学号
实验名称
概率与频率
问题背景描述:
概率,又称为几率、或然率,是反映某种事件发生的可能性大小的一种数量指标。它介于0和1之间。这里的事件是指随机现象中出现的某个可能结果。
实验目的:
概率论是研究随机现象统计规律的一门数学分支学科,它有着悠久的历史。通过本实验的学习,加深对频率和概率等概念的理解和认识,并帮助掌握一些概率统计的原理。
4.分析附录中的[程序丙]和[程序丁]的设计本意。请问他们为什么都是错误的?
[程序丙] 结果 [程序丁] 结果
通过分析对比[程序丙]和[程序丁]与[程序乙]的区别,我们可以看出:
[程序丙]的a的赋值是错误的,曲线 的交点横坐标为 ,纵坐标为1,所以在对初始值a,b赋值时应分别赋为
[程序丁]不仅没有事先定义rand(1)*a和rand(1)*b,而且[程序丁]的if条件句rand(1)<1-rand(1)^2&rand(1)>=rand(1)^2也是错误的,rand(1)没有乘以a或b,使得结果偏小很多。
实验原理与数学模型:
相关函数(命令)简介
1. :生成 的随机矩阵,每个元素都在(0,1)间,生成方式为均匀分布
2. : 生成 的随机矩阵,每个元素都在(0,1)间,生成方式为正态分布
3. :生成一个 的随机整数排列。
4. :生成1到n的全排列,共n!个。
5.一系列取整的函数:
(1) 截尾法取整;
(2) :退一法取整(不超过 x 的最大整数);
5.设计一个三维投点的蒙特卡罗法计算 。并比较运行结果与二维投点的蒙特卡罗法的运行结果,哪个更准确些。
提示:随机投点落在单位正方体的内切球体内部。
试验次数n
100000
100000
100000
100000
100000
100000
(二维)所得 的近似值
3.1384
3.1452
3.1382
3.1385
3.1422
思考与深入:
本次实验通过计算机模拟验证了实验次数无限大情况下,频率近似等于概率的统计学结论,而且运用蒙特卡罗投点法近似求解了无理数 和不规则曲面面积。通过问题3、4我们因该注意到在使用蒙特卡罗投点法时应事先定义变量,再运行if条件句。
教师评语:
提示:随机投点落在单位正方体的内切球体内部。
实验过程记录(含基本步骤、主要程序清单及异常情况记录等):
1.通过实验,填写完成表格2~6的数据
实验1:随机投掷均匀骰子,验证各点数出现的概率是否为1/6
表2
试验次数/n
10000
10000
10000
10000
10000
10000
国徽朝上频率
0.4968
0.5078
从实验结果我们可以看出[程序乙] 的误差要小很多,所以我们有理由认为[程序乙]正确,另一方面,分析[程序甲]和[程序乙]的不同之处:
(1)[程序甲]没有分别用变量x和y事先定义rand(1)*a和rand(1)*b
(2)[程序甲]的if条件句:rand(1)*b>=(rand(1)*a)^2&rand(1)*b<1-(rand(1)*a)^2
主要内容(要点):
1.通过实验,填写完成表格2~6的数据
3.用Monte Carlo方法求两平面曲线 所围成的区域的面积。试分析[程序甲]和[程序乙]的不同之处。试问:哪一个程序是对的?为什么?
4.分析附录中的[程序丙]和[程序丁]的设计本意。请问他们为什么都是错误的?
5.设计一个三维投点的蒙特卡罗法计算 。并比较运行结果与二维投点的蒙特卡罗法的运行结果,哪个更准确些。
出现六点频率
0.1662
0.1712
0.168
0.1698
0.1646
实验3:利用蒙特卡罗(monte carlo)投点法计算 。
表4
试验次数n
100000
100
100000
100000
所得 的近似值
3.1384
3.1452
3.1382
3.1385
3.1422
3.1321
0.4936
0.4999
0.5007
0.5004
国徽朝下频率
0.5031
0.4978
0.4991
0.4943
0.5017
0.5019
实验2:随机投掷均匀骰子,验证各点数出现的概率是否为1/6
表3
试验次数n
10000
10000
10000
10000
10000
出现一点频率
0.1715
0.1675
0.1704
(3) :进一法取整(=floor(x)+1);
(4) :四舍五入法取整。
6. :合并a中相同的项。
7. 表达式
case 情况1
命令系列1
case 情况2
命令系列2
……
otherwise
命令系列
end
8. :向量 x 的所有分量元素的积。
9. 生成一个1到n的随机整数。
实验所用软件及版本:
Matlab 2009
3.1321
(三维)所得 的近似值
3.1483
3.1267
3.1398
3.1295
3.1452
3.1216
通过对比二维与三维投点的蒙特卡罗法的运行结果可以发现,二维投点的蒙特卡罗法的运行结果更加准确。
实验结果报告与实验总结:
通过本实验加深了我们对频率和概率等概念的理解和认识,而且我们可以体会到运用经典的蒙特卡罗投点法可以近似求解无理数 或是不规则曲面面积等,从频率与概率的角度来解决数学问题也是一个很好的思路。
[程序乙]的if条件句:y<=1-x^2&y>x^2
即:rand(1)*b<=1-(rand(1)*a)^2&rand(1)*b>(rand(1)*a)^2
可以看出[程序甲]和[程序乙]的取等情况及不等式的顺序不同,不过很显然,这两种逻辑并不影响实验结果。
经过分析[程序甲]和[程序乙]的不同之处我们可以认为,由于[程序甲]没有用变量x和y事先定义rand(1)*a和rand(1)*b而引起甲乙两结果不同,所以Monte Carlo投点法在使用过程中应事先定义,再进行if语句的运行。
0.166
0.1683
出现二点频率
0.1661
0.1628
0.1617
0.1648
0.1673
出现三点频率
0.1629
0.1656
0.1685
0.1676
0.1748
出现四点频率
0.1723
0.1629
0.1638
0.166
0.1616
出现五点频率
0.161
0.17
0.1676
0.1658
0.1634