新初中数学几何图形初步经典测试题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新初中数学几何图形初步经典测试题及答案
一、选择题
1.如图,在平行四边形ABCD 中,4AB =,7AD =,ABC ∠的平分线BE 交AD 于点E ,则DE 的长是( )
A .4
B .3
C .3.5
D .2
【答案】B
【解析】
【分析】 根据平行四边形的性质可得AEB EBC ∠=∠,再根据角平分线的性质可推出
AEB ABE ∠=∠,根据等角对等边可得4AB AE ==,即可求出DE 的长.
【详解】
∵四边形ABCD 是平行四边形
∴//AD BC
∴AEB EBC ∠=∠
∵BE 是ABC ∠的平分线
∴ABE EBC ∠=∠
∴AEB ABE ∠=∠
∴4AB AE ==
∴743DE AD AE =-=-=
故答案为:B .
【点睛】
本题考查了平行四边形的线段长问题,掌握平行四边形的性质、平行线的性质、角平分线的性质、等角对等边是解题的关键.
2.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=( )
A .35°
B .45°
C .55°
D .65°
【答案】A
【解析】
【分析】
【详解】
解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35° 故选:A .
【点睛】
本题考查余角、补角的计算.
3.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm ,宽留出1,cm 则该六棱柱的侧面积是( )
A .210824(3) cm -
B .()2108123cm -
C .()254243cm -
D .()254123cm -
【答案】A
【解析】
【分析】 设正六棱柱的底面边长为acm ,高为hcm ,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a =2,h =9−23,再根据六棱柱的侧面积是6ah 求解.
【详解】
解:设正六棱柱的底面边长为acm ,高为hcm ,
如图,正六边形边长AB =acm 时,由正六边形的性质可知∠BAD =30°,
∴BD =12a cm ,AD =32
a cm , ∴AC =2AD =3a cm ,
∴挪动前所在矩形的长为(2h +3a )cm ,宽为(4a +12
a )cm , 挪动后所在矩形的长为(h +2a 3a )cm ,宽为4acm , 由题意得:(2h +3)−(h +2a 3a )=5,(4a +
12a )−4a =1, ∴a =2,h =9−23
∴该六棱柱的侧面积是6ah =6×2×(9−232108(3) cm -;
故选:A .
【点睛】
本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键.
4.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( )
A .90°
B .75°
C .105°
D .120°
【答案】B
【解析】
【分析】 根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC ∠的度数.
【详解】
∵//BC DE
∴30E BCE ==︒∠∠
∴453075AFC B BCE =+=︒+︒=︒∠∠∠
故答案为:B .
【点睛】
本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.
5.下面四个图形中,是三棱柱的平面展开图的是( )
A .
B .
C .
D .
【答案】C
【解析】
【分析】
根据三棱柱的展开图的特点作答.
【详解】
A 、是三棱锥的展开图,故不是;
B 、两底在同一侧,也不符合题意;
C 、是三棱柱的平面展开图;
D 、是四棱锥的展开图,故不是.
故选C .
【点睛】
本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的特征.
6.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( )
A .8
B .9
C .10
D .11
【答案】C
【解析】
【分析】 连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可.
【详解】
解:如图,连接DE ,交AC 于P ,连接BP ,则此时PB PE +的值最小
∵四边形ABCD 是正方形
B D ∴、关于A
C 对称
PB PD =∴
PB PE PD PE DE ∴+=+=
2,3BE AE BE ==Q
6,8AE AB ∴==
226810DE ∴=+=;
故PB PE +的最小值是10,
故选:C .
【点睛】
本题考查了轴对称——最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.
7.如图所示是一个正方体展开图,图中六个正方形内分别标有“新”、“时”、“代”、“去”、“奋”、“斗”、六个字,将其围成一个正方体后,则与“奋”相对的字是( )