人教版小学六年级数学下册知识点总结

合集下载

人教版小学六年级数学下册知识点_数学知识点

人教版小学六年级数学下册知识点_数学知识点

人教版小学六年级数学下册知识点_数学知识点人教版小学六年级数学下册知识点一:比例1.理解比例的意义和基本性质,会解比例。

2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

7.比例的意义:表示两个比相等的式子叫做比例。

如:2:1=6:8.组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。

这叫做比例的基本性质。

例如:由3:2=6:4可知3×4=2×6;或者由x×1。

5=y×1。

2可知x:y=1.2:1.5。

10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

11.正比例和反比例:(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示y/x=k(一定)例如:①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。

④y=5x,y和x成正比例,因为:y÷x=5(一定)。

六年级下册数学(人教版)知识点归纳总结整理

六年级下册数学(人教版)知识点归纳总结整理

人教版六年级数学下册知识点总结一、用字母表示运算定律或性质加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法交换律: ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac二、几何图形计算公式(1)周长:物体或封闭图形一周的长度。

①长方形周长=(长+宽)×2 C=(a+b)×2②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小。

①长方形的面积=长×宽 S=ab②正方形的面积=边长×边长 S=a•a=a2③平行四边形的面积=底×高 S=ah④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r= d÷2⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】平面图形的面积公式是以长方形面积计算公式为基础的。

如两个完全相同的三角形、梯形可拼成一个平行四边形。

圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积。

①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高 S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2 注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积。

人教版小学六年级数学上下册知识点归纳总结

人教版小学六年级数学上下册知识点归纳总结

小学六年级数学知识点归纳六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零.。

3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。

6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/3。

3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12 ,12是1/12的倒数。

8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。

分数、整数也都使用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。

11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1。

单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

人教版六年级下册数学单元知识点归纳——第四单元 比例

人教版六年级下册数学单元知识点归纳——第四单元 比例

4 比 例一、比例的意义表示两个比相等的式子叫做比例。

二、比例的基本性质1.组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

2.比例的基本性质:在比例里....,.两个外项的积等于两.........个内项的积。

......可以用字母表示比例的基本性质,如果a ∶b=c ∶d ,那么ad=bc 。

3.运用比例的意义和比例的基本性质可以判断两个比是否可以组成比例,也可以解比例。

三、解比例1.求比例中的未知项........,.叫做解比例。

......2.解比例的依据:比例的基本性质.......。

3.解比例的方法:利用比例的基本性质将比例转化..............为外项之积与内项之积相等的等式...............,.再通过解方程求出........未知项的值。

......四、正比例1.两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

2.如果用字母y 和x 表示两种相关联的量,用k 表示它们的比值(一定),正比例关系可以表示为=k ..。

3.正比例的图象......:如果把成正比例关系的两个量中相对应的数都看作是一个数对,在方格纸上把写这些数对相对应的点连起来,形成一条射线..;反之,该射线上的每一个点对应的就是正比例关系中两个相关联的量的一组具体值。

五、反比例提示:组成比例的两个比既可以写成带比号的形式,也可以写成分数的形式,但读法相同。

例如:2.4×40=1.6×60提示:如果4个不同的数能组成比例,那么这4个数一共能组成8个不同的比例。

提示:应用比例的基本性质不是解比例唯一的方法,也可以用求比值的方法或其他方法解比例。

总结:判断两种量是否成正比例的方法:先找变量(两种相关联的量),再看定量(两种量是比值一定,还是乘积一定),最后作出判断。

人教版小学六年级下册数学总复习提纲

人教版小学六年级下册数学总复习提纲

人教版小学六年级下册数学总复习提纲整数a能被整数b整除,记作b|a,当且仅当存在整数k,使得a=bk。

例如,6能被2整除,记作2|6,因为6=2×3.b)倍数:如果一个整数a除以另一个整数b没有余数,那么a就是b的倍数,b是a的约数。

2)、整除的性质:a)整数a能被1整除,即1|a。

b)如果a能被b整除,且b能被c整除,则a能被c整除。

c)如果a能被b整除,且b不为0,则a和-b也能被b整除。

d)如果a能被b整除,且b能被c整除,则a能被c整除。

e)如果a能被b整除,且b能被a整除,则a和b的绝对值相等。

3)、整除的应用:a)求最大公约数:两个数的公约数是指能同时整除这两个数的整数。

最大公约数是指所有公约数中最大的一个。

求最大公约数的方法有试除法、辗转相除法等。

b)求最小公倍数:两个数的公倍数是指能同时被这两个数整除的整数。

最小公倍数是指所有公倍数中最小的一个。

求最小公倍数的方法有分解质因数法、公式法等。

第二部分:代数一)、代数式的认识:1)、代数式是由数、字母和运算符号组成的式子。

2)、字母表示数或数的某种变化,称为未知数或变量。

字母前面的数叫做系数。

3)、代数式的值随着未知数的取值而改变。

二)、代数式的加减法:1)、同类项的加减法:同类项是指含有相同未知数的项,它们的指数可以不同,但是变量必须相同。

同类项的加减法就是将同类项的系数相加减,变量不变。

2)、异类项的加减法:异类项是指不含有相同未知数的项。

异类项的加减法需要化为同类项,通常是通过分配律或者公因式法来实现。

三)、代数式的乘法:1)、同底数幂的乘法:同底数幂是指底数相同、指数不同的幂。

同底数幂的乘法就是将底数相同的幂的指数相加,底数不变。

2)、一般式的乘法:一般式的乘法需要将每一项相乘,然后将结果相加。

四)、代数式的除法:代数式的除法需要将被除式和除式化为同类项,然后将各项的系数和指数进行相除。

五)、代数式的应用:代数式在数学中有广泛的应用,比如解方程、求函数值、求导数等。

2022年人教版小学数学六年级(上下册)知识点梳理归纳

2022年人教版小学数学六年级(上下册)知识点梳理归纳

人教版小学数学六年级(上下册)知识点梳理归纳上册第一单元《分数乘法》知识点归纳(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b>1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a(b≠0)。

一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b=1时,c=a。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。

六年级下册数学(人教版)知识点归纳总结复习资料

六年级下册数学(人教版)知识点归纳总结复习资料

人教版六年级数学下册知识点总结一、用字母表示运算定律或性质加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法交换律: ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac二、几何图形计算公式(1)周长:物体或封闭图形一周的长度。

①长方形周长=(长+宽)×2 C=(a+b)×2②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小。

①长方形的面积=长×宽 S=ab②正方形的面积=边长×边长 S=a•a=a2③平行四边形的面积=底×高 S=ah④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r= d÷2⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】平面图形的面积公式是以长方形面积计算公式为基础的。

如两个完全相同的三角形、梯形可拼成一个平行四边形。

圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积。

①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高 S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2 注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积。

六年级下册数学人教版第三单元知识点总结

六年级下册数学人教版第三单元知识点总结

六年级下册数学人教版第三单元知识点总结《六年级下册数学人教版第三单元知识点总结》在六年级下册数学人教版的第三单元呀,那可是有不少有趣又重要的知识呢。

圆柱这个立体图形可是这单元的大明星。

圆柱有两个底面,这两个底面呀,可都是完全相同的圆哦。

就像两个一模一样的小盘子贴在圆柱的上下两端。

圆柱还有一个侧面,这个侧面展开来可不得了,如果圆柱是直直地站着,它的侧面展开大多是一个长方形呢,这个长方形的长就等于圆柱底面圆的周长,宽就等于圆柱的高。

这就像给圆柱的侧面来了个大变身,从弯弯的变成了平平的长方形。

说到圆柱的表面积,这可就有点复杂啦。

它是由两个底面积加上一个侧面积组成的。

底面积就是圆的面积,咱们都知道圆的面积公式是πr²,那两个底面积就是2πr²啦。

侧面积就是底面圆的周长乘以高,也就是2πrh。

把它们加起来就是圆柱的表面积公式2πr² + 2πrh。

这就像是给圆柱穿上了一件合身的衣服,衣服的面积就是它的表面积。

圆柱的体积也很有趣哦。

圆柱的体积公式是V = πr²h。

可以想象把圆柱像搭积木一样,一层一层地拆开来,每一层都是一个小小的圆片,这些圆片的面积就是πr²,然后把它们叠起来的高度是h,所以总体积就是πr²h啦。

还有圆锥这个小可爱。

圆锥只有一个底面,也是一个圆。

圆锥的侧面展开是一个扇形。

圆锥的体积和圆柱可是有关系的呢,圆锥的体积是等底等高圆柱体积的三分之一,也就是V = 1/3πr²h。

这就像圆锥是圆柱的小跟班,但是又有自己独特的地方。

在解决这些关于圆柱和圆锥的实际问题时呀,可一定要看清楚题目里给的条件。

是求表面积呢,还是体积,是圆柱还是圆锥,可不能马虎。

有时候题目会把这些知识混合起来考,就像给我们出了个小谜题,要我们把这些知识都用上才能解开。

我觉得这一单元的知识就像一个小宝藏,学会了就像拿到了打开宝藏的钥匙。

这些圆柱和圆锥的知识在生活里也有很多用处呢,像一些圆柱形的柱子,圆锥形的沙堆,都能用到这些数学知识去计算它们的各种量。

新人教版六年级数学下册单元知识点归纳整理

新人教版六年级数学下册单元知识点归纳整理

新人教版六年级数学下册单元知识点归纳整理第一单元负数1.负数:在数轴线上;负数都在0的(左侧);所有的负数都比自然数小。

负数用负号“-”标记;如-2;-5.33;-45;-0.6等。

2.正数:大于0的数叫正数(不包括0);数轴上0(右边)的数叫做正数若一个数大于零(>0);则称它是一个正数。

正数的前面可以加上正号“+”来表示。

正数有(无数个);其中有(正整数;正分数和正小数)。

3. (0)既不是正数;也不是负数;它是正、负数的界限。

所有的负数都在0的(左边);负数都小于0;正数都大于0;负数都比正数(小)。

第二单元圆柱和圆锥1、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征:圆柱有无数条高。

2、圆柱的高:两个底面之间的距离叫做高。

3、圆柱的侧面展开图:当沿高展开时展开图是(长方形);这个长方形的长等于(圆柱的底面周长);长方形的宽等于(圆柱的高)。

这个长方形的面积等于(圆柱的侧面积);因为长方形面积=长×宽;所以圆柱的侧面积=底面周长×高当底面周长和高相等时;沿高展开图是(正方形);当不沿高展开时展开图是(平行四边形)。

4、圆柱的侧面积:圆柱的侧面积=底面的周长×高;用字母表示为:S侧=Ch。

h=S侧÷C C= S侧÷hS侧=∏dh=2∏rh5、圆柱的表面积:圆柱的表面积=侧面积+底面积×2。

即S表= S侧+ S底×2=Ch+∏(C÷∏÷2)²×2=∏dh+∏(d÷2) ²×2=2∏rh+∏r²×2(计算时最好分步使用公式;以免出现计算错误。

)6、圆柱表面积在实际中的应用:无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类7、圆柱的体积:V=Sh h=V÷S S=V÷hV=∏r²h (已知r)V=∏(d÷2) ²h (已知d)V=∏(C÷∏÷2)²h (已知C)8、把一个圆柱体切分成若干份拼成一个近似的长方体;在这个过程中;形状发生了变化;体积没有发生变化。

人教版六年级下册数学知识点归纳小数的四则运算要点总结

人教版六年级下册数学知识点归纳小数的四则运算要点总结

人教版六年级下册数学知识点归纳小数的四则运算要点总结小数的四则运算是数学中的基础知识之一,掌握好这些要点对于学习数学具有重要意义。

本文将对人教版六年级下册数学知识点中的小数的四则运算要点进行总结。

一、小数的加法要点总结1. 当小数位数相同时,直接将小数部分按位进行相加,整数部分保持不变。

例如:0.3 + 0.4 = 0.7,3.25 + 4.75 = 8.00。

2. 当小数位数不同时,需要先进行对齐,使小数点对齐后再进行相加。

例如:0.3 + 0.125 = 0.425,0.35 + 12.5 = 12.85。

3. 在计算过程中,当小数位相加后超过了10,需要向前进位,并将整数部分进行相加。

例如:0.9 + 0.6 = 1.5,3.8 + 9.6 = 13.4。

二、小数的减法要点总结1. 当小数位数相同时,直接将小数部分按位进行相减,整数部分保持不变。

例如:0.5 - 0.3 = 0.2,3.75 - 1.25 = 2.50。

2. 当小数位数不同时,需要先进行对齐,使小数点对齐后再进行相减。

例如:0.1 - 0.02 = 0.08,3.2 - 0.5 = 2.7。

3. 在计算过程中,当被减数的小数位小于减数的小数位时,需要向整数部分借位,并将整数部分进行相减。

例如:1.5 - 0.9 = 0.6,9.6 - 3.8 = 5.8。

三、小数的乘法要点总结1. 小数相乘时,先按位相乘,再将小数位数相加,并将整数部分进行相加。

例如:0.3 × 0.8 = 0.24,3.25 × 4.75 = 15.4375。

四、小数的除法要点总结1. 小数的除法可以转换为整数的除法,即先将除数和被除数都乘以相应的倍数,使其转化为整数,然后进行除法计算。

例如:0.6 ÷ 0.2 = 6 ÷ 2 = 3,3.15 ÷ 0.5 = 31.5 ÷ 5 = 6.3。

2. 在计算过程中,需要考虑小数点的位置,并将整数商还原为小数商。

人教版六年级数学下册数与代数知识点归纳及经典练习题

人教版六年级数学下册数与代数知识点归纳及经典练习题

人教版六年级数学下册数与代数知识点归纳及经典练习题知识点一整数一、知识整理。

1、整数的定义:像-3,-2,-1,0,1,2……这样的数称为整数。

在整数中大于零的数称为正整数,小于零的数称为负整数。

正整数、零与负整数统称为整数。

2、整数的范围:除自然数外,整数还包括负整数。

但在小学阶段里,整数通常指的是自然数。

3、读法:从高位到低位,一级一级地读,每一级末尾的0都不读出来,其他数位连续有几个0都只读一个零。

4、写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

知识点二自然数1、自然数的定义:我们在数物体的时候,用来表示物体个数的0,1,2,3,……叫作自然数。

2、自然数的基本单位:任何非“0”的自然数都是由若干个“1”组成,所以“1”是自然数的基本单位。

3、“0”的含义:一个物体也没有,用“0”表示,但并不是说“0”只表示没有物体,它还有多方面的含义。

知识点三比较整数大小的方法1、数位不同的正整数的比较方法:如果位数不同,那么位数多的数就大。

2、数位相同的正整数的比较方法:如果位数相同,左起第一位上数大的那个数就大;如果左起第一位上的数相同,就比较左起第二位上的数。

依次类推直到比较出数的大小。

知识点四整数的改写把大数改写成用“万”或“亿”作单位的数:一个比较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。

改写有两种情况:一种是把较大的多位数直接改写成用“万”或“亿”作单位的数,不满万、亿的尾数直接改写成小数;另一种是根据需要省略万位或亿位的尾数,把原来的多位数按照“四舍五入”法写成它的近似数。

知识点五倍数和因数1、倍数和因数的定义:自然数a(a≠0)乘自然数b(b≠0),所得的积c就是a和b的倍数,a和b就是c的因数。

2、倍数的特征:一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

3、因数的特征:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

完整版)人教版小学六年级数学主要知识点总结

完整版)人教版小学六年级数学主要知识点总结

完整版)人教版小学六年级数学主要知识点总结人教版小学六年级数学知识点总结目录1.分数乘除法1.1 分数乘法1.2 分数除法1.3 百分数2.位置与方向3.圆3.1 圆的周长3.2 圆的面积4.圆柱与圆锥4.1 圆柱4.2 圆锥5.比与比例5.1 比5.2 比例5.3 用比例解决问题1.分数乘除法1.1 分数乘法1) 分数乘整数:表示连续求几个相同分数相加的和的简便运算。

计算方法:用分子乘整数的积做分子,分母不变。

能约分的要先约分。

例如:2/5 × 5 可以表示为2/5 + 2/5 + 2/5 + 2/5 + 2/5.2) 分数乘分数:计算方法:分子乘分子,分母乘分母,能约分的要先约分再计算。

3) 分数乘小数:计算方法:用分子乘小数的积做分子,分母不变。

能约分的要先约分。

也可以把分数化成小数或者把小数化成分数再计算。

4) 解决问题的思路及方法A。

一个数乘分数:表示求这个数的几分之几是多少。

方法:“1”×对应分率=对应量。

例如:一袋大米重100千克,吃了它的2/5.吃了多少千克?解析:根据题意,就是求100的2/5是多少。

所以列式:100 × 2/5 = 40(千克)。

答案:吃了40千克大米。

B。

求比一个数多(少)几分之几的数是多少?方法:“1”×对应分率=对应量。

对应分率:多几分之几就是1+几分之几,少几分之几就是1-几分之几。

例如:商店运来一批水果,运来苹果50千克,运来的梨比运来的苹果多1/5,商店运来梨多少千克?分析:根据题意其实就是求比50多1/5的数是多少,单位1的量就是50,多1/5,那么对应分率就是1+1/5=6/5.列式:50 × (1+1/5) / 5 = 60(千克)。

答案:商店运来梨60千克。

某养殖场有鸡45只,鹅比鸡少2/5,这个养殖场有鹅多3/5少几只?(此题有误,无法解答)1.2 分数除法1)分数除法计算方法:除以一个数等于乘以这个数的倒数。

六年级人教版下册数学知识点总结归纳

六年级人教版下册数学知识点总结归纳

六年级人教版下册数学知识点总结归纳第一单元负数1、负数:任何正数前加上负号就是一个负数。

在数轴线上,负数都在0的左侧,所有的负数都比自然数小。

负数用负号“-”标记,如-2,-5.33,-45,-0.6等。

2、正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于零(>0),则称它是一个正数。

正数的前面可以加上正号“+”来表示。

正数有无数个,其中有正整数,正分数和正小数。

3、0既不是正数,也不是负数,它是正、负数的分界数。

正数都大于0,负数都小于0,正数大于一切负数。

应用举例:16℃读作十六摄氏度,表示零上16℃;-16℃读作负十六摄氏度,表示零下16℃.如果2000表示存入2000元,那么-500表示支出了500元。

向东走3m记作+3,向西4m记作-4。

4、在直线上表示数:(1)正数、0和负数可以用直线上的点表示出来。

直线上的每一个点都与一个数相对应,任何一个数都可以用直线上的点来表示。

(2)用有正数和负数的直线可以表示距离和相反的方向。

题型:1、将以下数字按要求分类1.25、、-7、3、3.011……、-5、0、、-0.03正数负数自然数非正数2、写数下列数相对的负数形式0.33……、3、如果﹢20%表示增加20%,那么﹣20%表示什么?4、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是摄氏度。

5、在数轴上表示下列个数1.75--450-3.2第二单元百分数(二)1、折扣:几折就是十分之几,也就是百分之几十例如:八五折表示现价是原价的85%原价×折扣=现价现价÷折扣=原价现价÷原价=折扣2、成数:表示一个数是另一个数的十分之几或百分之几十,通称“几成”例如:二成就是(十分之二),改写成百分数是20%。

3、税率:应纳税额=各种收入×税率各种收入=应纳税额÷税率4、利率:存入银行的钱叫做本金。

取款时银行多支付的钱叫做利息。

人教版六年级数学下册总复习知识点汇总清单

人教版六年级数学下册总复习知识点汇总清单

一、数的认识1.数的分类数2.数的意义(1)整数:像-3、-2、-1、0、1、2、3……这样的数统称为整数。

整数的个数是无限的.........,.没有最小的整数.......,.也没有最大.....的整数。

....(2)自然数:用来表示物体个数的1、2、3、4……叫做自然数。

一个物体也没有,用0表示,0.也是自然数。

自然数的..........个数是无限的......,.最小的自然数是.......0.,.没有最大的自然数。

自然...........数是整数的一部分........,.正整数和....0.都是自然数。

......(3)分数:把单位“....1.”平均分成若干份........,.表示这样的一份或........者几份的数叫做分数.........,.表示这样一份的数就是这个分数的分................数单位。

....一个分数的分母是几,它的分数单位就是几分之一,分子是几,它就有几个这样的分数单位。

提示:按不同的标准划分,数的分类也会不同。

例如:按正、负数分,数分为正数、0、负数;按整数与分数分,数分为整数、分数(小数)等。

提示:0表示一个物体也没有;0是正、负数的分界点;0表示起点(如0刻度);计数时,0起占位作用。

注意:带分数只有化成假分数后,它的分子才能表示这个带分数的分数单位的个数。

分数,再约分;分数化成小数,用分子除以分母;小数化成百分数,把小数的小数点向右移动两位,并在后面加上百分号;百分数化成小数,把百分号去掉,并把小数点向左移动两位;分数化成百分数,先把分数改写成小数,再把小数改写成百分数;百分数化成分数,先把百分数改写成分母是100的分数,再化简。

9.判断一个分数能否化成有限小数的方法先看这个分数是不是最简分数,不是最简分数的要化成最简分数;再看最简分数的分母,如果分母中只有质因数2或5,这个分数就能化成有限小数;如果分母中含有2和5以外的其他质因数,就不能化成有限小数。

新人教版六年级数学下册折扣(小数)知识点梳理

新人教版六年级数学下册折扣(小数)知识点梳理

新人教版六年级数学下册折扣(小数)知识
点梳理
本文档旨在梳理新人教版六年级数学下册中涉及的折扣(小数)知识点,为学生提供简洁易懂的指导。

1. 什么是折扣?
折扣是商家为了促销而给予的商品价格优惠,在购买商品时可
以享受到折扣。

通常折扣会以小数形式表示。

2. 折扣的计算方法
折扣的计算方法可以通过以下公式得到:
折扣金额 = 商品原价 ×折扣比例
实际购买价格 = 商品原价 - 折扣金额
3. 示例
以下是一些折扣计算的示例:
示例1
商品原价为200元,折扣比例为0.2。

折扣金额 = 200 × 0.2 = 40元
实际购买价格 = 200 - 40 = 160元
示例2
商品原价为300元,折扣比例为0.15。

折扣金额 = 300 × 0.15 = 45元
实际购买价格 = 300 - 45 = 255元
4. 折扣的应用
折扣在日常生活中经常会被用到。

例如,商场举办促销活动时常会给予商品折扣。

学会计算折扣,可以帮助我们在购物的时候更好地理解商品的实际价格,做出更合理的购买决策。

5. 总结
折扣是一种常见的商业促销手段,使用折扣可以使商品价格更具吸引力。

掌握折扣的计算方法和应用场景,对学生在购物时起到积极的指导作用。

以上是新人教版六年级数学下册折扣(小数)知识点的梳理,希望对学生们有所帮助。

人教版六年级数学下册知识点总结归纳

人教版六年级数学下册知识点总结归纳

人教版六年级数学下册知识点总结归纳人教版小学数学六年级下册知识点归纳第一单元:负数1、负数的由来为了表示相反意义的两个量(如盈利亏损、收入支出),仅有学过的,以收入为正、支出为负。

但是,仅有1、3.4、5等数字是远远不够的。

所以出现了负数,以盈利为正、亏损为负。

2、负数的定义和写法负数是小于零的数,数轴上左边的数叫做负数。

负数有无数个,其中包括负整数、负分数和负小数。

负数的写法是在数字前面加负号“-”,不可以省略。

例如:-2,-5.33,-45,-5.3、正数的定义和写法正数是大于零的数,数轴上右边的数叫做正数。

正数有无数个,其中包括正整数、正分数和正小数。

正数的写法是数字前面可以加正号“+”,也可以省略不写。

例如:+2,5.33,+45,5.4、零的特殊性质零既不是正数,也不是负数,它是正数和负数的分界线。

5、数轴数轴是表示正数和负数的直线,负数都比正数小,正数都比负数大。

数轴的中央是零点,左边是负数,右边是正数。

6、比较两数的大小比较两个数的大小可以利用数轴,也可以利用正负数的含义。

正数之间比较大小,数字大的就大,数字小的就小。

负数之间比较大小,数字大的反而小,数字小的反而大。

第二单元:百分数(二)一)折扣和成数1、折扣的定义折扣是用于商品的,现价是原价的百分之几,叫做折扣。

通常称为“打折”。

2、折扣的计算方法解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

例如,商品现在打八折,现在的售价是原价的80%;商品现在打六折五,现在的售价是原价的65%。

3、成数的定义和计算方法成数是表示部分与整体的比例关系,也可以理解为百分数。

例如,一成等于十分之一,八成五等于85%。

解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

例如,这次衣服的进价增加一成,这次衣服的进价比原来的进价增加10%;今年小麦的收成是去年的八成五,今年小麦的收成是去年的85%。

人教版小学数学六年级下册总复习知识点(整理版)

人教版小学数学六年级下册总复习知识点(整理版)

人教版小学数学六年级总复习知识点目录【常用的数量关系】1、每份数×份数=总数;总数÷每份数=份数;总数÷份数=每份数2、1倍数×倍数=几倍数;几倍数÷1倍数=倍数;几倍数÷倍数=1倍数3、速度×时间=路程;路程÷速度=时间;路程÷时间=速度4、单价×数量=总价;总价÷单价=数量;总价÷数量=单价5、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;6、加数+加数=和;和-一个加数=另一个加数7、被减数-减数=差;被减数-差=减数;差+减数=被减数8、因数×因数=积;积÷一个因数=另一个因数9、被除数÷除数=商;被除数÷商=除数;商×除数=被除数【小学数学图形计算公式】1、正方形(C:周长, S:面积, a:边长)周长=边长×4;C=4a面积=边长×边长;S=a×a2、正方体(V:体积, a:棱长)表面积=棱长×棱长×6;S表=a×a×6体积=棱长×棱长×棱长;V= a×a×a3、长方形(C:周长, S:面积, a:边长, b:宽)周长=(长+宽)×2;C=2(a+b)面积=长×宽;S=a×b4、长方体(V:体积, S:面积, a:长, b:宽, h:高)(1)表面积=(长×宽+长×高+宽×高)×2;S=2(ab+ah+bh)(2)体积=长×宽×高;V=abh5、三角形(S:面积, a:底, h:高)面积=底×高÷2 ;S=ah÷2三角形的高=面积×2÷底三角形的底=面积×2÷高6、平行四边形(S:面积, a:底, h:高)面积=底×高;S=ah7、梯形(S:面积, a:上底, b:下底, h:高)面积=(上底+下底)×高÷2;S=(a+b)×h÷28、圆形(S:面积, C:周长,π:圆周率, d:直径, r:半径)(1)周长=π×直径π=2×π×半径;C=πd=2πr(2)面积=π×半径×半径;S= πr29、圆柱体(V:体积, S:底面积, C:底面周长, h:高, r:底面半径)(1)侧面积=底面周长×高=Ch=πdh=2πrh(2)表面积=侧面积+底面积×2(3)体积=底面积×高10、圆锥体(V:体积, S:底面积, h:高, r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式:已知两数的和及它们的差,求这两个数各是多少的应用题,叫做和差应用题,简称和差问题.(和+差)÷2=大数;(和-差)÷2=小数13、和倍问题的公式:已知两个数的和与两个数的倍数关系,求两个数各是多少的应用题,我们通常叫做和倍问题.和÷(倍数-1)= 小数;小数×倍数=大数(或者:和-小数=大数)14、差倍问题的公式:差倍问题即已知两数之差和两数之间的倍数关系,求出两数.差÷(倍数-1)= 小数;小数×倍数=大数(或者:小数+差=大数)15、相遇问题:相遇路程=速度和×相遇时间;相遇时间=相遇路程速度和;速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量;溶液的重量×浓度=溶质的重量;溶质的重量÷溶液的重量×100%=浓度;溶质的重量÷浓度=溶液的重量17、利润与折扣问题:利润=售出价-成本;利润率=利润÷成本×100%;利息=本金×利率×时间;涨跌金额=本金×涨跌百分比;税后利息=本金×利率×时间×(1-利息税)【常用单位换算】(一)长度单位换算1千米=1000米;1米=10分米;1分米=10厘米;1米=100厘米;1厘米=10毫米(二)面积单位换算:1平方千米=100公顷;1公顷=10000平方米;1平方米=100平方分米;1平方分米=100平方厘米;1平方厘米=100平方毫米(三)体积(容积)单位换算:1立方米=1000立方分米;1立方分米=1000立方厘米;1立方分米=1升;1立方厘米=1毫升;1立方米=1000升(四)重量单位换算:1吨=1000千克;1千克=1000克;1千克=1公斤(五)人民币单位换算:1元=10角;1角=10分;1元=100分(六)时间单位换算:1世纪=100年;1年=12月;【大月(31天)有:1、3、5、7、8、10、12月】;【小月(30天)有:4、6、9、11月】【平年:2月有28天;全年有365天】;【闰年:2月有29天;全年有366天】1日=24小时;1时=60分=3600秒;1分=60秒;【基本概念】第一章数和数的运算一、概念(一)整数1.自然数、负数和整数(1)、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数.一个物体也没有,用0表示.0也是自然数.1是自然数的基本单位,任何一个自然数都是由若干个1组成.0是最小的自然数,没有最大的自然数.(2)、负数:在正数前面加上“-”的数叫做负数,“-”叫做负号.正整数(1、2、3、4、……)(3)整数零(0既不是正数,也不是负数)负整数(-1、-2、-3、-4……)2、零的作用(1)表示数位.读写数时,某个单位上一个单位也没有,就用0表示.(2)占位作用.(3)作为界限.如“零上温度与零下温度的界限”.3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位.每相邻两个计数单位之间的进率都是10.这样的计数法叫做十进制计数法.4、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位.5、数的整除:整数a除以整数b(b ≠0),除得的商是整数而没有余数,我们就说a能被b 整除,或者说b能整除a .(1)如果数a能被数b(b ≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数).倍数和约数是相互依存的. 如:因为35能被7整除,所以35是7的倍数,7是35的约数. (2)一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身.例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10.(3)一个数的倍数的个数是无限的,其中最小的倍数是它本身.如:3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数.(4)个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除.. (5)个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除..(6)一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除.(7)一个数各位数上的和能被9整除,这个数就能被9整除.(8)能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除.(9)一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除.例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除.(10)一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除.例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除.(11)能被2整除的数叫做偶数.不能被2整除的数叫做奇数.0也是偶数.自然数按能否被2 整除的特征可分为奇数和偶数.(12)一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数).100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97.(13)一个数,如果除了1和它本身还有别的约数,这样的数叫做合数.例如4、6、8、9、12都是合数.(14)1不是质数也不是合数,自然数除了1外,不是质数就是合数.如果把自然数按其约数的个数的不同分类,可分为质数、合数和1.(15)每个合数都可以写成几个质数相乘的形式.其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数.(16)把一个合数用质因数相乘的形式表示出来,叫做分解质因数. 例如:把28分解质因数(17)几个数公有的约数,叫做这几个数的公约数.其中最大的一个,叫做这几个数的最大公约数.例如:12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18.其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数.(18)公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:①1和任何自然数互质. ②相邻的两个自然数互质. ③两个不同的质数互质.④当合数不是质数的倍数时,这个合数和这个质数互质.⑤两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质.⑥如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数.⑦如果两个数是互质数,它们的最大公约数就是1.(19)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如:2的倍数有2、4、6 、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 ……其中6、12、18……是2、3的公倍数,6是它们的最小公倍数..①如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数.②如果两个数是互质数,那么这两个数的积就是它们的最小公倍数.③几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的.(二)小数1 、小数的意义(1)把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示.(2)一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……(3)一个小数由整数部分、小数部分和小数点部分组成.数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分.(4)在小数里,每相邻两个计数单位之间的进率都是10.小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10.2、小数的分类(1)纯小数:整数部分是零的小数,叫做纯小数.例如:0.25 、0.368 都是纯小数.(2)带小数:整数部分不是零的小数,叫做带小数. 例如:3.25 、5.26 都是带小数. (3)有限小数:小数部分的数位是有限的小数,叫做有限小数.例如:41.7 、25.3 、0.23 都是有限小数.(4)无限小数:小数部分的数位是无限的小数,叫做无限小数.例如:4.33 …… 3.1415926 ……(5)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数. 例如:π(6)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数. 例如:3.555 ……0.0333 ……12.109109 ……(7)一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节.例如:3.99 ……的循环节是“9 ”, 0.5454 ……的循环节是“54 ”.(8)纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数.例如:3.111 ……0.5656 ……(9)混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数.例如:3.1222 ……0.03333 ……(10)写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点.如果循环节只有一个数字,就只在它的上面点一个点.例如:3.777 ……简写作:3.7(•) ;0.5302302 ……简写作:0.53(•)02(•) . (三)分数1、分数的意义(1)把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数.(2)在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份.(3)把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位.2、分数的分类真分数:分子比分母小的分数叫做真分数.真分数小于1.假分数:分子比分母大或者分子和分母相等的分数,叫做假分数.假分数大于或等于1.带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数.3、约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分.分子分母是互质数的分数,叫做最简分数.把异分母分数分别化成和原来分数相等的同分母分数,叫做通分.(四)百分数:表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比.百分数通常用"%"来表示.百分号是表示百分数的符号.二、方法(一)数的读法和写法1、整数的读法:从高位到低位,一级一级地读.读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字.每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零.2、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0.3、小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字.4、小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字.5、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读.6、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写.7、百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读.8、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示.(二)数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数.有时还可以根据需要,省略这个数某一位后面的数,写成近似数.1、准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数.改写后的数是原数的准确数. 例如把1254300000 改写成以万做单位的数是125430 万;改写成以亿做单位的数12.543 亿.2、近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示. 例如:1302490015 省略亿后面的尾数是13 亿.3、四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1.例如:省略345900 万后面的尾数约是35 万.省略4725097420 亿后面的尾数约是47 亿.4、大小比较(1)比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大. (2)比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……(3)比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大.分数的分母和分子都不相同的,先通分,再比较两个数的大小.(三)数的互化1、小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分.2、分数化成小数:用分母去除分子.能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数.3、一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数.4、小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号.5、百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.6、分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数.7、百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数.(四)数的整除1、把一个合数分解质因数,通常用短除法.先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式.2、求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数.3、求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数.4、成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质.(五)约分和通分(1)约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止.(2)通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数.三、性质和规律(一)商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变.(二)小数的性质小数的性质:在小数的末尾添上零或者去掉零小数的大小不变.(三)小数点位置的移动引起小数大小的变化1、小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……2、小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……3、小数点向左移或者向右移位数不够时,要用“0"补足位.(四)分数的基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变. (五)分数与除法的关系1、被除数÷除数=2、因为零不能作除数,所以分数的分母不能为零.3、被除数相当于分子,除数相当于分母.四、运算的意义(一)整数四则运算1、整数加法:把两个数合并成一个数的运算叫做加法.在加法里,相加的数叫做加数,加得的数叫做和.加数是部分数,和是总数.加数+加数=和一个加数=和-另一个加数2、整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法.在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差.被减数是总数,减数和差分别是部分数.加法和减法互为逆运算.3、整数乘法:求几个相同加数的和的简便运算叫做乘法.在乘法里,相同的加数和相同加数的个数都叫做因数.相同加数的和叫做积.在乘法里,0和任何数相乘都得0;1和任何数相乘都的任何数.一个因数×一个因数=积;一个因数=积÷另一个因数4、整数除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法.在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商.乘法和除法互为逆运算.在除法里,0不能做除数.(因为0和任何数相乘都得0,所以任何一个数除以0,均得不一个确定的商. )被除数÷除数=商除数=被除数÷商被除数=商×除数(二)小数四则运算1、小数加法:小数加法的意义与整数加法的意义相同.是把两个数合并成一个数的运算.2、小数减法:小数减法的意义与整数减法的意义相同.已知两个加数的和与其中的一个加数,求另一个加数的运算.3、小数乘法:小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少.4、小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算.5、乘方: 求几个相同因数的积的运算叫做乘方.例如3 ×3 =32(三)分数四则运算1、分数加法:分数加法的意义与整数加法的意义相同. 是把两个数合并成一个数的运算.2、分数减法:分数减法的意义与整数减法的意义相同.已知两个加数的和与其中的一个加数,求另一个加数的运算.3、分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算.4、乘积是1的两个数叫做互为倒数.5、分数除法:分数除法的意义与整数除法的意义相同.就是已知两个因数的积与其中一个因数,求另一个因数的运算.(四)运算定律1、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a .2、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) .3、乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a.4、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) .5、乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c .6、减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) .(五)运算法则1、整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一.2、整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减.3、整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来.4、整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面.如果哪一位上不够商1,要补“0”占位.每次除得的余数要小于除数.5、小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足.6、除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除.7、除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算.8、同分母分数加减法计算方法:同分母分数相加减,只把分子相加减,分母不变.9、异分母分数加减法计算方法:先通分,然后按照同分母分数加减法的的法则进行计算.10、带分数加减法的计算方法:整数部分和分数部分分别相加减,再把所得的数合并起来.11、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母.12、分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数.(六)运算顺序1、小数四则运算的运算顺序和整数四则运算顺序相同.2、分数四则运算的运算顺序和整数四则运算顺序相同.3、没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法.4、有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的.5、第一级运算:加法和减法叫做第一级运算.6、第二级运算:乘法和除法叫做第二级运算.五、应用(一)整数和小数的应用1、简单应用题(1)简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题.(2)解题步骤:A、审题理解题意:了解应用题的内容,知道应用题的条件和问题.读题时,不丢字不添字边读边思考,弄明白题中每句话的意思.也可以复述条件和问题,帮助理解题意.B、选择算法和列式计算:这是解答应用题的中心工作.从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称.C、检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意.如果发现错误,马上改正.2 复合应用题(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题.(2)含有三个已知条件的两步计算的应用题.求比两个数的和多(少)几个数的应用题.比较两数差与倍数关系的应用题.(3)含有两个已知条件的两步计算的应用题.已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差).已知两数之和与其中一个数,求两个数相差多少(或倍数关系).(4)解答连乘连除应用题.(5)解答三步计算的应用题.(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数.(7) 解答加法应用题:a.求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少.b.求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少.(8)解答减法应用题:a.求剩余的应用题:从已知数中去掉一部分,求剩下的部分.b.求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少.c.求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少.(9)解答乘法应用题:a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数.b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少.(10)解答除法应用题:a.把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少.b.求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份.c.求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几。

新人教版六年级数学下册知识点归纳

新人教版六年级数学下册知识点归纳

新人教版六年级数学下册知识点归纳一.负数1.负数的由来:为了表示相反意义的两个量(如盈利亏损.收入支出……).光有学过的0 1 3.4 2/5 ……是远远不够的·所以出现了负数.以盈利为正.亏损为负;以收入为正.支出为负2.负数:小于0的数叫负数(不包括0).数轴上0左边的数叫做负数·若一个数小于0.则称它是一个负数·负数有无数个.其中有(负整数.负分数和负小数)负数的写法:数字前面加负号“-”号. 不可以省略例如:-2.-5.33.-45.-253.正数:大于0的数叫正数(不包括0).数轴上0右边的数叫做正数若一个数大于0.则称它是一个正数·正数有无数个.其中有(正整数.正分数和正小数)正数的写法:数字前面可以加正号“+”号.也可以省略不写·例如:+2.5.33.+45.254. 0 既不是正数.也不是负数.它是正.负数的分界限负数都小于0.正数都大于0.负数都比正数小.正数都比负数大5.数轴:规定了原点.正方向和单位长度的直线叫数轴·所有的数都可以用数轴上的点来表示·也可以用数轴来比较两个数的大小·数轴的三要素:原点.单位长度.正方向负数 0 正数左边<右边6.比较两数的大小:①利用数轴:负数<0<正数或左边<右边②利用正负数含义:正数之间比较大小.数字大的就大.数字小的就小·负数之间比较大小.数字大的反而小.数字小的反而大 1/3 >1/6 -1/3 <-1/6二. 百分数(二)(一).折扣和成数1.折扣:用于商品.现价是原价的百分之几.叫做折扣·通称“打折”·几折就是十分之几.也就是百分之几十·例如八折=8/10 =80﹪.六折五=6.5/10 =65/100 =65﹪解决打折的问题.关键是先将打的折数转化为百分数或分数.然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2.成数:几成就是十分之几.也就是百分之几十·例如一成=1/10 =10﹪.八成五=8.5/10 =85/100 =8 0﹪解决成数的问题.关键是先将成数转化为百分数或分数.然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二).税率和利率1.税率(1)纳税:纳税是根据国家税法的有关规定.按照一定的比率把集体或个人收入的一部分缴纳给国家·(2)纳税的意义:税收是国家财政收入的主要来源之一·国家用收来的税款发展经济.科技.教育.文化和国防安全等事业·(3)应纳税额:缴纳的税款叫做应纳税额·(4)税率:应纳税额与各种收入的比率叫做税率·(5)应纳税额的计算方法:应纳税额=总收入×税率收入额=应纳税额÷税率2.利率(1)存款分为活期.整存整取和零存整取等方法·(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社.储蓄起来.这样不仅可以支援国家建设.也使得个人用钱更加安全和有计划.还可以增加一些收入·(3)本金:存入银行的钱叫做本金·(4)利息:取款时银行多支付的钱叫做利息·(5)利率:利息与本金的比值叫做利率·(6)利息的计算公式:利息=本金×利率×时间利率=利息÷时间÷本金×100%(7)注意:如要上利息税(国债和教育储藏的利息不纳税).则:税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)税后利息=本金×利率×时间×(1-利息税率) 购物策略:估计费用:根据实际的问题.选择合理的估算策略.进行估算·购物策略:根据实际需要.对常见的几种优惠策略加以分析和比较.并能够最终选择最为优惠的方案学后反思:做事情运用策略的好处三.圆柱和圆锥一.圆柱1.圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的·圆柱也可以由长方形卷曲而得到·(两种方式:1.以长方形的长为底面周长.宽为高;2.以长方形的宽为底面周长.长为高·其中.第一种方式得到的圆柱体体积较大·)2.圆柱的高是两个底面之间的距离.一个圆柱有无数条高.他们的数值是相等的3.圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆·(2)侧面的特征:圆柱的侧面是一个曲面·(3)高的特征:圆柱有无数条高4.圆柱的切割:①横切:切面是圆.表面积增加2倍底面积.即S 增=2πr²②竖切(过直径):切面是长方形(如果h=2R.切面为正方形).该长方形的长是圆柱的高.宽是圆柱的底面直径.表面积增加两个长方形的面积.即S增=4rh5.圆柱的侧面展开图:①沿着高展开.展开图形是长方形.如果h=2πr.展开图形为正方形②不沿着高展开.展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6.圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高. 求圆柱的侧面积.表面积.体积.底面周长②已知圆柱的底面周长和高.求圆柱的侧面积.表面积.体积.底面积③已知圆柱的底面周长和体积.求圆柱的侧面积.表面积.高.底面积④已知圆柱的底面面积和高.求圆柱的侧面积.表面积.体积⑤已知圆柱的侧面积和高. 求圆柱的底面半径.表面积.体积.底面积以上几种常见题型的解题方法.通常是求出圆柱的底面半径和高.再根据圆柱的相关计算公式进行计算无盖水桶的表面积 =侧面积+一个底面积油桶的表面积 =侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩.排水管.漆柱.通风管.压路机.卫生纸中轴.薯片盒包装侧面积+一个底面积:玻璃杯.水桶.笔筒.帽子.游泳池侧面积+两个底面积:油桶.米桶.罐桶类二.圆锥1.圆柱的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的圆锥也可以由扇形卷曲而得到2.圆锥的高是两个顶点与底面之间的距离.与圆柱不同.圆锥只有一条高3.圆锥的特征:(1)底面的特征:圆锥的底面一个圆·(2)侧面的特征:圆锥的侧面是一个曲面·(3)高的特征:圆锥有一条高·4.圆柱的切割:横切:切面是圆②竖切(过顶点和直径直径):切面是等腰三角形.该等腰三角形的高是圆锥的高.底是圆锥的底面直径.面积增加两个等腰三角形的面积. 即S增=2rh5.圆锥的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr体积:V锥=1/3 πr²h考试常见题型:①已知圆锥的底面积和高.求体积.底面周长②已知圆锥的底面周长和高.求圆锥的体积.底面积③已知圆锥的底面周长和体积.求圆锥的高.底面积以上几种常见题型的解题方法.通常是求出圆锥的底面半径和高.再根据圆柱的相关计算公式进行计算三.圆柱和圆锥的关系1.圆柱与圆锥等底等高.圆柱的体积是圆锥的3倍·2.圆柱与圆锥等底等体积.圆锥的高是圆柱的3倍·3.圆柱与圆锥等高等体积.圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍·4.圆柱与圆锥等底等高 .体积相差2/3 Sh题型总结直接利用公式:分析清楚求的的是表面积.侧面积.底面积.体积分析清楚半径变化导致底面周长.侧面积.底面积.体积的变化分析清楚两个圆柱(或两个圆锥)半径.底面积.底面周长.侧面积.表面积.体积之比圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体.长方体与圆柱圆锥之间)横截面的问题浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积.等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体.正方体⑤等体积转换问题:一个圆柱融化后做成圆锥.或圆柱中的溶液倒入圆锥.都是体积不变的问题.注意不要乘以1/3四.典型题:1.一个圆柱的侧面展开是一个正方形.它的高是底面直径的π倍. 即h=C=πd,它的侧面积是S侧=h²2.圆柱的底面半径扩大2倍.高不变.表面积扩大2倍.体积扩大4倍·3.圆柱的底面半径扩大2倍.高也扩大2倍.表面积扩大4倍.体积扩大8倍·4.圆柱的底面半径扩大3倍.高缩小3倍.表面积不变.体积扩大3倍·5.一个圆柱和它等底等高的圆锥体积之和是48立方厘米.这个圆柱的体积是()立方厘米.圆锥的体积是()立方厘米圆锥和它等底等高的圆柱体积之比是1 :3.圆柱占1份.圆锥占3份.一共4份.题目中说了4份的和一共是48立方厘米·圆锥占了4份中的1份.圆柱占了4份中的3份 V锥:48÷4=12(立方厘米)或 48×1/4 =12(立方厘米)V柱:48÷4=12(立方厘米) 12×3=36(立方厘米) 或 48×3/4 =36(立方厘米)6.一个圆柱和它等底等高的圆锥体积之差是24立方分米.这个圆柱的体积是()立方分米.圆锥的体积是()立方分米·圆锥和它等底等高的圆柱体积之比是1 :3.圆柱占1份.圆锥占3份.1份和3份相差了2份.题目中说了相差24立方分米.2份就是24立方分米圆锥占了2份中的1份.圆柱占了2份中的3份V锥:24÷2=12(立方分米) 或24×1/2 =12(立方分米)V柱:24÷2=12(立方分米) 12×3=36(立方分米) 或 24×3/2 =36(立方分米)7.一个圆柱和一个圆锥.体积相等.底面积也相等.圆柱的高是2厘米.圆锥的高是()厘米· V柱=V锥 V柱=V锥S柱底h柱= 1/3 S锥底h锥 S柱底h柱= 1/3 S锥底h锥h柱= 1/3 h锥 S柱底= 1/3 S锥底2= 1/3 h锥 4 = 1/3 S锥底h锥= 2÷1/3 S锥底= 4÷1/3h锥=6 S锥底=128.一个圆柱和一个圆锥体积相等.高也相等.圆柱的底面积是4平方分米.圆锥的底面积是()平方分米·9.一个圆锥和一个圆柱的底面积相等.体积的比是1:6·如果圆锥的高是3.6厘米.圆柱的高是()厘米.如果圆柱的高是3.6厘米.圆锥的高是()厘米·10.一个圆柱体.把它的高截短3厘米.它的底面积减少94.2平方厘米.这个圆柱的体积减少了()立方厘米·πr²C=S侧÷h r=C÷π÷2V=πr²h=94.2÷3 =31.4÷3.14÷2 =3.14×5×3=31.4(厘米) =5(厘米) =235.5(立方厘米)四.比例1.比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号.读作“比”·比号前面的数叫做比的前项.比号后面的数叫做比的后项·比的前项除以后项所得的商.叫做比值·(3)同除法比较.比的前项相当于被除数.后项相当于除数.比值相当于商·(4)比值通常用分数表示.也可以用小数表示.有时也可能是整数·(5)比的后项不能是零·(6)根据分数与除法的关系.可知比的前项相当于分子.后项相当于分母.比值相当于分数值·2.比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外).比值不变.这叫做比的基本性质·3.求比值和化简比:求比值的方法:用比的前项除以后项.它的结果是一个数值可以是整数.也可以是小数或分数·根据比的基本性质可以把比化成最简单的整数比·它的结果必须是一个最简比.即前.后项是互质的数·4.按比例分配:在农业生产和日常生活中.常常需要把一个数量按照一定的比来进行分配·这种分配的方法通常叫做按比例分配·方法:首先求出各部分占总量的几分之几.然后求出总数的几分之几是多少·5.比例的意义:表示两个比相等的式子叫做比例·组成比例的四个数.叫做比例的项·两端的两项叫做外项.中间的两项叫做内项·6.比例的基本性质:在比例里.两个外项的积等于两个两个内项的积·这叫做比例的基本性质·7.比和比例的区别(1)比表示两个量相除的关系.它有两项(即前.后项);比例表示两个比相等的式子.它有四项(即两个内项和两个外项)·(2)比有基本性质.它是化简比的依据;比例也有基本性质.它是解比例的依据·8.成正比例的量:两种相关联的量.一种量变化.另一种量也随着变化.如果这两种量中相对应的两个数的比值(也就是商)一定.这两种量就叫做成正比例的量.他们的关系叫做正比例关系·用字母表示y/x =k(一定)9.成反比例的量:两种相关联的量.一种量变化.另一种量也随着变化.如果这两种量中相对应的两个数的积一定.这两种量就叫做成反比例的量.他们的关系叫做反比例关系·用字母表示x ×y=k(一定)10.判断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对就的两个数的商一定还是积一定.如果商一定.就成正比例;如果积一定.就成反比例·11.比例尺:一幅图的图上距离和实际距离的比.叫做这幅图的比例尺·12.比例尺的分类(1)数值比例尺和线段比例尺(2)缩小比例尺和放大比例尺13.图上距离:实际距离=比例尺或图上距离/实际距离 =比例尺实际距离×比例尺=图上距离图上距离÷比例尺=实际距离14.应用比例尺画图的步骤:(1)写出图的名称. (2)确定比例尺;(3)根据比例尺求出图上距离;(4)画图(画出单位长度)(5)标出实际距离.写清地点名称(6)标出比例尺15.图形的放大与缩小:形状相同.大小不同·16.用比例解决问题:根据问题中的不变量找出两种相关联的量.并正确判断这两种相关联的量成什么比例关系.并根据正.反比例关系式列出相应的方程并求解·17.常见的数量关系式:(成正比例或成反比例)单价×数量=总价单产量×数量=总产量速度×时间=路程工效×工作时间=工作总量总价/单价 =数量总产量/单产量 =数量路程/速度 =时间工作总量/工作效率=工作时间总价/数量 =单价总产量/数量 =单产量路程/时间 =速度工作总量/工作时间=工作效率18.已知图上距离和实际距离可以求比例尺·已知比例尺和图上距离可以求实际距离·已知比例尺和实际距离可以求图上距离·计算时图距和实距单位必须统一·19.播种的总公顷数一定.每天播种的公顷数和要用的天数是不是成反比例?答:每天播种的公顷数×天数=播种的总公顷数已知播种的总公顷数一定.就是每天播种的公顷数和要用的天数的积是一定的.所以每天播种的公顷数和要用的天数成反比例·20.判断下面各题的两个量是不是成比例.如果成比例.成什么比例?(1)订阅《中国少年报》的份数和钱数·因为钱数/订阅《中国少年报》的份数 = 每份的钱数(一定)所以.订阅《中国少年报》的份数和钱数成正比例·(2)三角形的底一定.它的面积和高·因为三角形的面积/高 =1/2 (一定)所以.它的面积和高成正比例·(3)图上距离一定.实际距离和比例尺·因为.实际距离×比例尺=图上距离(一定)所以.实际距离和比例尺成反比例·(4)一条绳子的长度一定.剪去的部分和剩下的部分·因为.剪去的部分和剩下的部分不存在比值或积一定的关系. 所以.剪去的部分和剩下的部分不成比例·(5)圆的面积和它的半径不成正比例.因为圆的面积和它的半径的比值不一定.所以圆的面积和它的半径不成正比例·自行车里的数学:前齿轮转数×前齿轮齿数=后齿轮转数×后齿轮齿数蹬一圈走的路程=车轮周长×(蹬一圈.后轮转动的圈数)蹬一圈走的路程=车轮周长×(前齿轮齿数:后齿轮齿数)48:28≈1.71 48:24=2 48:20=2.4 48:18≈2.67 48:16=3 48:14≈3.4340:28≈1.4340:24≈1.67 40:20=2 40:18≈2.22 40:16=2.5 40:14≈2.86前.后齿轮齿数相差大的.比值就大.这种组合走的就远.因而车速快.但骑车人较费力前.后齿轮齿数相差小的.比值就小.这种组合走的就近.因而车速慢.但骑车人较省力自行车跑的快慢与两个条件有关:1.前后齿轮齿数的比值·2.车轮的大小(合理)五数学广角—鸽巢问题1.鸽巣原理是一个重要而又基本的组合原理, 在解决数学问题时有非常重要的作用①什么是鸽巣原理, 先从一个简单的例子入手, 把3个苹果放在2个盒子里, 共有四种不同的放法, 如下表放法盒子1盒子2130221312403无论哪一种放法, 都可以说“必有一个盒子放了两个或两个以上的苹果”·这个结论是在“任意放法”的情况下, 得出的一个“必然结果”·类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子如果有6封信, 任意投入5个信箱里, 那么一定有一个信箱至少有2封信我们把这些例子中的“苹果”.“鸽子”.“信”看作一种物体.把“盒子”.“鸽笼”.“信箱”看作鸽巣, 可以得到鸽巣原理最简单的表达形式②利用公式进行解题:物体个数÷鸽巣个数=商……余数至少个数=商+12.摸2个同色球计算方法·①要保证摸出两个同色的球.摸出的球的数量至少要比颜色数多1·物体数=颜色数×(至少数-1)+1②极端思想:用最不利的摸法先摸出两个不同颜色的球.再无论摸出一个什么颜色的球.都能保证一定有两个球是同色的·③公式:两种颜色:2+1=3(个)三种颜色:3+1=4(个)四种颜色:4+1=5(个)常见乘法计算(敏感数字):25×4=100 125×8=1000加法交换律简算例子加法结合律简算例子乘法交换律简算例子乘法结合律简算例子 0.87 5+2/3 +1/8 23 +14 +0.8 0.4×33×52 23×0.375×16/3=7/8 +2/3 +1/8 =2/3 +1/4 +4/5 =2/5 ×33×5/2 =23×3/8 ×16/3=7/8 +1/8 +2/3 =2/3 +(1/4 +4/5 ) =2/5 ×2/5 ×33 =23 ×(3/8 ×16/3 )=1+2/3 =2/3 +1 =1×3 =23×2含加法交换律与结合律含乘法交换律与结合律数字换减法式数字换加法式0.875+2/3 +1/8 +1/3 0.375×29/7 ×16/3 ×7/29 35×5/36 101×9/10=7/8 +2/3 +1/8 +1/3 =3/8 ×29/7 ×16/3 ×7/29 = (36-1) ×5/36 = (100+1) ×9/10=7/8 +1/8 + 2/3 +1/3 =3/8 ×16/3 ×29/7 ×7/29 =36×536 -1×536 =100×9/10 +1×9/10= (7/8 +1/8 )+ (2/3 +1/3 ) = (3/8 ×16/3 )×(29/7 ×7/29 ) =5-5/36 =1+9/10=1+1 =2×1乘法分配律提取式乘法分配律提取式乘法分配律(添项) 乘法分配律(添项)101×0.9-9/10 ×1 95.5÷1.6-15.5÷1.6 101×0.9-9/10 52×5/8 +29×5/8 -0.625=101×9/10 -9/10 ×1 =(95.5-15.5)÷1.6 =101×9/10 -9/10 =52×5/8 +29×5/8 -5/8=101×9/10 -1×9/10 =80÷1.6 =101×910 -1×910 =52×58 +29×58 -1×5/8=(101-1) ×910 =800÷16 =(101-1) ×9/10 =(52+29-1)×5/8=100×9/10 =100×9/10 =80×5/8减法的性质简算例子减法的性质简算例子减法的性质简算例子数字换乘法式18-58 -0.375 134 -716 -0.75 1225 -(7/16 +0.4) 0.56×125=18-58 -38 =134 -716 -34 =1225 -(716 +2/5 ) =0.7×0.8×125=18-(58 +38 ) =134 -34 -716 =1225 -25 -7/16 =0.7×(0.8×125)=18-1 =1-7/16 =12-7/16 =0.7×100除法的性质简算例子除法的性质简算例子除法的性质简算例子数字换乘法式3200÷2.5÷0.4 2700÷2.5÷2.7 5900÷(2.5×5.9) 33333×33333=3200÷(2.5×0.4) =2700÷2.7÷2.5 =5900÷5.9÷2.5 =11111×3×33333=3200÷1 =1000÷2.5 =1000÷2.5 =11111×99999=11111×(100000-1)同级运算中.第一个数不能动.后面的数可以带着符号搬家1+2/3 +7/16 -2/3 250÷0.8×0.4 123 -716 +13 29×0.25÷0.29=1+2/3 -2/3 +7/16 =250×0.4÷0.8 =1+2/3 +1/3 -7 / 16 =29÷0.29×0.25=1+716 =100÷0.8 =2-7/16 =100×0.25解方程方法一:消项(如果消+3.方程两边就同时-3 ;如果消×3.方程两边就同时÷3) 1:把方程里的“括号”全部去掉.两种去括号的方法任选其一2:如果两边都有几X , 要先消去其中一边的几X (如果有“-几X”.就把“-几X”消去.如果没有“-几X”.就把较小的X消去掉)3:消去“-几”.消去“÷”4:把X这边的数字全部消掉.先消“+ -”再消“÷”最后消“×” (注意:无论解到哪一步.数字+几X 都要写成几X+数字)解方程方法二:移项(+3移到另一边就变成-3.×3移到另一边就变成÷3)1:把方程里的“括号”全部去掉.两种去括号的方法任选其一2:如果两边都有几X ,就把其中一边的几X 移到另一边 (如果有“-几X”.就把“-几X”移到另一边·如果没有“-几X”.就把较小的X移到另一边)3:把“-几X”移到另一边.把“÷X”移到另一边”4:把X这边的数字全部移到另一边.先移“+ -”再移“÷”最后移“×” (注意:无论解到哪一步.数字+几X 都要写成几X+数字)长度单位换算km m dm cm mm1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米面积单位换算 km² m² dm² cm² mm²1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算 L mL m³ dm³ cm³1立方米=1000立方分米 1立方分米=1000立方厘米 1升=1000毫升 1立方米=1000升1立方分米=1升 1立方厘米=1毫升质量单位换算 t kɡɡ1吨=1000 千克 1千克=1000克 1千克=1公斤人民币单位换算1元=10角 1角=10分 1元=100分时间单位换算 h min s1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分 1分=60秒 1时=3600秒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级下册知识点第一单元负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 3.4 2/5……是远远不够的。

所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。

若一个数小于0,则称它是一个负数。

负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“-”号,不可以省略例如:-2,-5.33,-45,-2/5正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于0,则称它是一个正数。

正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。

例如:+2,5.33,+45,2/54、0 既不是正数,也不是负数,它是正、负数的分界限负数都小于0,正数都大于0,负数都比正数小,正数都比负数大5、数轴:6、比较两数的大小:①利用数轴:负数<0<正数或左边<右边②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。

负数之间比较大小,数字大的反而小,数字小的反而大1/3>1/6 -1/3<-1/6第二单元百分数二(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。

通称“打折”。

几折就是十分之几,也就是百分之几十。

例如:八折=8/10=80﹪,六折五=6.5/10=65/100=65﹪解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2、成数:几成就是十分之几,也就是百分之几十。

例如:一成=1/10=10﹪八成五=8.5/10=85/100=80﹪解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二)、税率和利率1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

(2)纳税的意义:税收是国家财政收入的主要来源之一。

国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。

(3)应纳税额:缴纳的税款叫做应纳税额。

(4)税率:应纳税额与各种收入的比率叫做税率。

(5)应纳税额的计算方法:应纳税额=总收入×税率收入额=应纳税额÷税率2、利率(1)存款分为活期、整存整取和零存整取等方法。

(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

(3)本金:存入银行的钱叫做本金。

(4)利息:取款时银行多支付的钱叫做利息。

(5)利率:利息与本金的比值叫做利率。

(6)利息的计算公式:利息=本金×利率×时间利率=利息÷时间÷本金×100%(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)税后利息=本金×利率×时间×(1-利息税率)购物策略:估计费用:根据实际的问题,选择合理的估算策略,进行估算。

购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案学后反思:做事情运用策略的好处第三单元圆柱和圆锥一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。

圆柱也可以由长方形卷曲而得到。

两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。

2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S 增=2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类二、圆锥1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。

圆锥也可以由扇形卷曲而得到。

2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。

(2)侧面的特征:圆锥的侧面是一个曲面。

(3)高的特征:圆锥有一条高。

4、圆锥的切割:①横切:切面是圆②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh5、圆锥的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr体积:V锥=1/3πr²h考试常见题型:①已知圆锥的底面积和高,求体积,底面周长②已知圆锥的底面周长和高,求圆锥的体积,底面积③已知圆锥的底面周长和体积,求圆锥的高,底面积以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算三、圆柱和圆锥的关系1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

4、圆柱与圆锥等底等高,体积相差2/3Sh题型总结①直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)③横截面的问题④浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体⑤等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3第四单元比例1、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。

(5)比的后项不能是零。

(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。

它的结果必须是一个最简比,即前、后项是互质的数。

4、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。

这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

5、比例的意义:表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。

这叫做比例的基本性质。

7、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。

(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。

8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示x/y=k(一定)9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

用字母表示x×y=k(一定)10、判断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。

11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

12、比例尺的分类(1)数值比例尺和线段比例尺(2)缩小比例尺和放大比例尺13、图上距离:图上距离/实际距离=比例尺实际距离×比例尺=图上距离图上距离÷比例尺=实际距离14、应用比例尺画图的步骤:(1)写出图的名称、(2)确定比例尺;(3)根据比例尺求出图上距离;(4)画图(画出单位长度)(5)标出实际距离,写清地点名称(6)标出比例尺15、图形的放大与缩小:形状相同,大小不同。

16、用比例解决问题:根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。

17、常见的数量关系式:(成正比例或成反比例)单价×数量=总价单产量×数量=总产量速度×时间=路程工效×工作时间=工作总量18、已知图上距离和实际距离可以求比例尺。

相关文档
最新文档