新人教版六年级数学下册知识点汇总
人教版小学六年级数学下册知识点_数学知识点
人教版小学六年级数学下册知识点_数学知识点人教版小学六年级数学下册知识点一:比例1.理解比例的意义和基本性质,会解比例。
2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
7.比例的意义:表示两个比相等的式子叫做比例。
如:2:1=6:8.组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
例如:由3:2=6:4可知3×4=2×6;或者由x×1。
5=y×1。
2可知x:y=1.2:1.5。
10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
11.正比例和反比例:(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示y/x=k(一定)例如:①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。
②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。
③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④y=5x,y和x成正比例,因为:y÷x=5(一定)。
新人教版六年级数学下册总复习知识点
六年级数学下册总复习1、整数和自然数像…,-3,-2,-1,0,1,2,3,…这样的数统称为(整数)。
整数的个数是(无限)的。
数物体的时候,用来表示物体个数的0,1,2,3…叫做(自然数)。
自然数整数的(一部分)。
(“1”)是自然数的单位。
最小的自然数是( 0 )。
2、小数小数表示的就是十分之几,百分之几,千分之几……的数,一位小数可表示为十分之几的数,两位小数可表示为百分之几的数,三位小数可表示为千分之几的数……32411=0.2 = 0.4 熟记: = 0.6 =0.8 =0.25 5555413537= 0.75 = 0.125 =0.375 =0.625=0.87588848小数点右边第一位是(十分位),计数单位是(十分之一);第二位是(百分位),计数单位是(百分之一)……小数部分有几个数位,就叫做几位小数。
如3.305是(三)位小数3、整数、小数的读法和写法:(四位分级法)28302006000 读作:读整数时注意先分级再读数27.036 读作:读小数时注意小数部分顺次读出每个数位上的数。
写作:五亿零8千写数时注意写好后,一定要读一读仔细校对。
写作:三百八十点零三六常常把较大的数改写成用“万”或“亿”作单位的数。
为了读写方便, )亿 768000000 =(准确数如只要求“改写”,结果应是。
(先分级,在分级线处点上小数点)≈( 768000000 )亿如要求“省略”万(亿)后面的尾数,结果应是近似数。
(退后看一位).或者去掉0,小数的大小不变4、小数的性质:小数的末尾添上0)0或去掉0,小数大小不变。
(判断:在小数点的后面添上1000倍……10倍、100倍、、小数点向右移动一位、两位、三位……原来的数就扩大5111、、小数点向左移动一位、两位、三位……原来的数就缩小到原来的100010100、正数、负数6 既不是正数也不是负数, 00是正数和负数的分界点。
0<正数负数<-10><两个负数比较,负号后面的数越大这个数反而越小。
人教版六年级数学下册知识点归纳
人教版六年级数学下册知识点归纳一、负数。
1. 负数的定义。
- 为了表示相反意义的量,如零上温度和零下温度、收入与支出等,我们引入负数。
像 - 3、 - 5.6、 - 2/3等带有负号“ - ”的数叫做负数;以前学过的数,像3、5.6、2/3等叫做正数(正数前面也可以加“ + ”号,如+3,一般省略不写);0既不是正数也不是负数。
2. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 在数轴上,从左到右的顺序就是数从小到大的顺序。
所有的负数都在0的左边,也就是负数都比0小;所有的正数都在0的右边,正数都比0大。
3. 比较大小。
- 正数大于0,0大于负数,正数大于负数;两个负数比较大小,负号后面的数越大,这个负数越小,例如 - 5< - 3。
二、百分数(二)1. 折扣。
- 商店有时降价出售商品,叫做打折扣销售,通称“打折”。
几折就表示十分之几,也就是百分之几十。
例如,八折就是原价的80%,七五折就是原价的75%。
- 原价×折扣 = 现价;现价÷折扣 = 原价;现价÷原价 = 折扣。
2. 成数。
- 成数表示一个数是另一个数的十分之几,通称“几成”。
例如,“一成”就是十分之一,改写成百分数就是10%;“三成五”就是十分之三点五,改写成百分数就是35%。
3. 税率。
- 应纳税额与各种收入(销售额、营业额……)的比率叫做税率。
应纳税额 = 各种收入×税率;各种收入 = 应纳税额÷税率。
4. 利率。
- 单位时间内的利息与本金的比率叫做利率。
利息 = 本金×利率×存期;本金 = 利息÷(利率×存期);存期 = 利息÷(本金×利率)。
三、圆柱与圆锥。
1. 圆柱。
- 圆柱的认识。
- 圆柱是由两个底面和一个侧面组成的。
圆柱的两个底面是完全相同的圆,侧面是一个曲面,展开后是一个长方形(或正方形),这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
六年级下册数学(人教版)知识点归纳总结整理
人教版六年级数学下册知识点总结一、用字母表示运算定律或性质加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法交换律: ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac二、几何图形计算公式(1)周长:物体或封闭图形一周的长度。
①长方形周长=(长+宽)×2 C=(a+b)×2②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小。
①长方形的面积=长×宽 S=ab②正方形的面积=边长×边长 S=a•a=a2③平行四边形的面积=底×高 S=ah④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r= d÷2⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】平面图形的面积公式是以长方形面积计算公式为基础的。
如两个完全相同的三角形、梯形可拼成一个平行四边形。
圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积。
①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高 S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2 注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积。
人教版六年级数学下册-数的认识
典例秘解
例1 一个数千万位上是最大的一位数,万位上是最小的质数,百
位上是最小的合数,其余各 位上都是0,这个数写作( ),读作
(
),省略万位后面的尾数约是(
)。
分析:本题综合考查自然数的数位,数位顺序以及多位数的读写等。 由题意可知这个数的最高位是千万位,千万位上的数是9,万位和百位 上的数分别是2和4,其他各位上的数都是0,所以这个数写作90020400; 读作九千零二万零四百;省略万位后面的尾数约是9002万。
一、数与代数——1.数的认识
知识归纳
典例秘解
难题答疑
巩固练习
知识归纳
知识点一:数的意义
1.自然数、负数和正数的意义。
⑴自然数:在数物体时,用来表示物体个数的1,2,3,4…叫做自然数。1 是自然数的基本单位,一个物体也没有,用0表示,0是最小的自然数,没有 最大的自然数。
⑵基数和序数:自然数用来表示事物的多少称为基数,用来表示事物的次序, 称为序数。
知识归纳
知识点一:数的意义
4.分数的意义及单位。
把单位“1”平均分成若干份,表示这样一份或几份的数叫做分数。在分 数里,表示把单位“1”平均分成若干份的数,叫做分数的分母;表示这样 一份或几份的数,叫做分子;其中的一份叫做分数单位。
5.分数的分类及倒数的意义。
⑴真分数:分子比分母小的分数。真分数小于1。
(3)16 9
(4)1/8、3/8、5/8、7/8 2
典例秘解
例6 在□里填上适当的数,使它同时是2、3、5的倍数。你有几种填法?
7□□
分 析:本题是考查运用2、3、5的倍数特征来解题的一道综合应用题。 一个数要同时是2、3、5 的倍数,则这个数个位上的数必须是0,且各 个数位上的数加起来的和是3的倍数。十位上,因为7 +0=7,与3的倍 数9相差2,与12相差5,与15相差8,则方框里可填2、5、8三个数。
最新人教版六年级数学下册单元知识点归纳整理
新人教版六年级数学下册单元知识点归纳整理第一单元负数1.负数:在数轴线上,负数都在0的(左侧),所有的负数都比自然数小.负数用负号“-”标记,如-2,-5.33,-45,-0.6等.2.正数:大于0的数叫正数(不包括0),数轴上0(右边)的数叫做正数若一个数大于零(>0),则称它是一个正数.正数的前面可以加上正号“+”来表示.正数有(无数个),其中有(正整数,正分数和正小数).3. (0)既不是正数,也不是负数,它是正、负数的界限.所有的负数都在0的(左边),负数都小于0,正数都大于0,负数都比正数(小).第二单元圆柱和圆锥1、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆.(2)侧面的特征:圆柱的侧面是一个曲面.(3)高的特征:圆柱有无数条高.2、圆柱的高:两个底面之间的距离叫做高.3、圆柱的侧面展开图:当沿高展开时展开图是(长方形);这个长方形的长等于(圆柱的底面周长),长方形的宽等于(圆柱的高).这个长方形的面积等于(圆柱的侧面积),因为长方形面积=长×宽,所以圆柱的侧面积=底面周长×高当底面周长和高相等时,沿高展开图是(正方形);当不沿高展开时展开图是(平行四边形).4、圆柱的侧面积:圆柱的侧面积=底面的周长×高,用字母表示为:S侧=Ch.h=S侧÷C C= S侧÷hS侧=∏dh=2∏rh5、圆柱的表面积:圆柱的表面积=侧面积+底面积×2.即S表= S侧+ S底×2=Ch+∏(C÷∏÷2)²×2=∏dh+∏(d÷2) ²×2=2∏rh+∏r²×2(计算时最好分步使用公式,以免出现计算错误.)6、圆柱表面积在实际中的应用:无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类7、圆柱的体积:V=Sh h=V÷S S=V÷hV=∏r²h (已知r)V=∏(d÷2) ²h (已知d)V=∏(C÷∏÷2)²h (已知C)8、把一个圆柱体切分成若干份拼成一个近似的长方体,在这个过程中,形状发生了变化,体积没有发生变化.表面积增加了2rh.9、圆锥的特征:(1)底面的特征:圆锥的底面一个圆.(2)侧面的特征:圆锥的侧面是一个曲面.(3)高的特征:圆锥有一条高.10、圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高.11、圆锥的体积:圆柱的体积等于和它等底等高的圆锥体积的3倍,反之圆锥的体积等于和它等底等高的圆柱体积的三分之一.V锥=13V柱=13ShV锥= 13∏r²hV锥= 13∏(d÷2)²hV锥= 13∏(C÷∏÷2)²h12、圆柱与圆锥的关系:(1)与圆柱等底等高的圆锥体积是圆柱体积的三分之一.(2)体积和高相等的圆锥与圆柱(等底等高)之间,圆锥的底面积是圆柱的三倍. (3)体积和底面积相等的圆锥与圆柱(等低等高)之间,圆锥的高是圆柱的三倍. 13、生活中的圆锥:沙堆、漏斗、帽子.典型题:1、一个圆柱的侧面展开是一个正方形,它的高是底面直径的∏倍,即h=C=∏d ,它的侧面积是S 侧=h ²2、 圆柱的底面半径扩大2倍,高不变,表面积扩大2倍,体积扩大4倍.3、 圆柱的底面半径扩大2倍,高也扩大2倍,表面积扩大4倍,体积扩大8倍. 4、圆柱的底面半径扩大3倍,高缩小3倍,表面积不变,体积扩大3倍. 5、一个圆柱和它等底等高的圆锥体积之和是48立方厘米,这个圆柱的体积是( )立方厘米,圆锥的体积是( )立方厘米列式为:48÷(3+1)或48÷(1+ 13)6、一个圆柱和它等底等高的圆锥体积之差是24立方分米,这个圆柱的体积是( )立方分米,圆锥的体积是( )立方分米.求圆锥体积列式为:24÷(3—1)或24÷(1— 13)7、一个圆柱和一个圆锥,体积相等,底面积也相等,圆柱的高是2厘米,圆锥的高是( )厘米.V 柱=V 锥Sh= 13 Sh2=13 hh=2÷13h=616、一个圆柱和一个圆锥体积相等,高也相等,圆柱的底面积是4平方分米,圆锥的底面积是( )平方分米.Sh= 13Sh4 = 13 SS=4÷13S =1217、一个圆锥和一个圆柱的底面积相等,体积的比是1:6.如果圆锥的高是3.6厘米,圆柱的高是( )厘米,如果圆柱的高是3.6厘米,圆锥的高是( )厘米.13Sh 1Sh 6h = 13×6×3.6圆柱的高:h = 7.213Sh 1Sh 613h ×6 = h2h = 3.6 圆锥的高: h = 1.818、一个圆柱体,把它的高截短3厘米,它的底面积减少94.2平方厘米,这个圆柱的体积减少了( )立方厘米.C=S 侧÷h r=C ÷∏÷2 V=∏r ²h =94.2÷3 =31.4÷3.14÷2 =3.14×5×3=31.4(厘米) =5(厘米) =235.5(立方厘米)19、把一个底面半径是5cm,高是10cm 的圆柱体切削成若干等份,拼成一个近似的长方形,在这个切拼过程中,( )没有发生变化,表面积增加了( )平方厘米.20、一个圆锥的体积是12立方米,底面积是9平方米,高是几米?列式为:13×9×h=1221、思考题:一个圆柱体和一个圆锥体积相等,底面半径的比是3:2,圆锥与圆柱高的比是( )六年级数学下册第三、四单元知识点归纳整理1、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”.比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商. (4)比值通常用分数表示,也可以用小数表示,有时也可能是整数. (5)比的后项不能是零.(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值.2、比的基本性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质.3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数.根据比的基本性质可以把比化成最简单的整数比.它的结果必须是一个最简比,即前、后项是互质的数. 4、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配.这种分配的方法通常叫做按比例分配.方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少. 5、比例的意义:表示两个比相等的式子叫做比例. 组成比例的四个数,叫做比例的项.两端的两项叫做外项,中间的两项叫做内项.6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积.这叫做比例的基本性质.7、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项).(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据.8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系.用字母表示y/x=k(一定)9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系.用字母表示x×y=k(一定)10、判断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例.11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺.12、比例尺的分类(1)数值比例尺和线段比例尺(2)缩小比例尺和放大比例尺13、图上距离:实际距离=比例尺或图上距离实际距离实际距离×比例尺=图上距离图上距离÷比例尺=实际距离14、应用比例尺画图的步骤:(1)写出图的名称、(2)确定比例尺;(3)根据比例尺求出图上距离;(4)画图(画出单位长度)(5)标出实际距离,写清地点名称(6)标出比例尺15、图形的放大与缩小:形状相同,大小不同.16、用比例解决问题:根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解.17、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?(用比例的知识解答)这道题里,“照这样的速度”就是说(汽车行驶的速度)是一定的,那么(行驶的路程)和(时间)成正比例关系,所以两次行驶的(路程)和(时间)的比值是相等的.解:设甲乙两地之间的公路长x千米.140 x=2 52x=140×5X=140×5÷2X=350答:甲乙两地之间的公路长350千米.18、一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果要4小时到达,每小时需要行驶多少千米?(用比例的知识解答)这道题里,()是一定的,()和()成()关系,所以两次行驶的()和()的()是相等的.解:设每小时需要行驶x千米.4x=70×5X=70×5÷4X=87.5答:每小时需要行驶87.5千米.19、常见的数量关系式:单价×数量=总价单产量×数量=总产量总价总产量= 数量=数量单价单产量总价总产量=单价=单产量数量数量速度×时间=路程工效×工作时间=工作总量路程工作总量=时间=工作时间速度工效路程工作总量= 速度= 工效时间工作时间20、已知图上距离和实际距离可以求比例尺.已知比例尺和图上距离可以求实际距离.已知比例尺和实际距离可以求图上距离.计算时图距和实距单位必须统一.21、一块长方形试验田,长80米,宽60米,用1/2000的比例尺画出这块试验田的平面图.解:设长应画x厘米,设宽应画y厘米.80米=8000厘米60米=6000厘米X 1 y 1= =8000 2000 6000 20008000×1 6000×1X = y =2000 2000X = 4 y = 3答:长应画4厘米,宽应画3厘米.长方形试验田的平面图60米比例尺1:200080米22、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?答:每天播种的公顷数×天数=播种的总公顷数已知播种的总公顷数一定,就是每天播种的公顷数和要用的天数的积是一定的,所以每天播种的公顷数和要用的天数成反比例.23、判断下面各题的两个量是不是成比例,如果成比例,成什么比例?(1)订阅《中国少年报》的份数和钱数.钱数因为= 每份的钱数(一定)订阅《中国少年报》的份数所以,订阅《中国少年报》的份数和钱数成正比例.(2)三角形的底一定,它的面积和高.三角形的面积因为= 1/2(一定)高所以,它的面积和高成正比例.(3)图上距离一定,实际距离和比例尺.因为,实际距离×比例尺=图上距离(一定)所以,实际距离和比例尺成反比例.(4)一条绳子的长度一定,剪去的部分和剩下的部分.因为,剪去的部分和剩下的部分不存在比值或积一定的关系,所以,剪去的部分和剩下的部分不成比例.(5)圆的面积和它的半径不成正比例,因为圆的面积和它的半径的比值不一定,所以圆的面积和它的半径不成正比例.24、用边长是15厘米的方砖给教室铺地,需要2000块,如果改用边长25厘米的方砖铺地,需要多少块砖?(用比例解)25、修一条公路,总长12千米,开工3天修了1.5千米.照这样计算,修完这条公路还要多少天?(用比例解)。
六年级下册数学(人教版)知识点归纳总结复习资料
人教版六年级数学下册知识点总结一、用字母表示运算定律或性质加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法交换律: ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac二、几何图形计算公式(1)周长:物体或封闭图形一周的长度。
①长方形周长=(长+宽)×2 C=(a+b)×2②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小。
①长方形的面积=长×宽 S=ab②正方形的面积=边长×边长 S=a•a=a2③平行四边形的面积=底×高 S=ah④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r= d÷2⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】平面图形的面积公式是以长方形面积计算公式为基础的。
如两个完全相同的三角形、梯形可拼成一个平行四边形。
圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积。
①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高 S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2 注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积。
最新人教版小学六年级数学下册知识点和题型总结
最新人教版小学六年级数学下册知识点和题型总结六年级下册数学知识点第一单元:负数1.负数是指在正数前加上负号得到的数。
在数轴上,负数位于左侧,所有负数都比自然数小。
负数用负号“-”标记,例如-2,-5.33,-45,-0.6等。
2.正数是指大于零的数(不包括零),数轴上右侧的数叫做正数。
正数的前面可以加上正号“+”来表示。
正数有无数个,其中包括正整数、正分数和正小数。
3.零既不是正数,也不是负数,它是正数和负数的分界数。
正数都大于零,负数都小于零,正数大于一切负数。
应用举例:16℃读作十六摄氏度,表示零上16℃;-16℃读作负十六摄氏度,表示零下16℃。
如果2000表示存入2000元,那么-500表示支出了500元。
向东走3m记作+3,向西4m记作-4.4.在直线上表示数:(1)正数和负数可以用直线上的点表示出来。
直线上的每一个点都与一个数相对应,任何一个数都可以用直线上的点来表示。
(2)用有正数和负数的直线可以表示距离和相反的方向。
题型:1.将以下数字按要求分类:511,1.25,-7,3,3.011,-5,2,-0.03,327.分类为正数、负数、自然数和非正数。
2.写出下列数的相对负数形式:317,0.33,+7,2,+3,5319.3.如果“+20%”表示增加20%,那么“-20%”表示减少20%。
4.某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是-5摄氏度。
5.在数轴上表示下列数:13,1,1.75,-3,-445,0,-3.2.6.写出下列各点表示的数:A(-8),B(-6),C(-4),D(-2),E(0),F(2),G(4),H(6),I(8),J(10)。
第二单元:百分数(二)1.折扣指的是几折就是十分之几,也就是百分之几十。
例如,八五折表示现价是原价的85%。
原价×折扣=现价,现价÷折扣=原价,现价÷原价=折扣。
2.成数表示一个数是另一个数的十分之几或百分之几十,通常称为“几成”。
六年级数学下册(人教版)全册笔记 超详细
六年级数学下册(人教版)全册笔记超详细第一章有理数
1.1 正数与负数
- 正数:大于0的数,例如1、2、3等
- 负数:小于0的数,例如-1、-2、-3等
- 零:等于0的数
1.2 有理数的比较
- 有理数可以通过大小进行比较,大小两者关系如下:
- 正数 > 零 > 负数
- 绝对值大的数较小
- 绝对值相等时,正数较大
1.3 有理数的四则运算
- 加法:
- 同号相加:保留符号,绝对值相加
- 异号相加:符号取绝对值大的数,绝对值相减
- 减法:
- 减去一个数等于加上这个数的相反数
- 乘法:
- 同号相乘为正,异号相乘为负
- 除法:
- 除以一个非零数等于乘以这个数的倒数
1.4 有理数的应用
- 有理数在日常生活中的应用很广泛,例如温度的正负、海拔的正负等。
第二章几何图形
2.1 直角三角形
- 直角三角形有一个角度为90度的直角,其他两个角度之和为90度。
- 直角三角形的两条直角边可以通过勾股定理计算斜边的长度。
2.2 平行四边形
- 平行四边形的对边是平行线段,对角线相等且平分。
2.3 等边三角形
- 等边三角形三条边的边长相等。
第三章数据的整理与描述
3.1 表格的制作和填写
- 制作表格时,要保证表格清晰易读,标题明确。
3.2 概率与统计
- 概率是指某个事件在相同条件下重复进行多次试验时发生的
次数的频率。
- 统计是对收集到的数据进行整理和描述,包括频数、频率、中位数等。
以上是六年级数学下册(人教版)全册的超详细笔记,希望对您有帮助!。
人教版六年级数学下册知识点归纳总结
人教版六年级数学下册知识点归纳总结一、数与代数1. 负数的认识:- 初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。
- 初步学会用负数表示一些日常生活中的实际问题,如温度、海拔等。
- 能借助数轴初步学会比较正数、0和负数之间的大小。
2. 百分数的认识:- 理解百分数的意义,知道百分数与小数、分数之间的转换关系。
- 掌握百分数的加减乘除运算,并能够解决有关百分数的实际问题。
3. 比例:- 理解比例的概念和基本性质,即内项之积等于外项之积。
- 能够根据比例关系解决实际问题,如根据比例关系计算未知量。
- 认识正比例和反比例关系,并能够根据给定条件判断两种量是否成正比例或反比例关系。
二、空间与图形1. 圆柱与圆锥:- 认识圆柱和圆锥的基本特征,包括底面、侧面、高等。
- 掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,并能够运用公式计算体积。
- 通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展空间观念。
三、统计与概率1. 统计:- 理解统计图表的意义和作用,能够根据数据绘制条形统计图、折线统计图、扇形统计图等。
- 能够根据统计图表进行数据分析和预测,如计算平均数、中位数、众数等统计量。
四、数学广角1. 鸽巢原理:- 理解鸽巢原理的基本内容,即如果n个物体要放到m个容器里,且n>m,那么至少有一个容器里放有两个或两个以上的物体。
- 能够利用鸽巢原理解决一些实际问题,如证明某些数学定理或解决逻辑推理问题等。
五、综合与实践1. 问题解决:- 能够综合运用所学知识解决实际问题,如利用负数表示温度变化、利用百分数计算折扣后的价格、利用比例关系计算比例尺等。
- 培养数学思维和解决问题的能力,提高数学应用的意识和能力。
以上是人教版六年级数学下册的详细知识点总结归纳。
在学习过程中,学生需要注重理解和应用,通过大量的练习和复习来巩固所学知识,提高数学思维和解决问题的能力。
人教版小学六年级数学下册知识点
【导语】数学是研究数量、结构、变化、空间以及信息等概念的⼀门学科,从某种⾓度看属于形式科学的⼀种。
以下是⽆忧考整理的《⼈教版⼩学六年级数学下册知识点》,希望对您有所帮助。
⼈教版⼩学六年级数学下册知识点⼀:⽐例 1.理解⽐例的意义和基本性质,会解⽐例。
2.理解正⽐例和反⽐例的意义,能找出⽣活中成正⽐例和成反⽐例量的实例,能运⽤⽐例知识解决简单的实际问题。
3.认识正⽐例关系的图像,能根据给出的有正⽐例关系的数据在有坐标系的⽅格纸上画出图像,会根据其中⼀个量在图像中找出或估计出另⼀个量的值。
4.了解⽐例尺,会求平⾯图的⽐例尺以及根据⽐例尺求图上距离或实际距离。
5.认识放⼤与缩⼩现象,能利⽤⽅格纸等形式按⼀定的⽐例将简单图形放⼤或缩⼩,体会图形的相似。
6.渗透函数思想,使学⽣受到辩证唯物主义观点的启蒙教育。
7.⽐例的意义:表⽰两个⽐相等的式⼦叫做⽐例。
如:2:1=6: 8.组成⽐例的四个数,叫做⽐例的项。
两端的两项叫做外项,中间的两项叫做内项。
9.⽐例的性质:在⽐例⾥,两个外项的积等于两个两个内向的积。
这叫做⽐例的基本性质。
例如:由3:2=6:4可知3×4=2×6;或者由x×1。
5=y×1。
2可知x:y=1.2:1.5。
10.解⽐例:根据⽐例的基本性质,如果已知⽐例中的任何三项,就可以求出这个数⽐例中的另外⼀个未知项。
求⽐例中的未知项,叫做解⽐例。
例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
11.正⽐例和反⽐例: (1)成正⽐例的量:两种相关联的量,⼀种量变化,另⼀种量也随着变化,如果这两种量中相对应的两个数的⽐值(也就是商)⼀定,这两种量就叫做成正⽐例的量,他们的关系叫做正⽐例关系。
⽤字母表⽰y/x=k(⼀定) 例如: ①速度⼀定,路程和时间成正⽐例;因为:路程÷时间=速度(⼀定)。
②圆的周长和直径成正⽐例,因为:圆的周长÷直径=圆周率(⼀定)。
完整版)人教版六年级数学下册知识点归纳
完整版)人教版六年级数学下册知识点归纳人教版六年级数学下册知识点归纳第一部分:数与代数一、数的认识1.整数【正数、零、负数】自然数是整数的一部分,用来表示物体的数量,包括0、1、2、3……。
整数可以是正数、零或负数。
2.小数【有限小数、无限小数】小数是分数的一种表示形式,分母是10、100、1000……的分数都可以用小数表示。
小数的大小可以通过比较整数部分和小数部分的大小来确定。
二、分数的认识1.分数是将单位“1”平均分成若干份,表示其中一份或几份的数。
分数可以表示两个数相除的商。
2.分数可以分为真分数和假分数。
真分数的分子小于分母,表示的数值小于1.以上是数学下册中数与代数部分的知识点归纳。
在数的认识方面,自然数是整数的一部分,而小数是分数的一种表示形式。
在分数的认识方面,分数可以表示两个数相除的商,真分数的分子小于分母,表示的数值小于1.六、当分子大于或等于分母时,我们称其为假分数。
假分数的值大于或等于1.七、如果分数的分子和分母没有公因数,那么我们称其为最简分数。
八、分数有一个基本性质:如果我们同时乘或除分数的分子和分母,那么分数的值不会改变,除非我们乘或除以0.九、小数和分数有相同的基本性质。
我们可以使用分数的基本性质来通分和约分。
1、百分数【税率、利息、折扣、成数】一、当一个数表示为另一个数的百分之几时,我们称其为百分数。
百分数也可以叫做百分率或百分比,通常用符号“%”表示。
二、分数和百分数有以下不同和相同之处:不同点:分数可以表示具体的数量并且可以有单位名称。
百分数不能表示具体的数量,也不能有单位名称。
相同点:分数和百分数都可以表示两个数之间的关系。
三、分数、小数和百分数之间可以互相转化。
1.将分数转化为小数,我们可以将分数的分子除以分母。
2.将小数转化为分数,我们可以将小数的分母改为10、100、1000等,然后约分。
3.将小数转化为百分数,我们可以将小数点向右移动两位,然后加上百分号。
人教版六年级数学下册总复习知识点汇总清单
一、数的认识1.数的分类数2.数的意义(1)整数:像-3、-2、-1、0、1、2、3……这样的数统称为整数。
整数的个数是无限的.........,.没有最小的整数.......,.也没有最大.....的整数。
....(2)自然数:用来表示物体个数的1、2、3、4……叫做自然数。
一个物体也没有,用0表示,0.也是自然数。
自然数的..........个数是无限的......,.最小的自然数是.......0.,.没有最大的自然数。
自然...........数是整数的一部分........,.正整数和....0.都是自然数。
......(3)分数:把单位“....1.”平均分成若干份........,.表示这样的一份或........者几份的数叫做分数.........,.表示这样一份的数就是这个分数的分................数单位。
....一个分数的分母是几,它的分数单位就是几分之一,分子是几,它就有几个这样的分数单位。
提示:按不同的标准划分,数的分类也会不同。
例如:按正、负数分,数分为正数、0、负数;按整数与分数分,数分为整数、分数(小数)等。
提示:0表示一个物体也没有;0是正、负数的分界点;0表示起点(如0刻度);计数时,0起占位作用。
注意:带分数只有化成假分数后,它的分子才能表示这个带分数的分数单位的个数。
分数,再约分;分数化成小数,用分子除以分母;小数化成百分数,把小数的小数点向右移动两位,并在后面加上百分号;百分数化成小数,把百分号去掉,并把小数点向左移动两位;分数化成百分数,先把分数改写成小数,再把小数改写成百分数;百分数化成分数,先把百分数改写成分母是100的分数,再化简。
9.判断一个分数能否化成有限小数的方法先看这个分数是不是最简分数,不是最简分数的要化成最简分数;再看最简分数的分母,如果分母中只有质因数2或5,这个分数就能化成有限小数;如果分母中含有2和5以外的其他质因数,就不能化成有限小数。
新人教版六年级数学下册知识点归纳
新人教版六年级数学下册知识点归纳一、负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出??).光有学过的0 1 3.4 2/5 ??是远远不够的。
所以出现了负数.以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0).数轴上0左边的数叫做负数。
若一个数小于0.则称它是一个负数。
负数有无数个.其中有(负整数.负分数和负小数)负数的写法:数字前面加负号“-”号. 不可以省略例如:-2.-5.33.-45.-25 3、正数:大于0的数叫正数(不包括0).数轴上0右边的数叫做正数若一个数大于0.则称它是一个正数。
正数有无数个.其中有(正整数.正分数和正小数)正数的写法:数字前面可以加正号“+”号.也可以省略不写。
例如:+2.5.33.+45.25 4、0 既不是正数.也不是负数.它是正、负数的分界限负数都小于0.正数都大于0.负数都比正数小.正数都比负数大5、数轴:规定了原点.正方向和单位长度的直线叫数轴。
所有的数都可以用数轴上的点来表示。
数轴的三要素:原点、单位长度、正方向也可以用数轴来比较两个数的大小。
负数0 正数左边<右边6、比较两数的大小:①利用数轴:负数<0<正数或左边<右边②利用正负数含义:正数之间比较大小.数字大的就大.数字小的就小。
负数之间比较大小.数字大的反而小.数字小的反而大1/3 >1/6 -1/3 <-1/6二、百分数(二)(一)、折扣和成数1、折扣:用于商品.现价是原价的百分之几.叫做折扣。
通称“打折”。
几折就是十分之几.也就是百分之几十。
例如八折=8/10 =80﹪.六折五=6.5/10=65/100 =65﹪解决打折的问题.关键是先将打的折数转化为百分数或分数.然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2、成数:几成就是十分之几.也就是百分之几十。
最全面人教版数学六年级下册知识点归纳总结
最全面人教版数学六年级下册知识点归纳总结人教版数学六年级下册知识点归纳总结一、数的认识1. 正整数、零、负整数及其相互之间的关系;2. 带有括号的数进行加减法;3. 数轴的概念及表示数的方法;4. 小数的读法、意义及大小比较;5. 分数的认识及其大小比较。
二、四则运算1. 简单的算式的较复杂的算式的列法结果;2. 含有小括号和带有括号的计算;3. 利用分配律和结合律简化计算;4. 利用消去律和交换律简化计算;5. 一步和两步的方程式的解法。
三、几何1. 平面图形的认识,长方形、正方形、三角形的认识及其性质;2. 直角、锐角、钝角的认识及其性质;3. 直线、射线、线段的认识及其表示方法;4. 垂线的认识及其性质;5. 尺规作图法。
四、数据统计1. 统计图的认识及其意义;2. 折线图、条形图、分段函数图的绘制;3. 计算平均数、中位数、众数;4. 利用数据统计图比较数据之间的差异和规律。
五、应用题1. 长度、比例和时间的应用题;2. 面积和体积的应用题;3. 金钱计算的应用题;4. 简单的利率计算;5. 推理判断与证明。
六、数学思想方法1. 利用数的性质简化计算;2. 利用逆向思维解决问题;3. 螺旋式思考,用图象解决问题;4. 提高解决问题的能力,做出正确的决策;5. 尝试解决两步和多步的问题。
七、数的认识数的认识是数学学习的第一步。
学生在学习过程中,需要了解正整数、零、负整数及其相互之间的关系,通过集中掌握这些数的属性,将它们的性质运用于真正的问题中,并且学习如何利用这些属性解决问题。
在学习小数和分数,学生需要掌握小数的读法、意义及大小比较,并理解小数与分数之间有着重要的联系,学习如何将小数转化为分数。
八、四则运算四则运算是学习数学最初的内容之一。
在学习过程中,学生应该能够正确地执行简单的算式和较复杂的算式。
学生还需要学习含有小括号和带有括号的计算、利用消去律和交换律简化计算以及一步和两步的方程式的解法。
人教版六年级数学下册知识点归纳
人教版六年级数学下册知识点归纳第一部份数与代数(一)数的认识整数【正数、0、负数】一、一个物体也没有,用0 表示。
0 和1、2、3……都是自然数。
自然数是整数。
二、最小的一位数是1,最小的自然数是0。
三、零上4 摄氏度记作+4℃;零下4 摄氏度记作-4℃。
“+4”读作:正四。
“-4”读作负四。
+4 也可以写成4。
四、像+4、19、+8844 这样的数都是正数。
像-4、-11、-7、-155这样的数都是负数。
五、0 既不是正数,也不是负数。
正数都大于0,负数都小于0。
六、通常情况下,比海平面高用正数表示,比海平面低用负数表示。
七、通常情况下,盈利用正数表示,亏损用负数表示。
八、通常情况下,上车人数用正数表示,下车人数用负数表示。
九、通常情况下,收入用正数表示,支出用负数表示。
十、通常情况下,上升用正数表示,下降用负数表示。
小数【有限小数、无限小数】一、分母是10、100、1000……的分数都可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……二、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。
每相邻两个计数单位间的进率都是10。
三、每个计数单位所占的位置,叫做数位。
数位是按照一定的顺序排列的。
四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
五、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
六、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
七、把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。
八、求小数近似数的一般方法:1 先要弄清保留几位小数;2 根据需要确定看哪一位上的数;3 用“四舍五入”的方法求得结果。
九、整数和小数的数位顺序表:分数【真分数、假分数】一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
人教版六年级数学下册知识点清单
人教版六年级数学下册知识点总结第一单元 负数1.正数的意义:大于0的数叫做正数。
2.负数的意义:小于0的数叫做负数。
3.0既不是正数也不是负数,它是正数和负数的分界点。
4.负数<0<正数5.数轴:规定了原点、正方向、单位长度的直线叫做数轴。
6.在数轴上的数越往右越大,越往左越小。
第二单元 百分数(二)1.折扣1.打几折就是按原价的...百分之几十出售;打几几折就是按原价的...百分之几十几出售。
2.几折表示十分之几,也就是百分之几十;几几折表示百分之几十几。
3.关系式:①原价×折扣=现价 ;②原价-原价×折扣=便宜的钱数;原价×(1-折扣)=便宜的钱数;③现价÷折扣=原价;④现价÷原价=折扣2.成数1.成数表示一个数是另一个数的十分之几,通称“几成”。
2.几成就是十分之几,也就是百分之几十。
3.税率1.税率收入额应纳税额=⨯%100 2.收入额×税率=应纳税额3.应纳税额÷税率=收入额4.利率1.本金:存入银行的钱叫做本金。
2.利息:取款时银行多支付的钱叫做利息。
3.利率:单位时间(如1年、1月、1日等)内的利息与本金的比率叫做利率。
4.利息=本金×利率×存期第三单元 圆柱与圆锥1.圆柱1.圆柱的侧面沿高..剪开,展开后是一个长方形(或正方形)。
这个长方形(或正方形)的一边长等于圆柱的底面周长....,另一边长等于圆柱的高.。
2.圆柱的侧面积=底面周长×高,用字母表示:s 侧=ch ,s 侧=πdh,s 侧=2πrh 。
3.圆柱的表面积=侧面积+底面积×2,用字母表示:s 表=s 侧+2s 底,s 表=2πrh+2πr ²,s 表=πdh+2π(2d )²,s 表=ch+2π(π2c )². 4.圆柱的体积=底面积×高,用字母表示:v=sh,v=πr ²h,v=π(2d )²h ,v=π(π2c )²h 。
人教版六年级数学下册知识点总结归纳
人教版六年级数学下册知识点总结归纳人教版小学数学六年级下册知识点归纳第一单元:负数1、负数的由来为了表示相反意义的两个量(如盈利亏损、收入支出),仅有学过的,以收入为正、支出为负。
但是,仅有1、3.4、5等数字是远远不够的。
所以出现了负数,以盈利为正、亏损为负。
2、负数的定义和写法负数是小于零的数,数轴上左边的数叫做负数。
负数有无数个,其中包括负整数、负分数和负小数。
负数的写法是在数字前面加负号“-”,不可以省略。
例如:-2,-5.33,-45,-5.3、正数的定义和写法正数是大于零的数,数轴上右边的数叫做正数。
正数有无数个,其中包括正整数、正分数和正小数。
正数的写法是数字前面可以加正号“+”,也可以省略不写。
例如:+2,5.33,+45,5.4、零的特殊性质零既不是正数,也不是负数,它是正数和负数的分界线。
5、数轴数轴是表示正数和负数的直线,负数都比正数小,正数都比负数大。
数轴的中央是零点,左边是负数,右边是正数。
6、比较两数的大小比较两个数的大小可以利用数轴,也可以利用正负数的含义。
正数之间比较大小,数字大的就大,数字小的就小。
负数之间比较大小,数字大的反而小,数字小的反而大。
第二单元:百分数(二)一)折扣和成数1、折扣的定义折扣是用于商品的,现价是原价的百分之几,叫做折扣。
通常称为“打折”。
2、折扣的计算方法解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
例如,商品现在打八折,现在的售价是原价的80%;商品现在打六折五,现在的售价是原价的65%。
3、成数的定义和计算方法成数是表示部分与整体的比例关系,也可以理解为百分数。
例如,一成等于十分之一,八成五等于85%。
解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
例如,这次衣服的进价增加一成,这次衣服的进价比原来的进价增加10%;今年小麦的收成是去年的八成五,今年小麦的收成是去年的85%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版六年级数学下册知识点汇总一、负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),仅有学过的0,1 ,3.4,2 5……是远远不够的。
所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。
若一个数小于0,则称它是一个负数。
负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“—”号,不可以省略.例如:-2,-5.33,-45,-2 53、正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数.若一个数大于0,则称它是一个正数。
正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。
例如:+2,5.33,+45,2 54、0 既不是正数,也不是负数,它是正、负数的分界限负数都小于0,正数都大于0,负数都比正数小,正数都比负数大5、数轴:6①利用数轴:负数<0<正数或左边<右边②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。
负数之间比较大小,数字大的反而小,数字小的反而大.13>16-13<-16二、百分数(二)(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。
通称“打折”。
几折就是十分之几,也就是百分之几十。
例如八折=810=80﹪,六折五=6.510=65100=65﹪解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2、成数:几成就是十分之几,也就是百分之几十。
例如一成=110=10﹪,八成五=8.510=85100=80﹪解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二)、税率和利率1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
(2)纳税的意义:税收是国家财政收入的主要来源之一。
国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。
(3)应纳税额:缴纳的税款叫做应纳税额。
(4)税率:应纳税额与各种收入的比率叫做税率。
(5)应纳税额的计算方法:应纳税额=总收入×税率收入额=应纳税额÷税率2、利率(1)存款分为活期、整存整取和零存整取等方法。
(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
(3)本金:存入银行的钱叫做本金。
(4)利息:取款时银行多支付的钱叫做利息。
(5)利率:利息与本金的比值叫做利率。
(6)利息的计算公式:利息=本金×利率×时间利率=利息÷时间÷本金×100%(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)税后利息=本金×利率×时间×(1-利息税率)购物策略:估计费用:根据实际的问题,选择合理的估算策略,进行估算。
购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案学后反思:做事情运用策略的好处三、圆柱和圆锥(一)、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。
圆柱也可以由长方形卷曲而得到。
(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
)2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S 增=2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积 =侧面积+一个底面积油桶的表面积 =侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类(二)、圆锥1、圆柱的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的圆锥也可以由扇形卷曲而得到2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。
(2)侧面的特征:圆锥的侧面是一个曲面。
(3)高的特征 :圆锥有一条高。
4、圆柱的切割:①横切:切面是圆②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S 增=2rh5、圆锥的相关计算公式:底面积 :S 底=πr ²底面周长:C 底=πd=2πr体积 :V 锥=13 πr ²h考试常见题型:①已知圆锥的底面积和高,求体积,底面周长②已知圆锥的底面周长和高,求圆锥的体积,底面积③已知圆锥的底面周长和体积,求圆锥的高,底面积以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算(三)、圆柱和圆锥的关系1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。
3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。
4、圆柱与圆锥等底等高 ,体积相差23 Sh题型总结①直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)③横截面的问题④浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体⑤等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1 3(四)、典型题:1、一个圆柱的侧面展开是一个正方形,它的高是底面直径的π倍,即h=C=πd,它的侧面积是S侧=h²2、圆柱的底面半径扩大2倍,高不变,表面积扩大2倍,体积扩大4倍。
3、圆柱的底面半径扩大2倍,高也扩大2倍,表面积扩大4倍,体积扩大8倍。
4、圆柱的底面半径扩大3倍,高缩小3倍,表面积不变,体积扩大3倍。
5、一个圆柱和它等底等高的圆锥体积之和是48立方厘米,这个圆柱的体积是()立方厘米,圆锥的体积是()立方厘米圆锥和它等底等高的圆柱体积之比是1 :3,圆柱占1份,圆锥占3份,一共4份,题目中说了4份的和一共是48立方厘米。
圆锥占了4份中的1份,圆柱占了4份中的3份V锥:48÷4=12(立方厘米) 或48×14=12(立方厘米)V柱:48÷4=12(立方厘米) 12×3=36(立方厘米) 或48×34=36(立方厘米)6、一个圆柱和它等底等高的圆锥体积之差是24立方分米,这个圆柱的体积是()立方分米,圆锥的体积是()立方分米。
圆锥和它等底等高的圆柱体积之比是1 :3,圆柱占1份,圆锥占3份,1份和3份相差了2份,题目中说了相差24立方分米,2份就是24立方分米圆锥占了2份中的1份,圆柱占了2份中的3份V锥:24÷2=12(立方分米) 或24×12=12(立方分米)V 柱:24÷2=12(立方分米) 12×3=36(立方分米) 或 24×32 =36(立方分米)7、一个圆柱和一个圆锥,体积相等,底面积也相等,圆柱的高是2厘米,圆锥的高是( )厘米。
V 柱=V 锥 V 柱=V 锥S 柱底h 柱= 13 S 锥底h 锥 S 柱底h 柱= 13S 锥底h 锥 h 柱= 13 h 锥 S 柱底= 13S 锥底 2= 13 h 锥 4 = 13S 锥底 h 锥= 2÷13 S 锥底= 4÷13h 锥=6 S 锥底=128、一个圆柱和一个圆锥体积相等,高也相等,圆柱的底面积是4平方分米,圆锥的底面积是( )平方分米。
9、一个圆锥和一个圆柱的底面积相等,体积的比是1:6。
如果圆锥的高是3.6厘米,圆柱的高是( )厘米,如果圆柱的高是3.6厘米,圆锥的高是( )厘米。
13 S 锥底h 锥1 13 S 锥底h 锥 1 S 柱底h 柱 6 S 柱底h 柱 613 h 锥 1 13 h 锥 1 h 柱 6 h 柱 6h 柱×1 = 13 ×h 锥×6 h 柱 = 13 ×h 锥×6h 柱 = 13 ×3.6×6 h 柱÷13 ÷6 = h 锥h 柱 = 7.2 3.6÷13 ÷6 = h 锥10、一个圆柱体,把它的高截短3厘米,它的底面积减少94.2平方厘米,这个圆柱的体积减少了( )立方厘米。
πr ²C=S 侧÷h r=C ÷π÷2 V=πr ²h=94.2÷3 =31.4÷3.14÷2 =3.14×5×3=31.4(厘米) =5(厘米) =235.5(立方厘米)四、比例1、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”。