2020-2021学年四川省成都市中考数学一诊试卷及答案解析A

合集下载

2020年成都市六区县中考数学一诊试卷 (含答案解析)

2020年成都市六区县中考数学一诊试卷 (含答案解析)

2020年成都市六区县中考数学一诊试卷一、选择题(本大题共10小题,共30.0分)1.数轴上,到−3对应点距离为5个单位长度的数是()A. −8或1B. 8C. −8或2D. 22.下图是由6个完全相同的小正方体组成的几何体,其俯视图为()A.B.C.D.3.十三届全国人大一次会议3月5日上午9时在人民大会堂开幕,听取国务院总理李克强关于政府工作的报告.报告中指出:加大精准脱贫力度,今年再减少农村贫困人口1000万以上,完成易地扶贫搬迁2800000人.其中2800000用科学记数法表示为()A. 2.8×106B. 2.8×105C. 28×105D. 0.28×1074.下列运算正确的是()A. a+a2=a3B. (a2)3=a6C. (x−y)2=x2−y2D. a2a3=a65.已知直线m//n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A. 20°B. 30°C. 45°D. 50°6.已知反比例函数y=2k−3的图象经过(1,1),则k的值为()xA. −1B. 0C. 1D. 27.解分式方程xx−1−1=3(x−1)(x+2),去分母,得:x(x+2)−(x−1)(x+2)=3,解得,x=1.则下列结论:①x=1是原分式方程的解;②x=1不是原分式方程的解;③x=1是方程x(x+2)−(x−1)(x+2)=3的解;④原分式方程无解.其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个8.有一组数据:1,2,3,6,这组数据的方差是()A. 2.5B. 3C. 3.5D. 49.如图,△ABC内接于⊙O,OC⊥OB,OD⊥AB于点D,交AC于点E,已知⊙O的半径为1,则AE2+CE2的值为()A. 1B. 2C. 3D. 410.如图,抛物线y1=ax2+bx+c(a≠0),其顶点坐标为A(−1,3),抛物线与x轴的一个交点为B(−3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a−b=0,②abc>0,③方程ax2+bx+c=3有两个相等的实数根,④抛物线与x轴的另一个交点是(1,0),⑤当−3<x<−1时,有y2<y1.其中正确结论的个数是()A. 5B. 4C. 3D. 2二、填空题(本大题共9小题,共36.0分)11.代数式√x−4中x的取值范围是______.12.如图,菱形ABCD的边长为6,∠ABC=60°,则对角线AC的长是_________.13.点A(x1,y1),B(x2,y2)是反比例函数y=1x的图象上两点,若0<x1<x2,则y1、y2的大小关系是______ .14.如图,已知在△ABC中,AB=AC=5,BC=8,点D是边BC的中点,E是线段BA上一点(与点B.A不重合),直线DE交CA的延长线于F点,当FE=FA时,则tan∠AEF=______.15.比较大小:−√5−12______ −12(填“>”或“<”).16.一次数学考试中,九年(1)班和(2)班的学生数和平均分如表所示,则这两班平均成绩为______ 分.班级人数平均分(1)班5285(2)班488017.若m,n是方程x2+2015x−1=0的两个实数根,则m2n+mn2−mn的值等于______ .18.如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(−4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数y=kx(k≠0)图象上,当△ADE和△DCO的面积相等时,k的值为.19.若点A(m,n)在一次函数y=3x+b的图像上,且3m−n>2,则b的取值范围为_________.三、解答题(本大题共9小题,共84.0分)20.(1)计算:√8−2−1+(1−√3)0−4cos45°.(2).解不等式组:{3−2×(x−1)>0x+32−1≤x,并写出符合不等式组的整数解.21.先化简,再求值:xx2−2x+1÷(x+1x2−1+1),其中x=√3+1.22.学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练.王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的跳远成绩,将两次测得的成绩制作成图所示的统计图和不完整的统计表(满分10分,得分均为整数).训练后学生成绩统计表成绩/分6分7分8分9分10分人数/人1385n根据以上信息回答下列问题:(1)训练后学生成绩统计表中n=________,并补充完成下表:平均分中位数众数训练前7.5________ 8训练后________ 8________(2)若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?(3)经调查,经过训练后得到9分的五名同学中,有三名男生和两名女生.王老师要从这五名同学中随机抽取两名同学写出训练报告,请用列表或画树状图的方法,求所抽取的两名同学恰好是一男一女的概率.23.某渔船向正东方向航行,上午8点在A处时发现渔船、小岛B和小岛C在同一条直线上,渔船以30海里/小时的速度继续向正东方向航行,上午10点到达位于小岛C的正南方向上的D处,此时小岛B在渔船的西偏北63°的方向上,如图,已知小岛C在小岛B的东偏北45°的方向上,求小岛B和小岛C之间的距离.(结果精确到1海里,参考数据:sin63°≈0.9,cos63°≈0.5,tan63°≈2.0,√2≈1.4)(k≠0)的图象交于点A(−2,a)和24.在平面直角坐标系xOy中,直线y=−x+2与反比例函数y=kx点B.(1)求反比例函数的表达式和点B的坐标;<−x+2的解集.(2)直接写出不等式kx25.如图,C、D为⊙O上两点,AB为直径,E在AB延长线上,且AD平分∠CAB,过D点的直线EF⊥AF,交AC的延长线于点F,连接BD.(1)求证:EF是⊙O的切线;(2)若EB:ED=1:√3,⊙O的半径为r,当r=4时,求FC的长.26.大润发超市在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.(1)为了实现每天1600元的销售利润,超市应将这种商品的售价定为多少?(2)设每件商品的售价为x元,超市所获利润为y元.①求y与x之间的函数关系式;②物价局规定该商品的售价不能超过40元/件,超市为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?27.已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使∠CEF=90°,过点E作MN//AD,交AB于点M,交CD于点N,∠AEM=∠FEM.(2)如图2,若点E是OD上一点,点F是AB上一点,且使DEDO =AFAB=14,请判断△EFC形状,并说明理由(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CF,交AB于点F,当DEDO =mn时,请猜想AFAB的值(请直接写出结论)28.如图,直线AB经过x轴上一点A(3,0),且与抛物线y=ax2+1相交于B、C两点,点B的坐标为(1,2).(1)求抛物线和直线AB的解析式;(2)若点D是抛物线上一点,且D在直线BC下方,若S△BCD=3,求点D的坐标;(3)设抛物线顶点为M,问在抛物线上是否存在点P使△PMC是以MC为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【答案与解析】1.答案:C解析:此题主要考查了数轴的特征和应用,要熟练掌握,解答此题的关键是熟记数轴上两点之间的距离的求法.数轴上,到−3对应点距离为5个单位长度的数表示的点有可能在−3对应点的左边,也有可能在−3对应点的右边,据此求解即可.解:数轴上,到−3对应点距离为5个单位长度的数是:−3−5=−8或−3+5=2.故选C.2.答案:B解析:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.根据从上面看得到的图形是俯视图,据此可得答案.解:从上面看第一排是三个小正方形,第二排右边是一个小正方形,故选B.3.答案:A解析:解:2800000用科学记数法表示为2.8×106,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.答案:B解析:此题主要考查了合并同类项以及完全平方公式和幂的乘方运算、同底数幂的乘法运算等知识,正确应用相关法则是解题关键.直接利用合并同类项法则以及完全平方公式和幂的乘方运算法则、同底数幂的乘法运算法则计算得出答案.解:A、a+a2,无法计算,故此选项错误;B、(a2)3=a6,正确;C、(x−y)2=x2−2xy+y2,故此选项错误;D、a2a3=a5,故此选项错误;故选B.5.答案:D解析:解:∵直线m//n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.根据平行线的性质即可得到结论.本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.6.答案:D解析:本题考查了反比例函数图象上点的坐标特征:函数图象上的点的坐标满足函数解析式.将点的坐标代入反比例函数解析式即可解答.得,解:将点(1,1)代入y=2k−3x2k−3=1,解得:k=2,故选D.7.答案:C解析:此题考查了分式方程的解法.注意解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.注意解分式方程一定要验根.根据解分式方程的方法步骤对每个小题作出判断即可得出结论.解:当x=1时,x−1=0,∴x=1不是原分式方程的解,故①错误,②正确;③x=1是方程x(x+2)−(x−1)(x+2)=3的解,故③正确;④当x=1时,x−1=0,∴x=1不是原分式方程的解,原分式方程无解,故正确.其中,正确的结论有②③④共3个.故选C.8.答案:C解析:本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x−,则方差s2=1n[(x1−x−)2+(x2−x−)2+⋯+(x n−x−)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.先求平均数,再代入公式s2=1n[(x1−x−)2+(x2−x−)2+⋯+(x n−x−)2],计算即可.解:x−=(1+2+3+6)÷4=3,s2=14[(1−3)2+(2−3)2+(3−3)2+(6−3)2]=3.5.故选:C.9.答案:B解析:【试题解析】本题考查的是三角形的外接圆与外心,垂径定理,勾股定理,三角形外角性质,熟练掌握这些知识是解题的关键.连接BE,根据垂径定理得到AD=DB,得到EA=EB,∠EBA=∠BAC,由圆周角定理得∠BAC=1 2∠BOC=12×90∘=45∘,得到△BEC是直角三角形,根据勾股定理计算即可.解:连接BE,∵OD⊥AB,∴AD=DB,∴DE垂直平分AB,∴EA=EB,∴∠EBA=∠BAC.∵∠BAC=12∠BOC=12×90∘=45∘,∴∠EBA=45∘.∴∠BEC=∠EBA+∠BAC=45∘+45∘=90∘.∴△BEC是直角三角形,在直角△BEC中,BE2+CE2=BC2,∵BC2=2OC2=2,∴BE2+CE2=2,即AE2+CE2=2.故选B.10.答案:A解析:本题是二次函数综合题,考查了二次函数图象与系数的关系、抛物线的对称性和从函数观点看方程和不等式,解答关键是数形结合.根据抛物线的图象特征和对称性可得①②④;将方程ax2+bx+c=3转化为函数图象求交点问题可得③;通过数形结合可得⑤.解:由抛物线对称轴为直线x=−b2a=−1,b=2a,则①正确;由图象,ab同号,c>0,则abc>0,则②正确;方程ax2+bx+c=3可以看做是抛物线y=ax2+bx+c与直线y=3求交点横坐标,由抛物线顶点为(−1,3),则直线y=3过抛物线顶点.∴方程ax2+bx+c=3有两个相等的实数根.故③正确;由抛物线对称轴为直线x=−1,与x轴的一个交点(−3,0),由对称性得抛物线与x轴的另一个交点为(1,0),则④正确;∵A(−1,3),B(−3,0),直线y2=mx+n与抛物线交于A,B两点∴当−3<x<−1时,抛物线y1的图象在直线y2上方,则y2<y1,故⑤正确.故选:A.11.答案:x≥4解析:解:由题意,得x−4≥0,解得x≥4.故答案为:x≥4.根据被开方数是非负数,可得答案.此题考查了二次根式的意义和性质.概念:式子√a(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12.答案:6解析:解:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=6.故答案为:6.由菱形ABCD中,∠ABC=60°,易证得△ABC是等边三角形,继而求得对角线AC的长.此题考查了菱形的性质以及等边三角形的判定与性质.注意证得△ABC是等边三角形是关键.13.答案:y1>y2解析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据0<x 1<x 2判断两点是否在函数图象的同一个分支上,再由函数的增减性即可解答.本题比较简单,考查的是反比例函数的性质,解答此题的关键是熟练掌握反比例函数的增减性. 解:∵反比例函数y =1x 中,k =1>0,∴此函数的图象在一、三象限,在每一象限内y 随x 的增大而减小,∵0<x 1<x 2,∴A 、B 两点均在第三象限, ∵x 1<x 2, ∴y 1>y 2. 故答案为y 1>y 2. 14.答案:247解析:解:作BM ⊥CF 于M ,连接AD .∵AB =AC ,BD =DC ,∴AD ⊥BC ,∴∠ADC =90°,AD =√52−42=3,∵12⋅BC ⋅AD =12⋅AC ⋅BM ,∴BM =245,∴AM =√52−(245)2=75,∵FE =EA ,∴∠FEA =∠FAE ,∴tan∠FEA =tan∠FAE =BM AM =247.故答案为247.作BM ⊥CF 于M ,连接AD.承办方求出BM 、AM 即可解决问题;本题考查解直角三角形、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.15.答案:<解析:解:∵√5−1>1,∴√5−12>12,∴−√5−12<−12; 故答案为:<.先比较出√5−1与1的大小关系,再比较出√5−12与12的大小关系,最后根据两个负数比较大小,绝对值大的反而小,即可得出答案.此题考查了实数的大小比较,解题的关键是根据两个负数比较大小,绝对值大的反而小. 16.答案:82.6解析:此题考查了加权平均数,熟练掌握加权平均数的定义是解本题的关键.根据加权平均数的定义计算即可得到结果.解:根据题意得:5252+48×85+4852+48×80=44.2+38.4=82.6(分),则这两班平均成绩为82.6分,故答案为:82.6 17.答案:2016解析:本题考查了根与系数关系的应用,能熟记根与系数关系的内容是解此题的关键,若x 1、x 2是一元二次方程ax 2+bx +c =0(a 、b 、c 为常数,a ≠0)的两个根,则x 1+x 2=−b a ,x 1⋅x 2=c a . 根据根与系数的关系得出m +n =−2015,mn =−1,变形后代入求出即可.解:∵m ,n 是方程x 2+2015x −1=0的两个实数根,∴m +n =−2015,mn =−1,∴m 2n +mn 2−mn=mn(m+n)−mn=−1×(−2015)−(−1)=2016,故答案为:2016.18.答案:−3√3解析:本题主要考查了用待定系数法求反比例函数的解析式和反比例函数系数k的几何意义,熟练掌握反比例函数的几何意义是解题的关键.连接AC,由B的坐标得到等边三角形AOB的边长,得到A的坐标,AO=OC,利用等边对等角得到一对角相等,再由∠AOB=60°,得到∠ACO=30°,可得出∠BAC 为直角,由△ADE与△DCO面积相等,且△AEC面积等于△AED与△ADC面积之和,△AOC面积等于△DCO面积与△ADC面积之和,得到△AEC与△AOC面积相等,进而确定出AE的长,可得出E为AB 中点,E的坐标,将E的坐标代入反比例解析式中求出k的值,即可确定出反比例函数解析式.解:连接AC,∵点B的坐标为(4,0),△AOB为等边三角形,∴AO=OC=4,点A的坐标为(2,−2√3),∴∠OCA=∠OAC,∵∠AOB=60°,∴∠ACO=30°,∠B=60°,∴∠BAC=90°,由A(2,−2√3),C(−4,0),易得到AC=4√3,×AE×∵S△ADE=S△DCO,S△AEC=S△ADE+S△ADC,S△AOC=S△DCO+S△ADC,∴S△AEC=S△AOC=12×CO×2√3,AC=12即 12⋅AE ⋅4√3=12×4×2√3,∴AE =2,∴E 点为AB 的中点,E(3,−√3),把E 点(3,−√3)代入y =k x 中得:k =−3√3.故答案为−3√3. 19.答案:b <−2解析:【试题解析】本题考查了一次函数图象上点的坐标特征.由点A 的坐标结合一次函数图象上点的坐标特征,可得出3m +b =n ,再由3m −n >2,得出b <−2,即可求解.解:∵点A(m,n)在一次函数y =3x +b 的图象上,∴3m +b =n ,∴3m −n =−b ,∵3m −n >2,∴−b >2,即b <−2.故答案为b <−2.20.答案:解:(1)原式=2√2−12+1−4×√22, =2√2+12−2√2,=12.(2){3−2(x −1)>0①x +3−1≤x②解不等式①可得:x<52,解不等式②可得:x≥1,则该不等式组的解集为1≤x<52,该不等式组的整数解为1,2.解析:本题考查的是负指数幂,零指数幂,特殊三角函数值,一元一次不等式组的特殊解有关知识.(1)首先对该式进行变形,然后再进行计算即可解答案;(2)首先解出该不等式组的解集,然后再求整数解即可.21.答案:解:xx2−2x+1÷(x+1x2−1+1)=x(x−1)2÷x+1+x2−1x2−1=x(x−1)2⋅(x+1)(x−1)x(x+1)=1x−1,当x=√3+1时,原式=√3+1−1=√33.解析:根据分式的加法和除法可以化简题目中的式子,然后将x的值代入即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.答案:解:(1)n=3.补充如下:(2)500×(5+320×100%−2+120×100%)=125(人);(3)由题意,可列表如下:男1男2男3女1女2男1(男1,男2)(男1,男3)(男1,女1)(男1,女2)男2(男2,男1)(男2,男3)(男2,女1)(男2,女2)男3(男3,男1)(男3,男2)(男3,女1)(男3,女2)女1(女1,男1)(女1,男2)(女1,男3)(女1,女2)女2(女2,男1)(女2,男2)(女2,男3)(女2,女1)∴共有20种情况,所抽取的两位同学恰好是一男一女的情况有12种,∴P(所抽取的两位同学恰好是一男一女)=1220=35.解析:此题考查了列表法或树状图法求概率以及条形统计图的知识,也考查了平方数,中位数,众数等,用到的知识点为:概率=所求情况数与总情况数之比.(1)通过观察条形图,训练学生总人数为:4+6+7+2+1=20(人),∴n=20−(1+3+8+5)=3(人).训练后的平均分为6+3×7+8×8+9×5+10×320=8.3,训练前的中位数为(8+8)/2=7.5,训练后的众数为8,故答案为3;8.3;7.5;8;(2)(3)见答案.23.答案:解:由题意得,AD=30×2=60海里,过B作BE⊥CD于E,∵∠CBE=45°,∴∠C=45°,∵∠AD=90°,∴∠A=∠C=45°,∴CD=AD=60,∵BE ⊥CD ,AD ⊥CD ,∴BE//AD ,∴∠DBE =∠ADB =63°,∴DE =BE ⋅tan63°=2BE ,∴BE +2BE =CD =60,∴BE =20,∴BC =√2BE =60√2≈84海里,答:小岛B 和小岛C 之间的距离约为84海里.解析:根据题意求得AD =30×2=60海里,过B 作BE ⊥CD 于E ,得到CD =AD =60,根据平行线的性质得到∠DBE =∠ADB =63°,根据三角函数的定义得到DE =BE ⋅tan63°=2BE ,于是得到结论.本题考查的是解直角三角形的应用−方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.24.答案:解:(1)把A(−2,a)代入y =−x +2中,得:2+2=a ,即a =4把A(−2,4)代入y =k x 中,得k =−8,即y =−8x ,联立方程组{y =−x +2y =−8x , 解得:{x =−2y =4或{x =4y =−2, 则B(4,−2);(2)如图:k x <−x +2的解集x <−2或0<x <4.解析:此题主要考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式;熟练掌握待定系数法求直线解析式是解决问题的关键.(1)由点A在直线y=−x+2上,即可求出a的值,从而可得点A的坐标,根据点A在反比例函数y=kx 的图象上,即可求出反比例函数的解析式,然后将一次函数与反比例函数联立方程组,解方程组即可求出点B的坐标;(2)根据一次函数y=−x+2与反比例函数y=−8的交点坐标即可得不等式的解集.x25.答案:(1)证明:如图,连接OD,则OD=OA,∴∠,2=∠3,∵AD平分∠CAB,∴∠1=∠2,∴∠1=∠3,∴OD//AF,又∵EF⊥AF,∴OD⊥EF,∵OD是⊙O的直径,∴EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠ADB=90°,∴∠3+∠ODB=90°,由(1)可知,∠ODB+∠EDB=90°,∴∠EDB=∠3=∠2,∵∠E=∠E,∴△EDB∽△EAD,∴EBED =EDEA,∵EBED =√3,∴EDEA =√3,∴EA=√3ED=√3×√3EB=3EB,∴EB=r=4,在Rt△ODE中,,∴∠E=30°,连接BC,则BC⊥AF,∴BC//EF,∴∠ABC=∠E=30°,在Rt△ACB中,AC=12AB=4,在Rt△AFE中,AF=12AE=6,∴FC=AF−AC=6−4=2.解析:本题考查了圆周角定理,切线的判定和性质,角平分线定义,平行线的判定和性质以及直角三角形的性质等知识,掌握和灵活运用圆周角定理是解题关键.(1)连接OD,只要证明OD⊥EF即可证明EF是⊙O的切线;(2)首先证明△EDB∽△EAD,得到EB=4,然后利用解直角三角形证明∠E=30°,再根据直角三角形的性质即可求出FC的长.26.答案:解:(1)设商品的定价为x元,由题意,得(x−20)[100−2(x−30)]=1600,解得:x=40或x=60;答:售价应定为40元或60元.(2)①y=(x−20)[100−2(x−30)],即y=−2x2+200x−3200;②∵a=−2<0,∴当x=−b2a =−2002×(−2)=50时,y取最大值;又x≤40,且当x<50时y随x的增大而增大,则在x=40时,y取最大值,即y最大值=1600,答:售价为40元/件时,此时利润最大,最大利润为1600元.解析:本题主要考查一元二次方程的应用、二次函数的应用,理解题意找到题目蕴含的相等关系,并据此列出方程或函数解析式是解题的关键.(1)设商品的定价为x元,根据总利润=单件利润×销售量,列出关于x的一元二次方程求解可得;(2)①根据(1)中相等关系即可得函数解析式;②根据二次函数的性质即可得最大值.27.答案:(1)证明:如图1中,∵在正方形ABCD中,BD是对角线,∴AD=CD,DE=DE,∠ADE=∠CDE=45°,∴△ADE≌△CDE(SAS.)∴∠EAD=∠ECD,又∵MN//AD,∴∠EAD=∠AEM,∴∠AEM=∠ECD,∵MN⊥CD,∴∠ENC=90°,又∵∠CEF=90°,∴∠FEM+∠CEN=∠CEN+∠ECD=90°,∴∠FEM=∠ECD,∴∠AEM=∠FEM.(2)解:结论:△EFC是等腰直角三角形.理由如下:如图2中,过点E作MN//AD,交AB于点M,交CD于点N.∴MN⊥AB,MN⊥CD,∵点O是BD的中点,∴BD=2OD.∵DEDO =14,∴DEDB =18,∴BEBD =78,∵MN//AD,∴△BME∽△BAD,∴BMBA =BEBD=78,∴AMBA =18,∴AB=8AM.∵AFAB =14,∴AB=4AF.∴AF=2AM.∴AM =FM .∴△FEM≌△AEM(S.A.S.),∴EF =EA.∠FEM =∠AEM .仿(1)可证EA =EC ,∠AEM =∠EAD =∠ECD ,∴EF =EC ,∠FEM =∠ECD ,∵∠ECD +∠CEN =90°,∴∠FEM +∠CEN =90°,∴∠FEC =180°−(∠FEM +∠CEN)=180°−90°=90°,∴△EFC 是等腰直角三角形.(3)解:如图3中,当DE DB =m n 时,AF AB =2m n ,理由同(1);解析:(1)由正方形的性质得出∠ABD =45°,∠BAD =∠ABC =∠BCD =∠ADC =90°,AE =CE ,由HL 证明Rt △AME≌Rt △ENC ,得出∠AEM =∠ECN ,再由角的互余关系即可得出结论;(2)结论:△EFC 是等腰直角三角形.理由如下:如图2中,过点E 作MN//AD ,交AB 于点M ,交CD 于点N ,想办法证明EA =EF =EC ,∠CEF =90°即可得出结论;(3)同(1)即可得出答案.本题是综合题目,考查了正方形的性质、全等三角形的判定与性质、平行线分线段成比例定理、等腰直角三角形的判定、线段垂直平分线的性质、等腰三角形的判定与性质等知识;本题综合性强,有一定难度.28.答案:解:(1)将点A 、B 的坐标代入一次函数表达式:y =kx +b 得:{0=3k +b 2=k +b ,解得:{k =−1b =3, 故直线AB 的表达式为:y =−x +3…②,同理将点B 的坐标代入抛物线表达式并解得:抛物线的表达式为:y=x2+1…②;(2)联立①②并解得:x=1或−2,故点C(−2,5),如图1,过点D作y轴的平行线交BC于点H,设点D(x,x2+1),则点H(x,−x+3),则S△BCD=3=12×DH×(x B−x C)=12(−x+3−x2−1)×(1+2),解得:x=0或−1,故点D(−1,2)或(0,1);(3)如图2,点M的坐标为:(0,1),点C(−2,5),则直线CM函数表达式中的k值为:−2,①当∠PCM=90°时,则直线CP的函数表达式为:y=12x+m,将点C的坐标代入上式并解得:m=6,故直线PC的表达式为:y=12x+6…③,联立②③并解得:x=−2或52(舍去−2),故点P的坐标为:(52,294);②当∠CMP(P′)=90°时,同理可得:点P(P′)(12,54 ),综上,点P的坐标为:(52,294)或(12,54).解析:(1)将点A、B的坐标代入一次函数表达,即可求解;(2)则S△BCD=3=12×DH×(x B−x C)即可求解;(3)分∠PCM=90°、∠CMP(P′)=90°两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数、直角三角形的性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.。

2020年四川省成都市双流区中考数学一诊试卷 (含答案解析)

2020年四川省成都市双流区中考数学一诊试卷 (含答案解析)

2020年四川省成都市双流区中考数学一诊试卷一、选择题(本大题共10小题,共30.0分)1.−5的倒数是()A. 15B. 5 C. −15D. −52.如图,所给三视图对应的几何体是()A. 球B. 圆柱C. 圆锥D. 三棱锥3.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为()A. 55×105B. 5.5×104C. 0.55×105D. 5.5×1054.如图AB//CD,∠D=42°,∠CBA=64°,则∠CBD的度数是()A. 42°B. 64°C. 74°D. 106°5.下列运算正确的是()A. m2⋅m3=m6B. (m4)2=m6C. m3+m3=2m3D. (m−n)2=m2−n26.如图,∠CAB=∠DBA,再添加一个条件,不一定能判定△ABC≌△BAD的是()A. AC=BDB. ∠1=∠2C. AD=BCD.∠C=∠D7.将分式方程2x−1+x1−x=1去分母后得()A. 2−x=x−1B. 2−x=1C. 2+x=1−xD. 2+x=x−18.如图,已知⊙O是△ABC的外接圆,连接AO,若∠B=40°,则∠OAC=()A. 40°B. 50°C. 60°D. 70°9.如图,在平行四边形ABCD中,∠A=2∠B,⊙C的半径为3,则图中阴影部分的面积是()A. πB. 2πC. 3πD. 6π10.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①a>0;②b<0;③b<a+c;④4a+2b+c>0其中正确结论的有()A. ①②③B. ①②④C. ①③④D. ②③④二、填空题(本大题共9小题,共36.0分)11.化简:|√3−2|=______.12.某班有男生23名,女生25名,从该班任意抽取一名学生进行学情调查,抽到女生的概率为______ .13. (2x−3y)(________)=9y2−4x2.14.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD的周长为______.15.设x1、x2是一元二次方程2x2−mx−6=0的两个根,且x1+x2=1,则m=_____.16.小明把如图所示的矩形纸板ABCD挂在墙上,E为AD中点,且∠ABD=60°,并用它玩飞镖游戏(每次飞镖均落在纸板上),击中阴影区域的概率是______.17.如图,AC=4,BC=3,且BC边在直线l上,将△ABC绕点C顺时针旋转到位置①可得到P1,再将位置①的三角形绕点P1顺时针旋转到位置②可得到P2,将位置②的三角形绕点P2顺时针旋转到位置③得到P3,按此规律继续旋转,则CP2016=______.18.如图,正方形ABCD中,AB=9,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.则△FGC的面积是______.19.如图,直线y=12x−2与x轴、y轴分别交于点A和点B,点C在直线AB上,且点C的纵坐标为−1,点D在反比例函数y=kx的图象上,CD平行于y轴,S△OCD=72,则k的值为______ .三、解答题(本大题共9小题,共84.0分)20.计算:(1)(13)−1+(2019−π)0−|√3−2|−2cos30°;(2)求不等式组:{2(x+3)−4≥0 x+12>2x−1.21.先化简,再求值:1a2+2a ÷(2aa2−4+12−a),请你从−2、0、1、2中选取一个适当的数代入求值.22.某中学为调查本校学生周末平均每天做作业所用时间的情况,随机调查了50名同学,如图是根据调查所得数据绘制的统计图的一部分.请根据以上信息,解答下列问题:(1)在这次调查的数据中,做作业所用时间的众数是______,中位数是______,平均数是______;(2)若该校共有2000名学生,根据以上调查结果估计该校全体学生每天做作业时间在3小时内(含3小时)的同学共有多少人?23.如图,小明从P处出发,沿北偏东60°方向行驶200米到达A处,接着向正南方向行驶一段时间到达B处.在B处观测到出发时所在的P处在北偏西37°方向上,这时P、B两点相距多少米?(精确到1米,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√2≈1.41,√3≈1.73)24.如图,直线y=−x+2与反比例函数y=kx(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.(1)求a,b的值及反比例函数的解析式;(2)若点P在直线y=−x+2上,且S△ACP=S△BDP,求出此时点P的坐标;(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,直接写出M点的坐标;若不存在,说明理由.25.如图,在△ABC中,AC=BC,以BC为直径的⊙O交AB于点E,交AC的延长线于点D,连接ED交BC于点G,过点E作EF⊥AD,垂足为点F(1)求证:EF是⊙O的切线;(2)若DCCF =32,求EGDG的值;(3)若DC=DG=2,求⊙O的半径.26.某商场经营一批进价是30元/件的商品,在市场试销中的日销售量y件与销售价x元之间满足一次函数关系.(1)请借助以下记录确定y与x的函数关系式,并写出自变量x的取值范围;x35404550y57422712(2)若日销售利润为P元,根据上述关系写出P关于x的函数关系式,并指出当销售单价x为多少元时,才能获得最大的销售利润?27.如图,已知正方形ABCD的边长为2,以DC为底向正方形外作等腰△DEC,连接AE,以AE为腰作等腰△AEF,使得EA=EF,且∠DEC=∠AEF.(1)求证:△EDC∽△EAF;(2)求DE⋅BF的值;(3)连接CF、AC,当CF⊥AC时,求∠DEC的度数.28.如图,已知抛物线经过△ABC的三个顶点,其中点A(0,1),点B(−9,10),AC//x轴,点P是直线AC下方抛物线上的动点。

2020年四川省成都市锦江区中考数学一诊试卷含答案

2020年四川省成都市锦江区中考数学一诊试卷含答案

2020年四川省成都市锦江区中考数学一诊试卷A卷(共100分)一、选择题(共10个小题,每小题3分,满分30分)在下列小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分1.(3分)下列立体图形中,主视图是三角形的是()A.B.C.D.2.(3分)如图,在Rt△ABC中,∠C=90°,AB=13,cos A=,则AC的长为()A.5B.8C.12D.133.(3分)用配方法解一元二次方程x2﹣4x﹣1=0,配方后得到的方程是()A.(x﹣2)2=1B.(x﹣2)2=4C.(x﹣2)2=3D.(x﹣2)2=54.(3分)如图,双曲线y=的一个分支为()A.①B.②C.③D.④5.(3分)在一个不透明的布袋中装有9个白球和若干个黑球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到白球的概率是,则黑球的个数为()A.3B.12C.18D.276.(3分)如图,MN所在的直线垂直平分线段AB,利用这样的工具,可以找到圆形工件的圆心.如果使用此工具找到圆心,最少使用次数为()A.1B.2C.3D.47.(3分)如图,在△ABC中,AB=AC=6,D为AC上一点,连接BD,且BD=BC=4,则DC为()A.2B.C.D.58.(3分)若点A(﹣3,y1),B(﹣1,y2),C(1,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y19.(3分)如图,在菱形ABCD中,点E,F分别在AB,CD上,且AE=CF,连接EF交BD于点O,连接AO.若∠DBC=25°,则∠OAD的度数为()A.50°B.55°C.65°D.75°10.(3分)已知y关于x的函数表达式是y=ax2﹣4x﹣a,下列结论不正确的是()A.若a=﹣1,函数的最大值是5B.若a=1,当x≥2时,y随x的增大而增大C.无论a为何值时,函数图象一定经过点(1,﹣4)D.无论a为何值时,函数图象与x轴都有两个交点二、填空题(共4个小题,每小题4分,满分16分)11.(4分)如图,将∠AOB放在边长为1的小正方形组成的网格中,若点A,O,B都在格点上,则tan∠AOB=.12.(4分)已知关于x的方程x2+(2k+1)x+k2=0有两个实数根,则实数k的取值范围为.13.(4分)如图,在矩形ABCD中,AB=3,AD=4,对角线AC,BD交于点O,点M,N分别为OB,OC 的中点,则△OMN的面积为.14.(4分)如图,BA,BC是⊙O的两条弦,以点B为圆心任意长为半径画弧,分别交BA,BC于点M,N;分别以点M,N为圆心,以大于MN为半径画弧,两弧交于点P,连接BP并延长交⊙O于点D;连接OD,OC.若∠COD=70°,则∠ABD等于.三、解答题(共6个小题,满分54分)15.(12分)(1)计算:(﹣)﹣1+﹣6sin45°﹣|3﹣|(2)解方程:x(x﹣3)+2x﹣6=016.(6分)为全面贯彻党的教育方针,坚持“健康第一”的教育理念,促进学生健康成长,提高体质健康水平,成都市调整体育中考实施方案:分值增加至60,男1000米(女800米)必考,足球、篮球、排球“三选一”…,从2019年秋季新入学的七年级起开始实施.某中学为了解七年级学生对三大球类运动的喜爱情况,从七年级学生中随机抽取部分学生进行调查问卷,通过分析整理绘制了如下两幅统计图.请根据两幅统计图中的信息回答下列问题:(1)求参与调查的学生中,喜爱排球运动的学生人数,并补全条形图;(2)若该中学七年级共有400名学生,请你估计该中学七年级学生中喜爱篮求运动的学生有多少名?(3)若从喜爱足球运动的2名男生和2名女生中随机抽取2名学生,确定为该校足球运动员的重点培养对象,请用列表法或画树状图的方法求抽取的两名学生为一名男生和一名女生的概率.17.(8分)近日,国产航母山东舰成为了新晋网红,作为我国本世纪建造的第一艘真正意义上的国产航母,承载了我们太多期盼,促使我国在伟大复兴路上加速前行.如图,山东舰在一次测试中,巡航到海岛A 北偏东60°方向P处,发现在海岛A正东方向有一可疑船只B正沿BA方向行驶.山东舰经测量得出:可疑船只在P处南偏东45°方向,距P处50海里.山东舰立即从P沿南偏西30°方向驶岀,刚好在C处成功拦截可疑船只.求被拦截时,可疑船只距海岛A还有多少海里?(≈1.414,≈1.732,结果精确到0.1海里)18.(8分)在▱ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,AF.(1)求证:四边形DEBF是平行四边形;(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长.19.(10分)如图,在直角坐标系中,点B的坐标为(2,1),过点B分别作x轴、y轴的垂线,垂足分别是C,A,反比例函数y=(x>0)的图象交AB,BC分别于点E,F.(1)求直线EF的解析式;(2)求四边形BEOF的面积;(3)若点P在y轴上,且△POE是等腰三角形,请直接写出点P的坐标.20.(10分)如图1,△ABD内接于⊙O,AD是直径,∠BAD的平分线交BD于H,交⊙O于点C,连接DC并延长,交AB的延长线于点E,(1)求证:AE=AD;(2)若=,求的值;(3)如图2,连接CB并延长,交DA的延长线于点F,若AH=HC,AF=6,求△BEC的面积.B卷(共50分)一、填空题(共5个小题,每小题4分,满分20分)B卷(50分)21.(4分)若a,b是一元二次方程x2﹣2x+1=0的两根,则=.22.(4分)光线从空气射入水中会发生折射现象,发生折射时,满足的折射定律如图①所示:折射率n=(α代表入射角,β代表折射角).小明为了观察光线的折射现象,设计了图②所示的实验:通过细管可以看见水底的物块,但从细管穿过的直铁丝,却碰不上物块.图③是实验的示意图,点A,C,B在同一直线上,测得BC=7cm,BF=12cm,DF=16cm,则光线从空气射入水中的折射率n等于.23.(4分)如图,在平面直角坐标系中,正方形ABCD的面积为20,顶点A在y轴上,顶点C在x轴上,顶点D在双曲线y=(x>0)的图象上,边CD交y轴于点E,若CE=ED,则k的值为.24.(4分)如图,已知△ABC中,CA=CB=4,∠C=45°,D是线段AC上一点(不与A,C重合),连接BD,将△ABD沿AB翻折,使点D落在点E处,延长BD与EA的延长线交于点F.若△BEF是直角三角形,则AF的长为.25.(4分)如图,在▱ABCD中,BC=6,对角线BD=10,tan∠DBC=,点E是线段BC上的动点,连接DE,过点D作DP⊥DE,在射线DP上取点F,使得∠DFE=∠DBC,连接CF,则△DCF周长的最小值为.二、解答题(共3个小题,满分30分)26.(8分)非洲猪瘟疫情发生以来,猪肉市场供应阶段性偏紧和猪价大幅波动时有发生.为稳定生猪生产,促进转型升级,增强猪肉供应保障能力,国务院办公厅于2019年9月印发了《关于稳定生猪生产促进转型升级的意见》.某生猪饲养场积极响应国家号召,努力提高生产经营管理水平,稳步扩大养殖规模,增加猪肉供应量.该饲养场2019年每月生猪产量y(吨)与月份x(1≤x≤12,且x为整数)之间的函数关系如图所示.(1)请直接写出当0<x≤4(x为整数)和4<x≤12(x为整数)时,y与x的函数关系式;(2)若该饲养场生猪利润p(万元/吨)与月份x(1≤x≤12,且x为整数)满足关系式:p=﹣x+.请问:该饲养场哪个月的利润最大?最大利润是多少?27.(10分)如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,BP=BE.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.(1)求证:∠BAP=∠BGN;(2)若AB=6,BC=8,求;(3)如图2,在(2)的条件下,连接CF,求tan∠CFM的值.28.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A(4,0),B两点,与y 轴交于点C(0,2),对称轴x=与x轴交于点H.(1)求抛物线的函数表达式;(2)直线y=kx+1(k≠0)与y轴交于点E,与抛物线交于点P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若△CPQ的面积为,求点P,Q的坐标;(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK绕点G逆时针旋转90°,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标;若不存在,请说明理由.参考答案A卷一、选择题(共10个小题,每小题3分,满分30分)在下列小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分1.D;2.A;3.D;4.D;5.C;6.B;7.C;8.B;9.C;10.D;二、填空题(共4个小题,每小题4分,满分16分)11.2;12.k≥;13.;14.35°;三、解答题(共6个小题,满分54分)15.解:(1)原式=﹣3+2﹣6×﹣3+=﹣3+2﹣3﹣3+=﹣6;(2)∵x(x﹣3)+2(x﹣3)=0,∴(x﹣3)(x+2)=0,∴x﹣3=0或x+2=0,解得x=3或x=﹣2.16.解:(1)由题意可知调查的总人数=12÷20%=60(人),所以喜爱排球运动的学生人数=60×35%=21(人)补全条形图如图所示:(2)∵该中学七年级共有400名学生,∴该中学七年级学生中喜爱篮求运动的学生有400×(1﹣35%﹣20%)=180名;(3)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是一名男生和一名女生结果数为8,所以抽取的两人恰好是一名男生和一名女生概率==.17.解:如图所示,过点P作PD⊥AB于点D,由题意知,∠BPD=45°,∠CPD=30°,∠P AC=30°,PB=50,在Rt△BPD中,PD=BD=PB sin∠BPD=50×=50,在Rt△CPD中,∵cos∠CPD=,∴PC===,∵∠PCD=60°、∠P AC=30°,∴∠P AC=∠APC=30°,∴AC=PC=≈57.7(海里),答:被拦截时,可疑船只距海岛A还有57.7海里.18.(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB,在△DAE和△BCF中,∴△DAE≌△BCF(SAS),∴DE=BF,∵AB=CD,AE=CF,∴DF=BE,∴四边形DEBF是平行四边形;(2)解:∵AB∥CD,∴∠DF A=∠BAF,∵AF平分∠DAB,∴∠DAF=∠BAF,∴∠DAF=∠AFD,∴AD=DF,∵四边形DEBF是平行四边形,∴DF=BE=5,BF=DE=4,∴AD=5,∵AE=3,DE=4,∴AE2+DE2=AD2,∴∠AED=90°,∵DE∥BF,∴∠ABF=∠AED=90°,∴AF===4.19.解:(1)∵点B的坐标为(2,1),过点B分别作x轴、y轴的垂线,垂足分别是C,A,∴点A,点E纵坐标为1,点C,点F的横坐标为2,∵点E,点F在反比例函数y=(x>0)的图象上,∴点E(1,1),点F(2,),设直线EF的解析式的解析式为:y=kx+b,∴∴∴直线EF的解析式的解析式为:y=﹣x+;(2)∵四边形BEOF的面积=S四边形ABCO﹣S△AOE﹣S△OCF,∴四边形BEOF的面积=2﹣﹣=1;(3)∵点E(1,1),∴OE=,若OE=OP=,则点P(0,)或(0,﹣),若OE=EP,且AE⊥AO,∴OA=AP=1,∴点P(0,2)若OP=PE,∴点P在OE的垂直平分线上,即点P(0,1),综上所述:当点P(0,)或(0,﹣)或(0,2)或(0,1)时,△POE是等腰三角形.20.解:(1)∵AD是直径,∴∠ACD=90°,即AC⊥ED,BD是∠BAD的平分线,故AE=AD;(2)=,则设BE=3a,AB=2a,AD=AE=5a,O交BD于点G,BD是∠BAD的平分线,则,则OC⊥BD,故OC∥AB,则OC是△ADE的中位线,则OG=AB=a,OC=AD=,则CG=OC﹣OG=,∵CG∥AB,则=;(3)设:OG=m,则AB=2m,当AH=HC时,由(2)知,△AHB≌△CHG(AAS),则AB=CG=2m,则OC=3m,即圆的半径为3m,∵AB∥CO,则,即,解得:m=1,故AB=2,AD=6,BE=4,则BD==4,∵EC=DC,则△BEC的面积=S△EBD=×BE×BD=×4×4=4.B卷一、填空题(共5个小题,每小题4分,满分20分)B卷(50分)21.2;22.;23.4;24.4或4﹣4;25.2+10;二、解答题(共3个小题,满分30分)26.解:(1)当0<x≤4(x为整数)时,y与x的函数关系式为:y=140,(0<x≤4)(x为整数);当4<x≤12(x为整数)时,设y与x的函数关系式为:y=kx+b,∴,解得:,∴y与x的函数关系式为:y=;(2)设该饲养场每月的利润为w,∵利润p(万元/吨)与月份x(1≤x≤12,且x为整数)满足关系式:p=﹣x+,∴当0<x≤4,w=400×(﹣x+)=﹣20x+600,∴当x=1时,w最大=580万元,当4<x≤12时,w=py=(﹣x+)(10x+100)=﹣x2+10x+150=﹣(x﹣5)2+200,∴当x=5时,w最大=200,∴当x=1时,w最大=580万元,答:该饲养场1月的利润最大,最大利润是580万元.27.(1)证明:如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠BAP=∠APB=90°∵BP=BE,∴∠APB∠BEP=∠GEF,∵MN垂直平分线段AP,∴∠GFE=90°,∴∠BGN+∠GEF=90°,∴∠BAP=∠BGN.(2)解:∵四边形ABCD是矩形,∴∠BAD=∠ABP=90°,AD∥BC,AD=BC=8,∴BD===10,∵AD∥BC,∴∠DAE=∠APB,∵∠APB=∠BEP=∠DEA,∴∠DAE=∠DEA,∴DA=DE=8,∴BE=BP=BD﹣DE=10﹣8=2,∴P A===2,∵MN垂直平分线段AP,∴AF=PF=,∵PB∥AD,∴===,∴PE=P A=,∴EF=PF﹣PE=﹣=,∴==.(3)解:如图3中,连接AM,MP.设CM=x.∵四边形ABCD是矩形,∴∠ADM=∠MCP=90°,AB=CD=6,AD=BC=8,∵MN垂直平分线段AP,∴MA=MP,∴AD2+DM2=PC2+CM2,∴82+(6﹣x)2=62+x2,∴x=,∵∠PFM=∠PCM=90°,∴P,F,M,C四点共圆,∴∠CFM=∠CPM,∴tan∠CFM=tan∠CFM===.28.解:(1)对称轴x=,则点B(﹣1,0),则抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即﹣4a=2,解得:a=﹣,故抛物线的表达式为:y=x2+x+2;(2)设直线PQ交y轴于点E(0,1),点P、Q横坐标分别为m,n,△CPQ的面积=×CE×(n﹣m)=,即n﹣m=,联立抛物线于直线PQ的表达式并整理得:x2+(﹣k)x+1=0…①,m+n=3﹣2k,mn=﹣2,n﹣m===,解得:k=0(舍去)或3;将k=3代入①式并解得:x=,故点P、Q的坐标分别为:(,﹣2﹣)、(,﹣2+);(3)设点K(,m),联立PQ和AC的表达式并解得:x=,故点G(,)过点G作x轴的平行线交函数对称轴于点N,交过点R与y轴的平行线于点M,则△KNG≌△GMR(AAS),GN=﹣==MR,NK=﹣m,故点R的纵坐标为:,则点R(m﹣,)将该坐标代入抛物线表达式解得:x=,故m=,故点K(,).。

2021年四川省成都市中考数学一诊试卷(附答案详解)

2021年四川省成都市中考数学一诊试卷(附答案详解)

2021年四川省成都市中考数学一诊试卷(附答案详解)1.下列关于防范“新冠肺炎”的标志中既是轴对称图形,又是中心对称图形的是()A。

B。

C。

D.2.我国古代著作《九章算术》在世界数学史上首次正式引入负数。

若气温升高3℃时,气温变化记作+3℃,那么气温下降10℃时,气温变化记作()A。

-13℃ B。

-10℃ C。

-7℃ D。

+7℃3.下列计算正确的是()A。

$a^2\cdot a^4=a^8$ B。

$a^{-2}=-a^2$ C。

$(a^2)^4=a^8$ D。

$a^4\div a^4=a^0$4.如图,在△ABC中,点D是AB上一点,DE//BC交AC于点E,AD=3,BD=2,则AE与EC的比是()A。

9:4 B。

3:5 C。

9:16 D。

3:25.如图所示,点B、C都在⊙O上,∠ACO=30°,若∠ABO=20°,则∠BOC=()A。

100° B。

110° C。

125° D。

130°6.如图所示的几何体是由两个相同的正方体和一个圆锥搭建而成,其左视图是()A。

B。

C。

D.7.___提出了五年“精准扶贫”的战略构想,意味着每年要减贫约xxxxxxxx人,将数据xxxxxxxx用科学记数法表示为()A。

1.16×106 B。

1.16×107 C。

1.16×108 D。

11.6×1068.一个足球队23名队员的年龄统计结果如下表所示,这个足球队队员年龄的众数,中位数分别是()年龄/岁人数/人 12 2 13 4 14 5 15 7 16 5 A。

14,15 B。

14,14 C。

15,13 D。

15,159.若点A(m,y1),点B(m+a/2+1,y2)都在一次函数y=5x+4的图象上,则()A。

y1y2 D。

y1=y210.二次函数y=ax^2+bx+c的图象如图,下列结论:①a<0;②2a+b=0;③b^2-4ac<0;④4a+2b+c<0.其中正确的有()A。

(已整理)初2021届成都市金牛区中考数学九年级一诊数学试卷(含答案)

(已整理)初2021届成都市金牛区中考数学九年级一诊数学试卷(含答案)

一、选择题(每小题3分,共30分)如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()4・由二次函数y = 3 (x-4) '-2可知( A. 其图象的开口向下B. 其图象的对称轴为直线x=4C. 其顶点坐标为(4, 2)D. 当x>3时,y 随x 的增大而增大 5.书架上放着三本古典名著和两本外国小说,小明从中随机抽取两本,两本都是古典名著的概率是()6.如图,ZkABC 的面积为12,点D 、E 分别是边AB. AC 的中点,则ZXADE 的面积为()7.已知:如图,在菱形ABCD 中,对角线AC. BD 相交于点0, DE 〃八C, AE 〃BD ・则四边形A0DE —定是()A.正方形 B •菱形 C.矩形 D.不能确定8.已知反比例函数y=-±下列结论:其中正确的结论有()个x① 图象必经过点(-1, 1); 级一诊数学试卷A 卷(共100分)已知x : y=3: 2,则下列各式中正确的是( 竹_5y 23. RtAABC中,A •学A.兰=2y 3ZC=90° , AC=V75t AB=4,则 cosB 的值是(c- nrC.1. 425B. A25 10D. 110A. 6B. 5C. 4D. 32D)③在每一个象限内,y随x的增大而增大A. 3B. 2C. 1D. 09.由于受猪瘟的影响,今年9月份猪肉的价格两次大幅上涨瘦肉价格由原来每千克23元,上升到每千克40元,设平均每次上涨磯,则下列方程中确的是()A. 23 (1+朋)2=40B. 23 (1 - a%)2=40C. 23 (l+2a%) =40 D・ 23 (1 - 2a%) =4010.如图,在00中,点C为弧AB的中点.若ZADC= a (a为锐角),则ZAPB=()A. 180° - aB. 180° -2aC. 75° +a D・ 3a二、填空題(本每小题4分,共16分)11.将抛物线y=/向左平移3个单位,再向下平移2个单位,则得到的抛物线解析式是____________ (结果写成顶点式)12・已知m、n是一元二次方程x'-2x-3=0的两根,则m+n+mn= __________ ・13.如图,已知菱形ABCD的对角线AC.BD交于点0,0C=2cm, ZAB0=30° ,则菱形ABCD的面积是________ ・14.如图,AABC 与AADB 中,ZABC=ZADB=90° , ZC=ZABD, AC = 5cm, AB=4cm, AD 的长为 __________ .三.解答题(共54分)15・(12 分)(1)计算:tan45° - 27^+2019°+4・sin60°(2)解方程:2x2-3x- 1=02.rj + 2 216.(6分)先化简,再求值:已知y=l,求J耳二亠工的值.5x2-4xy x17.(8分)如图,在10X10的正方形网格中,每个小正方形的边长为1,建立如图所示的坐标系,AABC 的三个顶点均在格点上,(1)_________________________________________________若将AABC沿x轴对折得到△儿BQ,则G的坐标为____________________________________________________ ;(2)以点B为位似中心,将AABC各边放大为原来的2倍,得到△ A2BC2,请在这个网格中画出△A2BC2;(3)在(2)的条件下,若小明蒙上眼睛在一定距离外,向10X10的正方形网格内掷小石子,则刚好掷入△A^BG的概率是多少?(未掷入图形内则不计次数,重掷一次)18.(8分)金牛区某学校开展“数学走进生活"的活动课,本次任务是测量大楼AB的高度.如图,小组成员选择在大楼AB前的空地上的点C处将无人机垂直升至空中D处,在D处测得楼AB的顶部A处的仰角为42° ,测得楼AB的底部B处的俯角为30。

2020年四川省成都市六区县中考数学一诊试卷 (解析版)

2020年四川省成都市六区县中考数学一诊试卷 (解析版)

2020年中考数学一诊试卷一、选择题1.如图所示,数轴的单位长度为1,且点B表示的数是2,那么点A表示的数是()A.1B.0C.﹣1D.﹣22.如图所示的几何体是由六个相同的小正方体搭成,则该几何体的俯视图为()A.B.C.D.3.2月14日下午,国务院联防联控机制就加大防控财税金融支持力度召开新闻发布会.会上,财政部应对疫情工作领导小组办公室主任、社会保障司司长符金陵透露,财政部建立了全国财政系统疫情防控经费的日报制度,实时跟踪各地方经费保障情况,截至2月13日各级财政共计支出了805.5亿元保障资金,其中805.5亿元用科学记数法表示正确的是()A.0.8055×1011元B.8.055×1010元C.8.055×102元D.80.55×109元4.下列运算正确的是()A.2m+n=2mn B.3a2b﹣2b=a2C.(﹣2m2n)3=﹣8m6n3D.(n﹣2)2=n2+45.如图,直线a∥b,将一块含30°角的直角三角尺按图中方式放置,其中点A和点B两点分别落在直线a和b上.若∠2=50°,则∠1的度数为()A.10°B.20°C.30°D.40°6.点(﹣3,1)关于y轴的对称点在反比例函数y=的图象上,则实数k的值为()A.3B.C.﹣3D.﹣7.下列关于分式方程+1=的解的情况,判断正确的是()A.x=1.5B.x=﹣0.5C.x=0.5D.无解8.为全力抗战疫情,响应政府“停课不停学”号召,某市教育局发布关于疫情防控期间开展在线课程教学辅导答疑的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学辅导和答疑,提高了同学们在线学习的质效.随机抽查了某中学九年级5名学生一周在线学习的时长分别为:17,18,19,20,21,(单位:时)则这5名学生一周在线学习时间的方差(单位:时2)为()A.2B.19C.10D.9.如图,△ABC内接于⊙O,∠A=60°,OM⊥BC于点M,若OM=2,则的长为()A.4πB.πC.πD.π10.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点坐标为(﹣4,0),其部分图象如图所示,下列结论:①当x<0时,y随x增大而增大;②抛物线一定过原点;③方程ax2+bx+c=0(a≠0)的解为x=0或x=﹣4;④当﹣4<x<0时,ax2+bx+c>0;⑤a﹣b+c<0.其中结论错误的个数有()个A.1B.2C.3D.4二、填空题(每小题4分,共16分)11.代数式中,实数m的取值范围是.12.如图,菱形ABCD的周长是12,∠ABC=120°,那么这个菱形的对角线BD的长是.13.已知点A(x1,y1),B(x2,y2)都在反比例函数y=(k<0)的图象上,且y1<0<y2,则x1与x2的大小关系是.14.如图,在△ABC中,AB=BC,以点A为圆心,AC长为半径画弧,交BC于点C和点D,再分别以点C,D为圆心,大于CD长为半径画弧,两弧相交于点E,作射线AE 交BC于点M,若CM=1,BD=3,则sin B=.三、解答题(本大题共小题,共54分,答题应写出文字说明、证明过程或演算步骤)15.(1)计算:(﹣π)0+2﹣2﹣2cos45°+|1﹣|.(2)解不等式组,并写出不等式组的整数解.16.先化简,再求值:÷(+m﹣3),其中m =﹣1.17.某社区为了加强社区居民对病毒防护知识的了解,通过微信群宣传病毒的防护知识,并鼓励社区居民在线参与作答《2020年病毒防治全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据甲小区:80 85 90 95 90 95 90 65 75 10090 70 95 90 80 80 90 95 60 100乙小区:60 80 95 80 90 65 80 85 85 10080 95 90 80 90 70 80 90 75 100整理数据成绩x(分)小区60≤x≤70 70<x≤80 80<x≤9090<x≤100甲小区3476乙小区3764分析数据数据名称计量小区平均数中位数众数甲小区85.7590b乙小区83.5a80应用数据(1)填空:a=b=;(2)若乙小区共有1200人参与答卷,请估计乙小区成绩大于90分的人数;(3)社区管理人员看完统计数据,认为甲小区对病毒防护知识掌握更好,请你写出社区管理人员的理由;为了更好地宣传病毒防护知识,社区管理人员决定从甲、乙小区的4个满分试卷中随机抽取两份试卷对小区居民进行网络宣传讲解培训,请用列表格或画树状图的方法求出甲、乙小区各抽到一份满分试卷的概率.18.我国第一艘国产航空母舰山东舰2019年12月17日在海南三亚某军港交付海军,中国海军正式迈入双航母时代.如图,在一次海上巡航任务中,山东舰由西向东航行,到达A处时,测得小岛C位于它的北偏东54°方向,再航行一段距离到达B处,测得小岛C 位于它的北偏东30°方向,且与山东舰相距30海里.求山东舰从A到B航行了多少海里?(精确到0.1)参考数据:sin54°=0.81,cos54°=0.59,tan54°=1.38,≈1.73.19.如图,在平面直角坐标系xOy中,一次函数y=﹣x﹣5和y=2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的解析式;(2)将直线y=﹣x﹣5,沿y轴正方向向上平移m(m>0)个单位长度得到的新直线l与反比例函数y=(x<0)的图象只有一个公共点,求新直线l的函数表达式.20.如图,AB是⊙O的直径,CD是⊙O的一条弦,=,CO的延长线交⊙O于点E,交BD的延长线于点F,连接FA,且恰好FA∥CD,连接BE交CD于点P,延长BE 交FA于点G,连接DE.(1)求证:FA是⊙O的切线;(2)求证:点G是FA的中点;(3)当⊙O的半径为6时,求tan∠FBE的值.一、填空题(每小题4分,共20分)21.比较大小:(填“>”“<”或“=”).22.某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被等分成20个扇形,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域(如果指针正对分格线重转),那么顾客就可以分别获得价值相当于100元,50元,20元的购物券.则顾客每次转转盘的平均收益为元.23.已知关于x的方程x2﹣(3+2a)x+a2=0的两个实数根为x1,x2,且x1x2﹣5=x1+x2,则a的值为.24.如图,在平面直角坐标系xOy中,等边△OAB的面积为,边AB交y轴于点C,且AC=2BC,反比例函数y=(x<0)的图象经过点A.则反比例函数的解析式为.25.在平面直角坐标系xOy中,直线l:y=kx﹣1(k≠0)与直线x=﹣k,y=﹣k分别交于点A,B.直线x=﹣k与y=﹣k交于点C.记线段AB,BC,AC围成的区域(不含边界)为W;横,纵坐标都是整数的点叫做整点.(1)当k=﹣2时,区域W内的整点个数为;(2)若区域W内没有整点,则k的取值范围是.二、解答题(本大题共3小题,共30分.其中26题8分,27题10分,28题12分)26.某网店专售一品牌牙膏,其成本为22元/支,销售中发现,该商品每天的销售量y(支)与销售单价x(元/支)之间存在如图所示的关系.(1)请求出y与x之间的函数关系式;(2)该品牌牙膏销售单价定为多少元时,每天销售利润最大?最大利润是多少元?(3)在武汉爆发“病毒”疫情期间,该网店店主决定从每天获得的利润中抽出100元捐赠给武汉,为了保证捐款后每天剩余的利润不低于350元,在抗“病毒”疫情期间,市场监督管理局加大了对线上、线下商品销售的执法力度,对商品售价超过成本价的20%的商家进行处罚,请你给该网店店主提供一个合理化的销售单价范围.27.如图,在正方形BCD中,E是AD边上一点,连接BE,过A作AF⊥BE于P,交CD 于F.(1)如图1,连接BF,当AE=1,AD=4时,求BF的长;(2)如图2,对角线AC,BD交于点O.连接OP,若DE=2AE=4,求OP的长;(3)如图3,对角线AC,BD交于点O.连接OP,DP,若DP⊥PO,试探索DP与BP 的数量关系,并说明理由.28.如图1所示,在平面直角坐标系xOy中,直线y=x﹣4与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过A,B两点,与x轴的另一交点为点C.(1)求抛物线的函数表达式;(2)点M为直线AB下方抛物线上一动点.①如图2所示,直线CM交线段AB于点N,求的最小值;②如图3所示,连接BM过点M作MD⊥AB于D,是否存在点M,使得△BMD中的某个角恰好等于∠CAB的2倍?若存在,求点M的坐标;若不存在,请说明理由.参考答案一、选择题(每小题3分,共30分.下列各小题给出的四个选项中,只有一个符合题目要求)1.如图所示,数轴的单位长度为1,且点B表示的数是2,那么点A表示的数是()A.1B.0C.﹣1D.﹣2【分析】根据数轴的单位长度为1,点A在点B的左侧距离点B4个单位长度,直接计算即可.解:点A在点B的左侧距离点B4个单位长度,∴点A表示的数为:2﹣4=﹣2,故选:D.2.如图所示的几何体是由六个相同的小正方体搭成,则该几何体的俯视图为()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.解:从上边看第一列是两个小正方形,第二列上层是一个小正方形,第三列上层是一个小正方形,故选:C.3.2月14日下午,国务院联防联控机制就加大疫情防控财税金融支持力度召开新闻发布会.会上,财政部应对疫情工作领导小组办公室主任、社会保障司司长符金陵透露,财政部建立了全国财政系统疫情防控经费的日报制度,实时跟踪各地方经费保障情况,截至2月13日各级财政共计支出了805.5亿元保障资金,其中805.5亿元用科学记数法表示正确的是()A.0.8055×1011元B.8.055×1010元C.8.055×102元D.80.55×109元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:805.5亿元用科学记数法表示正确的是8.055×1010元.故选:B.4.下列运算正确的是()A.2m+n=2mn B.3a2b﹣2b=a2C.(﹣2m2n)3=﹣8m6n3D.(n﹣2)2=n2+4【分析】直接利用合并同类项法则、积的乘方运算法则、完全平方公式计算得出答案.解:A、2m与n不是同类项,不能合并,原计算错误,故此选项不符合题意;B、3a2b与2b不是同类项,不能合并,原计算错误,故此选项不符合题意;C、(﹣2m2n)3=﹣8m6n3,原计算正确,故此选项符合题意;D、(n﹣2)2=n2﹣4n+4,原计算错误,故此选项不符合题意;故选:C.5.如图,直线a∥b,将一块含30°角的直角三角尺按图中方式放置,其中点A和点B两点分别落在直线a和b上.若∠2=50°,则∠1的度数为()A.10°B.20°C.30°D.40°【分析】根据平行线的性质即可得到结论.解:∵直线a∥b,∠2=50°,∴∠1+90°+∠2+30°=180°,即∠1+90°+50°+30°=180°,解得∠1=10°.故选:A.6.点(﹣3,1)关于y轴的对称点在反比例函数y=的图象上,则实数k的值为()A.3B.C.﹣3D.﹣【分析】先根据关于y轴对称的点的坐标特点求出点(﹣3,1)关于y轴的对称点的坐标,代入反比例函数y=即可得出k的值.解:∵点(﹣3,1)关于y轴的对称点为(3,1),∴1=,解得k=3.故选:A.7.下列关于分式方程+1=的解的情况,判断正确的是()A.x=1.5B.x=﹣0.5C.x=0.5D.无解【分析】根据分式方程的解法即可求出答案.解:∵=,∴=,∴(x﹣1)(2﹣4x)=2x﹣1,∴4x2﹣4x+1=0,∴(2x﹣1)2=0,∴x=,经检验,x=不是原方程的解,故选:D.8.为全力抗战疫情,响应政府“停课不停学”号召,某市教育局发布关于疫情防控期间开展在线课程教学辅导答疑的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学辅导和答疑,提高了同学们在线学习的质效.随机抽查了某中学九年级5名学生一周在线学习的时长分别为:17,18,19,20,21,(单位:时)则这5名学生一周在线学习时间的方差(单位:时2)为()A.2B.19C.10D.【分析】根据平均数的计算公式先求出这组数据的平均数,再代入方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],进行计算即可得出答案.解:这组数据的平均数是:(17+18+19+20+21)=19(时),则方差:S2=[(17﹣19)2+(18﹣19)2+(19﹣19)2+(20﹣19)2+(21﹣19)2]=2(时2);故选:A.9.如图,△ABC内接于⊙O,∠A=60°,OM⊥BC于点M,若OM=2,则的长为()A.4πB.πC.πD.π【分析】连接OB、OC,根据圆周角定理求出∠BOC,根据直角三角形的性质求出OB,根据弧长公式计算,得到答案.解:连接OB、OC,由圆周角定理得,∠BOC=2∠A=120°,∵OB=OC,∴∠OBC=(180°﹣120°)=30°,∴OB=2OM=4,∴的长==π,故选:C.10.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点坐标为(﹣4,0),其部分图象如图所示,下列结论:①当x<0时,y随x增大而增大;②抛物线一定过原点;③方程ax2+bx+c=0(a≠0)的解为x=0或x=﹣4;④当﹣4<x<0时,ax2+bx+c>0;⑤a﹣b+c<0.其中结论错误的个数有()个A.1B.2C.3D.4【分析】①根据函数图象变化趋势进行解答;②根据对称轴,求出抛物线与x轴的另一个交点,便可判断;③根据抛物线与x轴的交点横坐标进行判断;④根据﹣4<x<0时,抛物线在x轴上方,进行判断;⑤根据当x=﹣1时,y的函数值的位置进行判断.解:①由函数图象可知,当﹣2<x<0时,y随x增大而减小,则此小题结论错误;②∵对称轴为直线x=﹣2,与x轴的一个交点坐标为(﹣4,0),∴另个交点为(0,0),即抛物线一定过原点,则此小题结论正确;③∵抛物线与x轴交于(﹣4,0)和(0,0),∴方程ax2+bx+c=0(a≠0)的解为x=0或x=﹣4,则此小题结论正确;④由函数图象可知,当﹣4<x<0时,抛物线在x轴上方,即ax2+bx+c>0,则此小题结论正确;⑤则函数图象可知,当x=﹣1时,y=a﹣b+c>0,则此小题结论错误;故选:B.二、填空题(每小题4分,共16分)11.代数式中,实数m的取值范围是m≥﹣.【分析】二次根式的被开方数是非负数,即2m+1≥0.解:由题意,得2m+1≥0.解得m≥﹣.故答案是:m≥﹣.12.如图,菱形ABCD的周长是12,∠ABC=120°,那么这个菱形的对角线BD的长是3.【分析】根据∠ABC=120°,而AB=AD,易证△BAD是等边三角形,从而可求BD 的长.解:∵四边形ABCD是菱形,BD是对角线,∴AB=BC=CD=AD,AD∥BC,∵∠ABC=120°,∴∠A=60°,∴△BAD是等边三角形,∴AB=BD=AD,∵菱形ABCD的周长是12,∴AB=3,∴BD=3,故答案为:3.13.已知点A(x1,y1),B(x2,y2)都在反比例函数y=(k<0)的图象上,且y1<0<y2,则x1与x2的大小关系是x1>x2.【分析】先判断出点A、B在第三象限,再根据反比例函数的增减性判断.解:∵k<0,y1<0<y2,∴点A在第四象限,点B在第二象限,∴x1>x2.故答案为x1>x2.14.如图,在△ABC中,AB=BC,以点A为圆心,AC长为半径画弧,交BC于点C和点D,再分别以点C,D为圆心,大于CD长为半径画弧,两弧相交于点E,作射线AE 交BC于点M,若CM=1,BD=3,则sin B=.【分析】连接AD,利用等腰三角形的性质得出DM=MC,进而利用直角三角形的解法解答即可.解:连接AD,由作图可知,AD=AC,AM是∠DAC的角平分线,∴AM⊥DC,DM=MC=1,∵BD=3,∴BM=3+1=4,AB=3+2=5=BC,∴AM=,∴sin B=,故答案为:.三、解答题(本大题共小题,共54分,答题应写出文字说明、证明过程或演算步骤)15.(1)计算:(﹣π)0+2﹣2﹣2cos45°+|1﹣|.(2)解不等式组,并写出不等式组的整数解.【分析】(1)原式利用零指数幂法则,负指数幂的法则,特殊角的三角函数、绝对值的意义计算即可得到结果;(2)先求得两个不等式的解集,再在数轴上得出不等式组的整数解.解:(1)原式=1+﹣2×+2﹣1=1+﹣+2﹣1=+;(2)解不等式①得x>﹣1;解不等式②得x≤1;∴不等式组的解集为﹣1<x≤1,∴不等式组的整数解为0,1.16.先化简,再求值:÷(+m﹣3),其中m=﹣1.【分析】根据分式的加法和除法可以化简题目中的式子,然后将m的值代入化简后的式子即可解答本题.解:÷(+m﹣3)====,当m=﹣1时,原式==.17.某社区为了加强社区居民对病毒防护知识的了解,通过微信群宣传病毒的防护知识,并鼓励社区居民在线参与作答《2020年病毒防治全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据甲小区:80 85 90 95 90 95 90 65 75 10090 70 95 90 80 80 90 95 60 100乙小区:60 80 95 80 90 65 80 85 85 10080 95 90 80 90 70 80 90 75 100整理数据成绩x(分)小区60≤x≤70 70<x≤80 80<x≤9090<x≤100甲小区3476乙小区3764分析数据数据名称计量小区平均数中位数众数甲小区85.7590b乙小区83.5a80应用数据(1)填空:a=82.5b=90;(2)若乙小区共有1200人参与答卷,请估计乙小区成绩大于90分的人数;(3)社区管理人员看完统计数据,认为甲小区对病毒防护知识掌握更好,请你写出社区管理人员的理由;为了更好地宣传病毒防护知识,社区管理人员决定从甲、乙小区的4个满分试卷中随机抽取两份试卷对小区居民进行网络宣传讲解培训,请用列表格或画树状图的方法求出甲、乙小区各抽到一份满分试卷的概率.【分析】(1)根据中位数和众数的定义即可求得a、b的值;(2)用乙小区总人数乘以乙小区成绩大于90分的人数所占的百分比即可;(3)从平均数,中位数,众数三方面进行分析,得出甲小区的居民对病毒防护知识掌握更好些;根据题意画出树状图得出所有等情况数和甲、乙小区各抽到一份满分试卷的情况数,然后根据概率公式即可得出答案.解:(1)把乙小区的数据从小到大排列,则中位数a==82.5;∵甲小区中90出现了6次,出现的次数最多,∴甲小区的众数b=90;故答案为:82.5,90;(2)根据题意得:1200×=240(人),答:乙小区成绩大于90分的人数为240人;(3)因为从试卷得分的平均数,中位数,众数来看都是甲小区的试卷分数大于乙小区的试卷分数,所以甲小区的居民对病毒防护知识掌握更好些;根据题意列表如下:甲1甲2乙1乙2甲1(甲2,甲1)(乙1,甲1)(乙2,甲1)甲2(甲1,甲2)(乙1,甲2)(乙2,甲2)乙1(甲1,乙1)(甲2,乙1)(乙2,乙1)乙2(甲1,乙2)(甲2,乙2)(乙1,乙2)由表可知共有12种等可能情况,其中满足条件的有8种,所以P(甲、乙小区各抽到一份满分试卷)==.18.我国第一艘国产航空母舰山东舰2019年12月17日在海南三亚某军港交付海军,中国海军正式迈入双航母时代.如图,在一次海上巡航任务中,山东舰由西向东航行,到达A处时,测得小岛C位于它的北偏东54°方向,再航行一段距离到达B处,测得小岛C 位于它的北偏东30°方向,且与山东舰相距30海里.求山东舰从A到B航行了多少海里?(精确到0.1)参考数据:sin54°=0.81,cos54°=0.59,tan54°=1.38,≈1.73.【分析】作CD⊥AB交其延长线于点D,由∠BCD=30°,∠BDC=90°,BC=30知BD=15,CD=15,再由tan∠ACD=求得AD=CD tan∠ACD=CD•tan45°≈35.81(海里),根据AB=AD﹣BD求解可得答案.解:过C作CD⊥AB交其延长线于点D,由题可知∠BCD=30°,∠ACD=54°,在Rt△BCD中,∵∠BCD=30°,∠BDC=90°,BC=30,∴BD=15,CD=15,在Rt△ACD中,∵∠ACD=54°,∠BDC=90°,CD=15,tan∠ACD=,∴AD=CD tan∠ACD=CD•tan45°≈1.38×15×1.73≈35.81(海里),∴AB=AD﹣BD=35.81﹣15=20.81≈20.8(海里),答:山东舰从A到B航行约20.8海里.19.如图,在平面直角坐标系xOy中,一次函数y=﹣x﹣5和y=2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的解析式;(2)将直线y=﹣x﹣5,沿y轴正方向向上平移m(m>0)个单位长度得到的新直线l与反比例函数y=(x<0)的图象只有一个公共点,求新直线l的函数表达式.【分析】(1)两直线解析式联立组成方程组,解方程组求得A的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)据题意设直线l函数表达式为:y=﹣﹣5+m,然后解,消去y整理得﹣2+(m﹣5)x﹣8=0,根据题意有△=(m﹣5)2﹣4×(﹣)×(﹣8)=0,解得m=1,即可求得新直线l的函数表达式.【解答】(1)解:将解析式联立得解之得,∴点A(﹣2,﹣4),∵反比例函数y=的图象经过点A.∴﹣4=,k=8,∴反比例函数解析式为y=;(2)据题意设直线l函数表达式为:y=﹣﹣5+m,将解析式联立得,消去y得﹣﹣5+m=,去分母得﹣2+(m﹣5)x﹣8=0,据题意有△=(m﹣5)2﹣4×(﹣)×(﹣8)=0,解之得m=1或9又反比例函数中x<0,∴m=1,∴新直线l函数表达式为:y=﹣﹣4.20.如图,AB是⊙O的直径,CD是⊙O的一条弦,=,CO的延长线交⊙O于点E,交BD的延长线于点F,连接FA,且恰好FA∥CD,连接BE交CD于点P,延长BE 交FA于点G,连接DE.(1)求证:FA是⊙O的切线;(2)求证:点G是FA的中点;(3)当⊙O的半径为6时,求tan∠FBE的值.【分析】(1)根据垂径定理得出AB⊥CD,根据FA∥CD求出FA⊥AB,根据切线的判定得出即可;(2)根据相似三角形的判定求出△GAB∽△GEA,△FEG∽△BFG,得出比例式,即可求出GF=GA;(3)根据FA∥CD得出比例式==,求出DP=HP,求出DE=BH,求出OH=DE=BE,求出OH和OH,解直角三角形求出即可.【解答】(1)证明:∵AB是⊙O的直径,CD是⊙O的一条弦,=,∴AB⊥CD,又∵FA∥CD,∴FA⊥AB,∵OA过O,∴FA是⊙O的切线;(2)证明:连接AE,∵AB是⊙O的直径,∴AE⊥BG,又∵FA⊥AB,∴∠GEA=∠BAG,又∵∠BGA=∠EGA,∴△GAB∽△GEA,∴=,∴GA2=GB×EG,∵FA∥CD,∴∠C=∠EFG,又∵∠C=∠FBE,∴∠EFG=∠FBE,又∵∠FGE=∠BGF,∴△FEG∽△BFG,∴=,∴GF2=GB×GE,∴GF=GA,∴G为AF的中点;(3)解:∵FA∥CD,∴==,又∵GF=GA,∴DP=HP,又∵CE是⊙O的直径,D在圆上,∴CD⊥DE,又∵AB⊥CD于点H,EO=OC,∴点H是CD的中点,AB∥DE,又∵DP=HP,∴DE=BH,又∵点O是CE中点,点H是CD的中点,∴OH=DE=BE,又∵⊙O的半径为6,∴OH=2,CH===4,∴tan∠FBE=tan C===.一、填空题(每小题4分,共20分)21.比较大小:>(填“>”“<”或“=”).【分析】先通分得出,再估算出的范围,最后比较分子大小,即可得出答案.解:∵2<<3,∴8<4<9,∴3<12﹣4<4,∴>.故答案是:>.22.某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被等分成20个扇形,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域(如果指针正对分格线重转),那么顾客就可以分别获得价值相当于100元,50元,20元的购物券.则顾客每次转转盘的平均收益为14元.【分析】直接利用概率公式求解可得.解:100×+50×+20×=14(元),故答案为:14.23.已知关于x的方程x2﹣(3+2a)x+a2=0的两个实数根为x1,x2,且x1x2﹣5=x1+x2,则a的值为4.【分析】先利用判别式的意义得到a≥﹣,再根据根与系数的关系得到x1+x2=3+2a,x1x2=a2,则利用x1x2﹣5=x1+x2得到a2﹣5=3+2a,然后解关于a的方程确定满足条件的a的值.解:根据题意得△=(3+2a)2﹣4a2≥0,解得a≥﹣,∵x1+x2=3+2a,x1x2=a2,而x1x2﹣5=x1+x2,∴a2﹣5=3+2a,整理得a2﹣2a﹣8=0,解得a1=4,a2=﹣2(舍去),∴a的值为4.故答案为4.24.如图,在平面直角坐标系xOy中,等边△OAB的面积为,边AB交y轴于点C,且AC=2BC,反比例函数y=(x<0)的图象经过点A.则反比例函数的解析式为y =﹣.【分析】作OD⊥AB于D,AE⊥OC于E,根据三角形面积求得等边三角形的边长为,根据题意求得BC=,AC=,CD=,根据勾股定理求得OC,然后证得△ACE∽△OCD,根据相似三角形的性质求得AE=,CE=,进而求得OE=2,即可求得A(﹣,2),代入y=(x<0)求得k的值,得到反比例函数的解析式.解:作OD⊥AB于D,AE⊥OC于E,设等边三角形OAB的边长为a,∵等边△OAB中,∠OAB=60°,∴OD=OA=a,BD=a,∵等边△OAB的面积为,∴AB•OD=,即=,∴a=,∵AC=2BC,∴BC=a=,AC=a=,∴CD=BD﹣BD=﹣=,∴OC===,∵∠ACE=∠OCD,∠AEC=∠ODC=90°,∴△ACE∽△OCD,∴==,==,∴AE=,CE=,∴OE=OC﹣CE=﹣=2,∴A(﹣,2),∵反比例函数y=(x<0)的图象经过点A.∴k=﹣×2=﹣2,∴反比例函数的解析式为y=﹣,故答案为y=﹣25.在平面直角坐标系xOy中,直线l:y=kx﹣1(k≠0)与直线x=﹣k,y=﹣k分别交于点A,B.直线x=﹣k与y=﹣k交于点C.记线段AB,BC,AC围成的区域(不含边界)为W;横,纵坐标都是整数的点叫做整点.(1)当k=﹣2时,区域W内的整点个数为6;(2)若区域W内没有整点,则k的取值范围是0<k≤1或k=2.【分析】(1)将k=﹣2代入解析式,求得A、B、C三点坐标,并作出图形,便可求得W区域内的整数点个数;(2)分三种情况解答:当k<0时,区域内必含有坐标原点,故不符合题意;当0<k≤1时,W内点的横坐标在k到0之间,无整点,进而得0<k≤1时,W内无整点;当1<k≤2时,W内可能存在的整数点横坐标只能为﹣1,此时边界上两点坐标为(﹣1,﹣k)和(﹣1,﹣k﹣1),当k不为整数时,其上必有整点,但k=2时,只有两个边界点为整点,故W内无整点;当k>2时,横坐标为﹣2的边界点为(﹣2,﹣k)和(﹣2,﹣2k﹣1),线段长度为k+1>3,故必有整点.解:(1)直线l:y=kx﹣1=﹣2x﹣1,直线x=﹣k=2,y=﹣k=2,∴A(2,﹣5),B(﹣,2),C(2,2),在W区域内有6个整数点:(0,0),(0,1),(1,0),(1,1),(1,﹣1),(1,﹣2),故答案为6;(2)当k<0时,则x=﹣k>0,y=﹣k>0,∴区域内必含有坐标原点,故不符合题意;当0<k≤1时,W内点的横坐标在﹣1到0之间,不存在整点,故0<k≤1时W内无整点;当1<k≤2时,W内可能存在的整数点横坐标只能为﹣1,此时边界上两点坐标为M(﹣1,﹣k)和N(﹣1,﹣k﹣1),MN=1,此时当k不为整数时,其上必有整点,但k=2时,只有两个边界点为整点,故W内无整点;当k>2时,横坐标为﹣2的边界点为(﹣2,﹣k)和(﹣2,﹣2k﹣1),线段长度为k+1>3,故必有整点.综上所述:0<k≤1或k=2时,W内没有整点.故答案为:0<k≤1或k=2.二、解答题(本大题共3小题,共30分.其中26题8分,27题10分,28题12分)26.某网店专售一品牌牙膏,其成本为22元/支,销售中发现,该商品每天的销售量y(支)与销售单价x(元/支)之间存在如图所示的关系.(1)请求出y与x之间的函数关系式;(2)该品牌牙膏销售单价定为多少元时,每天销售利润最大?最大利润是多少元?(3)在武汉爆发“病毒”疫情期间,该网店店主决定从每天获得的利润中抽出100元捐赠给武汉,为了保证捐款后每天剩余的利润不低于350元,在抗“病毒”疫情期间,市场监督管理局加大了对线上、线下商品销售的执法力度,对商品售价超过成本价的20%的商家进行处罚,请你给该网店店主提供一个合理化的销售单价范围.【分析】(1)利用待定系数法求解可得;(2)设每天的利润为W元,根据“总利润=每支利润×每天销售量”得出函数解析式,配方成顶点式后利用二次函数的性质求解可得;(3)根据题意列出方程﹣10x2+620x﹣8800﹣100=350,解之求出x的值,再根据二次函数的性质得出25≤x≤37,结合x≤22×(1+20%)可得答案.解:(1)根据题意设y=kx+b(k≠0),将(30,100)、(35,50)代入得,解得,∴y与x之间的关系式为y=﹣10x+400;(2)设每天的利润为W元,则W=(x﹣22)y=(x﹣22)(﹣10x+400)=﹣10x2+620x﹣8800=﹣10(x﹣31)2+810,∴销售单价定为31元时,每天最大利润为810元.(3)﹣10x2+620x﹣8800﹣100=350,解得x=25或x=37,结合图象和二次函数的特点得出25≤x≤37,又x≤22×(1+20%),综上可得25≤x≤26.4,∴按要求网店店主的销售单价范围为大于或等于25元且小于或等于26.4元.27.如图,在正方形BCD中,E是AD边上一点,连接BE,过A作AF⊥BE于P,交CD 于F.(1)如图1,连接BF,当AE=1,AD=4时,求BF的长;(2)如图2,对角线AC,BD交于点O.连接OP,若DE=2AE=4,求OP的长;(3)如图3,对角线AC,BD交于点O.连接OP,DP,若DP⊥PO,试探索DP与BP 的数量关系,并说明理由.【分析】(1)证明△ABE≌△DAF(ASA),推出DF=AE=2,求出CF利用勾股定理即可解决问题.(2)证明△OPB∽△EDB,可得=解决问题.(3)证明△DEP∽△BOP,可得=,再证明OB=DE即可解决问题.【解答】(1)解:如图1中,∵正方形ABCD,∴∠DAB=∠D=∠C=90°,AB=BC=DC=AD=4∵AF⊥BE于P,∴∠EBA+∠FAB=90°,又∠DAF+FAB=90°,∴∠EBA=∠DAF,又∠DAB=∠D,AB=DA,∴△ABE≌△DAF(ASA),∴DF=AE=1,∵AD=CD=BC=4,∴CF=DC﹣DF=3,在Rt△BFC中,BF===5.(2)如图2中,∵正方形ABCD对角线AC,BD相交于点O,∴∠CAB=∠ADB=45°,∠AOB=90°,∵AF⊥BE于P,∴∠APB=∠AOB=90°,∴A,P,O,B四点共圆,∴∠OPB=∠OAB=45°(也可由相似证得),∴∠OPB=∠ADB,又∠OBP=∠DBE,∴△OPB∽△EDB,可得=,又DE=2AE=4,可得AD=AB=6,BD=6,OB=3,BE=2,∴=,∴OP=.(3)结论:DP=BP.理由如下:如图3中,连接EF.∵DP⊥OP,由(2)问可知∠APB=∠AOB=90°,∴A,P,O,B四点共圆,∴∠OPB=∠OAB=45°,∴∠DPE=∠OPB=45°,又A,P,O,B四点共圆有∠POA=∠PBA,∴∠DEP=∠DAB+∠PBA=∠AOB+∠POA=∠POB,又∠DPE=∠OPB,∴△DEP∽△BOP,∴=,∵AF⊥BE,∠EDF=90°,∴∠EDF+∠EPF=180°,∴D,E,P,F四点共圆,∴∠DFE=∠DPE=45°,∴∠DEF=∠DFE=45°,∵DE=DF,又AE=DF,于是AE=DE=AD,OB=BD=×AD=DE,∴==,∴DP=BP.28.如图1所示,在平面直角坐标系xOy中,直线y=x﹣4与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过A,B两点,与x轴的另一交点为点C.(1)求抛物线的函数表达式;(2)点M为直线AB下方抛物线上一动点.①如图2所示,直线CM交线段AB于点N,求的最小值;②如图3所示,连接BM过点M作MD⊥AB于D,是否存在点M,使得△BMD中的某个角恰好等于∠CAB的2倍?若存在,求点M的坐标;若不存在,请说明理由.【分析】(1)求出点A、B的坐标,将A、B两点坐标代入y=x2+bx+c,即可求解;。

2021年成都市高新区九年级下一诊数学试卷3.31 - 参考答案

2021年成都市高新区九年级下一诊数学试卷3.31 - 参考答案

2020-2021学年下学期九年级第一次诊断性检测试题数学参考答案及评分意见A 卷(共100分)一、选择题(本大题共10小题,每小题3分,共30分)1.C 2.A 3.B 4.A 5.D 6.C 7.D 8. B 9.C 10.B二、填空题(本大题共4个小题,每小题4分,共16分)11. 3(2)x x + (唯一结果,其他结果不给分 ) 12. 65° (不带单位不扣分) 13. 12m >14.三、解答题(本大题共6个小题,共54分)15.(1)解:原式=322−++−1分)=7−.(结果2分)(2)解:3(2)4; (1)1 1 (2)2x x x ++⎧⎪⎨−<⎪⎩由(1)得, x ≥-1.……2分 由(2)得,x <3.……4分 ∴不等式组的解集为-1≤x <3.…6分16.解:原式=232(1)2(2)(2)a a a a a −−−÷++−=21(2)(2)2(1)a a a a a −+−⋅+− =21aa −−.……3分 ∵2,2,1a ≠−∴从2−,1−,2中选取1−作为a 的值. 当1a =−时(4分),上式=213112+=−−−.……6分17. 解:(1)该班总人数1020%50=÷=. ……1分D 组人数50104168=12=−−−−.条形图如图所示:……2分(2)8150024050⨯=(人), 估计有240人选修乒乓球. ……4分 (3)画树状图如下……6分共有12种等可能的结果数,符合条件的有2种 . 所以选出的2人都选修篮球球概率21126==. ……8分 18.解:过C 作CD AB ⊥于D , 由已知得,30402060AC =⨯= 在Rt ACD ∆中,45A ∠=︒, ……2分sin 202CD AC A ∴=== ……4分 在Rt BCD ∆中,754530B PCB A ∠=∠−∠=︒−︒=︒,2228.3BC CD ∴==⨯=≈(海里). ……8分乒乓球 E羽毛球 D 排球 C足球 B篮球 A答:此时货轮与灯塔B 的距离约为28.3海里. 19解:(1)当x =4时,一次函数1422y =⨯=,∴点A 是坐标为(4,2). ……2分将A (4,2)代入xmy =得到m = 8. ∴反比例函数的表达式为:x y 8=. ……4分(2)∴直线OA 的函数关系式为y =12x .∴将直线OA 上移b 个单位长度后直线DF 的解析式为y =12x +b .∵DE =12DF ,∴E 为DF 中点.∵B (32,0), ∴32E x =, 3F x =.……8分当x =3时,y =83.∴点F 是坐标为(3,83).∴81332b =⨯+. ∴76b =. ……10分 20.解:(1)∵∠ABC =90°,∴∠ABD+∠CBD =90°.∵∠CAD =∠CBD ,∠DAF =∠ABD ,∴∠DAF +∠CAD =90°.……2分∴AF 是⊙O 的切线. ……3分 (2)连接DO , ∴AO =DO .∴∠DAO =∠ADO .∵AF 是⊙O 的切线, ∴AF ⊥AE .又∵点D 是EF 的中点, ∴AD =DE =DF .∴∠DAO =∠DEA . ∴∠ADO =∠DEA . ∴△ADO ∽△AED . ……5分∴AD AOAE AD=.……6分∴2AD AO AE =⋅. (3) ∵AD =DF , ∴∠F =∠DAF . 又∠DAF =∠ABD , ∴∠F =∠ABD . ∴AB =AF=……7分在Rt △ABC 中,sin ∠BAC =13,设BC =k ,AC =3k , 由勾股定理得AB=.∴=∴k =∴BCAC =……8分∵AD =DE , ∴∠DAE =∠DEA .又∠DAE =∠CBE , ∠DEA =∠CEB ,CA∴∠CBE =∠CEB .∴CE =BC∴AE =AC -CE ==.∵12AO AC ==∴2AD AO AE =⋅. ∴3AD =.……9分∴3FD AD ==. ∵∠DAF =∠ABD ,∴△F AD ∽△FBA . ∴FA FBFD FA=.∴(2283FA FB FD ===.………10分B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,)21. 1 21. 64m m >−≠−且 (唯一答案) 23.14 24.92或272− (见错全错,只有一个正确答案给2分) 25.二、解答题(本大题共3个小题,共 4分,解答题写在答题卡上)26. 解:(1) 设该商品的日销售量y (件)与每件售价(元)满足一次函数关系(0)y kx b k =+≠.把(85230),,(90,180)代入得8523090180k b k b +=⎧⎨+=⎩, ……2分解得101080k b =−⎧⎨=⎩.∴ 101080y x =−+. ……3分(2)设商品的日销售利润为W ,由题意得:…… 5分(80)(101080)10(80)(108)W x x x x =−⋅−+=−−−二次函数的对称轴是x =94. …… 6分 ∵x 的取值范围是80100x ≤≤, ∴当x =94时,max 1960W =.当每件商品售价定为94元时,日销售利润最大,最大利润为1960元. …… 8分 27. (1)在Rt △ABC 和Rt △EDG 中,∠BAC =∠DEG ,∴ ∠BCA =∠DGE . 又∠DFC =∠EFG , ∴△DCF ∽△EGF .……2分∴DF CFEF GF=.又∠DFE =∠CFG , ∴△DEF ∽△CGF .……3分(2AE CG =+, 现证明如下: ……4分 过点E 作EH ⊥BD 于点H ,作EK ⊥AB 于点K , ……5分 ∴EH ∥AB ,EK ∥BD . ∴四边形BHEK 为平行四边形. 又∵∠ABC =90°, ∴□BHEK 为矩形.∵EH ∥AB ,∴∠BAC =∠HEC =∠DEG . ∴∠HED =∠CEG . ∵△CGF ∽△DAF , ∴∠FCG =∠FDA=90°. ∴△HED ∽△CEG . ∴EH HDEC CG=.在Rt △HEC 中,∠HEC =α=45°,∴cos cos 452EH EC α==︒=.AC∴=2HD EH CG EC =.∴2HD CG =.……6分在Rt △A EK 中,α=45°,∴sin 452EK AE =︒=.∴2EK AE =.∴2BH EK AE ==.∴22BD BH HD AE CG =+=+.AE CG =+.……7分(3)MN的最小值为2. ……10分 28. 解:(1)由题意:16+42012(1)2m n m −+=⎧⎪⎨−=⎪⨯−⎩解得:16m n =⎧⎨=⎩ . ……2分∴抛物线的解析式是2+12y x x =−+. ……3分 (2)①解:在2+12y x x =−+中,当0=x ,得y =12,∴C (0,12) .当y =0时,2+12=0x x −+, 解方程得13x =−,24x =.∴A (﹣3,0).设直线BC 的解析式为y =kx +b ,且B (4,0),C (0,12) ∴4012k b b +=⎧⎨=⎩∴312k b =−⎧⎨=⎩.∴直线BC 的解析式为312y x =−+. 分 如图,过点D 作x 轴的平行线,交BC 与点M , ∵7ABE BDE SS ∆∆=, ∴7AEDE=. ∵MD ∥x 轴, ∴∠MDE =∠EAB ,∠DME =∠ABE . ∴△DEM ∽△AEB .∴7AB AEDM DE ==. ∵AB =7, ∴DM =1. ……6分设点D 的坐标为(t ,212t t −++),可得M (t -1,212t t −++). ∴23(1)1212t t t −−+=−++. ∴11t =,23t =.∴点D 的坐标为(1,12)或(3,6). ……8分 (3)当m =n -2时,抛物线的表达式为2(2)2y x n x n =−+−+. 当y =0时,2(2)20x n x n −+−+=. ∴122,x x n =−=.∴B (n ,0). 当x =0时,y =2n , ∴C (0,2n ).可得直线BC 的表达式为y =-2x +2n . ∵直线AF ∥BC ,设直线AF 的关系式为y =-2x +h , ∵点A 的坐标为(-2,0), ∴2(2)0h ⨯−+=.∴h =-4. ……10分 将直线AF 关于直线BC 对称得到直线l ,则直线l 的表达式为y =-2x +2n +2n +4=-2x +4n +4.∴2(2)2244y x n x n y x n ⎧=−+−+⎨=−++⎩.∴2(2)2244x n x n x n −+−+=−++. ∴2240x nx n −++=.由题意可知,直线l与抛物线只有一个交点.∴△=0.n=±.∴4∵n>0,n=+.……12分∴4。

2021年四川省成都市中考数学一诊试卷(解析版)

2021年四川省成都市中考数学一诊试卷(解析版)

2021年四川省成都市中考数学一诊试卷注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5 毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5 毫米黑色墨水签字笔描黑.一、选择题(共10小题).1.的绝对值为()A.6B.C.D.﹣62.如图,所示几何体的主视图为()A.B.C.D.3.截至2020年2月14日,各级财政已安排疫情防控补助资金901.5亿元,其中中央财政安排252.9亿元,为疫情防控提供了有力保障.其中数据252.9亿用科学记数法可表示为()A.252.9×108B.2.529×109C.0.2529×1010D.2.529×10104.下列等式一定成立的是()A.2m+3n=5mn B.(x2)4=x8C.m2•m3=m6D.(m﹣n)2=m2﹣n25.如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于()A.32°B.38°C.52°D.66°6.在平面直角坐标系中,把点P(﹣5,4)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()A.(5,4)B.(﹣5,4)C.(﹣5,﹣4)D.(5,﹣4)7.已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>C.k<且k≠0D.k>且k≠0 8.如图,分别以正三角形的三个顶点为圆心,正三角形的边长为半径画弧形成一个弧线封闭图形,将这个封闭图形称为“凸轮”.若正三角形的边长为2,则“凸轮”的周长等于()A.2πB.4πC.πD.π9.有下列说法:①解分式方程一定会产生增根;②方程1﹣=0的根为2;③方程=的最简公分母为2x(2x﹣4);④x+=1+是分式方程.其中正确的个数是()A.1B.2C.3D.410.如图,是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②若(﹣,y1),(,y2)是抛物线上两点,则y1<y2;③4a+2b+c<0;④2a+b=0,其中结论正确的是()A.①B.②C.③D.④二、填空题(本大题共4个小题,每小题4分,满分16分)11.分解因式:2a3﹣8a=.12.函数y=+的自变量x的取值范围是.13.如图,将一副三角板△ABC和△BCD拼在一起,E为AC的中点,将△ABE沿BE翻折得到△A′BE,连接DE,若BC=6,则DE=.14.如图,在▱ABCD中,点E在边BC上,DE交对角线AC于F,若CE=2BE,△ABC 的面积等于30,那么△FEC的面积等于.三、解答题15.(12分)(1)计算()﹣2+|﹣2|﹣(3﹣π)0﹣3tan30°.(2)解不等式组,写出它的正整数解.16.(6分)先化简,再求值:,其中x=1.17.(8分)最近,学校掀起了志愿服务的热潮,教育处也号召各班学生积极参与,为了解甲、乙两班学生一周服务情况,从这两个班级中各随机抽取40名学生,分别对他们一周的志愿服务时长(单位:分钟)进行收集、整理、分析,给出了部分信息:a.甲班40名学生一周的志愿服务时长的扇形统计图如图(数据分成6组):A.20≤x<40,B.40≤x<60,C.60≤x<80,D.80≤x<100,E.100≤x<120,F.120≤x<140);b.甲班40名学生一周志愿服务时长在60≤x<80这一组的是:60 60 62 63 65 68 70 72 73 75 75 76 78 78c.甲、乙两班各抽取的40名学生一周志愿服务时长的平均数、中位数、众数如表:学校平均数中位数众数甲75m90乙757685根据以上信息,回答下列问题:(1)上面图表中的m=,扇形统计图中“C组”所对应的圆心角的度数为度;(2)根据上面的统计结果,你认为班学生志愿服务工作做得好(填“甲”或“乙”),理由是;(3)小江和小北两位同学都参加了水井坊街道的志愿者服务项目,该街道志愿者服务工作一共设置了三个岗位,请用列表或画树状图的方法,求小江、小北恰好被分配到同一岗位进行志愿者服务的概率.18.(8分)高铁修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A,C,D共线)处同时施工.测得∠CAB=30°,AB=8km,∠ABD=105°,求BD长.(结果精确到十分位≈1.732,≈1.414)19.如图,一次函数y=﹣x+b的图象与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,n).过A作AC⊥x轴于C,交OB于E,且EB=2EO.(1)求一次函数和反比例函数解析式;(2)当x为何值时,﹣x+b≥;(3)若点P是线段AB的中点,求△POB的面积.20.如图,AB为⊙O直径,C、D为⊙O上不同于A、B两点,连接CD,过C作⊙O的切线交AB延长线于点F.直线DB⊥CF于点E.(1)求证:∠ABD=2∠BAC;(2)连接BC,求证:BC2=2BE•BO;(3)当BD=,sin∠F=时,求CD的长.一、填空题(每小题4分,共20分)21.已知a﹣b=3,则a2﹣b2﹣6b的值是.22.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式有解的概率为.23.如图,一次函数y=6x与反比例函数y=(k>0)的图象交于A,B两点,点C在x 轴上运动,连接AC,点Q为AC中点,若点C运动过程中,OQ的最小值为2,则k =.24.如图,小新同学是一位数学爱好者,想利用所学知识研究一个五边形面积.他先在矩形点阵中放入了一个矩形ABCD,A、B、C、D四个顶点刚好在格点上,接着又放入了一条线段EF,点E、F也恰好在格点上并与AD、CD分别交于点M、N.若点阵图中,单位格点正方形边长为1,则五边形ABCNM的面积为.25.正方形ABCD的边长为4,F是AD上的动点,将△FCD沿着CF折叠,当△AEF是等腰三角形(EF是腰),DF=.二、解答题26.(8分)龙泉驿区五星枇杷品质优果形大,有枇杷之王之誉.近日五星枇杷陆续上市,起初售价为每斤30元,从第一周开始每周降价4元,从第六周开始,保持每斤10元的稳定价格销售,直到12周结束,该五星枇杷不再销售.(1)请写出五星枇杷销售价格y与周次x之间的函数关系式;(2)若该五星枇杷进货当周售完且每斤进价z与周次x的关系为z=(x﹣8)2+5(1≤x≤12),且x为整数,那么该五星枇杷在第几周售出后,每斤获得利润最大?最大利润为多少?27.如图,正方形ABCD边长为a,正方形CEFG边长为b,(1)如图1,若点F在线段BC上移动,且不与B、C两点重合,连接AF、AE、DE,点M、K、L分别为AF、AE、DE中点.①求证:ML<(a+b);②求线段ML与线段ED的关系;(2)若点F从点C出发,沿边CB→BA向终点A运动,整个运动过程中,求点E所经过的路径长(用含a的代数式表示).28.(12分)如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y 轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G有4个公共点时,求k的取值范围.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分,请把答案填涂到答题卡上)1.解:||=,故选:C.2.解:正面看,底层是一个较大的矩形,上层是一个较小的矩形.故选:A.3.解:252.9亿=25290000000=2.529×1010.故选:D.4.解:A、2m与3n不是同类项,所以不能合并,故本选项不合题意;B、(x2)4=x8,故本选项符合题意;C、m2•m3=m5,故本选项不合题意;D、(m﹣n)2=m2﹣2mn+n2,故本选项不合题意;故选:B.5.解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=52°,∴∠A=90°﹣∠ABD=38°;∴∠BCD=∠A=38°.故选:B.6.解:由题意,P与P′关于原点对称,∵P(﹣5,4),∴P′(5,﹣4),故选:D.7.解:∵方程x2﹣2x+3k=0有两个不相等的实数根,∴Δ=4﹣12k>0,解得:k<.故选:A.8.解:∵△ABC是等边三角形,∴∠BAC=∠ABC=∠ACB=60°,AB=AC=BC=2,∴“凸轮”的周长是3×=2π,故选:A.9.解:①解分式方程不一定会产生增根,所以①不正确;②1﹣=0,去分母得:x+2﹣4=0,x=2,经检验:x=2是方程1﹣=0的根,所以②正确;③方程=的最简公分母为2x(x﹣2),所以③不正确;④x+=1+是分式方程,所以④正确;所以①③不正确,②④正确.故选:B.10.解:∵抛物线开口向下,对称轴为直线x=1,与y轴交于正半轴,∴a<0,﹣=1,c>0,∴b=﹣2a>0,∴2a+b=0,abc<0,结论①错误,④正确;∵抛物线的对称轴为直线x=1,抛物线开口向下,且1﹣(﹣)=,﹣1=,∴y1=y2,结论②错误;∵抛物线的对称轴为直线x=1,与x轴的一个交点坐标是(﹣1,0),∴另一个交点坐标是(3,0),∴当x=2时,y>0,∴4a+2b+c>0,结论③错误;综上所述:正确的结论是④,故选:D.二、填空题(本大题共4个小题,每小题4分,满分16分)11.解:原式=2a(a2﹣4)=2a(a+2)(a﹣2),故答案为:2a(a+2)(a﹣2)12.解:由题意,得3﹣x>0且x﹣2≠0,解得x≤3且x≠2,故答案为:x≤3且x≠2.13.解:设A'E与BC相交于点F,由题意知∠ACB=30°,∠ABC=90°,∴∠A=∠A'=60°,∵E为AC的中点,∴AE=BE=CE,∴△ABE和△A'BE为等边三角形,∴∠AEB=∠A'EB=60°,∴∠CEF=60°,∴EF⊥BC,又∵△BDC为等腰直角三角形,∴DF⊥BC,∴D,E,F三点共线,∵BC=6,∴CF=3,∴EF =3,DF =3, ∴DE =DF ﹣EF =3﹣3. 故答案为:3﹣3.14.解:∵CE =2BE ,∴设BE =x ,则CE =2x ,BC =3x ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC =3x ,∴△ADF ∽△CEF ,∴=,∵△ABC 的面积等于30,∴S △CFD =×S △ACD ==12,∴S △EFC ==8, 故答案为8.三、解答题15.解:(1)原式=4+2﹣﹣1﹣3× =4+2﹣﹣1﹣ =5﹣2; (2), 解①得x ≥﹣1,解②得x <3,不等式组的解集为﹣1≤x <3,不等式组的正整数解为1,2.16.解:原式=﹣• =﹣ =, 当x =1时,原式=.17.解:(1)由题意得:A的人数为:40×5%=2(人),B的人数为:40×15%=6(人),C的人数为14人,∴甲班的中位数为=77,扇形统计图中“C组”所对应的圆心角的度数为:360°×=126°,故答案为:77,126;(2)根据上面的统计结果,甲班学生志愿服务工作做得好,理由如下:①甲、乙两班的平均数相等,甲班的中位数比乙班的中位数大;②甲班的众数比乙班的众数大;故答案为:甲,①甲、乙两班的平均数相等,甲班的中位数比乙班的中位数大;②甲班的众数比乙班的众数大;(3)街道志愿者服务工作一共设置了三个岗位,分别记为A、B、C,画树状图如图:共有9个等可能的结果,小江、小北恰好被分配到同一岗位进行志愿者服务的结果有3个,∴小江、小北恰好被分配到同一岗位进行志愿者服务的概率为=.18.解:作BE⊥AD于点E,∵∠CAB=30°,AB=8km,∴∠ABE=60°,BE=4km,∵∠ABD=105°,∴∠EBD=45°,∴∠EDB =45°,∴BE =DE =4km ,∴BD =≈5.7(km ),即BD 的长是5.7km .19.解:(1)∵EB =2EO ,∴OE :OB =1:3,∵B 点横坐标为3,∴A 点的横坐标为1,即m =1,∵点A (1,3)在直线y =﹣x +b 及y =上,∴3=﹣1+b ,3=,解得b =4,k =3,∴一次函数为y =﹣x +4,反比例函数为y =;(2)由图象可知,当1≤x ≤3时,﹣x +b ≥;(3)连接OA ,作BD ⊥x 轴于D ,∵B (3,n )在直线y =﹣x +4上,∴n =﹣3+4=1,∴B (3,1),∴S △AOB =S △AOC +S 梯形ACDB ﹣S △BOD =S 梯形ACDB =(3+1)(3﹣1)=4,∵点P 是线段AB 的中点,∴S △POB =S △AOB =2.20.(1)证明:连接OC,如图,∵OC⊥CF,DB⊥CF,∴CO∥BD,∴∠ABD=∠COB,∵∠COB=2∠BAC,∴∠ABD=2∠BAC.(2)证明:连接BC,如上图,∵AB为⊙O直径,∴∠ACB=90°,∵CE⊥DB,∴∠CEB=∠ACB,∵∠ACB=90°,∴∠CAB+∠ABC=90°,∵OC⊥CF,∴∠BCE+∠OCB=90°,∵OB=OC,∴∠ABC=∠OCB,∴∠CAB=∠BCE,∴△CBE∽△ABC,∴,∴BC2=AB•BE,∵AB=2OB,∴BC2=2BE•BO.(3)解:如图,连接AD,∵AB为⊙O直径,∴∠ADB=90°,∴CF∥AD,∴∠BAD=∠F,∴sin∠BAD=sin F=,∴AB=BD==12,∴OB=OC=AB=6,∵OC⊥CF,∴∠OCF=90°,∴sin F=,∴OF=10,由勾股定理,得,CF==8,∵OC∥DB,∴,即,∴CE=,∴EF=,∵BF=OF﹣OB=10﹣6=4,∴BE=,∴DE=BD+BE==,∴CD==.一、填空题(每小题4分,共20分)21.解:∵a﹣b=3,∴a=b+3,∴a2﹣b2﹣6b=(b+3)2﹣b2﹣6b=b2+6b+9﹣b2﹣6b=9.故答案为:9.22.解:解得:2≤x<,∵关于x的不等式组有解,∴>2,解得:a>3.5,∴使关于x的不等式组有解的概率为:=.故答案为:.23.解:连接BC,∵点A、B关于原点对称,∴O是AB的中点,∵Q为AC中点,∴OQ是△ABC的中位线,∴OQ=BC,故当BC最小时,OQ也最小,当BC⊥x轴时,BC最小,此时BC=2OQ=4,即点B的纵坐标为﹣4,将点B的纵坐标代入y=6x得:﹣4=6x,解得:x=﹣,故点B的坐标为(﹣,﹣4),∵点B在反比例函数y=(k>0)的图象上,∴k=﹣×(﹣4)=,故答案为:.24.解:建立如图坐标系,设A(1,4),E(0,4),N(y,1),M(1,x),∴AM=4﹣x,∴S△EAM =S△EPF﹣S四边形AMEP==﹣(4﹣x+4),2﹣=12﹣20+x ,解得,x =, ∵S △AQF =S △EPF ﹣S 四边形EPQN ,∴(6﹣y +6), 解得y =,∴S 剩=S 矩形ABCD ﹣S △MDN =4×=12﹣=12﹣=.故答案为:. 25.解:当△AEF 是等腰三角形(EF 是腰)时,此题有两种情况:①如图1,当AF =EF 时,由折叠得:EF =DF ,∴AF =DF ,又∵正方形ABCD 的边长为4,∴DF =AD =2;②如图2,当点E 在AC 上时,过点E 作MN ⊥AD 于M ,交BC 于点N ,∴AM =FM ,∠AEM =∠FEM∵四边形ABCD为正方形,∴∠DAC=45°,∵∠AEF=90°,∴△AME是等腰直角三角形,∴AM=EM,AE=EF,设DF=a,则FM=AM=EM=(4﹣a),由折叠得EF=DF=a,在Rt△EFM中,由勾股定理得:EF2=EM2+FM2,∴=a2,解得:a1=﹣4(不符题意,舍去),a2=4﹣4,∵DF=4﹣4;综上所述,DF=2或4,故答案为:2或4.二、解答题26.解:(1)该种蔬菜销售价格y与天数x之间的函数关系式:y=;(2)设利润为W,W=y﹣z=,W=﹣x2+9,对称轴是直线x=0,当x>0时,W随x的增大而减小,=8.75(元),∴当x=1时,W最大W=﹣(x﹣8)2+5,对称轴是直线x=8,=5(元),∴当x=8时,W最大综上可知:在第1周进货并售出后,所获利润最大为8.75元.27.解:(1)如图1,连接MK,KL,∵M、K分别是AF,AE的中点,∴MK=EF,∵K、L分别是AE、DE的中点,∴KL=AD,∵MK+KL>ML(三角形两边之和大于第三边),正方形ABCD边长为a,正方形CEFG 边长为b,∴ML<(a+b);(2)作LQ∥CE交CD于Q,∵KL为△ADE的中位线,∴KL=AD,∵LQ∥CE,∴=1,即DQ=,∵AD=CD,∴KL=DQ,∵MK是△AEF的中位线,LQ是△DEC的中位线,∴MK=,LQ=,∴MK=LQ,∵∠ECD=∠LQD=90°+45°=135°,∠MKA=∠FEA,∠APC=∠AKC,∴∠FPE+∠FED=∠MKL=180°﹣45°=135°=∠ECD,在△MKL和△LQD中,,∴△MKL≌△LQD(SAS),∴ML=DL=ED;(2)在F运动过程中,点E的轨迹是C﹣P﹣B,△CPB为以P为顶点的等腰直角三角形,∴CP+PB=BC=a,①当点F在CB上时,如图中正方形F1E1CG1,∵四边形F1E1CG1为正方形,CF1为对角线,∴∠F1CE1=45°,∵△BPC为等腰直角三角形,∴∠BCP=45°,∴E1在CP上运动,当点F1到达点B时,E1与点P重合;②当点F在BA上时,如图中正方形F2E2CG2,连接E2P,由①得,∠F2CE2=45°,∠BCP=45°,∴∠F2CB=∠E2CP,∵,∴△CF2B∽△CE2P,∴∠CPE2=∠CBF2=90°,∴E2在BP上,当F2到达A时,E2与B重合;综上所述,点E的轨迹在C﹣P﹣B上,轨迹长度为a.28.解:(1)y=mx2+(m2﹣m)x﹣2m+1顶点D的横坐标为1,∴=1,解得m=﹣1,∴二次函数的表达式为y=﹣x2+2x+3,令y=0得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)过B作BH⊥AC于H,过F作FG⊥y轴于G,如图:∵二次函数y=﹣x2+2x+3与y轴交点C(0,3),且A(﹣1,0),B(3,0),∴AB=4,OC=3,AC=,BC=3,=AB•OC=AC•BH,∵S△ABC∴BH=,Rt△BHC中,sin∠HCB===,Rt△EFC中,EF=CF•sin∠HCB=CF,∴FE=•CF=CF,设P(n,﹣n2+2n+3),由B(3,0),C(0,3)得BC解析式为y=﹣x+3,∴△BCO是等腰直角三角形,F(n,﹣n+3),∴△GFC是等腰直角三角形,GF=n,∴CF=GF=n,∴CF=2n,即FE=2n,∴m=PF+FE=PF+2n=(﹣n2+2n+3)﹣(﹣n+3)+2n=﹣n2+5n,∴当n==时,m最大,最大为﹣()2+5×=,此时P(,);(3)直线y=kx+k﹣6总过(﹣1,﹣6),k<0时,它和新图象G不可能有4个公共点,如图:k>0时,若二次函数的表达式为y=﹣x2+2x+3刚好经过B(3,0),由(﹣1,﹣6),B(3,0)可得直线解析式为y=x﹣,此时直线y=x﹣与新图象G有3个交点,∴直线y=kx+k﹣6与新图象G有4个公共点,需满足k<,而抛物线y=﹣x2+2x+3关于x轴对称的抛物线解析式为y=x2﹣2x﹣3,若直线y=kx+k﹣6与抛物线y=x2﹣2x﹣3有两个交点,即是有两组解,∴x2﹣(2+k)x+3﹣k=0有两个不相等的实数根,∴Δ>0,即[﹣(2+k)]2﹣4(3﹣k)>0,解得k>﹣4+2或k<﹣4﹣2(小于0,舍去),∴k>﹣4+2,因此,直线y=kx+k﹣6与新图象G有4个公共点,﹣4+2<k<.。

2020年四川省成都市中考数学一诊试卷解析版

2020年四川省成都市中考数学一诊试卷解析版

中考数学一诊试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.下列是一元二次方程的是( )A. x2-2x-3=0B. x-2y+1=0C. 2x+3=0D. x2+2y-10=02.一个由半球和圆柱组成的几何体如图水平放置,其俯视图为( )A.B.C.D.3.菱形的两条对角线长分别为6和8,则菱形的面积是( )A. 10B. 20C. 24D. 484.在△ABC中,若∠C=90°,cos A=,则∠A等于( )A. 30°B. 45°C. 60°D. 90°5.若△ABC∽△DEF,△ABC与△DEF的相似比为2:3,则S△ABC:S△DEF为( )A.2:3 B. 4:9 C. : D. 3:26.如图是用卡钳测量容器内径的示意图,现量得卡钳上A,D两个端点之间的距离为10m,,则容器的内径是( )A. 5cmB. 10cmC. 15cmD. 20cm7.如图,已知AB∥CD∥EF,BD:DF=2:5,那么下列结论正确的是( )A. AC:EC=2:5B. AB:CD=2:5C. CD:EF=2:5D. AC:AE=2:58.某超市一月份营业额为100万元,一月、二月、三月的营业额共500万元,如果平均每月增长率为x,则由题意可列方程( )A. 100(1+x)2=500B. 100+100•2x=500C. 100+100•3x=500D. 100[1+(1+x)+(1+x)2]=5009.在同一坐标系中,函数y=和y=kx+3(k≠0)的图象大致是( )A. B.C. D.10.如图,⊙O的半径OD垂直于弦AB,垂足为点C,连接AO并延长交⊙O于点E,连接BE,CE.若AB=8,CD=2,则△BCE的面积为( )A. 12B. 15C. 16D. 18二、填空题(本大题共9小题,共36.0分)11.若,则=______.12.抛物线y=x2-4x-4的顶点坐标是______.13.设A(x1,y1),B(x2,y2)是反比例函数y=-图象上的两点,若x1<x2<0,则y1与y2之间的关系是______.14.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q.若QC=1,BC=3,则平行四边形ABCD周长为______15.设a、b是方程x2+x-2021=0的两个实数根,则(a-1)(b-1)的值为______.16.在一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入3个黑球(每个球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,则袋中红球约有______个.17.已知一列数a1,a2,…,a n(n为正整数)满足a1=1,a2==,…,a n=,请通过计算推算a2019=______,a n=______.(用含n的代数式表示)18.如图,点A在双曲线y=(k≠0)的第一象限的分支上,AB垂直x轴于点B,点C在x轴正半轴上,OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,连接CD,若△CDE的面积为1,则k的值为______.19.如图,矩形ABCD中,AB=3,BC=4,点E是A边上一点,且AE=,点F是边BC上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG,CG,则四边形AGCD的面积的最小值为______.三、解答题(本大题共9小题,共84.0分)20.(1)计算:(π-2)0-2cos30°-(2)解方程:x2-5x+4=0.21.已知:如图,M为平行四边形ABCD边AD的中点,且MB=MC.求证:四边形ABCD是矩形.22.小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈,cos35°≈,tan35°≈)23.今年猪肉价格受非洲猪瘟疫情影响,有较大幅度的上升,为了解某地区养殖户受非洲猪瘟疫情感染受灾情况,现从该地区建档的养殖户中随机抽取了部分养殖户进行了调查(把调查结果分为四个等级:A级:非常严重;B级:严重;C级:一般;D 级:没有感染),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查的养殖户的总户数是______;把图2条形统计图补充完整.(2)若该地区建档的养殖户有1500户,求非常严重与严重的养殖户一共有多少户?(3)某调研单位想从5户建档养殖户(分别记为a,b,c,d,e)中随机选取两户,进一步跟踪监测病毒传播情况,请用列表或画树状图的方法求出选中养殖户e的概率.24.如图,在平面直角坐标系中,一次函数y=-x+m的图象与反比例函数y=(x>0)的图象交于A、B两点,已知A(2,4).(1)求一次函数和反比例函数的解析式;(2)求B点的坐标;(3)连接AO、BO,求△AOB的面积.25.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.26.为建设天府新区“公园城市”,实现城市生活垃圾减量化、资源化、无害化的目标.近日,成都市天府新区计划在各社区试点实施生活垃圾分类处理活动,取得市民积极响应.某创业公司发现这一商机,研发生产了一种新型家庭垃圾分类桶,并投入市场试营销售.已知该新型垃圾桶成本为每个40元,市场调查发现,该垃圾桶每件售价y(元)与每天的销售量为x(个)的关系如图.为推广新产品及考虑每件利润因素,公司计划每天的销售量不低于1000件且不高于2000件.(1)求每件销售单价y(元)与每天的销售量为x(个)的函数关系式;(2)设该公司日销售利润为W(元),求每天的最大销售利润是多少元?27.已知,在△ABC和△EFC中,∠ABC=∠EFC=90°,点E在△ABC内,且∠CAE+∠CBE=90°(1)如图1,当△ABC和△EFC均为等腰直角三角形时,连接BF,①求证:△CAE∽△CBF;②若BE=2,AE=4,求EF的长;(2)如图2,当△ABC和△EFC均为一般直角三角形时,若=k,BE=1,AE=3,CE=4,求k的值.28.已知,如图,抛物线y=ax2+bx+c(a≠0)的顶点为M(1,9),经过抛物线上的两点A(-3,-7)和B(3,m)的直线交抛物线的对称轴于点C.(1)求抛物线的解析式及点B的坐标.(2)在抛物线上A,M两点之间的部分(不包含A,M两点),是否存在点D,使得S△DAC=2S△DCM?若存在,求出点D的坐标;若不存在,请说明理由.(3)上下平移直线AB,设平移后的直线与抛物线交与A′,B′两点(A′在左边,B'在右边),且与y轴交与点P(0,n),若∠A′MB′=90°,求n的值.答案和解析1.【答案】A【解析】解:A、是一元二次方程,故此选项正确;B、是二元一次方程,故此选项错误;C、是一元一次方程,故此选项错误;D、是二元二次方程,故此选项错误;故选:A.根据一元二次方程的定义即可求出答案.此题主要考查了一元二次方程定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.【答案】A【解析】解:这个几何体的俯视图为:故选:A.根据俯视图是指从几何体的上面观察得出的图形作答.本题考查了简单几何体的三视图,能理解三视图的定义是解此题的关键.3.【答案】C【解析】【分析】此题考查了菱形的性质.菱形的面积等于对角线积的一半是解此题的关键.由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案.【解答】解:∵菱形的两条对角线的长分别是6和8,∴这个菱形的面积是:×6×8=24.故选C.4.【答案】C【解析】解:∵△ABC中,∠C=90°,cos A=,∴∠A=60°.故选:C.根据∠A为△ABC的内角,且∠C=90°可知∠A为锐角,再根据cos A=即可求出∠A的度数.本题比较简单,考查的是直角三角形的性质及特殊角的三角函数值.5.【答案】B【解析】解:因为△ABC∽△DEF,所以△ABC与△DEF的面积比等于相似比的平方,所以S△ABC:S△DEF=()2=,故选B.因为两相似三角形的面积比等于相似比的平方,所以.本题比较容易,考查了两个相似三角形面积比等于相似比的平方的性质.6.【答案】C【解析】解:连接AD、BC,∵,∠AOD=∠BOC,∴△AOD∽△BOC,∴==,∵A,D两个端点之间的距离为10m,∴BC=15m,故选:C.首先连接AD、BC,然后判定△AOD∽△BOC,根据相似三角形的性质可得==,进而可得答案.此题主要考查了相似三角形的应用,关键是掌握相似三角形的判定和性质.7.【答案】A【解析】解:∵AB∥CD∥EF,∴AC:EC=BD:DF=2:5,AC:AE=BD:BF=2:7.故选:A.根据平行线分线段成比例定理对各选项进行判断.本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.8.【答案】D【解析】解:设平均每月增长率为x,100[1+(1+x)+(1+x)2]=500.故选:D.如果平均每月增长率为x,根据某超市一月份营业额为100万元,一月、二月、三月的营业额共500万元,可列方程.本题考查理解题意的能力,分别求出一,二,三月份的,以总和为等量关系列出方程.9.【答案】C【解析】解:分两种情况讨论:①当k>0时,y=kx+3与y轴的交点在正半轴,过一、二、三象限,y=的图象在第一、三象限;②当k<0时,y=kx+3与y轴的交点在正半轴,过一、二、四象限,y=的图象在第二、四象限.故选C.根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.10.【答案】A【解析】解:∵⊙O的半径OD垂直于弦AB,垂足为点C,AB=8,∴AC=BC=AB=4.设OA=r,则OC=r-2,在Rt△AOC中,∵AC2+OC2=OA2,即42+(r-2)2=r2,解得r=5,∴AE=10,∴BE===6,∴△BCE的面积=BC•BE=×4×6=12.故选:A.先根据垂径定理求出AC的长,再设OA=r,则OC=r-2,在Rt△AOC中利用勾股定理求出r的值,再求出BE的长,利用三角形的面积公式即可得出结论.本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.11.【答案】【解析】解:∵=,∴3(x+y)=5y,∴3x=2y,∴=.故答案为:.根据两内项之积等于两外项之积列式整理即可.本题考查了比例的性质,主要利用了两内项之积等于两外项之积的性质,需熟记.12.【答案】(2,-8)【解析】解:解法1:利用公式法y=ax2+bx+c的顶点坐标公式为(,),代入数值求得顶点坐标为(2,-8);解法2:利用配方法y=x2-4x-4=x2-4x+4-8=(x-2)2-8,所以顶点的坐标是(2,-8).故答案为:(2,-8).本题可以运用配方法求顶点坐标,也可以根据顶点坐标公式求坐标.本题考查求抛物线的顶点坐标、对称轴的方法.13.【答案】y2>y1>0【解析】解:∵反比例函数y=-中,k=-2<0,∴函数图象的两个分支位于二、四象限,且在每一象限内y随x的增大而增大,∵x1<x2<0,∴y2>y1>0.故答案为:y2>y1>0.先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0即可得出结论.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.【答案】14【解析】解:∵由作图可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵QC=1,∴CD=DQ+CQ=3+1=4,∴平行四边形ABCD周长=2(DC+AD)=2×(4+3)=14.故答案为:14.根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出平行四边形ABCD周长.本题考查的是复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.15.【答案】-2019【解析】解:∵a、b是方程x2+x-2021=0的两个实数根,∴a+b=-1,ab=-2021,∴(a-1)(b-1)=ab-(a+b)+1=-2021+1+1=-2019,故答案为:-2019.根据根与系数的关系得出a+b=-1,ab=-2021,再代入计算即可.本题主要考查根与系数的关系,熟练掌握根与系数的关系是解题的关键.16.【答案】17【解析】解:通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,口袋中有3个黑球,∵假设有x个红球,∴=0.85,解得:x=17,经检验x=17是分式方程的解,∴口袋中有红球约有17个.故答案为:17.根据口袋中有3个黑球,利用小球在总数中所占比例得出与实验比例应该相等求出即可.此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.17.【答案】【解析】解:根据题意得,a1=1=;a2=;a3==;…发现规律:∴a n=.∴a2019==.故答案为:,.根据题意先计算出前几个数,发现规律即可求解.本题考查了规律型-数字的变化类,解决本题的关键是写出前几个数之后,寻找规律,总结规律,运用规律.18.【答案】【解析】解:设A(a,b),∵OC=2AB,点D为OB的中点,∴C(2a,0),D(0,b),∵AE=3EC,△CDE的面积为1,∴S△ADC=4S△CDE=4,∵S梯形ABOC=S△ABD+S△OCD+S△ADC,∴(a+2a)•b=•a•b+•2a•b+4,∴ab=,∵点A在双曲线y=(k≠0)的图象上,∴k=.故答案为.设A(a,b),则C(2a,0),D(0,b),根据三角形面积公式,由AE=3EC得到S△ADC=4S△CDE=4,由于S梯形ABOC=S△ABD+S△OCD+S△ADC,则(a+2a)•b=•a•b+•2a•b+4,整理得ab=,然后根据反比例函数图象上点的坐标特征即可得到k=.本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数图象上点的坐标特征.19.【答案】【解析】解:如图,在矩形ABCD中,AB=3,BC=4,∠B=∠D=90°,连接AC,∴AC=5,∵AB=3,AE=,∴点F是边BC上的任意位置时,点G始终在AC的下方,设点G到AC的距离为h,S四边形AGCD=S△ACD+S△ACG=3×4+×5h,=6+h.要使四边形AGCD的面积的最小,即h最小.∵点G在以点E为圆心,BE为半径的圆上,且在矩形ABCD的内部.过点E作EH⊥AC,交圆E于点G,此时h最小.在Rt△ABC中,sin∠BAC==,在Rt△AEH中,AE=,sin∠BAC==,解得EH=AE=,EG=BE=AB-AE=3-,∴h=EH-EG=-(3-)=-3.∴S四边形AGCD=6+×(-3)=-=.故答案为:.根据矩形ABCD中,AB=3,BC=4,可得AC=5,由AE=可得点F是边BC上的任意位置时,点C始终在AC的下方,设点G到AC的距离为h,要使四边形AGCD的面积的最小,即h最小.所以点G在以点E为圆心,BE为半径的圆上,且在矩形ABCD的内部.过点E作EH⊥AC,交圆E于点G,此时h最小.根据锐角三角函数先求得h的值,再分别求得三角形ACD和三角形ACG的面积即可得结论.本题考查了翻折变换,解决本题的关键是确定满足条件的点G的位置,运用相似、锐角三角函数等知识解决问题.20.【答案】解:(1)原式=1-2×-4+-1=1--4+-1=-4;(2)分解因式得:(x-1)(x-4)=0,可得x-1=0或x-4=0,解得:x1=1,x2=4.【解析】(1)原式利用零指数幂法则,特殊角的三角函数值,算术平方根定义,以及绝对值的代数意义计算即可求出值;(2)方程利用因式分解法求出解即可.此题考查了解一元二次方程的解法,以及实数的运算,熟练掌握运算法则是解本题的关键.21.【答案】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠A+∠D=180°,在△ABM和△DCM中,,∴△ABM≌△DCM(SSS),∴∠A=∠D=90°,即可得出平行四边形ABCD是矩形.【解析】根据平行四边形的两组对边分别相等可知△ABM≌△DCM,可知∠A=∠D=90°,所以是矩形.此题主要考查了平行四边形的性质,矩形的判定,即有一个角是90度的平行四边形是矩形.22.【答案】解:作AD⊥BC交CB的延长线于D,设AD为x,由题意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt△ADC中,∠ACD=35°,∴tan∠ACD=,∴=,解得,x≈233m.【解析】本题考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形.作AD⊥BC交CB的延长线于D,设AD为x,表示出DB和DC,根据正切的概念求出x 的值即可.23.【答案】60【解析】解:(1)21÷35%=60户,60-9-21-9=21户,故答案为:60,补全条形统计图如图所示:(2)1500×=750户,答:若该地区建档的养殖户有1500户中非常严重与严重的养殖户一共有750户;(3)用表格表示所有可能出现的情况如下:共有20种不同的情况,其中选中e的有8种,∴P(选中e)==,(1)从两个统计图可得,“B级”的有21户,占调查总户数的35%,可求出调查总户数;求出“C级”户数,即可补全条形统计图:(2)样本估计总体,样本中“严重”和“非常严重”占,估计总体1500户的是“严重”和“方程严重”的户数;(3)用列表法或树状图法列举出所有等可能出现的情况,从中找出符合条件的情况数,进而求出概率.考查扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.24.【答案】解:(1)将A(2,4)代入y=-x+m与y=(x>0)中得4=-2+m,4=,∴m=6,k=8,∴一次函数的解析式为y=-x+6,反比例函数的解析式为y=;(2)解方程组得或,∴B(4,2);(3)设直线y=-x+6与x轴,y轴交于C,D点,易得D(0,6),∴OD=6,∴S△AOB=S△DOB-S△AOD=×6×4-×6×2=6.【解析】(1)由点A的坐标利用一次函数、反比例函数图象上点的坐标特征即可得出反比例函数解析式;(2)联立方程,解方程组即可求得;(3)求出直线与y轴的交点坐标后,即可求出S△AOD和S△BOD,继而求出△AOB的面积.本题考查了反比例函数与一次函数的交点问题、待定系数法求一次函数和反比例函数解析式以及三角形的面积,解题的关键是:根据点的坐标利用待定系数法求出函数解析式;利用分割图形求面积法求出△AOB的面积.25.【答案】(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE⊥AB,∴∠FDG+∠ABD=90°,∵∠DBC=∠ABD,∴∠FDG=∠CGB=∠FGD,∴FD=FG;②解:连接AD、CD,作DH⊥BC,交BC的延长线于H点.∵∠DBC=∠ABD,DH⊥BC,DE⊥AB,∴DE=DH,在Rt△BDE与Rt△BDH中,,∴Rt△BDE≌Rt△BDH(HL),∴BE=BH,∵D是弧AC的中点,∴AD=DC,在Rt△ADE与Rt△CDH中,,∴Rt△ADE≌Rt△CDH(HL).∴AE=CH.∴BE=AB-AE=BC+CH=BH,即5-AE=3+AE,∴AE=1.【解析】(1)由AB为直径知∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC可证得∠MAC+∠CAB=90°,则结论得证;(2)①证明∠BDE=∠DGF即可.∠BDE=90°-∠ABD;∠DGF=∠CGB=90°-∠CBD.因为D 是弧AC的中点,所以∠ABD=∠CBD.则问题得证;②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,可得AE=CH.根据AB=BH可求出答案.本题是圆的综合题,考查了切线的判定,圆周角定理,全等三角形的判定与性质,等腰三角形的判定,正确作出辅助线来构造全等三角形是解题的关键.26.【答案】解:(1)设y与x的函数解析式为:y=kx+b(k≠0),∵函数图象过点(1500,55)和(2000,50),∴,∴,∴y与x的函数解析式为:y=-0.01x+70;(2)由题意得,w=(y-40)x=(-0.01x+70-40)x=-0.01x2+30x,即w=-0.01x2+30x,∵-0.01<0,∴当x=时,,∵1000≤x≤2000,∴当每天销售1500件时,利润最大为22500元.∴每天的最大销售利润是22500元.【解析】(1)设y与x的函数解析式为:y=kx+b(k≠0),将函数图象上的两个点的坐标代入列出方程组,进行解答便可;(2)根据“利润=(售价-进价)×销售量“列出函数解析式,然后根据二次函数的性质,求出其最大值.本题是一次函数与二次函数的应用的综合题,主要考查了一次函数的实际应用,二次函数的实际应用,待定系数法求函数的解析式,求二次函数的最大值,关键是正确运用待定系数法和从实际问题中列出二次函数的解析式.27.【答案】解:(1)①∵△ABC和△CEF都是等腰直角三角形,∴∠ECF=∠ACB=45°,∴∠BCF=∠ACE,∵△ABC和△CEF都是等腰直角三角形,∴CE=CF,AC=CB,∴=,∴,∴△BCF∽△ACE;②由①知,△BCF∽△ACE,∴∠CBF=∠CAE,=,∴BF=AE=×4=2,∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,即:∠EBF=90°,根据勾股定理得,EF===2;(2)如图(2),连接BF,在Rt△ABC中,tan∠ACB==k,同理,tan∠ECF=k,∴tan∠ACB=tan∠ECF,∴∠ACB=∠ECF,∴∠BCF=∠ACE,在Rt△ABC中,设BC=m,则AB=km,根据勾股定理得,AC==m;在Rt△CEF中,设CF=n,则EF=nk,同理,CE=n∴,=,∴,∵∠BCF=∠ACE,∴△BCF∽△ACE,∴∠CBF=∠CAE,∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,即:∠EBF=90°,∵△BCF∽△ACE,∴,∴BF=AE=,∵CE=4,∴n=4,∴n=,∴EF=,在Rt△EBF中,根据勾股定理得,BE2+BF2=EF2,∴12+()2=()2,∴k=或k=-(舍),即:k的值为.【解析】(1)①先判断出∠BCF=∠ACE,再判断出,即可得出结论;②先判断出∠CBF=∠CAE,进而判断出∠EBF=90°,再求出BF=2,最后用勾股定理求解即可得出结论;(2)先判断出∠BCF=∠ACE,再判断出,进而判断出△BCF∽△ACE,进而表示出BF=,再表示出EF=,最后用勾股定理得,BE2+BF2=EF2,建立方程求解即可得出结论.此题是相似形综合题,主要考查了等腰直角三角形的性质,勾股定理,相似三角形的判定和性质,判断出∠EBF=90°是解本题的关键.28.【答案】解:(1)抛物线的表达式为:y=a(x-1)2+9,将点A的坐标代入上式并解得:a=-1,故抛物线的表达式为:y=-x2+2x+8,将点B坐标代入上式并解得:m=5,故点B(3,5);(2)过点M、C、A分别作三条相互平移的平行线,分别交y轴于点G、H、N,直线l 与抛物线交于点D,设直线m的表达式为:y=kx+t,将点M的坐标代入上式并解得:t=9-k,故直线m的表达式为:y=kx+9-t,即点G(0,9-t),同理直线l的表达式为:y=kx+1-k,故点H(0,1-k),同理直线n的表达式为:y=kx+3k-7,故点N(3k-7),S△DAC=2S△DCM,则HN=2GH,即1-k-(3k-7)=2(9-k-1+k),解得:k=-2,故直线l的表达式为:y=-2x+3…②,联立①②并解得:x=5(舍去)或-1,故点D(-1,5);(3)直线A′B′的表达式为:y=2x+n,设点A′、B′的坐标分别为:(x1,y1)、(x2,y2),将抛物线与直线A′B′的表达式联立并整理得:x2+n-8=0,故x1+x2=0,x1x2=n-8,y1+y2=2(x1+x2)+2n=2n,同理可得:y1y2=4n-32+n2,过点M作x轴的平行线交过点A′与y轴的平行线于点G,交过点B′与y轴的平行线于点H,∵∠A′MB′=90°,∴∠GMA′+∠GA′M=90°,∠GMA′+∠MHB′=90°,∴∠GA′M=∠HMB′,故tan∠GA′M=tan∠HMB′,即:,而x1+x2=0,x1x2=n-8,y1+y2=2n,y1y2=4n-32+n2,整理得:n2-13n+30=0,解得:n=3或10(舍去10),故n=3.【解析】(1)抛物线的表达式为:y=a(x-1)2+9,将点A的坐标代入上式并解得:a=-1,即可求解;(2)S△DAC=2S△DCM,则HN=2GH,即1-k-(3k-7)=2(9-k-1+k),即可求解;(3)∠GA′M=∠HMB′,故tan∠GA′M=tan∠HMB′,即:,而x1+x2=0,x1x2=n-8,y1+y2=2n,y1y2=4n-32+n2,即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.第21页,共21页。

2020年四川省成都市武侯区中考数学一诊试卷解析版

2020年四川省成都市武侯区中考数学一诊试卷解析版

2020年四川省成都市武侯区中考数学一诊试卷一、选择题(本大題共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)在如下放置的立体图形中,其主视图与左视图不相同的是()A.圆柱B.正方体C.圆柱D.球2.(3分)已知点P(3,2)在反比例函数y=(k≠0)的图象上,则下列各点中在此反比例函数图象上的是()A.(﹣3,﹣2)B.(3,﹣2)C.(﹣2,3)D.(2,﹣3)3.(3分)如图,在平面直角坐标系中,点A的坐标为(3,4),那么cosα的值是()A.B.C.D.4.(3分)若关于x的一元二次方程(k+2)x2﹣2x﹣1=0有实数根,则实数k的取值范围是()A.k>3B.k≥﹣3C.k>﹣3且k≠﹣2D.k≥﹣3且k≠﹣2 5.(3分)如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,若AE=1,CE =AD=2,则AB的长是()A.6B.5C.4D.26.(3分)下列说法正确的是()A.对角线相等且互相垂直的四边形是正方形B.坡面的水平宽度与铅直高度的比称为坡度C.两个相似图形也是位似图形D.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧7.(3分)如图,⊙O为△ABC的外接圆,∠BAC=55°,则∠OBC的度数为()A.25°B.35°C.55°D.70°8.(3分)在一个不透明的袋子里装有20个红球和若干个蓝球,这些球除颜色外都相同将袋子中的球搅拌均匀,每次从袋子里随机摸出一个球,记录下它的颜色后再放网袋子中,不断重复这一过程,发现摸到蓝球的频率稳定在0.6左右,请你估计袋子中装有蓝球的个数是()A.12个B.20个C.30个D.35个9.(3分)在2020年元旦期间,某商场销售某种冰箱,每台进货价为2500元,调查发现:当销售价为2900元时,平均毎天能销售出8台;而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?设每台冰箱定价x元,根据题意,可列方程为()A.(x﹣2500)(8+4×)=5000B.(x﹣2500)(8+4×)=5000C.(2900﹣x﹣2500)(8+4×)=5000D.(2900﹣x)(8+4×)=500010.(3分)已知二次函数y=ax2+bx+c(其中a,b,c为常数)的图象如图所示,有以下结论:①abc>0;②a+b+c=0;③2a﹣b=0;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确结论的番号是()A.①②④B.①③④C.①④D.③④二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)已知=,则的值为.12.(4分)如图,在△ABC中,P为边AB上一点,且∠ACP=∠B,若AP=6,BP=4,则AC的长为.13.(4分)已知关于x的元二次方程x2﹣2kx﹣8=0的一个根是2,则此方程的另一个根是.14.(4分)如图,现将四根木条钉成的矩形框ABCD变形为平行四边形木框A'BCD′,且A′D′与CD相交于CD边的中点E,若AB=4,则△ECD′的面积是.三、解答題(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:﹣22+(π﹣3.14)0﹣|﹣4|﹣4sin60°(2)解方程:4x2+4x﹣3=016.(6分)2019年9月10日是我国第35个教师节,某中学德育处发起了感恩小学恩师的活动,德育处要求每位同学从以下三种方式中选择一种方式表达感恩:A.信件感恩,B.信息感恩,C.当面感恩.为了解同学们选择以上三种感恩方式的情况,德育处随机对本校部分学生进行了调查,并根据调查结果绘制成了如下两幅不完整的统计图.根据图中信息解答下列问题:(1)扇形统计图中C部分所对应的扇形圆心角的度数为,并补全条形统计图;(2)本次调查在选择A方式的学生中有两名男生和两名女生来自于同一所小学,德育处打算从他们四个人中选择两位在主题升旗仪式上发言,请用画树状图或列表的方法求恰好选到一男一女的概率.17.(8分)2019年10月1日,中华人民共和国成立70周年,成都市天府广场举行了盛大的升旗仪式,我市部分学生有幸见证了这一激动人心的时刻,并在现场作了如下测量工作:身高1.8米的某同学(图中AE部分)在护旗手开始走正步的点A处测得旗杆顶部D 的仰角为22°,在护旗手结束走正步的点B处测得旗杆顶部D的仰角为45°,又测量得到A,B两点间的距离是30米,求旗杆DC的高度.(结果精确到0.1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40.)18.(8分)如图,在正方形ABCD中,点E,F在对角线BD上,AE∥CF,连接AF,CE.(1)求证:△ABE≌△CDF;(2)试判断四边形AECF的形状,并说明理由.19.(10分)如图,在平面直角坐标系xOy中,次函数y=﹣x+5的图象与反比例函数y=(k>0)的图象相交于A,B两点,与x轴相交于点C,连接OB,且△BOC的面积为.(1)求反比例函数的表达式;(2)将直线AB向下平移,若平移后的直线与反比例函数的图象只有一个交点,试说明直线AB向下平移了几个单位长度?20.(10分)如图,⊙O是△ABC的外接圆,AB为⊙O的直径,在△ABC外侧作∠CAD=∠CAB,过点C作CD⊥AD于点D,交AB延长线于点P.(1)求证:PC是⊙O的切线;(2)若tan∠BCP=,AD•BC=4m2(m>0),求⊙O的半径;(用含m的代数式表示)(3)如图2,在(2)的条件下,作弦CF平分∠ACB,交AB于点E,连接BF,且BF =5,求线段PE的长.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上B卷(共50分)21.(4分)已知方程x2﹣x﹣7=0的两个实数根分别为m,n,则m2+n的值为.22.(4分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,求直径CD的长”.(1尺=10寸)则CD=.23.(4分)我们知道黄金比例是,利用这个比例,我们规定一种“黄金算法”即:a b=a+b,比如12=1+×2=.若x(24)=5,则x的值为.24.(4分)如图,点P为双曲线y=(x<0)上一动点,连接OP并延长到点A,使P A=PO,过点A作x轴的垂线,垂足为B,交双曲线于点C.当AC=AP时,连接PC,将△APC沿直线PC进行翻折,则翻折后的△A′PC与四边形BOPC的重叠部分(图中阴影部分)的面积是.25.(4分)如图,在矩形ABCD中,已知AB=3,BC=4,点P是边BC上一动点(点P 不与点B,C重合),连接AP,作点B关于直线AP的对称点M,连接MP,作∠MPC 的角平分线交边CD于点N.则线段MN的最小值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)据报道,从2018年8月以来,“非洲猪瘟”给生猪养殖户带来了不可估量的损失.某养殖户为了预防“非洲猪瘟”的侵袭,每天对猪场进行药熏消毒,已知一瓶药物释放过程中,一个圈舍内每立方米空气中含药量y(毫克)与时间x(分钟)之间满足正比例函数关系;药物释放完后,y与x之间满足反比例函数关系,如图所示,结合图中提供的信息解答下列问题:(1)分别求当0≤x≤10和x>10时,y与x之间满足的函数关系式;(2)据测定,当空气中每立方米的含药量不低于6毫克时,消毒才有效,那么这次熏药的有效消毒时间是多少分钟.27.(10分)如图,已知AC为正方形ABCD的对角线,点P是平面内不与点A,B重合的任意一点,连接AP,将线段AP绕点P顺时针旋转90°得到线段PE,连接AE,BP,CE.(1)求证:△APE∽△ABC;(2)当线段BP与CE相交时,设交点为M,求的值以及∠BMC的度数;(3)若正方形ABCD的边长为3,AP=1,当点P,C,E在同一直线上时,求线段BP 的长.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+x+c与x轴交于A,B 两点(点A在点B的左侧),交y轴于点C,经过B,C两点的直线为y=.(1)求抛物线的函数表达式;(2)点P为抛物线上的动点,过点P作x轴的垂线,交直线BC于点M,连接PC,若△PCM为直角三角形,求点P的坐标;(3)当P满足(2)的条件,且点P在直线BC上方的抛物线上时,如图2,将抛物线沿射线BC方向平移,平移后B,P两点的对应点分别为B′,P′,取AB的中点E,连接EB′,EP′,试探究EB'+EP'是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.2020年四川省成都市武侯区中考数学一诊试卷参考答案与试题解析一、选择题(本大題共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)在如下放置的立体图形中,其主视图与左视图不相同的是()A.圆柱B.正方体C.圆柱D.球【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.【解答】解:A、圆锥的主视图和左视图均为全等的等腰三角形,不符合题意;B、正方体的主视图和左视图均为全等的正方形,不符合题意;C、主视图是长方形,左视图是圆,符合题意;D、球的主视图和左视图均为圆,不符合题意;故选:C.2.(3分)已知点P(3,2)在反比例函数y=(k≠0)的图象上,则下列各点中在此反比例函数图象上的是()A.(﹣3,﹣2)B.(3,﹣2)C.(﹣2,3)D.(2,﹣3)【分析】直接把点P(3,2)代入反比例函数y=(k≠0)求出k的值,进而可得出结论.【解答】解:∵点P(3,2)在反比例函数y=(k≠0)的图象上,∴k=3×2=6,A、∵﹣3×(﹣2)=6,∴此点在该函数图象上,故本选项正确;B、∵3×(﹣2)=﹣6,∴此点不在该函数图象上,故本选项错误;C、∵﹣2×3=﹣6,∴此点不在该函数图象上,故本选项错误;D、∵2×(﹣3)=﹣6,∴此点不在该函数图象上,故本选项错误.故选:A.3.(3分)如图,在平面直角坐标系中,点A的坐标为(3,4),那么cosα的值是()A.B.C.D.【分析】作AB⊥x轴于B,先利用勾股定理计算出OA=5,然后在Rt△AOB中利用余弦的定义求解即可.【解答】解:作AB⊥x轴于B,如图,∵点A的坐标为(3,4),∴OB=3,AB=4,∴OA==5,在Rt△AOB中,cosα==.故选:C.4.(3分)若关于x的一元二次方程(k+2)x2﹣2x﹣1=0有实数根,则实数k的取值范围是()A.k>3B.k≥﹣3C.k>﹣3且k≠﹣2D.k≥﹣3且k≠﹣2【分析】根据根的判别式即可求出答案.【解答】解:由题意可知:△=4+4(k+2)≥0,∴解得:k≥﹣3,∵k+2≠0,∴k≥﹣3且k≠﹣2,故选:D.5.(3分)如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,若AE=1,CE =AD=2,则AB的长是()A.6B.5C.4D.2【分析】根据平行线分线段成比例定理列出比例式,进行计算即可.【解答】解:∵DE∥BC,∴=,∴=,∴AB=6,故选:A.6.(3分)下列说法正确的是()A.对角线相等且互相垂直的四边形是正方形B.坡面的水平宽度与铅直高度的比称为坡度C.两个相似图形也是位似图形D.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧【分析】直接利用位似图形的性质以及坡比的定义、垂径定理的推论分别分析得出答案.【解答】解:A、对角线相等且互相垂直的平行四边形是正方形,故此选项错误;B、坡面的铅直高度与水平宽度的比称为坡度,故此选项错误;C、两个相似图形不一定位似图形,故此选项错误;D、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,正确.故选:D.7.(3分)如图,⊙O为△ABC的外接圆,∠BAC=55°,则∠OBC的度数为()A.25°B.35°C.55°D.70°【分析】由⊙O为△ABC的外接圆,∠BAC=55°,利用在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC的度数,又由等腰三角形的性质与三角形内角和定理,即可求得∠OBC的度数.【解答】解:∵⊙O为△ABC的外接圆,∠BAC=55°,∴∠BOC=2∠BAC=2×55°=110°,∵OB=OC,∴∠OBC===35°.故选:B.8.(3分)在一个不透明的袋子里装有20个红球和若干个蓝球,这些球除颜色外都相同将袋子中的球搅拌均匀,每次从袋子里随机摸出一个球,记录下它的颜色后再放网袋子中,不断重复这一过程,发现摸到蓝球的频率稳定在0.6左右,请你估计袋子中装有蓝球的个数是()A.12个B.20个C.30个D.35个【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:设袋中蓝球有x个,根据题意得:=0.6,解得:x=30,经检验:x=30是分式方程的解,故袋中蓝球有30个.故选:C.9.(3分)在2020年元旦期间,某商场销售某种冰箱,每台进货价为2500元,调查发现:当销售价为2900元时,平均毎天能销售出8台;而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?设每台冰箱定价x元,根据题意,可列方程为()A.(x﹣2500)(8+4×)=5000B.(x﹣2500)(8+4×)=5000C.(2900﹣x﹣2500)(8+4×)=5000D.(2900﹣x)(8+4×)=5000【分析】设每台冰箱的降低x元时,这种冰箱的销售利润平均每天达到5000元,根据题意列方程即可;【解答】解:设每台冰箱降价x元时,种冰箱的销售利润平均每天达到5000元,由题意得:(x﹣2500)(8+4×)=5000,故选:B.10.(3分)已知二次函数y=ax2+bx+c(其中a,b,c为常数)的图象如图所示,有以下结论:①abc>0;②a+b+c=0;③2a﹣b=0;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确结论的番号是()A.①②④B.①③④C.①④D.③④【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.【解答】解:抛物线开口向上,a>0,对称轴在y轴的右侧,a、b异号,因此b<0,与y轴的交点在正半轴,因此c<0,abc>0,故结论①正确;当x=1时,y=a+b+c<0,因此选项②是不正确的;对称轴为x=1,即﹣=1,也就是2a+b=0,因此选项③不正确;抛物线与x轴有两个不同的交点,因此方程ax2+bx+c=0有两个不相等的实数根.选项④正确;故选:C.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)已知=,则的值为.【分析】根据合比性质,可得答案.【解答】解:=,则=,故答案为:.12.(4分)如图,在△ABC中,P为边AB上一点,且∠ACP=∠B,若AP=6,BP=4,则AC的长为2.【分析】通过证明△ACP∽△ABC,可得,即可求解.【解答】解:∵AP=6,BP=4,∴AB=10,∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,∴,∴AC2=6×10,∴AC=2,故答案为:2.13.(4分)已知关于x的元二次方程x2﹣2kx﹣8=0的一个根是2,则此方程的另一个根是﹣4.【分析】根据根与系数的关系即可求出答案.【解答】解:设该方程的另外一个根为x,由根与系数的关系可知:2x=﹣8,∴x=﹣4,故答案为:﹣414.(4分)如图,现将四根木条钉成的矩形框ABCD变形为平行四边形木框A'BCD′,且A′D′与CD相交于CD边的中点E,若AB=4,则△ECD′的面积是2.【分析】作A'F⊥BC于F,则∠A'FB=90°,根据题意得:平行四边形A′BCD′的面积=BC•A'F=BC•AB,A'F=AB=2,得出∠D'=∠A'BC=30°,得出BF=A'F=2,由矩形和平行四边形的性质得出BC=AD=A'D',A'D'∥AD∥BC,CD⊥BC,得出CD⊥A'D',得出A'F∥CD,证出四边形A'ECF是矩形,得出CE=A'F=2,A'E=CF,证出DE=BF=2,即可得出答案.【解答】解:作A'F⊥BC于F,如图所示:则∠A'FB=90°,根据题意得:平行四边形A′BCD′的面积=BC•A'F=BC•AB,∴A'F=AB=2,∴∠D'=∠A'BC=30°,∴BF=A'F=2,∵四边形ABCD是矩形,四边形A′BCD′是平行四边形,∴BC=AD=A'D',A'D'∥AD∥BC,CD⊥BC,∴CD⊥A'D',∴A'F∥CD,∴四边形A'ECF是矩形,∴CE=A'F=2,A'E=CF,∴DE=BF=2,∴△ECD的面积=DE×CE=×2×2=2;故答案为2.三、解答題(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:﹣22+(π﹣3.14)0﹣|﹣4|﹣4sin60°(2)解方程:4x2+4x﹣3=0【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)利用因式分解法求解可得.【解答】解:(1)原式=﹣4+1﹣(4﹣2)﹣4×=﹣3﹣4+2﹣2=﹣7;(2)∵4x2+4x﹣3=0,∴(2x+3)(2x﹣1)=0,则2x+3=0或2x﹣1=0,解得x=﹣或x=.16.(6分)2019年9月10日是我国第35个教师节,某中学德育处发起了感恩小学恩师的活动,德育处要求每位同学从以下三种方式中选择一种方式表达感恩:A.信件感恩,B.信息感恩,C.当面感恩.为了解同学们选择以上三种感恩方式的情况,德育处随机对本校部分学生进行了调查,并根据调查结果绘制成了如下两幅不完整的统计图.根据图中信息解答下列问题:(1)扇形统计图中C部分所对应的扇形圆心角的度数为120°,并补全条形统计图;(2)本次调查在选择A方式的学生中有两名男生和两名女生来自于同一所小学,德育处打算从他们四个人中选择两位在主题升旗仪式上发言,请用画树状图或列表的方法求恰好选到一男一女的概率.【分析】(1)由A类别人数及其所占百分比可得总人数,用360°乘以C部分人数所占比例可得;据此即可补全条形图;(2)分别用树状图和列表两种方法表示出所有等可能结果,从中找到恰好选到一男一女的概率结果数,利用概率公式计算可得.【解答】解:(1)被调查的总人数为15÷25%=60(人),C类的总人数=60﹣25﹣15=20(人)所以扇形统计图中C部分所对应的扇形圆心角的度数为360°×=120°,补全条形统计图如图所示:故答案为:120°;(2)画树状图如下:共有12种可能的结果,恰好选到一男一女的结果有8个,∴P(选到一男一女)==.17.(8分)2019年10月1日,中华人民共和国成立70周年,成都市天府广场举行了盛大的升旗仪式,我市部分学生有幸见证了这一激动人心的时刻,并在现场作了如下测量工作:身高1.8米的某同学(图中AE部分)在护旗手开始走正步的点A处测得旗杆顶部D 的仰角为22°,在护旗手结束走正步的点B处测得旗杆顶部D的仰角为45°,又测量得到A,B两点间的距离是30米,求旗杆DC的高度.(结果精确到0.1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40.)【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造边角关系,进而可求出答案.【解答】解:延长EF交CD于G,∵∠DEF=22°,∠DFG=45°,∴在Rt△DGF中,DG=GF,在Rt△DGE中,tan22°=,即EG=≈2.5DG,∵2.5DG﹣DG=30,解得DG=20,则DC=DG+CG=20+1.8=21.8(米).答:旗杆DC的高度大约是21.8米.18.(8分)如图,在正方形ABCD中,点E,F在对角线BD上,AE∥CF,连接AF,CE.(1)求证:△ABE≌△CDF;(2)试判断四边形AECF的形状,并说明理由.【分析】(1)根据正方形的性质以及平行线的性质可得△ABE≌△CDF;(2)连接AC,与BD交于点O,由△ABE≌△CDF,得出BE=DF,进而得出OE=OF,根据对角线互相垂直且平分的四边形是菱形,可得四边形AECF是菱形.【解答】解:(1)证明:∵在正方形ABCD中,AB=AD,∠ABE=∠CDF=45°,又∵AE∥CF,∴∠AEF=∠CFE(两直线平行,内错角相等),∴∠AEB=∠CFD(等角的补角相等),∴△ABE≌△CDF(AAS);(2)四边形AECF是菱形.理由如下:如图,连接AC,与BD交于点O,∵△ABE≌△CDF,∴BE=DF,又∵OB=OD,∴OB﹣BE=OD﹣DF,即OE=OF,又∵AC⊥EF,OA=OC,∴四边形AECF是菱形.19.(10分)如图,在平面直角坐标系xOy中,次函数y=﹣x+5的图象与反比例函数y=(k>0)的图象相交于A,B两点,与x轴相交于点C,连接OB,且△BOC的面积为.(1)求反比例函数的表达式;(2)将直线AB向下平移,若平移后的直线与反比例函数的图象只有一个交点,试说明直线AB向下平移了几个单位长度?【分析】(1)由一次函数解析式求得C的坐标,根据三角形面积求得B的纵坐标,代入一次函数解析式求得B的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)由于将直线AB向下平移m(m>0)个单位长度得直线解析式为y=﹣x+5﹣m,则直线y=﹣x+5﹣m与反比例函数有且只有一个公共点,即方程=﹣x+5﹣m只有一组解,再根据判别式的意义得到关于m的方程,最后解方程求出m的值.【解答】解:(1)一次函数y=﹣x+5中,令y=0,解得x=5,∴C(5,0),∴OC=5,作BD⊥OC于D,∵△BOC的面积为,∴OC•BD=,即BD=,∴BD=1,∴点B的纵坐标为1,代入y=﹣x+5中,求得x=4,∴B(4,1),∵反比例函数y=(k>0)的图象经过B点,∴k=4×1=4,∴反比例函数的解析式为y=;(2)将直线AB向下平移m(m>0)个单位长度得直线解析式为y=﹣x+5﹣m,∵直线AB向下平移m(m>0)个单位长度后与反比例函数的图象只有一个公共交点,∴=﹣x+5﹣m,整理得x2+(m﹣5)x+4=0,△=(m﹣5)2﹣4×1×4=0,解得m=9或m=1,即m的值为1或9.20.(10分)如图,⊙O是△ABC的外接圆,AB为⊙O的直径,在△ABC外侧作∠CAD=∠CAB,过点C作CD⊥AD于点D,交AB延长线于点P.(1)求证:PC是⊙O的切线;(2)若tan∠BCP=,AD•BC=4m2(m>0),求⊙O的半径;(用含m的代数式表示)(3)如图2,在(2)的条件下,作弦CF平分∠ACB,交AB于点E,连接BF,且BF =5,求线段PE的长.【分析】(1)连接OC,则OA=OC,则∠OAC=∠OCA=α,而∠CAD=∠CAB=α,故∠DAC=∠OCA=α,即可求解;(2)证明△ADC∽△ABC,设圆的半径为R,则AC=AB cosα=2R×=,CD=AC sinα=,故AD•BC=AC•CD==4m2,即可求解;(3)证明PC=PE,BF=5=R,则R=5,利用CO∥AD,则,即,即可求解.【解答】解:(1)如图1,连接OC,则OA=OC,则∠OAC=∠OCA=α,而∠CAD=∠CAB=α,故∠DAC=∠OCA=α,∴AD∥CO,而CD⊥AD,∴CO⊥BD,故PC是⊙O的切线;(2)PC是⊙O的切线,则∠BCP=∠CAB=α,即tan,则sin,cos,∵∠DAC=∠CAB=α,∴△ADC∽△ABC,设圆的半径为R,则AC=AB cosα=2R×=,CD=AC sinα=,故AD•BC=AC•CD==4m2,故R=m;(3)连接OF、OC,CF平分∠ACB,则FO⊥AB,∵∠ECP=90°﹣∠OCE,∠CEP=90°﹣∠OFC,而∠OCE=∠OFC,∴∠EPC=∠CEP,∴PC=PE,BF=5=R,则R=5,AD=AC cosα=×=8,同理CD=4,∵CO∥AD,∴,即,解得:PC==PE.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上B卷(共50分)21.(4分)已知方程x2﹣x﹣7=0的两个实数根分别为m,n,则m2+n的值为8.【分析】根据根与系数的关系即可求出答案.【解答】解:由题意可知:m2﹣m﹣7=0,∴m2=m+7,∵m+n=1,∴原式=m+7+n=8,故答案为:8.22.(4分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,求直径CD的长”.(1尺=10寸)则CD=26寸.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,如图所示,设直径CD的长为2x,则半径OC=x,∵CD为⊙O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5寸,连接OA,则OA=x寸,根据勾股定理得x2=52+(x﹣1)2,解得x=13,CD=2x=2×13=26(寸).故答案为:26寸.23.(4分)我们知道黄金比例是,利用这个比例,我们规定一种“黄金算法”即:a b=a+b,比如12=1+×2=.若x(24)=5,则x的值为.【分析】根据新定义得到24=2,则x2=x+5﹣,从而得到x+5﹣=5,然后解一次方程即可.【解答】解:∵24=2+×4=2,∴x2=x+×2=x+5﹣∴x+5﹣=5,∴x=.故答案为.24.(4分)如图,点P为双曲线y=(x<0)上一动点,连接OP并延长到点A,使P A=PO,过点A作x轴的垂线,垂足为B,交双曲线于点C.当AC=AP时,连接PC,将△APC沿直线PC进行翻折,则翻折后的△A′PC与四边形BOPC的重叠部分(图中阴影部分)的面积是.【分析】连接OC,BP,根据折叠性质得四边形ACA'P为菱形,进而得A'C∥AO,A'P∥AB,由反比例函数的比例系数的几何意义和相似三角形的性质求出△OPD,△OAB,△BCE的面积,进而结合边的比例关系求出△ACP的面积,最后便可求得阴影部分面积.【解答】解:连接OC,BP,则,∴,∵AP=AC,将△APC沿直线PC进行翻折得△A′PC,∴AP=AC=A'C=A'P,∴四边形ACA'P为菱形,∴P A'∥AB,A'C∥OA,∵AB⊥x轴,∴P A'⊥x轴,∴=4,∴,∴OB•BC=OD•PD,∵AP=OP,PD∥AB,∴OD=BD,∴PD=,OD=OB,∵CE∥OA,∴∠CEB=∠POD,∵∠CBE=∠PDO=90°,∴△BCE∽△DPO,∴,∵OB•BC=OD•PD,OD=OB,∴BC=PD=AB,∴,,∴,∴,∵DP∥AB,∴△OPD∽△OAB,∴,∴,∵OP=AP,∴,∴,∴.25.(4分)如图,在矩形ABCD中,已知AB=3,BC=4,点P是边BC上一动点(点P 不与点B,C重合),连接AP,作点B关于直线AP的对称点M,连接MP,作∠MPC 的角平分线交边CD于点N.则线段MN的最小值为.【分析】连接AM、MN、AN,由MN+AM≥AN,得出MN≥AN﹣AM,即当A、M、N三点共线时,MN=AN﹣AM,最小,由矩形的性质得出AB=CD=3,AD=BC=4,∠B=∠C=∠D=90°,由点B关于直线AP的对称点为M,得出AP垂直平分BM,则AB=AM,PB=PM,由SSS证得△ABP≌△AMP,得出∠B=∠PMA=90°,则∠PMN=∠C,由角平分线定义得出∠NPM=∠NPC,由AAS证得△NPM≌△NPC(AAS),得出MN=CN,设MN=x,则DN=CD﹣CN=3﹣x,AN=AM+MN=3+x,在Rt△ADN中,由勾股定理得出方程即可得出结果.【解答】解:连接AM、MN、AN,如图1所示:∵MN+AM≥AN,∴MN≥AN﹣AM,当A、M、N三点共线时,MN=AN﹣AM,最小,当A、M、N三点共线时,如图2所示:∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠B=∠C=∠D=90°,∵点B关于直线AP的对称点为M,∴AP垂直平分BM,∴AB=AM,PB=PM,在△ABP和△AMP中,,∴△ABP≌△AMP(SSS),∴∠B=∠PMA=90°,∴∠PMN=∠C=90°,∵PN是∠MPC的角平分线,∴∠NPM=∠NPC,在△NPM和△NPC中,,∴△NPM≌△NPC(AAS),∴MN=CN,设MN=x,则DN=CD﹣CN=3﹣x,AN=AM+MN=3+x,在Rt△ADN中,42+(3﹣x)2=(3+x)2,解得:x=,∴线段MN的最小值为,故答案为:.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)据报道,从2018年8月以来,“非洲猪瘟”给生猪养殖户带来了不可估量的损失.某养殖户为了预防“非洲猪瘟”的侵袭,每天对猪场进行药熏消毒,已知一瓶药物释放过程中,一个圈舍内每立方米空气中含药量y(毫克)与时间x(分钟)之间满足正比例函数关系;药物释放完后,y与x之间满足反比例函数关系,如图所示,结合图中提供的信息解答下列问题:(1)分别求当0≤x≤10和x>10时,y与x之间满足的函数关系式;(2)据测定,当空气中每立方米的含药量不低于6毫克时,消毒才有效,那么这次熏药的有效消毒时间是多少分钟.【分析】(1)分别利用当0≤x≤10,设y与x之间满足的函数关系式为y=kx,以及x>10时,设y与x之间满足的函数关系式为y=,分别得出函数关系式;(2)直接利用y≥6时得出x的取值范围即可.【解答】解:(1)当0≤x≤10,设y与x之间满足的函数关系式为y=kx,∵过点(10,30),∴30=10k,解得:k=3,∴y=3x(0≤x≤10),x>10时,设y与x之间满足的函数关系式为y=,∵过点(10,30),∴30=,k=300,∴y=(x>10);(2)y=3x(0≤x≤10)中,当y≥6时,x≥2,y=(x>10)中,当y≥6时,x≤50,∴2≤x≤50,∴这次熏药的有效消毒时间是:50﹣2=48(分钟)答:这次熏药的有效消毒时间是48分钟.27.(10分)如图,已知AC为正方形ABCD的对角线,点P是平面内不与点A,B重合的任意一点,连接AP,将线段AP绕点P顺时针旋转90°得到线段PE,连接AE,BP,CE.(1)求证:△APE∽△ABC;(2)当线段BP与CE相交时,设交点为M,求的值以及∠BMC的度数;(3)若正方形ABCD的边长为3,AP=1,当点P,C,E在同一直线上时,求线段BP 的长.【分析】(1)先求出∠APE=∠ABC=90°,∠P AE=∠PEA=∠ABC=45°,即可得出结论;(2)由(1)知,△APE∽△ABC,得出,再判断出∠P AB=∠EAC,进而判断出△P AB∽△EAC,即可得出结论;(3)先画出图形,利用勾股定理求出CP',再分两种情况,求出CE和CE',借助(2)的结论,即可得出结论.【解答】解:(1)∵AC是正方形ABCD的对角线,∴∠ABC=90°,∠BAC=∠BCA=45°,由旋转知,P A=PE,∠APE=90°=∠ABC,∴∠P AE=∠PEA=45°=∠BAC,∴△APE∽△ABC;(2)在Rt△ABC中,AB=CB,∴AC=AB,由(1)知,△APE∽△ABC,∴,∵∠BAC=∠P AE=45°,∴∠P AB=∠EAC,∴△P AB∽△EAC,∴==,∵△P AB∽△EAC,∴∠ABP=∠ACE,∴∠BCE+∠CBM=∠BCE+∠ABP+∠ABC=∠BCE+∠ACE+∠ABC=∠ACB+∠ABC=45°+90°=135°,∴∠BMC=180°﹣(∠BCE+∠CBM)=45°;(3)如图,在Rt△ABC中,AB=AC=3,∴AC=3,∵点P,C,E在同一条线上,且∠APE=90°,∴CP==,∴CE=CP﹣PE=﹣1或CE'=CP'+P'E=+1,由(2)知,=,∴BP=CE=(﹣1)=或BP'=CE'=;即:BP的长为或.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+x+c与x轴交于A,B 两点(点A在点B的左侧),交y轴于点C,经过B,C两点的直线为y=.(1)求抛物线的函数表达式;(2)点P为抛物线上的动点,过点P作x轴的垂线,交直线BC于点M,连接PC,若△PCM为直角三角形,求点P的坐标;(3)当P满足(2)的条件,且点P在直线BC上方的抛物线上时,如图2,将抛物线沿射线BC方向平移,平移后B,P两点的对应点分别为B′,P′,取AB的中点E,连接EB′,EP′,试探究EB'+EP'是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.【分析】(1)y=,过点B,C,则点B、C的坐标分别为:(3,0)、(0,),则c=,将点B的坐标代入抛物线表达式,即可求解;(2)分∠PCM=90°、∠CPM=90°两种情况,分别求解即可;(3)作点E关于P′B′的对称点E′,将点E′沿P′B′方向平移2个单位得到点E″,连接E、E″交P′B′所在的直线于点B′,点B′沿P′B′方向平移2个单位得到点。

2021年四川省成都市高新区中考数学一诊试卷(含解析)

2021年四川省成都市高新区中考数学一诊试卷(含解析)

2021年四川省成都市高新区中考数学一诊试卷一、选择题(共10小题).1.﹣的相反数是()A.5B.﹣5C.D.﹣2.如图是由四个完全相同的小正方体组合而成的几何体,它的主视图是()A.B.C.D.3.2021年2月24日,我国首次火星探测任务天问一号探测器成功实施第三次近火制动,进入火星停泊轨道.此次天问一号探测器进入的火星停泊轨道是与火星的最远距离59000公里的椭圆形轨道.将59000用科学记数法表示为()A.59×103B.5.9×104C.0.59×105D.5.9×1054.在平面直角坐标系中,将点P(﹣3,2)向左平移2个单位长度后得到的点的坐标为()A.(﹣5,2)B.(﹣3,﹣1)C.(﹣3,4)D.(﹣1,2)5.下列计算正确的是()A.m2+2m2=3m4B.m5•m2=m10C.(3mn)2=6m2n2D.4m3÷2m=2m26.如图,AB∥DE,BC∥EF,∠B=50°,则∠E的度数为()A.50°B.120°C.130°D.150°7.2021年8月18日,第三十一届世界大学生夏季运动会将在四川成都举行.为迎接大运会的到来,某校开展了主题为“爱成都•迎大运”的演讲比赛.九年级10名同学参加该演讲比赛的成绩如下表,则这组数据的众数和中位数分别为()成绩/分80859095人数/人2341A.85,87.5B.85,85C.90,85D.90,87.58.方程组的解是()A.B.C.D.9.如图,二次函数y=ax2+bx+c图象的对称轴是x=1,下列说法正确的是()A.a>0B.c<0C.2a+b=0D.b2﹣4ac<0 10.如图,四边形ABCD是半径为3的⊙O的内接四边形,连接OA,OC.若∠AOC=∠ABC,则的长为()A.πB.2πC.3πD.9π二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.因式分解:3x2+6x=.12.如图,△ABC≌△ABD,∠C=30°,∠ABC=85°,则∠BAD的度数为13.一次函数y=(2m﹣1)x+m的函数值y随x值的增大而增大,则m的取值范围是.14.如图,▱ABCD的对角线AC与BD交于点O,BD⊥AD,AB=10,AD=6,则AC的长为.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(1)计算:()﹣1﹣+sin30°+|﹣2|;(2)解不等式组:.16.先化简,再求值:,从﹣2,﹣1,2中选取一个合适的数作为a 的值代入求值.17.为帮助学生在体育锻炼中享受乐趣、增强体质、健全人格、锤炼意志,某校开展了“一人一球”的体育选修课活动.学生根据自己的喜好选择一门球类项目(A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球),王老师随机对该校部分学生的选课情况进行调查后;制成了两幅不完整的统计图(如图所示).(1)王老师调查的学生人数是,请将条形统计图补充完整;(2)若该校共有学生1500名,请估计有多少学生选修乒乓球?(3)现有4名学生,2人选修篮球,1人选修足球,1人选修排球,王老师要从这4人中任选2人了解他们对体育选修课的看法,请用列表或画树状图的方法,求出所选2人都是选修篮球的概率.18.如图,一艘货轮以40海里/小时的速度在海面上航行,当它行驶到A处时,发现它的东北方向有一灯塔B,货轮继续向北航行30分钟后到达C点,发现灯塔B在它北偏东75°方向,求此时货轮与灯塔B的距离.(结果精确到0.1海里,参考数据:≈1.414,≈1.732)19.如图,在平面直角坐标系xOy中,直线y=x与反比例函数y=(x>0)的图象交于点A,点A的横坐标为4.(1)求反比例函数的表达式;(2)过点B(,0)作x轴的垂线,与反比例函数图象交于点C,将直线OA向上平移b个单位长度后与y轴交于点D,与直线BC交于点E,与反比例函数图象交于点F.若DE=DF,求b的值.20.如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,D为圆上一点,且B,D两点位于AC异侧,连接BD,交AC于E,点F为BD延长线上一点,连接AF,使得∠DAF=∠ABD.(1)求证:AF为⊙O的切线;(2)当点D为EF的中点时,求证:AD2=AO•AE;(3)在(2)的条件下,若sin∠BAC=,AF=2,求BF的长.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.若+|b+2|=0,则a+b的值为.22.关于x的方程+=2的解为正数,则m的取值范围是.23.数学家刘徽首创割圆术,用圆内接正多边形的面积去无限逼近圆面积并以此求出圆周率.如图,正六边形ABCDEF的边长为2,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.24.如图,在矩形ABCD中,AB=9,BC=12,F是边AD上一点,连接BF,将△ABF沿BF折叠使点A落在G点,连接AG并延长交CD于点E,连接GD.若△DEG是以DG 为腰的等腰三角形,则AF的长为.25.如图,反比例函数y=﹣的图象与直线y=x+b(b>0)交于A,B两点(点A在点B右侧),过点A作x轴的垂线,垂足为点C,连接AO,BO,图中阴影部分的面积为12,则b的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.2021年春节,不少市民响应国家号召原地过年.为保障市民节日消费需求,某商家宣布“今年春节不打烊”,该商家以每件80元的价格购进一批商品,规定每件商品的售价不低于进价且不高于100元,经市场调查发现,该批商品的日销售量y(件)与每件售价x(元)满足一次函数关系,其部分对应数据如下表所示:每件售价x(元)…859095…日销售量y(件)…230180130…(1)求y与x之间的函数关系式;(2)当每件商品的售价定为多少元时,该批商品的日销售利润最大?日销售最大利润是多少?27.如图1,在Rt△ABC中,∠ABC=90°,D,E分别为边BC,AC上的点,连接DE,过D作DF⊥DE交AC边于点F(F不与点C重合),点G为射线DF上一点,连接EG,使∠BAC=∠DEG=α.(1)连接CG,求证:△DEF∽△CGF;(2)当α=45°时,请探究AE,BD与CG三者满足的数量关系,并证明;(3)如图2,点M,N分别为EG和AC的中点,连接MN.若tanα=2,BD=CD,AC=10,请直接写出MN的最小值.28.抛物线y=﹣x2+mx+2n(m,n为常数,且n>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)若点B的横坐标为4,抛物线的对称轴为x=.ⅰ)求该抛物线的函数表达式;ⅱ)如图1,在直线BC上方的抛物线上取点D,连接AD,交BC于点E,若=7,求点D的坐标.(2)如图2,当m=n﹣2时,过点A作BC的平行线,与y轴交于点F,将抛物线在直线BC上方的图象沿BC折叠,若折叠后的图象(图中虚线部分)与直线AF有且只有一个公共点,求n的值.参考答案一、选择题(共10小题).1.﹣的相反数是()A.5B.﹣5C.D.﹣解:﹣的相反数是,故选:C.2.如图是由四个完全相同的小正方体组合而成的几何体,它的主视图是()A.B.C.D.解:从正面看,如图所示,,故选:A.3.2021年2月24日,我国首次火星探测任务天问一号探测器成功实施第三次近火制动,进入火星停泊轨道.此次天问一号探测器进入的火星停泊轨道是与火星的最远距离59000公里的椭圆形轨道.将59000用科学记数法表示为()A.59×103B.5.9×104C.0.59×105D.5.9×105解:59000=5.9×104,故选:B.4.在平面直角坐标系中,将点P(﹣3,2)向左平移2个单位长度后得到的点的坐标为()A.(﹣5,2)B.(﹣3,﹣1)C.(﹣3,4)D.(﹣1,2)解:将点P(﹣3,2)向左平移2个单位长度得到的点坐标为(﹣3﹣2,2),即(﹣5,2),故选:A.5.下列计算正确的是()A.m2+2m2=3m4B.m5•m2=m10C.(3mn)2=6m2n2D.4m3÷2m=2m2解:A、原式=3m2,故A选项错误.B、原式=m7,故B选项错误.C、原式=9m2n2,故C选项错误.D、原式=2m2,故D选项正确.故选:D.6.如图,AB∥DE,BC∥EF,∠B=50°,则∠E的度数为()A.50°B.120°C.130°D.150°解:∵AB∥DE,∴∠1=∠B=50°,∵BC∥EF,∴∠E=180°﹣∠1=180°﹣50°=130°.故选:C.7.2021年8月18日,第三十一届世界大学生夏季运动会将在四川成都举行.为迎接大运会的到来,某校开展了主题为“爱成都•迎大运”的演讲比赛.九年级10名同学参加该演讲比赛的成绩如下表,则这组数据的众数和中位数分别为()成绩/分80859095人数/人2341A.85,87.5B.85,85C.90,85D.90,87.5解:在这一组数据中90是出现次数最多的,故众数是90.而将这组数据从小到大的顺序排列后,处于中间位置的那个数是85、90,那么由中位数的定义可知,这组数据的中位数是87.5.故选:D.8.方程组的解是()A.B.C.D.解:,①+②得,x=2,把x=2代入①得,6+2y=7,解得,故原方程组的解为:.故选:D.9.如图,二次函数y=ax2+bx+c图象的对称轴是x=1,下列说法正确的是()A.a>0B.c<0C.2a+b=0D.b2﹣4ac<0解:A、根据开口向下,a<0,故A错误.不符合题意.B、抛物线交y轴的正半轴,故c>0,故B错误,不符合题意.C、对称轴x=1,,故2a+b=0,故C正确,符合题意.D、抛物线与x轴有两个交点,b2﹣4ac>0,故D错误,不符合题意.故选:C.10.如图,四边形ABCD是半径为3的⊙O的内接四边形,连接OA,OC.若∠AOC=∠ABC,则的长为()A.πB.2πC.3πD.9π解:∵四边形内接于⊙O,∠AOC=2∠ADC,∴∠ADC+∠ABC=∠AOC+∠ABC=180°.又∠AOC=∠ABC,∴∠AOC=120°.∵⊙O的半径为3,∴劣弧AC的长为=2π.故选:B.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.因式分解:3x2+6x=3x(x+2).解:原式=3x2+6x=3x(x+2).故答案为:3x(x+2).12.如图,△ABC≌△ABD,∠C=30°,∠ABC=85°,则∠BAD的度数为65°.解:∵∠C=30°,∠ABC=85°.∴∠CAB=180°﹣∠C﹣∠ABC=65°,∵△ABC≌△ABD,∴∠BAD=∠CAB=65°.故答案为:65°.13.一次函数y=(2m﹣1)x+m的函数值y随x值的增大而增大,则m的取值范围是m>.解:∵y随x的增大而增大,∴2m﹣1>0.解得:m>.故答案为:m>.14.如图,▱ABCD的对角线AC与BD交于点O,BD⊥AD,AB=10,AD=6,则AC的长为.解:∵BD⊥AD,AB=10,AD=6.∴BD==8.∵四边形ABCD是平行四边形.∴DO=BD=4.AC=2AO.∵△ADO是直角三角形.∴AO===.∴故答案为:.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(1)计算:()﹣1﹣+sin30°+|﹣2|;(2)解不等式组:.解:(1)()﹣1﹣+sin30°+|﹣2|.=3﹣2++2﹣=.(2).解不等式①,得:x≥﹣1,解不等式②,得:x<3,则不等式组的解集为﹣1≤x<3.16.先化简,再求值:,从﹣2,﹣1,2中选取一个合适的数作为a 的值代入求值.解:原式=•=﹣•=﹣,当a=﹣2,2时,分式无意义,当a=﹣1时,原式=﹣.17.为帮助学生在体育锻炼中享受乐趣、增强体质、健全人格、锤炼意志,某校开展了“一人一球”的体育选修课活动.学生根据自己的喜好选择一门球类项目(A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球),王老师随机对该校部分学生的选课情况进行调查后;制成了两幅不完整的统计图(如图所示).(1)王老师调查的学生人数是50,请将条形统计图补充完整;(2)若该校共有学生1500名,请估计有多少学生选修乒乓球?(3)现有4名学生,2人选修篮球,1人选修足球,1人选修排球,王老师要从这4人中任选2人了解他们对体育选修课的看法,请用列表或画树状图的方法,求出所选2人都是选修篮球的概率.解:(1)该班总人数=10÷20%=50(人).D人数=50﹣10﹣4﹣16﹣8=12(人),条形图如图所示:故答案为:50;补全条形图如图.(2)1500×=240(人),答:估计有240学生选修乒乓球.(3)画树状图为:A:篮球,B:足球,C:排球.共有12种等可能的结果数,其中所选2人都是选修篮球有2种可能,所以选出的2人至少有1人选修羽毛球概率=.18.如图,一艘货轮以40海里/小时的速度在海面上航行,当它行驶到A处时,发现它的东北方向有一灯塔B,货轮继续向北航行30分钟后到达C点,发现灯塔B在它北偏东75°方向,求此时货轮与灯塔B的距离.(结果精确到0.1海里,参考数据:≈1.414,≈1.732)解:如图所示:过点C作CD⊥AB于点D,∵货轮以40海里/小时的速度在海面上航行,向北航行30分钟后到达C点∴AC=40×=20海里,∵∠A=45°,∠1=75°,∴∠ACD=45°,∠DCB=60°,则∠B=30°,则DC=AC sin45°=20×=10海里,故BC=2CD=20≈28.3海里.答:此时货轮与灯塔B的距离约为28.3海里.19.如图,在平面直角坐标系xOy中,直线y=x与反比例函数y=(x>0)的图象交于点A,点A的横坐标为4.(1)求反比例函数的表达式;(2)过点B(,0)作x轴的垂线,与反比例函数图象交于点C,将直线OA向上平移b个单位长度后与y轴交于点D,与直线BC交于点E,与反比例函数图象交于点F.若DE=DF,求b的值.解:(1)∵点A的横坐标为4.∴当x=4时,y=.∴点A(4,2).将点A坐标代入y=.∴k=8.∴.(2)设直线DF表达式为:y=.根据题意得:D(0,b)、B(,)∵DE=DF.∴点E是DF的中点.∴利用中点坐标公式点F(3,).∵点F在反比例函数上.∴.∴b=.20.如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,D为圆上一点,且B,D两点位于AC异侧,连接BD,交AC于E,点F为BD延长线上一点,连接AF,使得∠DAF=∠ABD.(1)求证:AF为⊙O的切线;(2)当点D为EF的中点时,求证:AD2=AO•AE;(3)在(2)的条件下,若sin∠BAC=,AF=2,求BF的长.【解答】(1)证明:连接CD.∵AC是直径,∴∠ADC=90°,∴∠DAC+∠ACD=90°,∵∠ABD=∠ACD,∠DAF=∠ABC,∴∠DAF=∠ACD,∴∠DAF+∠DAC=90°,∴∠FAC=90°,∴AF为⊙O的切线.(2)证明:∵∠FAE=90°,DF=DE,∴AD=DE=DF,∴∠DAE=∠AED,∵OA=OD,∴∠DAE=∠ADO,∴∠ADO=∠AED,∵∠OAD=∠DAE,∴△ADO∽△AED,∴=,∴AD2=AO•AE.(3)解:过点B作BJ⊥EC于J.∵AC是直径,∴∠ABC=90°,∴sin∠BAC==,∴可以假设BC=a,AC=3a,∵BJ⊥AC,∴∠AJB=90°,∴∠BAC+∠ABJ=90°,∠ABJ+∠CBJ=90°,∴∠CBJ=∠BAC,∴sin∠CBJ=sin∠BAC==,∴CJ=a,∴BJ===a,∵DA=DE,∴∠DAE=∠AED=∠CEB,∵∠DAE=∠CBE,∴∠CEB=∠CBE,∴CE=CB=a,∴EJ=EC﹣CJ=a﹣a=a,AE=AC﹣EC=2a,∵AF∥BJ,∴=,∴,∴a=,∴AE=2,EJ=,BJ=,∴EF===6,BE===2,∴BF=EF+BE=6+2=8.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.若+|b+2|=0,则a+b的值为1.解:∵+|b+2|=0,∴a﹣3=0,b+2=0,解得:a=3,b=﹣2,则a+b的值为:3﹣2=1.故答案为:1.22.关于x的方程+=2的解为正数,则m的取值范围是m>﹣6且m≠﹣4.解:去分母得:2+x+m=2x﹣4,解得:x=6+m,由分式方程的解为正数,得到6+m>0,且6+m≠2,解得:m>﹣6且m≠﹣4,故答案为:m>﹣6且m≠﹣4.23.数学家刘徽首创割圆术,用圆内接正多边形的面积去无限逼近圆面积并以此求出圆周率.如图,正六边形ABCDEF的边长为2,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.解:设小⊙O的半径为r,则正六边形的边长为,即大⊙O的半径为,则随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为=.故答案为:.24.如图,在矩形ABCD中,AB=9,BC=12,F是边AD上一点,连接BF,将△ABF沿BF折叠使点A落在G点,连接AG并延长交CD于点E,连接GD.若△DEG是以DG 为腰的等腰三角形,则AF的长为或.解:如图1中,当GD=GE时,过点G作GM⊥AD于M,GN⊥CD于N.设AF=x.∵四边形ABCD是矩形,∴AD=BC=12,∠BAF=∠ADE=90°,由翻折的性质可知,AF=FG,BF⊥AG,∴∠DAE+∠BAE=90°,∠ABF+∠BAE=90°,∴∠ABF=∠DAE,∵∠BAF=∠ADE=90°,∴△BAF∽△ADE,∴=,∴=,∴DE=x,∵GM⊥AD,GN⊥CD,∴∠GMD=∠GND=∠MDN=90°,∴四边形GMDN是矩形,∴GM=DN=EN=x,∵GD=GE,∴∠GDE=∠GED,∵∠GDA+∠GDE=90°,∠GAD+∠GED=90°,∴∠GDA=∠GAD,∴GA=GD=GE,∵GM∥DE,∴AM=MD=6,在Rt△FGM中,则有x2=(6﹣x)2+(x)2,解得x=或(舍弃),∴AF=.如图2中,当DG=DE时,由翻折的性质可知,BA=BG,∴∠BAG=∠BGA,∵DG=FE,∴∠DGE=∠DEG,∵AB∥CD,∴∠BAE=∠DEG,∴∠AGB=∠DGE,∴B,G,D共线,∵BD===15,BG=BA=9,∴DG=DE=6,∵△BAF∽△ADE,∴=,∴=,∴AF=,综上所述,AF的值为或.25.如图,反比例函数y=﹣的图象与直线y=x+b(b>0)交于A,B两点(点A在点B右侧),过点A作x轴的垂线,垂足为点C,连接AO,BO,图中阴影部分的面积为12,则b的值为3.解:过B作BD⊥OE于D,过A⊥y轴于H,设AC交OB于G,如图:设M为AB的中点,A(x1,y1),B(x2,y2),由得x2+2bx+24=0,∴x1+x2=﹣2b,y1+y2=(x1+b)+(x2+b)=(x1+x2)=﹣b,∴M(﹣b,﹣),而直线y=x+b(b>0)交于坐标轴于E、F,∴E(﹣2b,0),F(0,b),∴EF的中点也为M,∴EM=FM,BM=AM,∴EB=FA,又∠FAH=∠BED,∠AHF=∠EDB,∴△EDB≌△AHF(AAS),∴AH=ED=OC,∵(S△AGO+S△GCO)+(S△GCO+S四边形GCDB)=|k|+|k|=12,且图中阴影部分的面积为12,∴S△BDE=2S△GCO∴ED•BD=2×OC•GC,∴BD=2GC,∴OD=2OC,即x2=2x1设x1=m,则x2=2m,∴A(m,﹣),B(2m,﹣),将A(m,﹣),B(2m,﹣)代入y=x+b得:,解得m=2(舍去)或m=﹣2,∴b=﹣﹣×(﹣2)=3.故答案为:3.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.2021年春节,不少市民响应国家号召原地过年.为保障市民节日消费需求,某商家宣布“今年春节不打烊”,该商家以每件80元的价格购进一批商品,规定每件商品的售价不低于进价且不高于100元,经市场调查发现,该批商品的日销售量y(件)与每件售价x(元)满足一次函数关系,其部分对应数据如下表所示:每件售价x(元)…859095…日销售量y(件)…230180130…(1)求y与x之间的函数关系式;(2)当每件商品的售价定为多少元时,该批商品的日销售利润最大?日销售最大利润是多少?解:(1)设y=kx+b,将(85,230)、(90,180)代入,得:,解得:,∴y=﹣10x+1080(80≤x≤100);(2)设该批商品的日销售利润为w元,w=(x﹣80)(﹣10x+1080)=﹣10x2+1880x﹣86400=﹣10(x﹣94)2+1960,∵﹣10<0,∴当x=94时,w取得最大值为1960,答:当每件商品的售价定为94元时,该批商品的日销售利润最大,日销售最大利润是1960元.27.如图1,在Rt△ABC中,∠ABC=90°,D,E分别为边BC,AC上的点,连接DE,过D作DF⊥DE交AC边于点F(F不与点C重合),点G为射线DF上一点,连接EG,使∠BAC=∠DEG=α.(1)连接CG,求证:△DEF∽△CGF;(2)当α=45°时,请探究AE,BD与CG三者满足的数量关系,并证明;(3)如图2,点M,N分别为EG和AC的中点,连接MN.若tanα=2,BD=CD,AC=10,请直接写出MN的最小值.【解答】(1)证明:如图1中,∵DE⊥DF,∴∠EDG=∠B=90°,∵∠A+∠ACB=90°,∠DEG+∠DGE=90°,∠BAC=∠DEG=α,∴∠DCF=∠EGF,∵∠DFC=∠EFC,∴△DFC∽△EFG,∴=,∴=,∵∠EFD=∠CFG,∴△DEF∽△CGF.(2)解:结论:BD﹣CG=AE.理由:如图1﹣1中,过点E作EJ⊥BD于J,EK⊥AB于K,过点G作GT⊥BC交BC 的延长线于T.∵∠A=∠EDG=45°,∠B=∠EDG=90°,∴△ABC,△EDG都是等腰直角三角形,∵∠A=45°,∠EKA=90°,∴EK=AE,∵∠B=∠EKB=∠EJB=90°,∴四边形BKEJ是矩形,∴BJ=EK=AE,∵∠EJD=∠EDG=∠T=90°,∴∠EDJ+∠GDJ=90°,∠GDJ+∠DGJ=90°,∴∠EDJ=∠DGT,∵DE=DG,∴△EJD≌△DTG(AAS),∴DJ=GT,∵△EDF∽△GCF,∴∠EDF=∠GCF=90°,∴∠ACB=∠GCF=45°,∴GT=CG,∴BD﹣DJ=BJ,∴BD﹣CG=AE.(3)解:如图2中,连接MD,MC,过点M作MT⊥CD于T,交AC于O,过点N作NJ⊥MT于J.∵∠B=90°,tan∠A==2,AC=10,∴AB=2,BC=4,∵BD=CD,∴CD=BC=3,∵∠EDG=∠ECG=90°,EM=MG,∴DM=EG.MC=EG,∴MD=MC,∵MT⊥CD,∴DT=TC=,∴点M在CD的垂直平分线上运动,当点M与J重合时,NM的值最小,最小值为线段NJ的长,∴OT∥AB,∴CT:CB=OC:AC,∴OC=,∵NA=NC=5,∴ON=5﹣=,∵NJ∥CT,∴=,∴=,∴NJ=,∴NM的最小值为.28.抛物线y=﹣x2+mx+2n(m,n为常数,且n>0)与x轴交于A,B两点(点A在点B 的左侧),与y轴交于点C.(1)若点B的横坐标为4,抛物线的对称轴为x=.ⅰ)求该抛物线的函数表达式;ⅱ)如图1,在直线BC上方的抛物线上取点D,连接AD,交BC于点E,若=7,求点D的坐标.(2)如图2,当m=n﹣2时,过点A作BC的平行线,与y轴交于点F,将抛物线在直线BC上方的图象沿BC折叠,若折叠后的图象(图中虚线部分)与直线AF有且只有一个公共点,求n的值.解:(1)i)∵抛物线的对称轴为x=,∴﹣=,∴m=1,∴抛物线的解析式为y=﹣x2+x+2n,∵点B的横坐标为4,∴B(4,0),∴﹣16+4+2n=0,∴n=6,∴抛物线的解析式为y=﹣x2+x+12;ii)∵抛物线的解析式为y=﹣x2+x+12,令x=0,则y=12,∴C(0,12),令y=0,则﹣x2+x+12=0,∴x=﹣3或x=4,∴B(4,0),A(﹣3,0),∴直线BC的解析式为y=﹣3x+12,设点E(a,﹣3a+12),点D(b,﹣b2+b+12),如图1,过点E作EH⊥x轴于H,过点D作DG⊥x轴于G,∴EH∥DG,∴△AEH∽△ADG,∴,∵=7,∴=,∴==,∵AH=a+3,AG=b+3,EH=﹣3a+12,DG=﹣b2+b+12,∴,∴b=1或b=3,∴D(1,12)或(3,6);(2)如图2,∵m=n﹣2,∴抛物线的解析式为y=﹣x2+(n﹣2)x+2n①,令y=0,则﹣x2+(n﹣2)x+2n=0,∴x=﹣2或x=n,∴A(﹣2,0),B(n,0),令x=0,则y=2n,∴C(0,2n),∴直线BC的解析式为y=﹣2x+2n,作直线AF关于直线BC的对称直线,交x轴于M,∵A(﹣2,0),B(n,0),∴M(2n+2,0),∴直线MN的解析式为y=﹣2x+4n+4②,联立①②化简得,x2﹣nx+2n+4=0,∵折叠后的图象(图中虚线部分)与直线AF有且只有一个公共点,∴MN与抛物线在直线BC上方的图象只有一个公共点,∴△=n2﹣4(2n+4)=0,∴n=4﹣4(舍)或n=4+4.即满足条件的n的值为4+4.。

2020年四川省成都市武侯区中考数学一诊试卷解析版

2020年四川省成都市武侯区中考数学一诊试卷解析版

2020年四川省成都市武侯区中考数学一诊试卷一、选择题(本大題共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)在如下放置的立体图形中,其主视图与左视图不相同的是()A.圆柱B.正方体C.圆柱D.球2.(3分)已知点P(3,2)在反比例函数y=(k≠0)的图象上,则下列各点中在此反比例函数图象上的是()A.(﹣3,﹣2)B.(3,﹣2)C.(﹣2,3)D.(2,﹣3)3.(3分)如图,在平面直角坐标系中,点A的坐标为(3,4),那么cosα的值是()A.B.C.D.4.(3分)若关于x的一元二次方程(k+2)x2﹣2x﹣1=0有实数根,则实数k的取值范围是()A.k>3B.k≥﹣3C.k>﹣3且k≠﹣2D.k≥﹣3且k≠﹣2 5.(3分)如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,若AE=1,CE =AD=2,则AB的长是()A.6B.5C.4D.26.(3分)下列说法正确的是()A.对角线相等且互相垂直的四边形是正方形B.坡面的水平宽度与铅直高度的比称为坡度C.两个相似图形也是位似图形D.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧7.(3分)如图,⊙O为△ABC的外接圆,∠BAC=55°,则∠OBC的度数为()A.25°B.35°C.55°D.70°8.(3分)在一个不透明的袋子里装有20个红球和若干个蓝球,这些球除颜色外都相同将袋子中的球搅拌均匀,每次从袋子里随机摸出一个球,记录下它的颜色后再放网袋子中,不断重复这一过程,发现摸到蓝球的频率稳定在0.6左右,请你估计袋子中装有蓝球的个数是()A.12个B.20个C.30个D.35个9.(3分)在2020年元旦期间,某商场销售某种冰箱,每台进货价为2500元,调查发现:当销售价为2900元时,平均毎天能销售出8台;而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?设每台冰箱定价x元,根据题意,可列方程为()A.(x﹣2500)(8+4×)=5000B.(x﹣2500)(8+4×)=5000C.(2900﹣x﹣2500)(8+4×)=5000D.(2900﹣x)(8+4×)=500010.(3分)已知二次函数y=ax2+bx+c(其中a,b,c为常数)的图象如图所示,有以下结论:①abc>0;②a+b+c=0;③2a﹣b=0;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确结论的番号是()A.①②④B.①③④C.①④D.③④二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)已知=,则的值为.12.(4分)如图,在△ABC中,P为边AB上一点,且∠ACP=∠B,若AP=6,BP=4,则AC的长为.13.(4分)已知关于x的元二次方程x2﹣2kx﹣8=0的一个根是2,则此方程的另一个根是.14.(4分)如图,现将四根木条钉成的矩形框ABCD变形为平行四边形木框A'BCD′,且A′D′与CD相交于CD边的中点E,若AB=4,则△ECD′的面积是.三、解答題(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:﹣22+(π﹣3.14)0﹣|﹣4|﹣4sin60°(2)解方程:4x2+4x﹣3=016.(6分)2019年9月10日是我国第35个教师节,某中学德育处发起了感恩小学恩师的活动,德育处要求每位同学从以下三种方式中选择一种方式表达感恩:A.信件感恩,B.信息感恩,C.当面感恩.为了解同学们选择以上三种感恩方式的情况,德育处随机对本校部分学生进行了调查,并根据调查结果绘制成了如下两幅不完整的统计图.根据图中信息解答下列问题:(1)扇形统计图中C部分所对应的扇形圆心角的度数为,并补全条形统计图;(2)本次调查在选择A方式的学生中有两名男生和两名女生来自于同一所小学,德育处打算从他们四个人中选择两位在主题升旗仪式上发言,请用画树状图或列表的方法求恰好选到一男一女的概率.17.(8分)2019年10月1日,中华人民共和国成立70周年,成都市天府广场举行了盛大的升旗仪式,我市部分学生有幸见证了这一激动人心的时刻,并在现场作了如下测量工作:身高1.8米的某同学(图中AE部分)在护旗手开始走正步的点A处测得旗杆顶部D 的仰角为22°,在护旗手结束走正步的点B处测得旗杆顶部D的仰角为45°,又测量得到A,B两点间的距离是30米,求旗杆DC的高度.(结果精确到0.1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40.)18.(8分)如图,在正方形ABCD中,点E,F在对角线BD上,AE∥CF,连接AF,CE.(1)求证:△ABE≌△CDF;(2)试判断四边形AECF的形状,并说明理由.19.(10分)如图,在平面直角坐标系xOy中,次函数y=﹣x+5的图象与反比例函数y=(k>0)的图象相交于A,B两点,与x轴相交于点C,连接OB,且△BOC的面积为.(1)求反比例函数的表达式;(2)将直线AB向下平移,若平移后的直线与反比例函数的图象只有一个交点,试说明直线AB向下平移了几个单位长度?20.(10分)如图,⊙O是△ABC的外接圆,AB为⊙O的直径,在△ABC外侧作∠CAD=∠CAB,过点C作CD⊥AD于点D,交AB延长线于点P.(1)求证:PC是⊙O的切线;(2)若tan∠BCP=,AD•BC=4m2(m>0),求⊙O的半径;(用含m的代数式表示)(3)如图2,在(2)的条件下,作弦CF平分∠ACB,交AB于点E,连接BF,且BF =5,求线段PE的长.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上B卷(共50分)21.(4分)已知方程x2﹣x﹣7=0的两个实数根分别为m,n,则m2+n的值为.22.(4分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,求直径CD的长”.(1尺=10寸)则CD=.23.(4分)我们知道黄金比例是,利用这个比例,我们规定一种“黄金算法”即:a b=a+b,比如12=1+×2=.若x(24)=5,则x的值为.24.(4分)如图,点P为双曲线y=(x<0)上一动点,连接OP并延长到点A,使P A=PO,过点A作x轴的垂线,垂足为B,交双曲线于点C.当AC=AP时,连接PC,将△APC沿直线PC进行翻折,则翻折后的△A′PC与四边形BOPC的重叠部分(图中阴影部分)的面积是.25.(4分)如图,在矩形ABCD中,已知AB=3,BC=4,点P是边BC上一动点(点P 不与点B,C重合),连接AP,作点B关于直线AP的对称点M,连接MP,作∠MPC 的角平分线交边CD于点N.则线段MN的最小值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)据报道,从2018年8月以来,“非洲猪瘟”给生猪养殖户带来了不可估量的损失.某养殖户为了预防“非洲猪瘟”的侵袭,每天对猪场进行药熏消毒,已知一瓶药物释放过程中,一个圈舍内每立方米空气中含药量y(毫克)与时间x(分钟)之间满足正比例函数关系;药物释放完后,y与x之间满足反比例函数关系,如图所示,结合图中提供的信息解答下列问题:(1)分别求当0≤x≤10和x>10时,y与x之间满足的函数关系式;(2)据测定,当空气中每立方米的含药量不低于6毫克时,消毒才有效,那么这次熏药的有效消毒时间是多少分钟.27.(10分)如图,已知AC为正方形ABCD的对角线,点P是平面内不与点A,B重合的任意一点,连接AP,将线段AP绕点P顺时针旋转90°得到线段PE,连接AE,BP,CE.(1)求证:△APE∽△ABC;(2)当线段BP与CE相交时,设交点为M,求的值以及∠BMC的度数;(3)若正方形ABCD的边长为3,AP=1,当点P,C,E在同一直线上时,求线段BP 的长.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+x+c与x轴交于A,B 两点(点A在点B的左侧),交y轴于点C,经过B,C两点的直线为y=.(1)求抛物线的函数表达式;(2)点P为抛物线上的动点,过点P作x轴的垂线,交直线BC于点M,连接PC,若△PCM为直角三角形,求点P的坐标;(3)当P满足(2)的条件,且点P在直线BC上方的抛物线上时,如图2,将抛物线沿射线BC方向平移,平移后B,P两点的对应点分别为B′,P′,取AB的中点E,连接EB′,EP′,试探究EB'+EP'是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.2020年四川省成都市武侯区中考数学一诊试卷参考答案与试题解析一、选择题(本大題共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)在如下放置的立体图形中,其主视图与左视图不相同的是()A.圆柱B.正方体C.圆柱D.球【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.【解答】解:A、圆锥的主视图和左视图均为全等的等腰三角形,不符合题意;B、正方体的主视图和左视图均为全等的正方形,不符合题意;C、主视图是长方形,左视图是圆,符合题意;D、球的主视图和左视图均为圆,不符合题意;故选:C.2.(3分)已知点P(3,2)在反比例函数y=(k≠0)的图象上,则下列各点中在此反比例函数图象上的是()A.(﹣3,﹣2)B.(3,﹣2)C.(﹣2,3)D.(2,﹣3)【分析】直接把点P(3,2)代入反比例函数y=(k≠0)求出k的值,进而可得出结论.【解答】解:∵点P(3,2)在反比例函数y=(k≠0)的图象上,∴k=3×2=6,A、∵﹣3×(﹣2)=6,∴此点在该函数图象上,故本选项正确;B、∵3×(﹣2)=﹣6,∴此点不在该函数图象上,故本选项错误;C、∵﹣2×3=﹣6,∴此点不在该函数图象上,故本选项错误;D、∵2×(﹣3)=﹣6,∴此点不在该函数图象上,故本选项错误.故选:A.3.(3分)如图,在平面直角坐标系中,点A的坐标为(3,4),那么cosα的值是()A.B.C.D.【分析】作AB⊥x轴于B,先利用勾股定理计算出OA=5,然后在Rt△AOB中利用余弦的定义求解即可.【解答】解:作AB⊥x轴于B,如图,∵点A的坐标为(3,4),∴OB=3,AB=4,∴OA==5,在Rt△AOB中,cosα==.故选:C.4.(3分)若关于x的一元二次方程(k+2)x2﹣2x﹣1=0有实数根,则实数k的取值范围是()A.k>3B.k≥﹣3C.k>﹣3且k≠﹣2D.k≥﹣3且k≠﹣2【分析】根据根的判别式即可求出答案.【解答】解:由题意可知:△=4+4(k+2)≥0,∴解得:k≥﹣3,∵k+2≠0,∴k≥﹣3且k≠﹣2,故选:D.5.(3分)如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,若AE=1,CE =AD=2,则AB的长是()A.6B.5C.4D.2【分析】根据平行线分线段成比例定理列出比例式,进行计算即可.【解答】解:∵DE∥BC,∴=,∴=,∴AB=6,故选:A.6.(3分)下列说法正确的是()A.对角线相等且互相垂直的四边形是正方形B.坡面的水平宽度与铅直高度的比称为坡度C.两个相似图形也是位似图形D.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧【分析】直接利用位似图形的性质以及坡比的定义、垂径定理的推论分别分析得出答案.【解答】解:A、对角线相等且互相垂直的平行四边形是正方形,故此选项错误;B、坡面的铅直高度与水平宽度的比称为坡度,故此选项错误;C、两个相似图形不一定位似图形,故此选项错误;D、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,正确.故选:D.7.(3分)如图,⊙O为△ABC的外接圆,∠BAC=55°,则∠OBC的度数为()A.25°B.35°C.55°D.70°【分析】由⊙O为△ABC的外接圆,∠BAC=55°,利用在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC的度数,又由等腰三角形的性质与三角形内角和定理,即可求得∠OBC的度数.【解答】解:∵⊙O为△ABC的外接圆,∠BAC=55°,∴∠BOC=2∠BAC=2×55°=110°,∵OB=OC,∴∠OBC===35°.故选:B.8.(3分)在一个不透明的袋子里装有20个红球和若干个蓝球,这些球除颜色外都相同将袋子中的球搅拌均匀,每次从袋子里随机摸出一个球,记录下它的颜色后再放网袋子中,不断重复这一过程,发现摸到蓝球的频率稳定在0.6左右,请你估计袋子中装有蓝球的个数是()A.12个B.20个C.30个D.35个【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:设袋中蓝球有x个,根据题意得:=0.6,解得:x=30,经检验:x=30是分式方程的解,故袋中蓝球有30个.故选:C.9.(3分)在2020年元旦期间,某商场销售某种冰箱,每台进货价为2500元,调查发现:当销售价为2900元时,平均毎天能销售出8台;而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?设每台冰箱定价x元,根据题意,可列方程为()A.(x﹣2500)(8+4×)=5000B.(x﹣2500)(8+4×)=5000C.(2900﹣x﹣2500)(8+4×)=5000D.(2900﹣x)(8+4×)=5000【分析】设每台冰箱的降低x元时,这种冰箱的销售利润平均每天达到5000元,根据题意列方程即可;【解答】解:设每台冰箱降价x元时,种冰箱的销售利润平均每天达到5000元,由题意得:(x﹣2500)(8+4×)=5000,故选:B.10.(3分)已知二次函数y=ax2+bx+c(其中a,b,c为常数)的图象如图所示,有以下结论:①abc>0;②a+b+c=0;③2a﹣b=0;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确结论的番号是()A.①②④B.①③④C.①④D.③④【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.【解答】解:抛物线开口向上,a>0,对称轴在y轴的右侧,a、b异号,因此b<0,与y轴的交点在正半轴,因此c<0,abc>0,故结论①正确;当x=1时,y=a+b+c<0,因此选项②是不正确的;对称轴为x=1,即﹣=1,也就是2a+b=0,因此选项③不正确;抛物线与x轴有两个不同的交点,因此方程ax2+bx+c=0有两个不相等的实数根.选项④正确;故选:C.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)已知=,则的值为.【分析】根据合比性质,可得答案.【解答】解:=,则=,故答案为:.12.(4分)如图,在△ABC中,P为边AB上一点,且∠ACP=∠B,若AP=6,BP=4,则AC的长为2.【分析】通过证明△ACP∽△ABC,可得,即可求解.【解答】解:∵AP=6,BP=4,∴AB=10,∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,∴,∴AC2=6×10,∴AC=2,故答案为:2.13.(4分)已知关于x的元二次方程x2﹣2kx﹣8=0的一个根是2,则此方程的另一个根是﹣4.【分析】根据根与系数的关系即可求出答案.【解答】解:设该方程的另外一个根为x,由根与系数的关系可知:2x=﹣8,∴x=﹣4,故答案为:﹣414.(4分)如图,现将四根木条钉成的矩形框ABCD变形为平行四边形木框A'BCD′,且A′D′与CD相交于CD边的中点E,若AB=4,则△ECD′的面积是2.【分析】作A'F⊥BC于F,则∠A'FB=90°,根据题意得:平行四边形A′BCD′的面积=BC•A'F=BC•AB,A'F=AB=2,得出∠D'=∠A'BC=30°,得出BF=A'F=2,由矩形和平行四边形的性质得出BC=AD=A'D',A'D'∥AD∥BC,CD⊥BC,得出CD⊥A'D',得出A'F∥CD,证出四边形A'ECF是矩形,得出CE=A'F=2,A'E=CF,证出DE=BF=2,即可得出答案.【解答】解:作A'F⊥BC于F,如图所示:则∠A'FB=90°,根据题意得:平行四边形A′BCD′的面积=BC•A'F=BC•AB,∴A'F=AB=2,∴∠D'=∠A'BC=30°,∴BF=A'F=2,∵四边形ABCD是矩形,四边形A′BCD′是平行四边形,∴BC=AD=A'D',A'D'∥AD∥BC,CD⊥BC,∴CD⊥A'D',∴A'F∥CD,∴四边形A'ECF是矩形,∴CE=A'F=2,A'E=CF,∴DE=BF=2,∴△ECD的面积=DE×CE=×2×2=2;故答案为2.三、解答題(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:﹣22+(π﹣3.14)0﹣|﹣4|﹣4sin60°(2)解方程:4x2+4x﹣3=0【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)利用因式分解法求解可得.【解答】解:(1)原式=﹣4+1﹣(4﹣2)﹣4×=﹣3﹣4+2﹣2=﹣7;(2)∵4x2+4x﹣3=0,∴(2x+3)(2x﹣1)=0,则2x+3=0或2x﹣1=0,解得x=﹣或x=.16.(6分)2019年9月10日是我国第35个教师节,某中学德育处发起了感恩小学恩师的活动,德育处要求每位同学从以下三种方式中选择一种方式表达感恩:A.信件感恩,B.信息感恩,C.当面感恩.为了解同学们选择以上三种感恩方式的情况,德育处随机对本校部分学生进行了调查,并根据调查结果绘制成了如下两幅不完整的统计图.根据图中信息解答下列问题:(1)扇形统计图中C部分所对应的扇形圆心角的度数为120°,并补全条形统计图;(2)本次调查在选择A方式的学生中有两名男生和两名女生来自于同一所小学,德育处打算从他们四个人中选择两位在主题升旗仪式上发言,请用画树状图或列表的方法求恰好选到一男一女的概率.【分析】(1)由A类别人数及其所占百分比可得总人数,用360°乘以C部分人数所占比例可得;据此即可补全条形图;(2)分别用树状图和列表两种方法表示出所有等可能结果,从中找到恰好选到一男一女的概率结果数,利用概率公式计算可得.【解答】解:(1)被调查的总人数为15÷25%=60(人),C类的总人数=60﹣25﹣15=20(人)所以扇形统计图中C部分所对应的扇形圆心角的度数为360°×=120°,补全条形统计图如图所示:故答案为:120°;(2)画树状图如下:共有12种可能的结果,恰好选到一男一女的结果有8个,∴P(选到一男一女)==.17.(8分)2019年10月1日,中华人民共和国成立70周年,成都市天府广场举行了盛大的升旗仪式,我市部分学生有幸见证了这一激动人心的时刻,并在现场作了如下测量工作:身高1.8米的某同学(图中AE部分)在护旗手开始走正步的点A处测得旗杆顶部D 的仰角为22°,在护旗手结束走正步的点B处测得旗杆顶部D的仰角为45°,又测量得到A,B两点间的距离是30米,求旗杆DC的高度.(结果精确到0.1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40.)【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造边角关系,进而可求出答案.【解答】解:延长EF交CD于G,∵∠DEF=22°,∠DFG=45°,∴在Rt△DGF中,DG=GF,在Rt△DGE中,tan22°=,即EG=≈2.5DG,∵2.5DG﹣DG=30,解得DG=20,则DC=DG+CG=20+1.8=21.8(米).答:旗杆DC的高度大约是21.8米.18.(8分)如图,在正方形ABCD中,点E,F在对角线BD上,AE∥CF,连接AF,CE.(1)求证:△ABE≌△CDF;(2)试判断四边形AECF的形状,并说明理由.【分析】(1)根据正方形的性质以及平行线的性质可得△ABE≌△CDF;(2)连接AC,与BD交于点O,由△ABE≌△CDF,得出BE=DF,进而得出OE=OF,根据对角线互相垂直且平分的四边形是菱形,可得四边形AECF是菱形.【解答】解:(1)证明:∵在正方形ABCD中,AB=AD,∠ABE=∠CDF=45°,又∵AE∥CF,∴∠AEF=∠CFE(两直线平行,内错角相等),∴∠AEB=∠CFD(等角的补角相等),∴△ABE≌△CDF(AAS);(2)四边形AECF是菱形.理由如下:如图,连接AC,与BD交于点O,∵△ABE≌△CDF,∴BE=DF,又∵OB=OD,∴OB﹣BE=OD﹣DF,即OE=OF,又∵AC⊥EF,OA=OC,∴四边形AECF是菱形.19.(10分)如图,在平面直角坐标系xOy中,次函数y=﹣x+5的图象与反比例函数y=(k>0)的图象相交于A,B两点,与x轴相交于点C,连接OB,且△BOC的面积为.(1)求反比例函数的表达式;(2)将直线AB向下平移,若平移后的直线与反比例函数的图象只有一个交点,试说明直线AB向下平移了几个单位长度?【分析】(1)由一次函数解析式求得C的坐标,根据三角形面积求得B的纵坐标,代入一次函数解析式求得B的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)由于将直线AB向下平移m(m>0)个单位长度得直线解析式为y=﹣x+5﹣m,则直线y=﹣x+5﹣m与反比例函数有且只有一个公共点,即方程=﹣x+5﹣m只有一组解,再根据判别式的意义得到关于m的方程,最后解方程求出m的值.【解答】解:(1)一次函数y=﹣x+5中,令y=0,解得x=5,∴C(5,0),∴OC=5,作BD⊥OC于D,∵△BOC的面积为,∴OC•BD=,即BD=,∴BD=1,∴点B的纵坐标为1,代入y=﹣x+5中,求得x=4,∴B(4,1),∵反比例函数y=(k>0)的图象经过B点,∴k=4×1=4,∴反比例函数的解析式为y=;(2)将直线AB向下平移m(m>0)个单位长度得直线解析式为y=﹣x+5﹣m,∵直线AB向下平移m(m>0)个单位长度后与反比例函数的图象只有一个公共交点,∴=﹣x+5﹣m,整理得x2+(m﹣5)x+4=0,△=(m﹣5)2﹣4×1×4=0,解得m=9或m=1,即m的值为1或9.20.(10分)如图,⊙O是△ABC的外接圆,AB为⊙O的直径,在△ABC外侧作∠CAD=∠CAB,过点C作CD⊥AD于点D,交AB延长线于点P.(1)求证:PC是⊙O的切线;(2)若tan∠BCP=,AD•BC=4m2(m>0),求⊙O的半径;(用含m的代数式表示)(3)如图2,在(2)的条件下,作弦CF平分∠ACB,交AB于点E,连接BF,且BF =5,求线段PE的长.【分析】(1)连接OC,则OA=OC,则∠OAC=∠OCA=α,而∠CAD=∠CAB=α,故∠DAC=∠OCA=α,即可求解;(2)证明△ADC∽△ABC,设圆的半径为R,则AC=AB cosα=2R×=,CD=AC sinα=,故AD•BC=AC•CD==4m2,即可求解;(3)证明PC=PE,BF=5=R,则R=5,利用CO∥AD,则,即,即可求解.【解答】解:(1)如图1,连接OC,则OA=OC,则∠OAC=∠OCA=α,而∠CAD=∠CAB=α,故∠DAC=∠OCA=α,∴AD∥CO,而CD⊥AD,∴CO⊥BD,故PC是⊙O的切线;(2)PC是⊙O的切线,则∠BCP=∠CAB=α,即tan,则sin,cos,∵∠DAC=∠CAB=α,∴△ADC∽△ABC,设圆的半径为R,则AC=AB cosα=2R×=,CD=AC sinα=,故AD•BC=AC•CD==4m2,故R=m;(3)连接OF、OC,CF平分∠ACB,则FO⊥AB,∵∠ECP=90°﹣∠OCE,∠CEP=90°﹣∠OFC,而∠OCE=∠OFC,∴∠EPC=∠CEP,∴PC=PE,BF=5=R,则R=5,AD=AC cosα=×=8,同理CD=4,∵CO∥AD,∴,即,解得:PC==PE.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上B卷(共50分)21.(4分)已知方程x2﹣x﹣7=0的两个实数根分别为m,n,则m2+n的值为8.【分析】根据根与系数的关系即可求出答案.【解答】解:由题意可知:m2﹣m﹣7=0,∴m2=m+7,∵m+n=1,∴原式=m+7+n=8,故答案为:8.22.(4分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,求直径CD的长”.(1尺=10寸)则CD=26寸.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,如图所示,设直径CD的长为2x,则半径OC=x,∵CD为⊙O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5寸,连接OA,则OA=x寸,根据勾股定理得x2=52+(x﹣1)2,解得x=13,CD=2x=2×13=26(寸).故答案为:26寸.23.(4分)我们知道黄金比例是,利用这个比例,我们规定一种“黄金算法”即:a b=a+b,比如12=1+×2=.若x(24)=5,则x的值为.【分析】根据新定义得到24=2,则x2=x+5﹣,从而得到x+5﹣=5,然后解一次方程即可.【解答】解:∵24=2+×4=2,∴x2=x+×2=x+5﹣∴x+5﹣=5,∴x=.故答案为.24.(4分)如图,点P为双曲线y=(x<0)上一动点,连接OP并延长到点A,使P A=PO,过点A作x轴的垂线,垂足为B,交双曲线于点C.当AC=AP时,连接PC,将△APC沿直线PC进行翻折,则翻折后的△A′PC与四边形BOPC的重叠部分(图中阴影部分)的面积是.【分析】连接OC,BP,根据折叠性质得四边形ACA'P为菱形,进而得A'C∥AO,A'P∥AB,由反比例函数的比例系数的几何意义和相似三角形的性质求出△OPD,△OAB,△BCE的面积,进而结合边的比例关系求出△ACP的面积,最后便可求得阴影部分面积.【解答】解:连接OC,BP,则,∴,∵AP=AC,将△APC沿直线PC进行翻折得△A′PC,∴AP=AC=A'C=A'P,∴四边形ACA'P为菱形,∴P A'∥AB,A'C∥OA,∵AB⊥x轴,∴P A'⊥x轴,∴=4,∴,∴OB•BC=OD•PD,∵AP=OP,PD∥AB,∴OD=BD,∴PD=,OD=OB,∵CE∥OA,∴∠CEB=∠POD,∵∠CBE=∠PDO=90°,∴△BCE∽△DPO,∴,∵OB•BC=OD•PD,OD=OB,∴BC=PD=AB,∴,,∴,∴,∵DP∥AB,∴△OPD∽△OAB,∴,∴,∵OP=AP,∴,∴,∴.25.(4分)如图,在矩形ABCD中,已知AB=3,BC=4,点P是边BC上一动点(点P 不与点B,C重合),连接AP,作点B关于直线AP的对称点M,连接MP,作∠MPC 的角平分线交边CD于点N.则线段MN的最小值为.【分析】连接AM、MN、AN,由MN+AM≥AN,得出MN≥AN﹣AM,即当A、M、N三点共线时,MN=AN﹣AM,最小,由矩形的性质得出AB=CD=3,AD=BC=4,∠B=∠C=∠D=90°,由点B关于直线AP的对称点为M,得出AP垂直平分BM,则AB=AM,PB=PM,由SSS证得△ABP≌△AMP,得出∠B=∠PMA=90°,则∠PMN=∠C,由角平分线定义得出∠NPM=∠NPC,由AAS证得△NPM≌△NPC(AAS),得出MN=CN,设MN=x,则DN=CD﹣CN=3﹣x,AN=AM+MN=3+x,在Rt△ADN中,由勾股定理得出方程即可得出结果.【解答】解:连接AM、MN、AN,如图1所示:∵MN+AM≥AN,∴MN≥AN﹣AM,当A、M、N三点共线时,MN=AN﹣AM,最小,当A、M、N三点共线时,如图2所示:∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠B=∠C=∠D=90°,∵点B关于直线AP的对称点为M,∴AP垂直平分BM,∴AB=AM,PB=PM,在△ABP和△AMP中,,∴△ABP≌△AMP(SSS),∴∠B=∠PMA=90°,∴∠PMN=∠C=90°,∵PN是∠MPC的角平分线,∴∠NPM=∠NPC,在△NPM和△NPC中,,∴△NPM≌△NPC(AAS),∴MN=CN,设MN=x,则DN=CD﹣CN=3﹣x,AN=AM+MN=3+x,在Rt△ADN中,42+(3﹣x)2=(3+x)2,解得:x=,∴线段MN的最小值为,故答案为:.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)据报道,从2018年8月以来,“非洲猪瘟”给生猪养殖户带来了不可估量的损失.某养殖户为了预防“非洲猪瘟”的侵袭,每天对猪场进行药熏消毒,已知一瓶药物释放过程中,一个圈舍内每立方米空气中含药量y(毫克)与时间x(分钟)之间满足正比例函数关系;药物释放完后,y与x之间满足反比例函数关系,如图所示,结合图中提供的信息解答下列问题:(1)分别求当0≤x≤10和x>10时,y与x之间满足的函数关系式;(2)据测定,当空气中每立方米的含药量不低于6毫克时,消毒才有效,那么这次熏药的有效消毒时间是多少分钟.【分析】(1)分别利用当0≤x≤10,设y与x之间满足的函数关系式为y=kx,以及x>10时,设y与x之间满足的函数关系式为y=,分别得出函数关系式;(2)直接利用y≥6时得出x的取值范围即可.【解答】解:(1)当0≤x≤10,设y与x之间满足的函数关系式为y=kx,∵过点(10,30),∴30=10k,解得:k=3,∴y=3x(0≤x≤10),x>10时,设y与x之间满足的函数关系式为y=,∵过点(10,30),∴30=,k=300,∴y=(x>10);(2)y=3x(0≤x≤10)中,当y≥6时,x≥2,y=(x>10)中,当y≥6时,x≤50,∴2≤x≤50,∴这次熏药的有效消毒时间是:50﹣2=48(分钟)答:这次熏药的有效消毒时间是48分钟.27.(10分)如图,已知AC为正方形ABCD的对角线,点P是平面内不与点A,B重合的任意一点,连接AP,将线段AP绕点P顺时针旋转90°得到线段PE,连接AE,BP,CE.(1)求证:△APE∽△ABC;(2)当线段BP与CE相交时,设交点为M,求的值以及∠BMC的度数;(3)若正方形ABCD的边长为3,AP=1,当点P,C,E在同一直线上时,求线段BP 的长.【分析】(1)先求出∠APE=∠ABC=90°,∠P AE=∠PEA=∠ABC=45°,即可得出结论;(2)由(1)知,△APE∽△ABC,得出,再判断出∠P AB=∠EAC,进而判断出△P AB∽△EAC,即可得出结论;(3)先画出图形,利用勾股定理求出CP',再分两种情况,求出CE和CE',借助(2)的结论,即可得出结论.【解答】解:(1)∵AC是正方形ABCD的对角线,∴∠ABC=90°,∠BAC=∠BCA=45°,由旋转知,P A=PE,∠APE=90°=∠ABC,∴∠P AE=∠PEA=45°=∠BAC,∴△APE∽△ABC;(2)在Rt△ABC中,AB=CB,∴AC=AB,由(1)知,△APE∽△ABC,∴,∵∠BAC=∠P AE=45°,∴∠P AB=∠EAC,∴△P AB∽△EAC,∴==,∵△P AB∽△EAC,∴∠ABP=∠ACE,∴∠BCE+∠CBM=∠BCE+∠ABP+∠ABC=∠BCE+∠ACE+∠ABC=∠ACB+∠ABC=45°+90°=135°,∴∠BMC=180°﹣(∠BCE+∠CBM)=45°;(3)如图,在Rt△ABC中,AB=AC=3,∴AC=3,∵点P,C,E在同一条线上,且∠APE=90°,∴CP==,∴CE=CP﹣PE=﹣1或CE'=CP'+P'E=+1,由(2)知,=,∴BP=CE=(﹣1)=或BP'=CE'=;即:BP的长为或.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+x+c与x轴交于A,B 两点(点A在点B的左侧),交y轴于点C,经过B,C两点的直线为y=.(1)求抛物线的函数表达式;(2)点P为抛物线上的动点,过点P作x轴的垂线,交直线BC于点M,连接PC,若△PCM为直角三角形,求点P的坐标;(3)当P满足(2)的条件,且点P在直线BC上方的抛物线上时,如图2,将抛物线沿射线BC方向平移,平移后B,P两点的对应点分别为B′,P′,取AB的中点E,连接EB′,EP′,试探究EB'+EP'是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.【分析】(1)y=,过点B,C,则点B、C的坐标分别为:(3,0)、(0,),则c=,将点B的坐标代入抛物线表达式,即可求解;(2)分∠PCM=90°、∠CPM=90°两种情况,分别求解即可;(3)作点E关于P′B′的对称点E′,将点E′沿P′B′方向平移2个单位得到点E″,连接E、E″交P′B′所在的直线于点B′,点B′沿P′B′方向平移2个单位得到点。

成都市金牛区2021年中考一诊(九年级上期末)数学试题(含答案)

成都市金牛区2021年中考一诊(九年级上期末)数学试题(含答案)

成都市金牛区2020~2021学年度(上)期末教学质量测评九年级数学注意事项:1. 全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.2. 考生使用答题卡作答.3. 在作答前,考生务必将自己的姓名、考生号和座位号填写在答题卡上. 考试结束,监考人员将试卷和答题卡一并收回.4. 选择题部分请使用2B 铅笔填涂;非选择题部分请使用0.5毫米黑色墨水签字笔书写,字体工整、字迹清楚.5. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.6. 保持答题卡面清洁,不得折叠、污染、破损等.A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是(A ) (B ) (C ) (D )2. 在Rt △ABC 中,∠C =90°,AB =5,BC =3,则sin A 的值为 (A )35(B )34(C )45(D )43正面C3. 若25y x =,则x y x +的值为(A )27(B )57(C )75(D )724. 在“我爱大运,我爱成都.”这句话中任选一个汉字,则这个字是“爱”的概率为 (A )14(B )13(C )38(D )585. 如图,在⊙O 中,AB 是直径,AC 是弦,连接OC ,若∠ACO =25°,则∠BOC 的度数是(A )40°(B )50°(C )55°(D )60°第5题图 第7题图6. 一元二次方程2350x x ++=的根的情况是 (A )无实数根(B )有两个不相等的实数根(C )有两个相等的实数根(D )不能确定7. 如图,路灯距离地面7.5米,若身高1.5米的小明在距离路灯的底部(点O )8米的A 处,则小明的影子AM 的长为(A )1.25米(B )2米(C )4米(D )6米8. 某校前年用于绿化的投资为20万元,今年用于绿化的投资为36万元,设这两年用于绿化投资的年平均增长率为x ,则列方程得 (A )20(12)36x += (B )220(1)36x +=(C )220(1)36x +=(D )220(1)20(1)36x x +++=9. 对于反比例函数5y x=,下列说法正确的是 (A )它的图象分布在二、四象限 (B )它的图象关于原点成中心对称 (C )点(5,1)−在它的图象上(D )当12x x >时,12y y <AB10. 如图,抛物线2y ax bx c =++的对称轴为直线2x =−,且过点(1,0),有下列结论: ①0abc >;②1640a b c −+>;③40a b +=;④240b ac −<. 其中所有正确的结论是(A )①②(B )①④ (C )②④ (D )①③第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11. 关于x 的一元二次方程2230x x m −+=的一个根为13x =,则m 的值是______.12. 若将抛物线22y x =先向左平移5个单位,再向上平移2个单位,得到的新抛物线的表达式为______. 13. 如图,A 是⊙O 上一点,BC 是直径,AC =1,AB =3,点D 在⊙O 上且平分⌒BC ,则DC 的长为______.第13题图 第14题图14. 如图,在□ABCD 中,按以下步骤作图:①分别以点A 、点B 为圆心,以大于12AB 的长为半径作弧;②过两弧相交的两点在直线交BC 于点E ,连接AE ,已知CD =4,∠B =60°,则△ABE 的面积为______.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15. (本小题满分12分,每题6分) (1)21()1826cos453−++−−;(2)(8)(1)120x x +++=.BC先化简,再求值:235(2)22a a a a a −÷+−−−,其中2310a a +−=.17. (本小题满分8分)如图,要在原始森林附近修一条公路MN ,已知C 点周围260米范围内为原始森林保护区,在MN 上的点A 处测得C 在A 的东北方向上(即∠DAC =45°),从A 向东走800米到达B 处,测得C 在点B 的北偏西60°方向上. MN 是否穿过原始森林保护区,为什么?(结果精确到个位,参考数据1.732≈)M东北2020年春季在新冠疫情的背景下,全国各大中小学纷纷开设空中课堂,学生要面对电脑等电子产品上网课. 某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”、“重视”、“比较重视”、“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图. 根据图中信息,解答下列问题:(1)在扇形统计图中,“比较重视”所占的圆心角的度数为______,并补全条形统计图; (2)该校共有学生3200人,请你估计该校对视力保护“非常重视”的学生人数.(3)对视力“非常重视”的4人有1A ,2A 两名男生,1B ,2B 两名女生,若从中随机抽取两人向全校作视力保护经验交流,请利用树状图或列表法,求出恰好抽到同性别学生的概率.重视程度人数(人)非常重视重视比较重视不重视非常重视如图,一次函数y kx b=+的图象与反比例函数myx=的图象相交于(2,3)A,(,2)B n−两点.(1)求一次函数和反比例函数的表达式;(2)直线AB交x轴于点C,点P在x轴上,若△ABP的面积是10,求点P的坐标.已知:如图1,AB 是⊙O 的直径,DB 是⊙O 的切线,C 是⊙O 上的点,连接OD ,AC ∥OD . (1)求证:DC 是⊙O 的切线; (2)求证:22AB AC OD =⋅;(3)如图2,AB ,1tan 3ABC ∠=,连接AD 交⊙O 于点E ,连接BC 交OD 于点F ,求EF 的长.图1 图2B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 若m 、n 是一元二次方程2320210x x +−=的两个实数根,则22m n mn ++的值为______.BB22. 如图所示,在平面直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A 、C 分别在x 轴、y 轴上,双曲线ky x=(0k ≠,0x >)经过AB 、BC 的中点N 、F ,连接ON 、OF 、NF . 若3BFN S =△,则k =______.第22题图 第24题图 第25题图23. 现有牌面编码为1−,1,2的三张卡片,背面向上,从中随机抽取一张卡片,记其数字为k ,将抽到的卡片背面朝上,放回打乱后,再抽一张记其数字为m ,则事件:“关于a 、b 的方程组2122a b k a b +=+⎧⎨+=⎩的解满足01a b −≤≤,且二次函数22y x x m =−+的图象与x 轴恰有2个交点”成立的概率为______. 24. 如图,Rt △ABC 中,∠ACB =90°,AC =BC =8,F 为AC 中点,D 是线段AB 上一动点,连接CD ,将线段CD 绕点C 沿逆时针方向旋转90°得到线段CE ,连接EF ,则点D 在运动过程中,EF 的最大值为______,最小值为______.25. 如图所示,在平面直角坐标系中,抛物线2y =++A ,并与x 轴正半轴交于点B ,在y 轴上存在点C ,使∠ACB =30°. 则点C 的坐标是______. 二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上) 26. (本小题满分8分)某经销商经过市场调查,整理出某种商品在2020年10月的第x 天(130x ≤≤)的售价与销量的相关信息如下表:已知该商品的进价为50元/件.(1)销售该商品第几天时,销售该商品的日销售利润为2280元; (2)销售该商品第几天时,日销售利润最大?最大日销售利润为多少元?E如图所示,在矩形ABCD中,将矩形ABCD沿EF折叠,使点D落在AB边上的点G处,点C落在点H处,GH交BC于点K,连接DG交EF于点O,DG=2EF.(1)求证:DE DA DO DG⋅=⋅;(2)探索AB与BC的数量关系,并说明理由;(3)连接BH,3sin5BFH∠=,EF=BFH的周长.GD已知:如图1,在平面直角坐标系中,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点(0,6)D −,直线123y x =−+交x 轴于点B ,与y 轴交于点C .(1)求抛物线的函数解析式;(2)抛物线上点E 位于第四象限,且在抛物线的对称轴的右侧,当△BCE 的面积为32时,过点E 作平行于y 轴的直线交x 轴于Q ,交BC 于点F ,在y 轴上是否存在点K ,使得以K 、E 、F 三点为顶点的三角形是直角三角形. 若存在,求出点K 的坐标;若不存在,请说明理由;(3)如图2,在线段OB 上有一动点P ,直接写出BP +的最小值和此时点P 的坐标.图1 图22020-2019学年(上)期末教学质量测评九年级数学 答案一. 选择题(每小题3分,共30分.)1. B2. A3. C4. A5. B6.A7. B8. C9. B 10.A二.填空题(本大题共4个小题,每小题4分,共16分)11. -1 12.22(5)2y x =-+ 13. 14.三.解答题(本大题共6个小题,共54分) 15.计算(本小题满分12分,每题6分)(1)原式= 92++-4分=11…………………………………………………………6分(2)x 2+9x +20=0,(x +4)(x +5)=0,……………………………………………………………………3分x +4=0或x +5=0,x 1=﹣4,x 2=﹣5.………………………………………………………………6分16.(本小题满分8分)解:原式=()23922a a a a a ⎛⎫--÷ ⎪--⎝⎭=()()()32233a a a a a a ---+- =()13a a +……………………………………………………………………………………5分由a 2+3a -1=0,得到a 2+3a =1,则原式=1…………………………………………………8分 17.(本小题满分8分)解:MN 不会穿过森林保护区,理由如下:如图,过C 作CH AB ⊥于H .设CH x =, 由已知有45DAC ∠=︒,60FBC ∠=︒, 则45CAH ∠=︒,30CBA ∠=︒.…………………………………………………………2分在Rt ACH ∆中,AH CH x ==, 在Rt HBC ∆中,tan CHHBC HB∠=∴tan303CHHB===︒,…………………………………………………………5分∵AH HB AB+=,∴x+3x=800,解得x≈293(米)>260(米)………………………………………………………………7分∴MN不会穿过森林保护区. ………………………………………………………………8分18.(本小题满分8分)解:(1)162…………………………………………………………………………………1分补图如图:…………………………………………………………2分(2)根据题意得:3200×804=160(人),…………………………………………………3分答:该校对视力保护“非常重视”的学生人有160人;(3)画树状图如下:共有12种可能的结果,恰好抽到同性别学生的结果有4个,则P(恰好抽到同性别学生)=31124=.………………………………………………………………………………………8分19.(本小题满分10分)解:(1)将点A(2,3)代入myx=,得:m=6,∴反比例函数解析式为y=6x,………………………………………………………………3分当y =﹣2时,n =﹣3,∴B (﹣3,﹣2),将A (2,3)、B (﹣3,﹣2)代入y =kx +b 得2332k b k b +=⎧⎨-+=-⎩解得,11k b =⎧⎨=⎩,∴一次函数解析式为y =x +1. …………………………6分(2)在y =x +1中,当y =0时,x +1=0,解得x =﹣1, ∴C (﹣1,0),设P (m ,0),则PC =|1+m |,∵S △ABP =10, ∴12⨯|1+m |×5=10,解得m =3或m =-5, ∴点P 的坐标为(3,0)或(﹣5,0).………………………………………10分 20.(本题满分10分)解:(1)如图1,连接OC ,∵OA=OC, ∴∠A =∠OCA , ∵AC ∥OD ,∴∠A =∠BOD ,∠ACO =∠COD , ∴∠COD =∠BOD ,∵DB 是⊙O 的切线,AB 是⊙O 的直径, 图1 ∴∠OBD =90°, ∴△COD ≌△BOD (S.A.S) ∴∠OCD =∠OBD =90°,∴D C 是⊙O 的切线;…………………………………………………………………3分 (2)连接BC , ∵AB 是直径, ∴∠ACB =90°,∵∠A =∠BOD ,∠ACB =∠OBD ∴△ABC ∽△ODB , ∴AB ACOD OB= 如图2 ∴AC •OD =AB •OB , ∴AC •OD=AB •A B ,∴AB 2=2AC •DO ;…………………………………………………………………………6分B(3)如图3,连接BE , ∵AB 是⊙O 的直径, ∴∠AEB =∠ACB=90°, ∵∠ABD=90° ∴△BDE ∽△ADB ∴可得BD 2=DE •DA ∵AC ∥OD , ∴OD ⊥BC∴△BDF ∽△OBF ∽△ODB ∴可得BF 2=OF•DF ,BD 2=DF •DO ∵1tan3ABC ∠=, ∴AC=1,BC=3, ∴OB=2,BF=32,OF=12∴DB=2,DA=2,OD=5,DF=92∴DF • DO =DE •DA ∴DF DA DE DO= ∵∠EDF =∠ODA ∴△DEF ∽△DOA∴DF EFDA OA= ∴EF=26……………………………………………………………………………10分 B 卷(50分)一.填空题(本大题共5个小题,每小题4分,共20分) 21. - 202722. 9 23.9224. 25.±二.解答题 (共30分) 26.(本小题满分8分)图1BG 解:(1)(x +60﹣50)(200﹣5x )=2280 解之得:122,28x x ==∴销售该商品第2天或28天时,日销售利润为2280元;………………………4分 (2)设日销售利润为W 元W =(x +60﹣50)(200﹣5x )=()25153125x --+, ∵﹣5<0,故抛物线开口向下,当x =15(天)时,y 取得最大值为3125(元).∴销售该商品第15天时,日销售利润最大,最大日销售利润3125元.………8分 27.(本小题满分10分)解:(1)证明:∵四边形ABCD 是矩形, ∴∠DAG =90° 折叠可知DG ⊥EF , ∴∠DAG =∠EOD =90° ∵∠GDA =∠EDO , ∴△ADG ∽△ODE , ∴DA DGDO DE=∴DE DA DO DG =……………………………………………………………………3分 (2)① BC=2AB ,理由如下: 如图1中,过点E 作EN ⊥CD 于N . ∵折叠可知DG ⊥EF ,∴∠EOG =∠ENF =∠DAG =90°, ∴∠OEN +∠DEO =90°, ∠OED +∠EDO =90°, ∴∠NEF =∠EDO , ∴△DGA ∽△EFN , ∴DA DGEN EF=∵∠AEN =∠A =∠B =90°, ∴四边形ABNE 是矩形, ∴EN =AB ,图2B G ∵AD=2EF ∴AD=2AB∴BC=2AB …………………………………………………………………………………6分 ②:如图2中,作HQ ⊥AB 交AB 的延长线于Q .连接EG ∵AE ∥BN ,GE ∥HF , ∴∠AEG =∠BFH ,3sin sin 5BFHAEG ∠=∠=∴设BG =3k ,BE =4k ,GE =AE =5k , DG=2EF, EF =32∴DG =3∴(3k )2+(9k )2=(3)2,∴k =1或﹣1(舍去),∴AG =3,AE=4,GE=5,AD =9,AB =92, ∵∠EAB =∠HQG =∠EGH =90°,∴∠AGE +∠QGH =90°,∠AGE +∠AEG =90°, ∴∠AEG =∠QGH , ∴△EAG ∽△GQH ,∴GE AE AG GH GQ QH== ∴54392GQ QH ==∴GQ=185,QH=2710,GB=32,CQ=2110∴BH ==∴.△CFH 的周长=910+…………………………………………………………10分28.(本小题满分12分)解:(1)∵直线123y x =-+过点B ,C , 令y=0,解得x=6,令x=0,解得y=-6, ∴B (6,0),C (0,2)∵抛物线2y x bx c =++经过点B 和点D ,36606b c c ++=⎧⎨=-⎩,解得56b c =-⎧⎨=-⎩, ∴抛物线的表达式为:256y x x =--;……………………………………………4分(2)设点Q 坐标为(m ,0),则E 坐标为(m ,256m m --),点F 坐标为(m ,123m -+), ∵()12BCEB C SEF x x =- ∴()21132256623m m m ⎡⎤⎛⎫=-+---⨯ ⎪⎢⎥⎝⎭⎣⎦1224,3m m ==(舍去) E(4,-10),F(4,23)当∠EFK=90°时,K (0,23) 当∠FEK=90°时,K (0,-10)当∠FKE=90°时,K (0,143-±)……………………………………………8分(3BP +的最小值为24,此时点P 的坐标(2,0). …………………12分。

2020年四川省成都市双流区中考数学一诊试卷(含答案解析)

2020年四川省成都市双流区中考数学一诊试卷(含答案解析)

如图,已知O0是△M3C 的外接圆,连接AO,若乙3 =40。

,则^OAC =(2020年四川省成都市双流区中考数学一诊试卷一、选择题(本大题共10小题,共30.0分)1.一5的倒数是()A.fB. 5C. 一£2.如图,所给三视图对应的几何体是()3.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥, 被称为“新世界七大奇迹之一”.港珠澳大桥总长度55000米,则数据55000用科学记数法表 示为()如图43//CD,乙D=42。

,Z^CBA = 64% 贝Ij/CBD 的度数是()乙 C = ZD7.将分式方程•三+三=1去分母后得()A.球 主视图 左视图B.圆柱C.圆锥 俯视图D.三棱锥A. 55 X 10sB. 5.5 X 104C. 0.55 X 105D. 5.5 X 1054.5. C. 74° D. 106°下列运算正确的是()A. m 2 • m 3 = m 6B. (m 4)2 = m 6 6.C. m 3 + m 3 = 2m 3D. (m _ n)2 = m 2 — n 2如图,乙CAB =乙DBA,再添加一个条件,不一泄能判怎△力BCWA BAD 的是()A. AC= BDB ・Z1 =乙2C ・ AD = BCD.A. 2 — % = % — 1B. 2 — % = 1 C ・ 2 + % = 1 — % D. 2 + % = % — 1B. 64°15•设%!> x 2是一元二次方程2x 2 - mx - 6 = 0的两个根,且x L +x 2 = 1,则小明把如图所示的矩形纸板ABCD 挂在墙上疋为AD 中点,且"3D = 60% 并用它玩飞镖游戏(每次飞镖均落在纸板上),击中阴影区域的槪率是17.如图,AC = 4, BC = 3,且BC 边在直线/上,将△朋C 绕点C 顺时针旋转到位置①可得到」 再将位苣①的三角形绕点B 顺时针旋转到位宜②可得到P2,将位置②的三角形绕点卩2A. 40°B. 50°C. 60°D. 70°9.如图,在平行四边形ABCD 中,"=2乙“(DC 的半径为3,则图中阴 影部分的面积是()A. nB. 2nC ・3nD. 6n10.如图,已知二次函数y = 32 +必+。

四川省成都市高新区2020年中考数学一诊试卷(含解析)

四川省成都市高新区2020年中考数学一诊试卷(含解析)

2020年四川省成都市高新区中考数学一诊试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列图形既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.平行四边形D.圆2.一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下颜色后再放回口袋中.不断重复这一过程,共摸了100次球,发现有70次摸到红球.请你估计这个口袋中红球的数量是()A.4B.5C.6D.73.如图所示的四棱柱的主视图为()A.B.C.D.4.已知a,b,c,d是成比例线段,其中a=3cm,b=2cm,c=6cm,则d的长度为()A.4cm B.5cm C.6cm D.9cm5.某学习小组利用三角形相似测量学校旗杆的高度.测得身高为1.6米小明同学在阳光下的影长为1米,此时测得旗杆的影长为9米.则学校旗杆的高度是()A.9米B.14.4米C.16米D.13.4米6.已知反比例函数的图象经过点(2,3),那么下列各点在该函数图象上的是()A.(﹣,3)B.(2,﹣)C.(9,)D.(4,2)7.如图,点A、B、C在⊙O上,△OAB为等边三角形,则∠ACB的度数是()A.60°B.50°C.40°D.30°8.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形9.二次函数y=x2﹣2的图象是一条抛物线,下列关于该抛物线的说法正确的是()A.抛物线开口向下B.当x=0时,函数的最大值是﹣2C.抛物线的对称轴是直线x=2D.抛物线与x轴有两个交点10.函数y=与y=kx﹣k(k≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.若2a=3b,则a:b=.12.二次函数y=2(x﹣2)2﹣1的顶点坐标是.13.在△ABC中与△DEF中,已知===,则三角形△ABC与△DEF的周长之比为.14.如图:分别以A、C为圆心,以大于AC的长为半径作弧,两条弧分别相交于点B、D,依次连接A,B,C,D和BD.若AB=5,AC=8,则BD=.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(1)计算:(π﹣2019)0+2sin60°﹣+|1﹣|(2)解方程:x2﹣2x﹣3=016.已知:如图,在▱ABCD中,BA=BD,M,N分别是AD和BC的中点.求证:四边形BNDM是矩形.17.2018年,国家卫生健康委员会和国家教育部在全国开展了儿童青少年近视调查工作,调查数据显示,全国儿童青少年近视过半.某校初三学习小组为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成下面的两幅不完整的统计图:根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)该校共有学生1000人,请你估计该校对视力保护“非常重视”的学生人数;(3)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护交流,请利用树状图或列表的方法,求恰好抽到一男一女的概率.18.如图,渔船跟踪鱼群由西向东航行,到达A处时,测得小岛C位于它的北偏东53°方向,再航行3km达到B处(AB=3km),测得小岛C位于它的北偏东45°方向.小岛C 的周围8km内有暗礁,如果渔船不改变航向继续向东航行,请你通过计算说明渔船有无触礁的危险?(参考数据:sin53°≈,cos53°≈,tan53°≈)19.如图,在平面直角坐标系xOy中,一次函数y=x﹣1与x轴交于点C,与反比例函数y =(k>0)交于点A(2,m)和点B.(1)求反比例函数表达式及点B的坐标;(2)点P是x轴上的一点,若△PAB的面积是6,求点P的坐标.20.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,点D在⊙O上,BD=BC,DE⊥AC,垂足为点E,DE与⊙O和AB分别交于点M、F.连接BO、DO、AM.(1)证明:BD是⊙O的切线;(2)若tan∠AMD=,AD=2,求⊙O的半径长;(3)在(2)的条件下,求DF的长.B卷一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.在同一直角坐标系中,正比例函数y=k1x的图象与反比例函数的图象有公共点,则k1k20(填“>”、“=”或“<”).22.一元二次方程x2﹣3x﹣2=0的两根分别是m、n,则m3﹣3m2+2n=.23.如图,在菱形ABCD四个顶点的字母中,任取两个字母相互交换它们的位置,交换后能使字母A、B在同一条对角线上的概率是.24.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在x轴和y轴上,OA =6,OC=4,点Q是AB边上一个动点,过点Q的反比例函y=(x>0)与BC边交于点P.若将△PBQ沿PQ折叠,点B的对应点E恰好落在对角线AC上,则此时反比例函数的解析式是.25.已知矩形ABCD的长和宽分别是n和1,其中n是正整数,若存在另一个矩形A′B′C′D′,它的周长和面积分别是矩形ABCD周长和面积的一半,则满足条件的n的最小值是.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.某商店购进一批单价为8元的商品,经调研发现,这种商品每天的销售量y(件)是关于销售单价x(元)的一次函数,其关系如表:x(元)1011121314y(件)10090807060(1)求y与x之间的关系式;(2)设商店每天销售利润为w(元),求出w与x之间的关系式,并求出每天销售单价定为多少时利润最大?27.如图,在△ABC与△EBD中,∠ABC=∠EBD=90°,AB=6,BC=3,EB=2,BD =,射线AE与直线CD交于点P.(1)求证:△ABE∽△CBD;(2)若AB∥ED,求tan∠PAC的值;(3)若△EBD绕点B逆时针旋转一周,直接写出线段AP的最大值与最小值.28.在平面直角坐标系xOy中,抛物线y=a(x﹣3)(x+1)与x轴交于A、B两点,与轴交于点C(0,﹣),连接AC、BC.(1)求抛物线的函数表达式;(2)抛物线的对称轴与x轴交于点D,连接CD,点E为第二象限抛物线上的一动点,EF∥BC,直线EF与抛物线交于点F,设直线EF的表达式为.①如图①,直线y=kx+b与抛物线对称轴交于点G,若△DGF∽△BDC,求k、b的值;②如图②,直线y=kx+b与y轴交于点M,与直线y=x交于点H,若﹣=,求b的值.2020年四川省成都市高新区中考数学一诊试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列图形既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.平行四边形D.圆【解答】解:A、等腰三角形是轴对称图形,不是中心对称图形;B、等边三角形是轴对称图形,不是中心对称图形;C、平行四边形不是轴对称图形,是中心对称图形;D、圆是轴对称图形,是中心对称图形.故选:D.2.一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下颜色后再放回口袋中.不断重复这一过程,共摸了100次球,发现有70次摸到红球.请你估计这个口袋中红球的数量是()A.4B.5C.6D.7【解答】解:由题意可得,红球的概率为=70%,则这个口袋中红球的个数:10×70%=7(个),故选:D.3.如图所示的四棱柱的主视图为()A.B.C.D.【解答】解:由图可得,几何体的主视图是:故选:B.4.已知a,b,c,d是成比例线段,其中a=3cm,b=2cm,c=6cm,则d的长度为()A.4cm B.5cm C.6cm D.9cm【解答】解:因为a,b,c,d是成比例线段,可得:d=cm,故选:A.5.某学习小组利用三角形相似测量学校旗杆的高度.测得身高为1.6米小明同学在阳光下的影长为1米,此时测得旗杆的影长为9米.则学校旗杆的高度是()A.9米B.14.4米C.16米D.13.4米【解答】解:∵同一时刻物高与影长成正比例.∴1.6:1=旗杆的高度:9,∴旗杆的高度为:14.4米.故选:B.6.已知反比例函数的图象经过点(2,3),那么下列各点在该函数图象上的是()A.(﹣,3)B.(2,﹣)C.(9,)D.(4,2)【解答】解:∵反比例函数的图象经过点(2,3),∴k=2×3=6.A、∵﹣×3=﹣6≠6,∴此点不在函数图象上;B、∵2×(﹣)=﹣6≠6,∴此点不在函数图象上;C、∵9×=6,∴此点在函数图象上;D、∵4×2=8≠6,∴此点不在函数图象上;故选:C.7.如图,点A、B、C在⊙O上,△OAB为等边三角形,则∠ACB的度数是()A.60°B.50°C.40°D.30°【解答】解:∵△OAB为等边三角形,∴∠AOB=60°,∴∠ACB=∠AOB=30°.故选:D.8.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形【解答】解:连接BD,已知任意四边形ABCD,E、F、G、H分别是各边中点.∵在△ABD中,E、H是AB、AD中点,∴EH∥BD,EH=BD.∵在△BCD中,G、F是DC、BC中点,∴GF∥BD,GF=BD,∴EH=GF,EH∥GF,∴四边形EFGH为平行四边形.故选:A.9.二次函数y=x2﹣2的图象是一条抛物线,下列关于该抛物线的说法正确的是()A.抛物线开口向下B.当x=0时,函数的最大值是﹣2C.抛物线的对称轴是直线x=2D.抛物线与x轴有两个交点【解答】解:A、a=1>0,则抛物线y=x2﹣2的开口向上,故本选项错误,不符合题意;B、当x=0时,函数的最小值是﹣2,故本选项错误,不符合题意;C、抛物线的对称轴为直线x=0,故本选项错误,不符合题意;D、当y=0时,x2﹣2=0,此方程有两个不相等的实数解,即抛物线与x轴有两个交点,故本选项符合题意;故选:D.10.函数y=与y=kx﹣k(k≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【解答】解:A、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故本选项正确;B、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故本选项错误;C、∵由反比例函数的图象在一、三象限可知,k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故本选项错误;D、∵由反比例函数的图象在一、三象限可知,k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故本选项错误;故选:A.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.若2a=3b,则a:b=3:2.【解答】解:∵2a=3b,∴a:b=3:2.故答案为:3:2.12.二次函数y=2(x﹣2)2﹣1的顶点坐标是(2,﹣1).【解答】解:二次函数y=2(x﹣2)2﹣1的顶点坐标是(2,﹣1),故答案为:(2,﹣1).13.在△ABC中与△DEF中,已知===,则三角形△ABC与△DEF的周长之比为.【解答】解:∵===∴△ABC∽△DEF∴△ABC与△DEF的相似比为∵△ABC与△DEF的周长之比等于△ABC与△DEF的相似比∴△ABC与△DEF的周长之比为故答案为:.14.如图:分别以A、C为圆心,以大于AC的长为半径作弧,两条弧分别相交于点B、D,依次连接A,B,C,D和BD.若AB=5,AC=8,则BD=6.【解答】解:由作法得AB=AD=CB=CD=5,所以四边形ABCD为菱形;∵四边形ABCD为菱形,∴OA=OC=4,OB=OD,AC⊥BD,在Rt△AOB中,OB==3,∴BD=2OB=6.故答案为:6.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(1)计算:(π﹣2019)0+2sin60°﹣+|1﹣|(2)解方程:x2﹣2x﹣3=0【解答】解:(1)原式=1+2×﹣2+﹣1=1+﹣2+﹣1=0;(2)∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,则x﹣3=0或x+1=0,解得x=3或x=﹣1.16.已知:如图,在▱ABCD中,BA=BD,M,N分别是AD和BC的中点.求证:四边形BNDM是矩形.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,BA=DC,∵BA=BD,∴BA=BD=DC,∵M、N分别是AD和BC的中点,∴BM⊥AD,DM=AD,BN=BC,∴DM=BN,又∵DM∥BN,∴四边形BMDN是平行四边形,∵BM⊥AD,∴∠BMD=90°,∴四边形BMDN是矩形.17.2018年,国家卫生健康委员会和国家教育部在全国开展了儿童青少年近视调查工作,调查数据显示,全国儿童青少年近视过半.某校初三学习小组为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成下面的两幅不完整的统计图:根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)该校共有学生1000人,请你估计该校对视力保护“非常重视”的学生人数;(3)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护交流,请利用树状图或列表的方法,求恰好抽到一男一女的概率.【解答】解:(1)本次调查的学生总人数有:16÷20%=80(人);重视的人数有:80﹣4﹣36﹣16=24(人),补图如下:(2)根据题意得:1000×=50(人),答:该校对视力保护“非常重视”的学生人有50人;(3)画树状图如下:共有12种可能的结果,恰好抽到一男一女的结果有8个,则P(恰好抽到一男一女的)==.18.如图,渔船跟踪鱼群由西向东航行,到达A处时,测得小岛C位于它的北偏东53°方向,再航行3km达到B处(AB=3km),测得小岛C位于它的北偏东45°方向.小岛C 的周围8km内有暗礁,如果渔船不改变航向继续向东航行,请你通过计算说明渔船有无触礁的危险?(参考数据:sin53°≈,cos53°≈,tan53°≈)【解答】解:过点C作CD⊥AB,垂足为点D,由题意可得:∠ACD=53°,∠BCD=∠CBD=45°,故BD=CD,设BD=CD=x,则AD=3+x,在Rt△ACD中,tan∠ACD=,则tan53°=,故≈,解得:x≈9≥8,∴如果渔船不改变航向继续向东航行,渔船无触礁的危险.19.如图,在平面直角坐标系xOy中,一次函数y=x﹣1与x轴交于点C,与反比例函数y =(k>0)交于点A(2,m)和点B.(1)求反比例函数表达式及点B的坐标;(2)点P是x轴上的一点,若△PAB的面积是6,求点P的坐标.【解答】解:(1)把A(2,m)代入一次函数y=x﹣1,得m=2﹣1=1,∴A(2,1),把A(2,1)代入反比例函数y=(k>0),得k=2,∴反比例函数解析式为y=,解方程组得,,∴B(﹣1,﹣2);(2)设点P的坐标为(m,0),在y=x﹣1中,令y=0,得x=1,∴点C的坐标为(1,0),∵S△PAB =S△PAC+S△PBC=,∴|m﹣1|=4,∴m=5或﹣3,∴点P的坐标为(5,0)或(﹣3,0).20.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,点D在⊙O上,BD=BC,DE⊥AC,垂足为点E,DE与⊙O和AB分别交于点M、F.连接BO、DO、AM.(1)证明:BD是⊙O的切线;(2)若tan∠AMD=,AD=2,求⊙O的半径长;(3)在(2)的条件下,求DF的长.【解答】解:(1)在△BDO和△BCO中,BD=BC,OD=OC,BO=BO,故△BDO≌△BCO(SSS),∴∠BDO=∠ABC=90°,BD是⊙O的切线;(2)连接CD,则∠AMD=∠ACD,AB是直径,故∠ADC=90°,在Rt△ADC中,tan∠ACD=tan∠AMD==,∵AD=2,∴CD=4,故圆的半径为5;(3)在Rt△ADC中,DE⊥AC,则DE==4,则AE=2,由(1)知△BDO≌△BCO,∴∠BOC=∠BOD=∠DOC,∵∠DAE=∠DOC,∴∠DAE=∠BOC,∵ED⊥AC,∴∠AED=∠OCB=90°,∴△DAE∽△BOC,∴,即,解得:BC=10,∴∠BAC=∠ABC=45°,∴∠FAE=∠AFE=45°,∴FE=AE=2,DF=DE﹣EF=2.B卷一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.在同一直角坐标系中,正比例函数y=k1x的图象与反比例函数的图象有公共点,则k1k2>0(填“>”、“=”或“<”).【解答】解:∵正比例函数y=k1x的图象与反比例函数的图象有公共点,∴k1、k2同号,∴k1k2>0.22.一元二次方程x2﹣3x﹣2=0的两根分别是m、n,则m3﹣3m2+2n=6.【解答】解:由题意可知:m+n=3,mn=﹣2,m2=3m+2,∴m3=3m2+2m,∴原式=3m2+2m﹣3m2+2n=2(m+n)=6,故答案为:6.23.如图,在菱形ABCD四个顶点的字母中,任取两个字母相互交换它们的位置,交换后能使字母A、B在同一条对角线上的概率是.【解答】解:共有AB互换,AC互换,BC互换,AD互换,CD互换,BD互换6种情况,符合条件的是BC互换,AD互换2种情况,所以交换后能使字母A、B在同一条对角线上的概率是=;故答案为:.24.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在x轴和y轴上,OA =6,OC=4,点Q是AB边上一个动点,过点Q的反比例函y=(x>0)与BC边交于点P.若将△PBQ沿PQ折叠,点B的对应点E恰好落在对角线AC上,则此时反比例函数的解析式是y=(x>0).【解答】解:∵四边形OABC是矩形,OA=6,OC=4,∴BC=OA=6,AB=OC=4,∴B(6,4),设P(,4),Q(6,),∴PC=,AQ=,∴PB=6﹣,BQ=4﹣,∴tan∠BQP===,∵tan∠BAC===,∴tan∠BQP=tan∠BAC,∴∠BQP=∠BAC,∴PQ∥AC,连接BE,∵将△PBQ沿PQ折叠,点B的对应点E恰好落在对角线AC上,∴BH=EH,∴AQ=BQ=2,∴=2,∴k=12,∴反比例函数的解析式是y=,故答案为:y=.25.已知矩形ABCD的长和宽分别是n和1,其中n是正整数,若存在另一个矩形A′B′C′D′,它的周长和面积分别是矩形ABCD周长和面积的一半,则满足条件的n的最小值是6.【解答】解:设矩形A′B′C′D′的长和宽分别为x、y,则,由①得:y=﹣x③,把③代入②得:x2﹣+=0,b2﹣4ac=﹣4×≥0,∴(n﹣3)2≥8,∵n是正整数,∴n的最小值是6,故答案为:6.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.某商店购进一批单价为8元的商品,经调研发现,这种商品每天的销售量y(件)是关于销售单价x(元)的一次函数,其关系如表:x(元)1011121314y(件)10090807060(1)求y与x之间的关系式;(2)设商店每天销售利润为w(元),求出w与x之间的关系式,并求出每天销售单价定为多少时利润最大?【解答】解:(1)设y与x的一次函数是y=kx+b,由表得:,解得:k=﹣10,b=200,∴y与x的一次函数是y=﹣10x+200;(2)根据题意得:w=(x﹣8)(﹣10x+200)=﹣(x﹣14)2+360,∴w是关于x的二次函数,且二次项系数为﹣1<0,∴当x=14时,w去掉最大值360,∴当每天销售单价定为14元时利润最大.27.如图,在△ABC与△EBD中,∠ABC=∠EBD=90°,AB=6,BC=3,EB=2,BD =,射线AE与直线CD交于点P.(1)求证:△ABE∽△CBD;(2)若AB∥ED,求tan∠PAC的值;(3)若△EBD绕点B逆时针旋转一周,直接写出线段AP的最大值与最小值.【解答】(1)证明:∵,∠ABC=∠EBD=90°,∴∠ABE=∠CBD,∵AB=6,BC=3,EB=2,BD=,∴==2,∴△ABE∽△CBD.(2)解:如图,设DE交BC于M.∵AB∥DE,∠ABC=90°,∴∠DMB=∠ABC=∠DMC=90°,在Rt△DEB中,∵∠EBD=90°,BE=2,BD=,∴DE===5,BM===2,∴DM===1,∴CM=CD=1,CD=,∴∠CDM=∠DCM=45°,∵△ABE∽△CBD,∴==2,∠CDB=∠AEB,∴AE=2,∵∠AEB+∠PEB=180°,∴∠CDB+∠PEB=180°,∵∠EBD=90°,∴∠APC=90°,∴PE=PD=DE=,∴PC=PD﹣CD=MPA=PE+AE=,∴tan∠PAC==.(3)由(2)可知当点P与C重合时,PA的值最大,最大值PA=AC===3,如图,当AE在AB的下方且与⊙B相切时,∠CAP的值最大,此时PA=AC•cos∠CAP 的值最小,∵∠BEP=∠DPE=∠DBE=90°,∴四边形BEPD是矩形,∴BD=PE=,∵AE===4,∴PA的最小值为4﹣,28.在平面直角坐标系xOy中,抛物线y=a(x﹣3)(x+1)与x轴交于A、B两点,与轴交于点C(0,﹣),连接AC、BC.(1)求抛物线的函数表达式;(2)抛物线的对称轴与x轴交于点D,连接CD,点E为第二象限抛物线上的一动点,EF∥BC,直线EF与抛物线交于点F,设直线EF的表达式为y=kx+b.①如图①,直线y=kx+b与抛物线对称轴交于点G,若△DGF∽△BDC,求k、b的值;②如图②,直线y=kx+b与y轴交于点M,与直线y=x交于点H,若﹣=,求b的值.【解答】解:(1)将C(0,﹣)代入y=a(x﹣3)(x+1),得﹣3a=﹣,∴a=,∴抛物线的函数表达式为y=(x﹣3)(x+1)=x2﹣x﹣;(2)①如图1,过点F作FN⊥DG,垂足为点N,在y=(x﹣3)(x+1)中,令y=0,得x1=3,x2=﹣1,∴B(3,0),设直线BC的解析式为y=mx﹣,将点B(3,0)代入y=mx﹣,得0=3m﹣,∴m=,∴直线BC的表达式为y=x﹣,∵抛物线y=(x﹣3)(x+1)的对称轴为x=1,∴D(1,0),∴CD==2,∴CD=BD=2,在Rt△COD中,tan∠ODC=,∴∠ODC=60°,∠CDB=120°,∵△DGF∽△BDC,∴DG=FG,∠DGF=120°,设DG=FG=2m,在Rt△NGF中,∠NGF=60°,FG=2m,∴NG=m,NF=m,∴F(1+m,3m),将点F(1+m,3m)代入y=(x﹣3)(x+1)中,得m1=﹣(不合题意,舍去),m2=,∴点F(5,4),∵EF∥BC,∴EF的表达式为y=x+b,将点F(5,4),代入y=x+b,得4=×5+b,∴b=,∴k=1,b=;②如图2,分别过点F、H、E作y轴的垂线,垂足分别为P、Q、S,联立,得点H(,),联立,得x2﹣3x﹣3﹣b=0,设点E、F的横坐标分别为x1,x2,则,由ES∥HQ∥FP,可得△MHQ∽△MES,△MHQ∽△MFP,∴==,==,∵﹣=,∴﹣=1,∴﹣=1,∴=﹣1,∴b=2.。

2021年四川省中考数学一诊试卷含答案

2021年四川省中考数学一诊试卷含答案

2021年四川省某校中考数学一诊试卷一、选择题(本大题共10个小题,每小题3分,共30分)1. −3的倒数是()A.3B.−3C.-D.2. 下列立体图形中,俯视图是三角形的是( )A. B. C. D.3. 我们的祖国地域辽阔,其中领水面积约为370000km2.把370000这个数用科学记数法表示为()A.37×104B.3.7×105C.0.37×106D.3.7×1064. 在平面直角坐标系中,点P(−3, 2)关于x轴对称的点的坐标是()A.(3, 2)B.(2, −3)C.(−3, 2)D.(−3, −2)5. 已知,则的值为()A.1B.−1C.±1D.无法确定6. 在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩方差是3,下列说法正确的是( )A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定7. 如图,在已知的△ABC中,按以下步骤作图:BC的长为半径作弧,两弧相交于两点M,N;①分别以B,C为圆心,以大于12②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50∘,则∠ACB的度数为()A.90∘B.95∘C.100∘D.105∘8. 若关于x的方程6−xx−3−2mx−3=0有增根,则m的值是()A.3 2B.−23C.3D.−39. 如图,AC // EF // DB,若AC=8,BD=12,则EF=()A.3B.C.4D.10. 已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a−b+c>1;③abc>0;④4a−2b+c<0;⑤c−a>1,其中所有正确结论的序号是()A.①②B.①③④C.①②③⑤D.①②③④⑤二、填空题(本大题共4个小题,每小题4分,共16分)分解因式:a2b−b=________.已知一次函数y=kx+k,若y随x的增大而增大,则它的图象经过第________象限.如图,△ABC是⊙O的内接三角形,∠C=30∘,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为________.已知一个两位数,它的十位上的数字x比个位上的数字y大1,若颠倒个位数字与十位数字的位置,得到的新数比原数小9,求这两位数所列的方程组是________.三、解答题(本大题共6个小题,共54分)(1)计算:(2)解不等式组:,把它的解集在数轴上表示出来,并写出其整数解.先化简,再求值:a2−2ab+b2a2−b2÷a2−aba−2a+b,其中a,b满足(a−2)2+√b+1=0.某市少年宫为小学生开设了绘画、音乐、舞蹈和跆拳道四类兴趣班,为了解学生对这四类兴趣班的喜爱情况,对学生进行了随机问卷调查(问卷调查表如下表所示),将调查结果整理后绘制了一幅不完整的统计表:(1)统计表中的a=________,b=________;(2)根据调查结果,请你估计该市2000名小学生中最喜欢“绘画”兴趣班的人数;(3)王姝和李要选择参加兴趣班,若他们每人从A、B、C、D四类兴趣班中随机选取一类,请用画树状图或列表格的方法,求两人恰好选中同一类的概率.某区域平面示意图如图所示,点D在河的右侧,红军路AB与某桥BC互相垂直.某校“数学兴趣小组”在“研学旅行”活动中,在C处测得点D位于西北方向,又在A处测得点D位于南偏东65∘方向,另测得BC=414m,AB=300m,求出点D到AB的距离.(参考数据sin65∘≈0.91,cos65∘≈0.42,tan65∘≈2.14)(m≠0)的图象交于二、如图,一次函数y=kx+b(k≠0)的图象与反比例函数y = mx四象限内的A,B两点,与x轴交于C点,点A的坐标为(−2, 3),点B的坐标为(4, n).(1)求该反比例函数和一次函数的解析式;(2)在x轴上是否存在点P,使△APC是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.如图,AB是⊙O的直径,C,G是⊙O上两点,且AĈ = CĜ,过点C的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F.(1)求证:CD是⊙O的切线;(2)若OFFD = 23,求证:AE=AO;(3)连接AD,在(2)的条件下,若CD = √2,求AD的长.四、填空题(本大题共5个小题,每小题4分,共20分)已知a,b都是实数,,则a b的值为________.已知x1,x2是关于x的一元二次方程x2−5x+a=0的两个实数根,且x12−x22=10,则a=________.如图,Rt△ABC中,∠ACB=90∘,∠B=30∘,AC=1,且AC在直线l上,将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…按此规律继续旋转,直到点P2020为止,则AP2020等于________.如图,过原点的直线与反比例函数y=2x (x>0)、反比例函数y=6x(x>0)的图象分别交于A、B两点,过点A作y轴的平行线交反比例函数y=6x(x>0)的图象于C点,以AC为边在直线AC的右侧作正方形ACDE,点B恰好在边DE上,则正方形ACDE的面积为________.如图,在正方形ABCD中,AB=2,点E是CD的中点,连接AE,将△ADE沿AE折叠至△AHE,连接BH,延长AE和BH交于点F,BF与CD交于点G,则FG=________.五、解答题(本大题共3个小题,共30分)为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,当种植樱桃的面积x不超过15亩时,每亩可获得利润y=1900元;超过15亩时,每亩获得利润y(元)与种植面积x(亩)之间的函数关系如表(为所学过的一次函数,反比例函数或二次函数中的一种).(1)请求出种植樱桃的面积超过15亩时每亩获得利润y与x的函数关系式;(2)如果小王家计划承包荒山种植樱桃,受条件限制种植樱桃面积x不超过50亩,设小王家种植x亩樱桃所获得的总利润为W元,求小王家承包多少亩荒山获得的总利润最大,并求总利润W(元)的最大值.天府新区某校数学活动小组在一次活动中,对一个数学问题作如下探究:(1)问题发现:如图1,在等边△ABC中,点P是边BC上任意一点,连接AP,以AP为边作等边△APQ,连接CQ.求证:BP=CQ;(2)变式探究:如图2,在等腰△ABC中,AB=BC,点P是边BC上任意一点,以AP为腰作等腰△APQ,使AP=PQ,∠APQ=∠ABC,连接CQ.判断∠ABC和∠ACQ的数量关系,并说明理由;(3)解决问题:如图3,在正方形ADBC中,点P是边BC上一点,以AP为边作正方形APEF,Q是正方形APEF的中心,连接CQ.若正方形APEF的边长为6,CQ=2√2,求正方形ADBC的边长.在同一直角坐标系中,抛物线C1y=ax2−2x−3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧交y轴于点D.(1)求A、B两点的坐标;(2)对于抛物线C2:y=x2+mx+n在第三象限部分的一点P,作PF⊥x轴于F,交AD 于点E,若E关于PD的对称点E′恰好落在y轴上,求P点坐标;(3)在抛物线C1上是否存在一点G,在抛物线C2上是否存在一点Q,使得以A、B、G、Q四点为顶点的四边形是平行四边形?若存在,求出G、Q两点的坐标;若不存在,请说明理由.参考答案与试题解析2021年四川省某校中考数学一诊试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.【答案】C【考点】倒数【解析】根据倒数的定义即可得出答案.【解答】−3的倒数是-.2.【答案】C【考点】简单几何体的三视图【解析】俯视图是从物体上面看所得到的图形,据此判断得出物体的俯视图.【解答】解:A、立方体的俯视图是正方形,故此选项错误;B、圆柱体的俯视图是圆,故此选项错误;C、三棱柱的俯视图是三角形,故此选项正确;D、圆锥体的俯视图是圆,故此选项错误.故选C.3.【答案】B【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:370000用科学记数法表示应为3.7×105.故选B.4.【答案】D【考点】关于x轴、y轴对称的点的坐标此题暂无解析【解答】此题暂无解答5.【答案】B【考点】分式的加减运算绝对值【解析】此题暂无解析【解答】此题暂无解答6.【答案】B【考点】方差【解析】根据方差的意义求解可得.【解答】解:∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定.故选B.7.【答案】D【考点】线段垂直平分线的性质作图—基本作图【解析】由CD=AC,∠A=50∘,根据等腰三角形的性质,可求得∠ADC的度数,又由题意可得:MN是BC的垂直平分线,根据线段垂直平分线的性质可得:CD=BD,则可求得∠B的度数,继而求得答案.【解答】∵CD=AC,∠A=50∘,∴∠ADC=∠A=50∘,根据题意得:MN是BC的垂直平分线,∴CD=BD,∴∠BCD=∠B,∴∠B=1∠ADC=25∘,2∴∠ACB=180∘−∠A−∠B=105∘.8.A【考点】分式方程的增根【解析】先将方程化为整式方程,由分式方程有增根可求解x值,再将x值代入计算即可求解m 值.【解答】由6−xx−3−2mx−3=0得6−x−2m=x−3,∵关于x的方程6−xx−3−2mx−3=0有增根,∴x=3,当x=3时,6−3−2m=3−3,解得m=32,9.【答案】D【考点】相似三角形的性质与判定【解析】此题暂无解析【解答】此题暂无解答10.【答案】C【考点】二次函数图象与系数的关系【解析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线当x=1、x=−1和x=−2时的情况进行推理,进而对所得结论进行判断.【解答】解:①结合图象可知,当x=1时,y=a+b+c<0,故①正确;②结合图象可知,当x=−1时,y=a−b+c>1,故②正确;③由抛物线的开口向下可知,a<0,与y轴的交点为在y轴的正半轴上,∴c>0,对称轴为x=−b2a=−1,得2a=b,∴a,b同号,即b<0,∴abc>0,故③正确;④∵对称轴为x=−b2a=−1,∴点(0, 1)的对称点为(−2, 1),∴当x=−2时,y=4a−2b+c=1>0,故④错误;=−1,即b=2a,⑤∵当x=−1时,a−b+c>1,−b2a∴c−a>1,故⑤正确.综上,正确的有①②③⑤.故选C.二、填空题(本大题共4个小题,每小题4分,共16分)【答案】b(a+1)(a−1)【考点】提公因式法与公式法的综合运用【解析】首先提取公因式b,进而利用平方差公式分解因式得出答案.【解答】a2b−b=b(a2−1)=b(a+1)(a−1).【答案】一、二、三【考点】一次函数的性质【解析】此题暂无解析【解答】此题暂无解答【答案】5√3【考点】等腰三角形的性质三角形的外接圆与外心【解析】连接OA、OP,连接OB交AP于H,根据圆周角定理得到∠AOB=2∠C=60∘,根据正弦的概念计算即可.【解答】连接OA、OP,连接OB交AP于H,由圆周角定理得,∠AOB=2∠C=60∘,∵PB=AB,∴∠POB=60∘,OB⊥AP,,则AH=PH=OP×sin∠POH=5√32∴AP=2AH=5√3,【答案】【考点】由实际问题抽象出二元一次方程组【解析】此题暂无解析【解答】此题暂无解答三、解答题(本大题共6个小题,共54分)【答案】原式=3−4×+2=3−2+2 =2; ,解不等式①得,x >−3,解x +5>4x −3得,x ≤4,∴ 不等式组的解集是3<x ≤2,∴ 不等式组的整数解是:−6,−1,0,5,2.【考点】解一元一次不等式组在数轴上表示不等式的解集零指数幂一元一次不等式组的整数解特殊角的三角函数值实数的运算【解析】此题暂无解析【解答】此题暂无解答【答案】解:原式=(a−b)2(a+b)(a−b)⋅a a(a−b)−2a+b=1a +b −2a +b =−1a+b ,∵ a ,b 满足(a −2)2+√b +1=0,∴ a −2=0,b +1=0,a =2,b =−1,原式=−12−1=−1.【考点】非负数的性质:偶次方分式的化简求值非负数的性质:算术平方根【解析】先化简分式,然后将a 、b 的值代入计算即可.【解答】解:原式=(a−b)2(a+b)(a−b)⋅a a(a−b)−2a+b=1a +b −2a +b =−1a+b ,∵ a ,b 满足(a −2)2+√b +1=0,∴ a −2=0,b +1=0,a =2,b =−1,原式=−12−1=−1.【答案】60,0.252000×0.35=700,所以估计该市2000名小学生中最喜欢“绘画”兴趣班的人数为700人;画树状图为:共有16种等可能的结果数,其中两人恰好选中同一类的结果数为7,所以两人恰好选中同一类的概率==.【考点】频数(率)分布表用样本估计总体列表法与树状图法 【解析】此题暂无解析【解答】此题暂无解答【答案】如图,过点D 作DE ⊥AB 于E ,过D 作DF ⊥BC 于F ,则四边形EBFD 是矩形,设DE=x,在Rt△ADE中,∠AED=90∘,∵tan∠DAE=,∴AE==,∴BE=300−,又BF=DE=x,∴CF=414−x,在Rt△CDF中,∠DFC=90∘,∠DCF=45∘,∴DF=CF=414−x,又BE=DF,即:300−=414−x,解得:x=214,故:点D到AB的距离是214m.【考点】解直角三角形的应用-方向角问题【解析】过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD是矩形,设DE=x,根据BE=DF=CF,列方程可得结论.【解答】如图,过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD是矩形,设DE=x,在Rt△ADE中,∠AED=90∘,∵tan∠DAE=,∴AE==,∴ BE =300−,又BF =DE =x ,∴ CF =414−x ,在Rt △CDF 中,∠DFC =90∘,∠DCF =45∘,∴ DF =CF =414−x ,又BE =DF ,即:300−=414−x ,解得:x =214,故:点D 到AB 的距离是214m .【答案】解:(1)将点A 的坐标代入y = m x (m ≠0),得:m =−2×3=−6, 则反比例函数的表达式为:y =−6x , 将点B 的坐标代入上式并解得:n =−32,故点B(4, − 32),将点A ,B 的坐标代入一次函数表达式y =kx +b ,得:{−2k +b =3,4k +b =−32, 解得:{k =−34,b =32, 故一次函数的表达式为y =−34x + 32. (2)在y =−34x + 32中,令y =0,则x =2,故点C(2, 0), ①当∠APC 为直角时,则点P(−2, 0);②当∠P(P′)AC 为直角时,由点A 、C 的坐标知,PC =4,AP =3,则AC =5,cos ∠ACP = PC AC = 45 = AC CP ′ = 5CP ′,解得:CP′ = 254,则OP′ = 254 − 2 = 174,故点P 的坐标为(−2, 0)或( − 174, 0).【考点】待定系数法求一次函数解析式待定系数法求反比例函数解析式反比例函数综合题锐角三角函数的定义勾股定理【解析】(1)将点A 的坐标代入y = m x(m ≠0)得:m =−2×3=−6,则反比例函数的表达式为:y = − 6x ,将点B 的坐标代入上式并解得:n = − 32,故点B(4, − 32),即可求解;(2)分∠APC 为直角、∠P(P ′)AC 为直角两种情况,分别求解即可.【解答】解:(1)将点A 的坐标代入y = m x (m ≠0),得:m =−2×3=−6,则反比例函数的表达式为:y =−6x ,将点B 的坐标代入上式并解得:n =−32,故点B(4, − 32), 将点A ,B 的坐标代入一次函数表达式y =kx +b ,得:{−2k +b =3,4k +b =−32, 解得:{k =−34,b =32, 故一次函数的表达式为y =−34x + 32.(2)在y =−34x + 32中,令y =0,则x =2,故点C(2, 0), ①当∠APC 为直角时,则点P(−2, 0);②当∠P(P′)AC 为直角时,由点A 、C 的坐标知,PC =4,AP =3,则AC =5,cos∠ACP = PCAC = 45 = ACCP′ = 5CP′,解得:CP′ = 254,则OP′ = 254 − 2 = 174,故点P的坐标为(−2, 0)或( − 174, 0).【答案】(1)证明:连接OC,∵OC=OB,AĈ = CĜ,∴∠OCB=∠OBC,∠OBC=∠CBD,∴∠CBD=∠OCB,∴OC // BD,∴∠ECO=∠EDB,∵CD⊥BG于点D,∴∠EDB=90∘,∴∠ECO=90∘,∵OC是⊙O的半径,∴CD是⊙O的切线.(2)证明:∵OC // BD,∴∠OCF=∠DBF,∠COF=∠BDF,∴△OCF∼△DBF,∴OFDF = OCDB,∵OFFD = 23,∴OCDB = 23,∵OC // BD,∴△EOC∼△EBD,∴OCBD = EOEB,∴EOEB = 23,设OE=2a,则EB=3a,∴OB=OA=a,∴EA=a,∴AE=AO.(3)解:∵OC=OA=a,EO=2a,∴OC = 12EO,又∵∠OCE=90∘,∴∠E=30∘,∵∠BDE=90∘,BC平分∠EBD,∴∠EBD=60∘,∠OBC=∠DBC=30∘,∵CD = √2,∴ BC =2√2,BD = √6, ∵ OC BD = 23, ∴ OC = 2√63,作DM ⊥AB 于点M ,∴ ∠DMB =90∘,∵ BD = √6,∠DBM =60∘,∴ BM = √62,DM = 3√22, ∵ OC = 2√63, ∴ AB = 4√63,∴ AM =AB −BM = 4√63 − √62 = 5√66, ∵ ∠DMA =90∘,DM = 3√22, ∴ AD = √AM 2 + DM 2 = √(5√66)2 + (3√22)2 = √783. 【考点】切线的判定切线的性质相似三角形的性质与判定圆与相似的综合勾股定理【解析】(1)要证明CD 是⊙O 的切线,连接OC ,只要证明∠OCE =90∘即可,根据题目中的条件,可以证明OC // BD ,再根据CD ⊥BG 于点D ,从而可以证明结论成立;(2)根据三角形相似的判定与性质,OF FD = 23,可以证明AE =AO ; (3)在(2)的条件下,CD = √2,然后根据三角形相似和勾股定理可以求得AD 的长.【解答】(1)证明:连接OC ,∵ OC =OB ,AĈ = CG ̂,∴∠OCB=∠OBC,∠OBC=∠CBD,∴∠CBD=∠OCB,∴OC // BD,∴∠ECO=∠EDB,∵CD⊥BG于点D,∴∠EDB=90∘,∴∠ECO=90∘,∵OC是⊙O的半径,∴CD是⊙O的切线.(2)证明:∵OC // BD,∴∠OCF=∠DBF,∠COF=∠BDF,∴△OCF∼△DBF,∴OFDF = OCDB,∵OFFD = 23,∴OCDB = 23,∵OC // BD,∴△EOC∼△EBD,∴OCBD = EOEB,∴EOEB = 23,设OE=2a,则EB=3a,∴OB=OA=a,∴EA=a,∴AE=AO.(3)解:∵OC=OA=a,EO=2a,∴OC = 12EO,又∵∠OCE=90∘,∴∠E=30∘,∵∠BDE=90∘,BC平分∠EBD,∴∠EBD=60∘,∠OBC=∠DBC=30∘,∵CD = √2,∴BC=2√2,BD = √6,∵OCBD = 23,∴OC = 2√63,作DM⊥AB于点M,∴ ∠DMB =90∘, ∵ BD = √6,∠DBM =60∘, ∴ BM = √62,DM = 3√22, ∵ OC = 2√63, ∴ AB = 4√63,∴ AM =AB −BM = 4√63 − √62 = 5√66, ∵ ∠DMA =90∘,DM = 3√22, ∴ AD = √AM 2 + DM 2 = (5√66) + (3√22)= √783. 四、填空题(本大题共5个小题,每小题4分,共20分)【答案】4【考点】二次根式有意义的条件【解析】此题暂无解析【解答】此题暂无解答【答案】21 【考点】根与系数的关系【解析】由两根关系,得根x 1+x 2=5,x 1⋅x 2=a ,解方程得到x 1+x 2=5,即x 1−x 2=2,即可得到结论.【解答】解:由根与系数的关系,得根x 1+x 2=5,x 1⋅x 2=a ,由x 12−x 22=10得(x 1+x 2)(x 1−x 2)=10,若x 1+x 2=5,即x 1−x 2=2,∴ (x 1−x 2)2=(x 1+x 2)2−4x 1⋅x 2=25−4a =4, ∴ a =214.故答案为:214.【答案】2021+673【考点】旋转的性质规律型:图形的变化类含30度角的直角三角形【解析】此题暂无解析【解答】此题暂无解答【答案】4√3−4【考点】反比例函数图象上点的坐标特征一次函数图象上点的坐标特点【解析】设直线AB的解析式为y=kx,A(m, 2m ),B(n, 6n),则C(m, 6m),根据直线的解析式求得k=2m2=6n2,进而求得n=√3m,根据AC=AE,求得4m2=√3−1,因为S正方形=AC2=(4m)2即可求得正方形ACDE的面积;【解答】解:设直线AB的解析式为y=kx,A(m, 2m ),B(n, 6n),C(m, 6m)∴{2m =km6 n =kn,∴k=2m2=6n2,∴n=√3m,∵AC=AE,即6m −2m=n−m,∴4m =√3m−m,解得:4m2=√3−1,∵S正方形=AC2=(4m)2=4×4m2=4(√3−1)=4√3−4;【答案】2√1015【考点】翻折变换(折叠问题)正方形的性质【解析】过点H 作MN // AD ,交AB 于M ,交CD 于N ,通过证明△AMH ∽△HNE ,可得AM HN=MH EN=AH EH ,可得MH =2EN ,HN =1+EN 2,可求EN 的长,即可求BM ,MH ,HN 的长,由平行线分线段成比例可得HG ,GN ,EG ,GF 的长. 【解答】过点H 作MN // AD ,交AB 于M ,交CD 于N ,∴ ∠BAD =∠BMN =90∘,∠D =∠MNC =90∘, ∴ 四边形ADNM 是矩形, ∴ AM =DM ,MN =AD =2, ∵ 将△ADE 沿AE 折叠至△AHE ,∴ AH =AD =2,∠AHE =90∘,HE =DE =1,∴ ∠AHM +∠EHN =90∘,且∠MAH +∠AHM =90∘, ∴ ∠MAH =∠EHN ,且∠AMH =∠ENH =90∘, ∴ △AMH ∽△HNE , ∴ AMHN =MH EN=AHEH , ∴1+EN HN =MH EN=21,∴ MH =2EN ,HN =1+EN 2,∵ MH +HN =MN =2, ∴ 2EN +1+EN 2=2,∴ EN =35,∴ MH =65,HN =45,AM =85,∴ BM =25,∴ BH =√BM 2+MH 2=2√105, ∵ AB // CD , ∴ BMNG =MH HN =BH HG =32,∴ NG =415,HG =4√1015,∴ BG =2√103,EG =13,∵ AB // CD , ∴EG AB=FG BF,∴ 132=FG+2√103∴ FG =2√1015, 五、解答题(本大题共3个小题,共30分) 【答案】解:根据题意,设y =kx +b(k ≠0),将x =20,y =1800和x =30,y =1600代入, 得{20k +b =1800,30k +b =1600, 解得{k =−20,b =2200,∴ y =−20x +2200(x >15). (2)当0<x ≤15时,W =1900x , ∴ 当x =15时,W 最大=28500(元);当15<x ≤50时,W =(−20x +2200)x =−20x 2+2200x =−20(x −55)2+60500, ∵ x ≤50,∴ 当x =50时,W 最大=60000(元),综上所述,小王家承包50亩荒山获得的总利润最大, 总利润W 的最大值为60000元. 【考点】根据实际问题列一次函数关系式 二次函数的应用【解析】(1)根据题意设y =kx +b ,如何待定系数法求解可得;(2)根据总利润=每亩利润×亩数,分0<x ≤15和15<x ≤110两种情况分别求解可得. 【解答】解:根据题意,设y =kx +b(k ≠0),将x =20,y =1800和x =30,y =1600代入, 得{20k +b =1800,30k +b =1600, 解得{k =−20,b =2200,∴ y =−20x +2200(x >15). (2)当0<x ≤15时,W =1900x , ∴ 当x =15时,W 最大=28500(元);当15<x ≤50时,W =(−20x +2200)x =−20x 2+2200x =−20(x −55)2+60500, ∵ x ≤50,∴当x=50时,W最大=60000(元),综上所述,小王家承包50亩荒山获得的总利润最大,总利润W的最大值为60000元.【答案】(1)问题发现:证明:∵△ABC与△APQ都是等边三角形,∴AB=AC,AP=AQ,∠BAC=∠PAQ=60∘,∴∠BAP+∠PAC=∠PAC+∠CAQ,∴∠BAP=∠CAQ,在△BAP和△CAQ中,{AB=AC,∠BAP=∠CAQ,AP=AQ,∴△BAP≅△CAQ(SAS),∴BP=CQ.(2)变式探究:解:∠ABC和∠ACQ的数量关系为:∠ABC=∠ACQ.理由如下:∵在等腰△ABC中,AB=BC,∴∠BAC=12(180∘−∠ABC),∵在等腰△APQ中,AP=PQ,∴∠PAQ=12(180∘−∠APQ),∵∠APQ=∠ABC,∴∠BAC=∠PAQ,∴△BAC∼△PAQ,∴BAAC =PAAQ,∵∠BAP+∠PAC=∠PAC+∠CAQ,∴∠BAP=∠CAQ,∴△BAP∼△CAQ,∴∠ABC=∠ACQ.(3)解决问题:解:连接AB,AQ,如图3所示:∵四边形ADBC是正方形,∴ABAC=√2,∠BAC=45∘,∵Q是正方形APEF的中心,∴APAQ=√2,∠PAQ=45∘,∴∠BAP+∠PAC=∠PAC+∠CAQ,∴∠BAP=∠CAQ,∵ABAC =APAQ=√2,∴△ABP∼△ACQ,∴ACAB =CQBP=√2,∵CQ=2√2,∴BP=√2CQ=4,设PC=x,则BC=AC=4+x,在Rt△APC中,AP2=AC2+PC2,即62=(4+x)2+x2,解得:x=−2±√14,∵x>0,∴x=−2+√14,∴正方形ADBC的边长=4+x=4−2+√14=2+√14.【考点】全等三角形的性质与判定等边三角形的性质相似三角形的性质与判定正方形的性质勾股定理【解析】(1)问题发现易证AB=AC,AP=AQ,∠BAP=∠CAQ,由SAS证得△BAP≅△CAQ,即可得出结论;(2)变式探究由等腰三角形的性质得出∠BAC=12(180∘−∠ABC),∠PAQ=12(180∘−∠APQ),由∠APQ=∠ABC,得出∠BAC=∠PAQ,证得△BAC∽△PAQ,得出BAAC =PAAQ,易证∠BAP=∠CAQ,则△BAP∽△CAQ,得出∠ABC=∠ACQ;(3)解决问题连接AB、AQ,由正方形的性质得出ABAC =√2,∠BAC=45∘,APAQ=√2,∠PAQ=45∘,易证∠BAP=∠CAQ,由ABAC =APAQ=√2,得出△ABP∽△ACQ,则ACAB=CQ BP =√2,求出BP=√2CQ=4,设PC=x,则BC=AC=4+x,在Rt△APC中,AP2=AC2+PC2,代入求出x=−2+√14,即可得出结果.【解答】(1)问题发现:证明:∵△ABC与△APQ都是等边三角形,∴AB=AC,AP=AQ,∠BAC=∠PAQ=60∘,∴∠BAP+∠PAC=∠PAC+∠CAQ,∴∠BAP=∠CAQ,在△BAP和△CAQ中,{AB=AC,∠BAP=∠CAQ,AP=AQ,∴△BAP≅△CAQ(SAS),∴BP=CQ.(2)变式探究:解:∠ABC和∠ACQ的数量关系为:∠ABC=∠ACQ.理由如下:∵在等腰△ABC中,AB=BC,∴∠BAC=12(180∘−∠ABC),∵在等腰△APQ中,AP=PQ,∴∠PAQ=12(180∘−∠APQ),∵∠APQ=∠ABC,∴∠BAC=∠PAQ,∴△BAC∼△PAQ,∴BAAC =PAAQ,∵∠BAP+∠PAC=∠PAC+∠CAQ,∴∠BAP=∠CAQ,∴△BAP∼△CAQ,∴∠ABC=∠ACQ.(3)解决问题:解:连接AB,AQ,如图3所示:∵四边形ADBC是正方形,∴ABAC=√2,∠BAC=45∘,∵Q是正方形APEF的中心,∴APAQ=√2,∠PAQ=45∘,∴∠BAP+∠PAC=∠PAC+∠CAQ,∴∠BAP=∠CAQ,∵ABAC =APAQ=√2,∴△ABP∼△ACQ,∴ACAB =CQBP=1√2,∵CQ=2√2,∴BP=√2CQ=4,设PC=x,则BC=AC=4+x,在Rt△APC中,AP2=AC2+PC2,即62=(4+x)2+x2,解得:x=−2±√14,∵x>0,∴x=−2+√14,∴正方形ADBC的边长=4+x=4−2+√14=2+√14.【答案】∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=−3,∴C1的对称轴为x=1,∴C2的对称轴为x=−1,∴m=2,∴C1的函数表示式为y=x2−2x−3,C2的函数表达式为y=x2+2x−3;在C2的函数表达式为y=x2+2x−3中,令y=0可得x2+2x−3=0,解得x=−3或x=1,∴A(−3, 0),B(1, 0);∵点E、E′关于直线PD对称,∴∠EPD=∠E′PD,DE=DE′,PE=PE′.∵PE平行于y轴,∴∠EPD=∠PDE′,∴∠E′PD=∠PDE′,∴PE′=DE′,∴PE=DE=PE′=DE′,即四边形PEDE′是菱形.当四边形PEDE′是菱形存在时,由直线AD解析式y=−x−3,∠ADO=45∘,设P(a, a2+2a−3),E(a, −a−3),∴DE=−√2a,PE=−a−3−a2−2a+3=−a2−3a,∴−a2−3a=−√2a,解得a1=0(舍去),a2=√2−3,∴P(√2−3,2−4√2).存在.∵AB的中点为(−1, 0),且点G在抛物线C1上,点Q在抛物线C2上,当AB为平行四边形的一边时,∴GQ // AB且GQ=AB,由(2)可知AB=1−(−3)=4,∴GQ=4,设G(t, t2−2t−3),则Q(t+4, t2−2t−3)或(t−4, t2−2t−3),①当Q(t+4, t2−2t−3)时,则t2−2t−3=(t+4)2+2(t+4)−3,解得t=−2,∴t2−2t−3=4+4−3=5,∴G(−2, 5),Q(2, 5);②当Q(t−4, t2−2t−3)时,则t2−2t−3=(t−4)2+2(t−4)−3,解得t=2,∴t2−2t−3=4−4−3=−3,∴G(2, −3),Q(−2, −3),当AB为平行四边形的对角线时,设G(m, m2−2m−3),Q(n, n2+2n−3),∴{−3+12=m+n20+0−m2+2m+3=n2+2n−3,解得m=√3,n=−2−√3或m=−√3,n=−2+√3,∴G(√3, −2√3),Q(−2−√3, 2√3)或G(−√3, 2√3),Q(−2+√3, −2√3).综上可知,存在满足条件的点G、Q,其坐标为G(−2, 5),Q(2, 5)或G(2, −3),Q(−2, −3)或G(√3, −2√3),Q(−2−√3, 2√3)或G(−√3, 2√3),Q(−2+√3, −2√3).【考点】二次函数综合题【解析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;由C2的函数表达式可求得A、B的坐标;(2)可判定四边形PEDE′是菱形,然后根据PE=DE的条件,列出方程求解;(3)由题意可知AB可能为平行四边形的边或对角线,利用平行四边形的性质,可设出G点坐标和Q点坐标,代入C2的函数表达式可求得G、Q的坐标.【解答】∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=−3,∴C1的对称轴为x=1,∴C2的对称轴为x=−1,∴m=2,∴C1的函数表示式为y=x2−2x−3,C2的函数表达式为y=x2+2x−3;在C2的函数表达式为y=x2+2x−3中,令y=0可得x2+2x−3=0,解得x=−3或x=1,∴A(−3, 0),B(1, 0);∵点E、E′关于直线PD对称,∴∠EPD=∠E′PD,DE=DE′,PE=PE′.∵PE平行于y轴,∴∠EPD=∠PDE′,∴∠E′PD=∠PDE′,∴PE′=DE′,∴PE=DE=PE′=DE′,即四边形PEDE′是菱形.当四边形PEDE′是菱形存在时,由直线AD解析式y=−x−3,∠ADO=45∘,设P(a, a2+2a−3),E(a, −a−3),∴DE=−√2a,PE=−a−3−a2−2a+3=−a2−3a,∴−a2−3a=−√2a,解得a1=0(舍去),a2=√2−3,∴P(√2−3,2−4√2).存在.∵AB的中点为(−1, 0),且点G在抛物线C1上,点Q在抛物线C2上,当AB为平行四边形的一边时,∴GQ // AB且GQ=AB,由(2)可知AB=1−(−3)=4,∴GQ=4,设G(t, t2−2t−3),则Q(t+4, t2−2t−3)或(t−4, t2−2t−3),①当Q(t+4, t2−2t−3)时,则t2−2t−3=(t+4)2+2(t+4)−3,解得t=−2,∴t2−2t−3=4+4−3=5,∴G(−2, 5),Q(2, 5);②当Q(t−4, t2−2t−3)时,则t2−2t−3=(t−4)2+2(t−4)−3,解得t=2,∴t2−2t−3=4−4−3=−3,∴G(2, −3),Q(−2, −3),当AB为平行四边形的对角线时,设G(m, m2−2m−3),Q(n, n2+2n−3),∴{−3+12=m+n20+0−m2+2m+3=n2+2n−3,解得m=√3,n=−2−√3或m=−√3,n=−2+√3,∴G(√3, −2√3),Q(−2−√3, 2√3)或G(−√3, 2√3),Q(−2+√3, −2√3).综上可知,存在满足条件的点G、Q,其坐标为G(−2, 5),Q(2, 5)或G(2, −3),Q(−2, −3)或G(√3, −2√3),Q(−2−√3, 2√3)或G(−√3, 2√3),Q(−2+√3, −2√3).。

2020年四川省成都市青羊区中考数学一诊试卷(含解析)

2020年四川省成都市青羊区中考数学一诊试卷(含解析)

2020年四川省成都市青羊区中考数学一诊试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)(﹣2)×=( )A.﹣2B.1C.﹣1D.2.(3分)用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为( )A.(x+2)2=1B.(x+2)2=7C.(x+2)2=13D.(x+2)2=19 3.(3分)下列几何体的主视图是三角形的是( )A.B.C.D.4.(3分)一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( )A.B.C.D.5.(3分)下列性质中,菱形具有而矩形不一定具有的是( )A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直6.(3分)如图,在△ABC中,AC=1,BC=2,AB=,则sin B的值是( )A.B.C.2D.7.(3分)如图,A、B、C是半径为3的⊙O上的三点,已知∠C=30°,则弦AB的长为( )A.3B.6C.3.5D.1.58.(3分)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是( )A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3 9.(3分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是( )A.560(1+x)2=315B.560(1﹣x)2=315C.560(1﹣2x)2=315D.560(1﹣x2)=31510.(3分)如图,已知∠DAB=∠CAE,那么添加下列一个条件后,仍然无法判定△ABC∽△ADE的是( )A.=B.=C.∠B=∠D D.∠C=∠AED 二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)在△ABC中,若∠C=90°,cos∠A=,则∠A等于 .12.(4分)方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为 .13.(4分)如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为 .14.(4分)二次函数y=ax2+bx+c的图象如图,则点(,)在第 象限.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:﹣4sin45°+(2019﹣π)0﹣32(2)解方程:(x+5)(x+1)=2116.(6分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于点F.(1)求证:∠DCP=∠DAP;(2)如果PE=3,EF=5,求线段PC的长.17.(8分)为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.18.(8分)如图,一航船在A处测到北偏东60°的方向有一灯塔B,航船向东以每小时20海里的速度航行2小时到达C处,又测到灯塔B在北偏东15°的方向上.求此时航船与灯塔相距多少海里?(结果保留根号)19.(10分)如图,已知一次函数y1=kx+b的图象与x轴相交于点A,与反比例函数y2=相交于B(﹣1,5),C(,d)两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OB,OC,求△BOC的面积.20.(10分)如图,在Rt△ABC中,AB⊥BC,以AB为直径的圆交AC于点D,E是BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)设⊙O的半径为r,证明r2=AD•OE;(3)若DE=4,sin C=,求AD之长.一、填空题(本大题5个小题,每小题4分,共20分)B卷(共50分)21.(4分)点P(a,b)是直线y=x﹣2上一点,则代数式a2﹣2ab+b2﹣1的值为 .22.(4分)有五张正面分别标有数﹣7,0,1,2,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将卡片上的数记为a,则使关于x的方程﹣2=有正整数解的概率为 .23.(4分)如图,直线AB交双曲线y=于A、B两点,交x轴于点C,且B恰为线段AC 的中点,连结OA.若S△OAC=,则k的值为 .24.(4分)在平面直角坐标系中,A(1,0),B(0,),过点B作直线BC∥x轴,点P 是直线BC上的一个动点,以AP为边在AP右侧作Rt△APQ,使∠APQ=90°,且AP:PQ=1:,连结AB、BQ,则△ABQ周长的最小值为 .25.(4分)如图,在矩形ABCD中,AB=4,BC=6,点E为对角线BD的中点,点F在CB 的延长线上,且BF=1,连接EF,过点E作EG⊥EF交BA的延长线于点G,连接GF并延长交DB的延长线于点H,则= .三、解答題(本大題共3个小題,共30分.解答题应写出必要的文字说明,证明过程或演算步骤)26.(8分)某厂按用户需求生产一种产品,成本每件20万元,规定每件售价不低于成本,且不高于40万元.经市场调查,每年的销售量y(件)与每件售价x(万元)满足一次函数关系,部分数据如下表:售价x(万元/件)253035销售量y(件)504030(1)求y与x之间的函数表达式;(2)设商品每年的总利润为W(万元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少万元时获得最大利润,最大利润是多少?27.(10分)(1)如图1,△ABC为等边三角形,点D、E分别为边AB、AC上的一点,将图形沿线段DE所在的直线翻折,使点A落在BC边上的点F处.求证:BF•CF=BD•CE.(2)如图2,按图1的翻折方式,若等边△ABC的边长为4,当DF:EF=3:2时,求sin∠DFB的值;(3)如图3,在Rt△ABC中,∠A=90°,∠ABC=30°,AC=2,点D是AB边上的中点,在BC的下方作射线BE,使得∠CBE=30°,点P是射线BE上一个动点,当∠DPC=60°时,求BP的长;28.(12分)如图,一次函数y=x+2的图象与坐标轴交于A、B两点,点C的坐标为(﹣1,0),二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)求二次函数的解析式;(2)如图1,已知点D(1,n)在抛物线上,作射线BD,点Q为线段AB上一点,过点Q作QM⊥y轴于点M,作QN⊥BD于点M,过Q作QP∥y轴交抛物线于点P,当QM 与QN的积最大时,求点P的坐标;(3)在(2)的条件下,连接AP,若点E为抛物线上一点,且满足∠APE=∠ABO,求点E的坐标.2020年四川省成都市青羊区中考数学一诊试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)(﹣2)×=( )A.﹣2B.1C.﹣1D.【解答】解:(﹣2)×=﹣1,故选:C.2.(3分)用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为( )A.(x+2)2=1B.(x+2)2=7C.(x+2)2=13D.(x+2)2=19【解答】解:x2+4x=3,x2+4x+4=7,(x+2)2=7.故选:B.3.(3分)下列几何体的主视图是三角形的是( )A.B.C.D.【解答】解:A、圆柱的主视图是矩形,故此选项错误;B、圆锥的主视图是三角形,故此选项正确;C、球的主视图是圆,故此选项错误;D、正方体的主视图是正方形,故此选项错误;故选:B.4.(3分)一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( )A.B.C.D.【解答】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况,∴取到的是一个红球、一个白球的概率为:=.故选:C.5.(3分)下列性质中,菱形具有而矩形不一定具有的是( )A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直【解答】解:(A)对角线相等是矩形具有的性质,菱形不一定具有;(B)对角线互相平分是菱形和矩形共有的性质;(C)对角线互相垂直是菱形具有的性质,矩形不一定具有;(D)邻边互相垂直是矩形具有的性质,菱形不一定具有.故选:C.6.(3分)如图,在△ABC中,AC=1,BC=2,AB=,则sin B的值是( )A.B.C.2D.【解答】解:∵在△ABC中,∠ACB=90°,AC=1,BC=2,AB=,∴sin B=.故选:B.7.(3分)如图,A、B、C是半径为3的⊙O上的三点,已知∠C=30°,则弦AB的长为( )A.3B.6C.3.5D.1.5【解答】解:∵∠C=30°,∴根据圆周角定理得:∠AOB=2∠C=60°,∵OA=OB=3,∴△AOB是等边三角形,∴AB=OA=3,故选:A.8.(3分)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是( )A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3【解答】解:∵点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,∴A,B点在第三象限,C点在第一象限,每个图象上y随x的增大减小,∴y3一定最大,y1>y2,∴y2<y1<y3.故选:D.9.(3分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是( )A.560(1+x)2=315B.560(1﹣x)2=315C.560(1﹣2x)2=315D.560(1﹣x2)=315【解答】解:设每次降价的百分率为x,由题意得:560(1﹣x)2=315,故选:B.10.(3分)如图,已知∠DAB=∠CAE,那么添加下列一个条件后,仍然无法判定△ABC∽△ADE的是( )A.=B.=C.∠B=∠D D.∠C=∠AED 【解答】解:∵∠DAB=∠CAE,∴∠DAE=∠BAC,A、若,且∠DAE=∠BAC,无法判定△ABC∽△ADE,故选项A符合题意;B、若,且∠DAE=∠BAC,可判定△ABC∽△ADE,故选项B不符合题意;C、若∠B=∠D,且∠DAE=∠BAC,可判定△ABC∽△ADE,故选项C不符合题意;D、若∠C=∠AED,且∠DAE=∠BAC,可判定△ABC∽△ADE,故选项D不符合题意;故选:A.二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)在△ABC中,若∠C=90°,cos∠A=,则∠A等于 60° .【解答】解:∵在△ABC中,∠C=90°,cos∠A=,∴∠A=60°,故答案为:60°.12.(4分)方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为 ﹣3 .【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.13.(4分)如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为 2 .【解答】解:如图,作CE⊥AB于E.∵∠B=180°﹣∠A﹣∠ACB=180°﹣20°﹣130°=30°,在Rt△BCE中,∵∠CEB=90°,∠B=30°,BC=2,∴CE=BC=1,BE=CE=,∵CE⊥BD,∴DE=EB,∴BD=2EB=2.故答案为2.14.(4分)二次函数y=ax2+bx+c的图象如图,则点(,)在第 三 象限.【解答】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴左边,∴a,b同号,即b>0,∵抛物线与y轴的交点在负半轴,∴c<0,∴<0,<0,∴点(,)在第三象限.故答案是:三.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:﹣4sin45°+(2019﹣π)0﹣32(2)解方程:(x+5)(x+1)=21【解答】解:(1)原式=2﹣4×+1﹣9=2﹣2﹣8=﹣8;(2)方程整理,得:x2+6x﹣16=0,∵(x﹣2)(x+8)=0,∴x﹣2=0或x+8=0,解得x=2或x=﹣8.16.(6分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于点F.(1)求证:∠DCP=∠DAP;(2)如果PE=3,EF=5,求线段PC的长.【解答】证明:(1)∵四边形ABCD是菱形,∴AD=CD,∠ADB=∠CDB,CD∥AB,∵AD=CD,∠ADB=∠CDB,且DP=DP,∴△ADP≌△CDP(SAS)∴AP=PC,∠DCP=∠DAP;(2)∵CD∥AB,∴∠DCP=∠F,且∠DCP=∠DAP,∴∠F=∠DAP,且∠APE=∠APF,∴△APE∽△FPA,∴,∴,∴AP=2,∴PC=2.17.(8分)为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.【解答】解:(1)∵满意的有20人,占40%,∴此次调查中接受调查的人数:20÷40%=50(人);(2)此次调查中结果为非常满意的人数为:50﹣4﹣8﹣20=18(人);(3)画树状图得:∵共有12种等可能的结果,选择的市民均来自甲区的有2种情况,∴选择的市民均来自甲区的概率为:=.18.(8分)如图,一航船在A处测到北偏东60°的方向有一灯塔B,航船向东以每小时20海里的速度航行2小时到达C处,又测到灯塔B在北偏东15°的方向上.求此时航船与灯塔相距多少海里?(结果保留根号)【解答】解:作CD⊥AB,垂足为点D.根据题意可得∠BAC=30°,∠ACB=105°,∴∠B=45°,∵AC=20×2=40(海里),∴DC=AC•sin30°=40×=20(海里),∴BC=DC÷sin45°=20÷=20(海里).答:此时航船与灯塔相距20海里.19.(10分)如图,已知一次函数y1=kx+b的图象与x轴相交于点A,与反比例函数y2=相交于B(﹣1,5),C(,d)两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OB,OC,求△BOC的面积.【解答】解:(1)将B(﹣1,5)代入y2=得,=5,解得c=﹣5,所以,反比例函数解析式为y=﹣,将点C(,d)代入y=﹣得d=﹣=﹣2,所以,点C的坐标为(,﹣2),将点B(﹣1,5),C(,﹣2)代入一次函数y1=kx+b得,,解得,所以,一次函数y1=﹣2x+3;(2)令y=0,则﹣2x+3=0,解得x=,所以,点A的坐标为(,0),所以,OA=,S△BOC=S△AOB+S△AOC,=××5+××2,=.20.(10分)如图,在Rt△ABC中,AB⊥BC,以AB为直径的圆交AC于点D,E是BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)设⊙O的半径为r,证明r2=AD•OE;(3)若DE=4,sin C=,求AD之长.【解答】(1)证明:连接OD、BD,∵AB为圆O的直径,∴∠BDA=90°,∴∠BDC=180°﹣90°=90°,∵E为BC的中点,∴DE=BC=BE,∴∠EBD=∠EDB,∵OD=OB,∴∠OBD=∠ODB,∵∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°,∴∠ODE=90°,∴DE是圆O的切线.(2)证明:如图,连接BD.由(1)知,∠ODE=∠ADB=90°,BD⊥AC.∵E是BC的中点,O是AB的中点,∴OE是△ABC的中位线,∴OE∥AC,∴OE⊥BD.∴OE∥AC,∴∠1=∠2.又∵∠1=∠A,∴∠A=∠2.即在△ADB与△ODE中,∠ADB=∠ODE,∠A=∠2,∴△ADB∽△ODE.∴=,即=.∴r2=AD•OE;(3)∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,∵点E为BC的中点,∴BC=2DE=8,∵sin C=,∴设AB=3x,AC=5x,根据勾股定理得:(3x)2+82=(5x)2,解得x=2.则AC=10.由切割线定理可知:82=(10﹣AD)×10,解得,AD=3.6.一、填空题(本大题5个小题,每小题4分,共20分)B卷(共50分)21.(4分)点P(a,b)是直线y=x﹣2上一点,则代数式a2﹣2ab+b2﹣1的值为 3 .【解答】解:∵点(a,b)在一次函数y=x﹣2上,∴b=a﹣2,即a﹣b=2,∴原式=(a﹣b)2﹣1=22﹣1=4﹣1=3.故答案为:3.22.(4分)有五张正面分别标有数﹣7,0,1,2,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将卡片上的数记为a,则使关于x的方程﹣2=有正整数解的概率为 .【解答】解:﹣2=,解得:x=,∵分式方程的解为正整数,∴a+1>0,又∵x≠1,∴a≠5,∴a=0或a=1或a=2,∴使关于x的分式方程有正整数解的概率为.故答案为:.23.(4分)如图,直线AB交双曲线y=于A、B两点,交x轴于点C,且B恰为线段AC的中点,连结OA.若S△OAC=,则k的值为 .【解答】解:设A点坐标为(a,),C点坐标为(b,0),∵B恰为线段AC的中点,∴B点坐标为(,),∵B点在反比例函数图象上,∴•=k,∴b=3a,∵S△OAC=,∴b•=,∴•3a•=,∴k=.故答案为.24.(4分)在平面直角坐标系中,A(1,0),B(0,),过点B作直线BC∥x轴,点P 是直线BC上的一个动点,以AP为边在AP右侧作Rt△APQ,使∠APQ=90°,且AP:PQ=1:,连结AB、BQ,则△ABQ周长的最小值为 2+2 .【解答】解:设P(m,).作AM⊥BC于M,QN⊥BC于N.∵∠AMP=∠APQ=∠QNP=90°,∴∠APM+∠NPQ=90°,∠NPQ+∠PQN=90°,∴∠APM=∠PQN,∴△AMP∽△PNQ,∴===,∴==,∴PN=3,NQ=(m﹣1),∴Q(m+3,2﹣m),∴点Q的运动轨迹是y=﹣x+5,作点A关于直线y=﹣x+5的对称点A′,连接BA′交直线于Q′,连接AQ′,此时△ABQ′的周长最小.∵A′(7,2),B(0,),A(1,0),∴A′B==2,AB==2,∴△ABQ的周长的最小值=AQ′+BQ′+AB=A′Q′+BQ′+AB=A′B+AB=2+2,故答案为2+2.25.(4分)如图,在矩形ABCD中,AB=4,BC=6,点E为对角线BD的中点,点F在CB 的延长线上,且BF=1,连接EF,过点E作EG⊥EF交BA的延长线于点G,连接GF 并延长交DB的延长线于点H,则= .【解答】解:过点E作EM⊥BC于点M,过点E作EN⊥AB于点N,∴四边形ENBM是矩形,∵E是BD的中点,∴EM==2,EN=BM==3,∴MF=BF+BM=1+3=4,∴==2,∵EG⊥EF,∴∠GEF=90°,∴∠EGB=∠BFE,∴tan∠EGB=tan∠BFE,∴,∴GN=6,∴GB=GN+BN=6+2=8∵∠GEF=∠GBF=90°∴G,E,B,F四点共圆,∴∠BGF=∠BEF,∵∠EHF=∠GHB,∴△FEH∽△BGH,∴,∴.故答案为:.三、解答題(本大題共3个小題,共30分.解答题应写出必要的文字说明,证明过程或演算步骤)26.(8分)某厂按用户需求生产一种产品,成本每件20万元,规定每件售价不低于成本,且不高于40万元.经市场调查,每年的销售量y(件)与每件售价x(万元)满足一次函数关系,部分数据如下表:售价x(万元/件)253035销售量y(件)504030(1)求y与x之间的函数表达式;(2)设商品每年的总利润为W(万元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少万元时获得最大利润,最大利润是多少?【解答】解:(1)设y与x之间的函数解析式为y=kx+b(k≠0),,解得,即y与x之间的函数表达式是y=﹣2x+100;(2)由题意可得,W=(x﹣20)(﹣2x+100)=﹣2x2+140x﹣2000,即W与x之间的函数表达式是W=﹣2x2+140x﹣2000;(3)∵W=﹣2x2+140x﹣2000=﹣2(x﹣35)2+450,20≤x≤40,∴当20≤x≤35时,W随x的增大而增大,当35≤x≤40时,W随x的增大而减小,当x=35时,W取得最大值,此时W=450,答:当20≤x≤35时,W随x的增大而增大,当35≤x≤40时,W随x的增大而减小,售价为35万元时获得最大利润,最大利润是450万元.27.(10分)(1)如图1,△ABC为等边三角形,点D、E分别为边AB、AC上的一点,将图形沿线段DE所在的直线翻折,使点A落在BC边上的点F处.求证:BF•CF=BD•CE.(2)如图2,按图1的翻折方式,若等边△ABC的边长为4,当DF:EF=3:2时,求sin∠DFB的值;(3)如图3,在Rt△ABC中,∠A=90°,∠ABC=30°,AC=2,点D是AB边上的中点,在BC的下方作射线BE,使得∠CBE=30°,点P是射线BE上一个动点,当∠DPC=60°时,求BP的长;【解答】(1)证明:∵△ABC是等边三角形,∠A=∠B=∠C=60°,∴∠BDF+∠BFD=180°﹣∠B=120°,由折叠知,∠DFE=∠A=60°,∴∠CFE+∠BFD=120°,∴∠BDF=∠CFE,∵∠B=∠C=60°,∴△BDF∽△CFE,∴,∴BF•CF=BD•CE;(2)解:如图2,设BD=3x(x>0),则AD=AB﹣BD=4﹣3x,由折叠知,DF=AD=4﹣3x,过点D作DH⊥BC于H,∴∠DHB=∠DHF=90°,∵∠B=60°,∴BH=x,DH=x,由(1)知,△BDF∽△CFE,∴=,∵DF:EF=3:2,∴=,∴CF=2x,∴BF=BC﹣CF=4﹣2x,∴HF=BF﹣BH=4﹣2x﹣x=4﹣x,在Rt△DHF中,DH2+HF2=DF2,∴(x)2+(4﹣x)2=(4﹣3x)2,∴x=0(舍)或x=,∴DH=,DF=4﹣3×=,∴sin∠DFB===;(3)如图3,在Rt△ABC中,AC=2,∠ABC=30°,∴BC=2AC=4,AB=AC=6,∵点D是AB的中点,∴BD=AB=3,过点C作BC的垂线交BP的延长线于Q,∴∠BCQ=90°,在Rt△BCQ中,∠CBE=30°,∴CQ==4,∴BQ=2CQ=8,∴∠BCQ=90°,∵∠CBE=30°,∴∠Q=90°﹣∠CBE=60°,∴∠DBP=∠ABC+∠CBE=60°=∠Q,∴∠CPQ+∠PCQ=120°,∵∠DPC=60°,∴∠BPD+∠CPQ=120°,∴∠BPD=∠PCQ,∴△BDP∽△QPC,∴=,∴,∴BP=2或BP=6.28.(12分)如图,一次函数y=x+2的图象与坐标轴交于A、B两点,点C的坐标为(﹣1,0),二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)求二次函数的解析式;(2)如图1,已知点D(1,n)在抛物线上,作射线BD,点Q为线段AB上一点,过点Q作QM⊥y轴于点M,作QN⊥BD于点M,过Q作QP∥y轴交抛物线于点P,当QM 与QN的积最大时,求点P的坐标;(3)在(2)的条件下,连接AP,若点E为抛物线上一点,且满足∠APE=∠ABO,求点E的坐标.【解答】解:(1)一次函数y=x+2的图象与坐标轴交于A、B两点,则点A、B的坐标分别为:(0,2)、(4,0),则抛物线的表达式为:y=a(x﹣4)(x+1)=a(x2﹣3x﹣4),即﹣4a=2,解得:a=﹣,则抛物线的表达式为:y=﹣x2+x+2…①;(2)点D(1,3),点B(4,0),则BD所在的函数表达式为:y=﹣x+4;即直线BD的倾斜角为45°,则∠QGN=45°,QN=QG,设点Q(m,﹣m+2),则点G(m,﹣m+4),QM•QN=m×(﹣m+4+m﹣2)=(﹣m2+2m),当m=2时,QM与QN的积最大,则点P(2,3);(3)设:∠APE=∠ABO=∠α,则tan;①当PE在AP下方时,如图,由点A(0,2)、P(2,3)知,AP=,设AP与y轴的夹角为β,则tanβ=2,过点H作MH⊥PA交PA的延长线于点M,设:MA=x,则MH=2x,tan∠APH===tanα=,解得:x=,则AH=x=,则点H(0,),由点H、P的坐标得,直线PH的表达式为:y=x+…②,联立①②并解得:x=2(舍去)或﹣,故点E(﹣,﹣);②当PE在AP上方时,同理可得:点E(1,3);综上,点E的坐标为:(﹣,﹣)或E(1,3).。

2021年四川省成都市中考数学一模试卷(附答案详解)

2021年四川省成都市中考数学一模试卷(附答案详解)

2021年四川省成都市中考数学一模试卷1.−2035的绝对值是()A. 12035B. −12035C. −2035D. 20352.如图所示的几何体,从正面看到的平面图形是()A.B.C.D.3.杜甫草堂坐落在成都市西门外的浣花溪畔,是中国唐代大诗人杜甫流寓成都时的故居,是中国规模最大、保存最完好、知名度最高且最具特色的杜甫行踪遗迹地,年游客量达百万余人次,100万用科学记数法表示为()A. 1×105B. 1×106C. 1×107D. 1×1084.计算3a2bc−4a2bc的结果是()A. a2bcB. −a2bcC. 7a2b cD. −15.在2,6,5,3,2这列数中,众数和中位数分别是()A. 5,2B. 3,2C. 2,3D. 3,66.二次根式√2x−3中,x的取值范围是()A. x≥32B. x>32C. x≤32D. x<327.如图,在Rt△ABC中,∠C=90°,AC=4,cosA=45,则BC的长为()A. 3B. 4C. 5D. 68.如图,已知l1//l2//l3,AB=3,DE=4,BC=8,则DF=()A. 10B. 11C. 323D. 4439.如图,四边形ABCD内接于圆O,∠BOD=108°,则∠BCD的度数是()A. 127°B. 108°C. 126°D. 125°10.已知y=3x2的图象是抛物线,把抛物线分别向上、向右均平移2个单位,那么平移后的抛物线的解析式是()A. y=3(x−2)2+2B. y=3(x+2)2−2C. y=3(x−2)2−2D. y=3(x+2)2+211.分解因式:6m−3m2=______ .(k≠0)的图象上一点P,12.已知反比例函数y=−kx过点P作PM⊥x轴于点M,连接OP且△PMO的面积为3,则k的值是______ .13.半径为12cm,则45°的圆心角所对的弧长是______ cm.14.如图,在平行四边形ABCD中,连接AC,按以下步骤作AC的长为半径作弧,图:分别以点A,C为圆心,以大于12两弧分别相交于点M,N,作直线MN交BC于点E,连接AE.若AB=2,BC=4,则△ABE的周长=______ .15. (1)计算:(π−2021)0+2−3−√8+2cos45°(2)在如图所示的坐标系中,分别作出函数y =−x −4和y =2x +2的图象,并利用图象直接写出方程组{2x −y =−2x +y =−4的解.16. 先化简,再求值:1−(5x−3+13−x )÷4xx 2−6x+9,其中x =6.17. 如图,为了测量小河对岸一座小山BC 的高度,某测绘小组先在斜坡上的D 处,测得小山顶端B 的仰角为30°,且D 离地面的高度DE =2m.斜坡AD 的坡度i =1:3(坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比)用字母i 表示),然后在A 处测得小山顶端B 的仰角是60°,点E ,A ,C 在同一水平线上,求小山BC 的高.(结果用含有根号的式子表示)18.“赏中华诗词,寻文化基因”,我市某校举办了首届“中国诗词大会”,赛后调查整理部分参赛学生的成绩,将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如两幅不完整的统计图.请结合图表完成下列各题:(1)求被调查的总人数;(2)请把条形统计图补充完整;(3)若本次决赛的前5名是3名女生A、B、C和2名男生M、N,若从3名女生和2名男生中分别抽取1人参加市里的比赛,试用列表法或画树状图的方法求出恰好抽到女生B和男生M的概率.19.如图,在平面直角坐标系xOy中,菱形ABCD的顶点B的坐标为(1,0),顶点A的坐标为(−2,2),对角线AC//x轴,边BC所在直线y1=k1x+b与反比例函数y= (k>0)的图象交于C,E两点.−kx(1)求y1和y2的函数解析式;(2)点P是x轴上一动点,当△PAC是以AC为斜边的直角三角形时,请求出点P的坐标.20.已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,连接CE,BD是⊙O的切线与OE的延长线相交于点D.(1)求证:∠D=∠AEC;(2)求证:CE2=EH⋅EA;(3)若⊙O的半径为5,cos∠BCE=4,求FH的长.521. 比较大小:2.236 ______ √5.(填“>”、“<”或“=”)22. 设方程x 2−17x +60=0的两根为Rt △ABC 的两条直角边的长,则Rt △ABC 外接圆的半径是______ .23. 从0,1,2,3,4这五个数中,随机抽取一个数,作为函数y =(5−m 2)x 和关于x的不等式组{5−2x ≥−1x −m >0中m 的值,恰好使所得函数的图象经过第二、四象限,且不等式组无解的概率为______ .24. 如图,已知点A(m,m +1),B(m +3,m −1)都在反比例函数y =k 1x (x >0)的图象上.将线段AB 沿直线y =k 2x +b 进行对折得到线段A 1B 1,且点A 1始终在直线OA 上.当线段A 1B 1与x 轴有交点时,b 的取值的最大值是______ .25. 如图,在Rt △ABC 中,∠BAC =90°,AB =AC =4,点P 是边AB 上一动点,PQ ⊥PC 交BC 于Q ,点R 是PC 的中点,连接AR 、QR ,设AP 为x ,四边形ABQR 面积为y ,则y 与x 的函数关系式为(含自变量的取值范围) ______ .26.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?27.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α.试猜想DE、BD、CE有怎样的数量关系,请证明你的结论;(2)老师鼓励学习小组继续探索相似的情形.于是,学习小组又研究以下问题:如图2,△ABC中,∠B=∠C=α(0<α<60°).将一把三角尺中30°角顶点P放在BC边上,当P在BC边上移动时,三角尺中30°角的一条边始终过点A,另一条边交AC边于点Q,P、Q不与三角形顶点重合.设∠CPQ−β.当β在许可范围内变化时,α取何值总有△ABP∽△PCQ?当α在许可范围内变化时,β取何值总有△ABP∽△QCP?(3)试探索有无可能使△ABP、△QPC、△ABC两两相似?若可能,写出所有α、β的值(不写过程);若不可能,请说明理由.28.已知抛物线y=ax2+bx+3与x轴交于点A(−1,0),点B(3,0),与y轴交于点C,顶点为点D,如图1所示.(1)求抛物线的解析式;(2)若点P在抛物线上,点Q在x轴上,是否存在以点A、C、P、Q为顶点的四边形是平行四边形,若存在,请直接写出点P的坐标;若不存在,请说明理由;(3)如图2所示,抛物线的对称轴与x轴交于点N,连接CN,将△OCN绕着点N顺时针旋转得到△O′C′N,在旋转过程中,连接OO′,当首次出现∠O′ON=∠OCN时.求直线C′O′的函数表达式.答案和解析1.【答案】D【解析】解:∵一个负数的绝对值是它的相反数,∴−2035的绝对值是2035.故选:D.根据“一个负数的绝对值是它的相反数”可得答案.本题考查绝对值的求法,掌握绝对值的性质是解题关键.2.【答案】C【解析】解:从正面看易得此几何体的主视图是一个梯形.故选C找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【答案】B【解析】解:100万=1000000=1×106.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】B【解析】解:3a2bc−4a2bc=−a2bc.故选:B.根据合并同类项的法则计算解答即可.此题考查合并同类项,关键是根据合并同类项的法则计算.5.【答案】C【解析】解:将这组数据重新排列为2、2、3、5、6,所以这组数据的众数为2,中位数为3,故选:C.将这组数据从小到大重新排列,再根据众数和中位数的定义求解即可.本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.【答案】A【解析】解:∵二次根式√2x−3有意义,∴2x−3≥0,解得x≥32.∴x的取值范围是x≥32.故选:A.根据二次根式中的被开方数必须是非负数,可得2x−3≥0,据此求出x的取值范围即可.本题主要考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.【答案】A【解析】解:∵在Rt△ABC中,∠C=90°,cosA=45,∴ACAB =45,即4AB=45,解得AB=5,在Rt△ABC中,由勾股定理可得BC=√AB2−AC2=3,故选:A.∠A的余弦值可求得AB,再由勾股定理可求得BC.本题主要考查三角函数的定义,掌握正弦函数、余弦函数的定义是解题的关键.8.【答案】D【解析】解:∵l1//l2//l3,∴ABBC =DEEF,即38=4EF,解得,EF=323,∴DF=DE+EF=443,故选:D.根据平行线分线段成比例定理列出比例式,把已知数据代入计算即可.本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.9.【答案】C【解析】解:∵∠BOD=108°,∴∠A=12∠BOD=54°,∴∠BCD=180°−∠A=126°故选:C.先根据圆周角定理得到∠A=12∠BOD=54°,然后根据圆内接四边形的性质求∠BCD的度数.本题考查了圆内接四边形的性质,圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.【答案】A【解析】解:∵y=3x2的顶点坐标为(0,0),∴把抛物线分别向上、向右均平移2个单位,得新抛物线顶点坐标为(2,2),∵平移不改变抛物线的二次项系数,∴平移后的抛物线的解析式是y=3(x−2)2+2.故选:A.抛物线的平移,实际上就是顶点的平移,由原抛物线顶点坐标,根据平移规律推出新抛物线顶点坐标,可求新抛物线的解析式.本题考查了抛物线的平移变换.关键是将抛物线的平移转化为顶点的平移,运用顶点式求抛物线解析式.11.【答案】3m(2−m)【解析】解:6m−3m2=3m(2−m).故答案为:3m(2−m).运用提取公因式法,确定公因式为3m,然后分解因式即可得到答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【答案】6【解析】解:设点P的坐标为(a.b),∵点P在第二象限,∴a<0,b>0.∴OM=−x,PM=y.∵△PMO的面积为3,∴1PM⋅OM=3.2∴1(−a)⋅b=3.2∴ab=−6.(k≠0)的图象上,∵点P在反比例函数y=−kx∴b=−k.b∴k=−ab=6.故答案为:6.根据函数图象在第二、四象限,可得k>0.设出P点坐标,用坐标表示线段PM和OM 的长,利用待定系数法可求k的值.本题主要考查了反比例函数系数的几何意义和反比例图象上的点的坐标的特征,利用点的坐标表示对应线段的长是解题的关键.13.【答案】3π【解析】解:根据弧长公式得,=3π(cm),l=45×π×12180故答案为:3π.根据弧长公式进行计算即可.本题考查弧长的计算,掌握弧长的计算方法是正确计算的前提.14.【答案】6【解析】解:由作法得MN 垂直平分AC ,∴EA =EC ,∴△ABE 的周长=AB +BE +AE =AB +BE +EC =AB +BC =2+4=6. 故答案为6.利用基本作图可判断MN 垂直平分AC ,根据线段垂直平分线的性质得到EA =EC ,然后利用等线段代换得到△ABE 的周长=AB +BC .本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.15.【答案】解:(1)原式=1+18−2√2+2×√22=118−2√2+√2 =118−√2;(2)画出函数的图象如图:如图所示:直线y =2x +2与y =−x −4的交点的坐标为(−2,−2),∴方程组{2x −y =−2x +y =−4的解是{x =−2y =−2.【解析】(1)直接利用特殊角的三角函数值、零指数幂以及负指数幂的性质分别化简得出答案.(2)利用直线y =2x +2、y =−x −4的交点坐标直接得出答案.此题主要考查了一次函数与二元一次方程组的关系,正确画出函数图象是解题关键. 16.【答案】解:1−(5x−3+13−x )÷4xx 2−6x+9=1−5−1x−3⋅(x−3)24x=1−4(x−3)4x=1−x−3 x=x−x+3x=3x,当x=6时,原式=36=12.【解析】根据分式的加法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.【答案】解:如图,作DF⊥BC于F,则四边形DECF为矩形,∴FC=DE=2m,DF=EC,∵AD的坡度i=1:3,∴AE=6m,在Rt△BDF中,tan∠BDF=BFDF,则BF=DF⋅tan∠BDF=√33DF=√33(AC+6)(m),在Rt△BAC中,tan∠BAC=BCAC,则BC=AC⋅tan∠BAC=√3AC,∵BC−BF=2m,∴√3AC−√33(AC+6)=2,解得,AC=√3+3,∴BC=√3AC=(3+3√3)(m),答:小山BC的高为(3+3√3)m.【解析】作DF⊥BC于F,根据坡度可得AE=6m,再根据锐角三角函数列式计算即可.本题考查了解直角三角形的应用−仰角俯角问题,坡度坡角问题,解决本题的关键是掌握仰角俯角和坡度坡角定义.18.【答案】解:(1)被调查的总人数为3÷15%=20(人);(2)B等级人数为20−(3+8+4)=5(人),把条形统计图补充完整如图:(3)根据题意画树状图如下:从上图可知共有6种等可能情况,其中抽到女生B和男生M的情况有1种,∴抽到女生B和男生M的概率为1.6【解析】(1)根据等级为A的人数除以所占的百分比求出总人数即可;(2)求出等级B的人数,补全条形统计图即可;(3)画树状图,再利用概率公式得出答案.本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.19.【答案】解:(1)如图,连接BD,∵四边形ABCD 为菱形,AC//x 轴,顶点A 的坐标为(−2,2),由图形的对称性知,点A 、C 关于BD 对称,则点C 的坐标为(4,2),将点B 、C 的坐标代入直线的表达式得{2=4k +b 0=k +b, 解得{k =23b =−23, 故y 1=23x −23.将点C 的坐标代入反比例函数表达式得:2=k 4,解得k =8,则y 2=8x ;(2)设点P 的坐标为(x,0),由点P 、A 、C 的坐标得:AC 2=(4+2)2=36,PA 2=(x +2)2+4,PC 2=(x −4)2+4, 由题意得:AC 2=PA 2+PC 2,即36=(x +2)2+4+(x −4)2+4,解得x =1±√5,故点P 的坐标为(1+√5,0)或(1−√5,0).【解析】(1)由图形的对称性知,点A 、C 关于BD 对称,则点C 的坐标为(4,2),进而求解;(2)由AC 2=PA 2+PC 2,即36=(x +2)2+4+(x −4)2+4,即可求解.本题是反比例函数综合题,主要考查了一次函数的性质、菱形的性质、勾股定理的运用等,有一定的综合性,但难度不大. 20.【答案】(1)证明:∵BD 是⊙O 的切线,∴∠OBD =90°,∠ABC +∠DBC =90°,∵BC⊥OD,∴∠D+∠DBC=90°,∴∠ABC=∠D,∵∠AEC=∠ABC,∴∠D=∠AEC;(2)证明:连接AC,如图所示:∵OF⊥BC,∴BE⏜=CE⏜,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴CEEH =EACE,∴CE2=EH⋅EA;(3)解:连接BE,过O作OG⊥BE于G,如图所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为5,∴AB=10,∵cos∠BCE=45,∴cos∠BAE=45=AEAB,∴AE=8,∴BE=√AB2−AE2=√102−82=6,∵BE⏜=CE⏜,∴BE=CE=6,∵CE2=EH⋅EA,∴EH=92,在Rt△BEH中,BH=√BE2+EH2=152.∵OG⊥BE,OB=OE,∴BG=3,∴OG=√OB2−BG2=√52−32=4,∴12BE⋅OG=12BF⋅OE,∴BF=245,∴HF=BH−BF=152−245=2710.【解析】(1)先判断出∠ABC+∠DBC=90°,再判断出∠DBC+∠D=90°即可;(2)连接AC,如图所示,证明△CEH∽△AEC,由相似三角形的性质即可得出结论;(3)连接BE,过O作OG⊥BE于G,由锐角三角函数的定义求出AE=8,根据勾股定理求出BE,求出EH,BH的长,由三角形面积求出BF的长,则可求出答案.本题是圆的综合题,考查了切线的性质,垂径定理,圆周角定理,相似三角形的判定和性质,勾股定理,锐角三角函数等知识,解题的关键是熟练掌握相似三角形的性质.21.【答案】<【解析】解:∵√5≈2.23606……,∴2.236<√5.故答案为:<.先算出√5的值,再与2.236进行比较即可.本题考查了实数的大小比较,能够识记特殊数的算术平方根是解答此类问题的关键.22.【答案】132【解析】解:解方程x2−17x+60=0,得x1=5,x2=12,则Rt△ABC的两条直角边的长为5和12,由勾股定理得,Rt△ABC的斜边长=√52+122=13,∴Rt△ABC外接圆的半径为13,2故答案为:13.2解方程求出Rt△ABC的两条直角边的长,根据勾股定理求出斜边长,根据直角三角形的性质解答即可.本题考查的是三角形的外接圆与外心、一元二次方程的解法,掌握直角三角形的斜边长等于这个直角三角形的外接圆的直径是解题的关键.23.【答案】25【解析】解:在0,1,2,3,4这五个数中,使函数y=(5−m2)x的图象经过第二、四象限,即5−m2<0的m的值为3或4,不等式组中①的解集为x≤3,不等式②的解集为x>m,要使不等式组无解,此时m≥3,因此m的值可以为3或4,所以0,1,2,3,4这五个数中,符合要求的有两个,因此,相应的概率为2,5.故答案为:25根据一次函数的图象和性质,不等式组的解集确定m的取值,进而得出答案.本题考查一次函数的图象和性质,不等式组的解集以及概率的计算,理解概率的意义,掌握一次函数的性质和不等式组的解集是得出正确答案的前提.24.【答案】7916(x>0)的图象上.【解析】解:∵点A(m,m+1),B(m+3,m−1)都在反比例函数y=k1x∴m(m+1)=(m+3)(m−1)=k.解得:m=3.∴点A(3,4),B(6,2),当点B1落到x轴上时,b的取值的最大,如图,设直线OA的解析式为y=ax,∵点A的坐标为(3,4),∴3a=4,即a=43.∴直线OA的解析式为y=43x.∵点A1始终在直线OA上,∴直线y=kx+b与直线OA垂直.∴k=−34.由于BB1//OA,因此直线BB1可设为y=43x+c.∵点B的坐标为(6,2),∴43×6+c=2,即c=−6.∴直线BB1解析式为y=43x−6.当y=0时,43x−6=0.则有x=92.∴点B1的坐标为(92,0).∵点C是BB1的中点,∴点C的坐标为(214,1).∵点C在直线y=−34x+b上,∴−34×214+b=1.解得:b=7916,故答案为7916.由题可得m(m+1)=(m+3)(m−1)=k,解这个方程就可求出m值,从而求得点A(3,4),B(6,2).由于点A关于直线y=kx+b的对称点点A1始终在直线OA上,因此直线y=kx+b必与直线OA垂直,当B1在x轴上时对应的b的值最大,就可以求出b的最大值.本题考查了反比例函数图象上点的坐标特征、用待定系数法求一次函数的解析式、轴对称的性质,明确点B 1落到x 轴上时,b 的取值的最大是解题的关键.25.【答案】y =4+x(4−x)24(x+4)(0<x <4)【解析】解:过点Q 作QD ⊥AB ,∵∠QPR =∠PAC =90°,∴∠DPQ =∠ACP ,∵∠DQP =∠PAC =90°,∴△DPQ∽△ACP , ∴DQ PD =x 4, ∵PD =4−x −QD ,∴QD 4−x−QD =x 4, ∴QD =x(4−x)x+4, ∴S △PQB =12(4−x)⋅x(4−x)x+4=x(4−x)22(x+4). ∵S △ABC =12×4×4=8,∴S 四边形APQC =8−x(4−x)22(x+4).∵R 是CP 的中点,∴S 四边形APQR =12×S 四边形APQC =4−x(4−x)24(x+4), ∴y =S △PQB +S 四边形APQR =x(4−x)22(x+4)+4−x(4−x)24(x+4)=4+x(4−x)24(x+4)(0<x <4). 故答案为:y =4+x(4−x)24(x+4)(0<x <4).过点Q 作QD ⊥AB 可得△DPQ∽△ACP ,用含x 的式子表示出QD 的长,再分别表示出S △PQB 和S 四边形APQR ,进而可得y 与x 的关系式.本题考查列函数关系式,由相似三角形得到DQ 的长是解题关键.26.【答案】解:(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,可得:2000x =2×1400x+20,解得:x=50,经检验x=50是原方程的解,答:购买一个甲种足球需50元,则购买一个乙种足球需70元;(2)设这所学校再次购买y个乙种足球,可得:50×(1+10%)×(50−y)+70×(1−10%)y≤2900,解得:y≤18.75,由题意可得,最多可购买18个乙种足球,答:这所学校最多可购买18个乙种足球.【解析】本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据利润作为不等关系列出不等式求解.(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,根据购买甲种足球数量是购买乙种足球数量的2倍列出方程解答即可;(2)设这所学校再次购买y个乙种足球,根据题意列出不等式解答即可.27.【答案】解:(1)DE=BD+CE.证明:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠DBA=∠CAE,在△ADB和△CEA中,{∠DBA=∠EAC ∠BDA=∠AEC BA=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)在△ABP中,∠APC=∠B+∠2=α+∠2=30°+β,∴∠1=150°−β,同理可得:∠2=30°+β−α;由β=∠2或∠1=∠CQP,即∠2=30°+β−α=β,解得α=30°,则△ABP∽△PCQ;∴当β在许可范围内变化时,α=30°时,总有△ABP∽△PCQ ;由β=∠1或∠2=∠CQP ,同理可得:β=75°.∴当α在许可范围内变化时,β=75°总有△ABP∽△QCP ;(3)可能.①当α=30°,β=30°时,则∠2=∠B =α=30°,则△ABP∽△PCQ∽△BCA ;②当β=75°,α=52.5°时,同理可得:∠1=150°−β=75°=β,∠2=30°+β−α=52.5°=α,∴△ABP∽△CQP∽△BCA .【解析】(1)证明△ADB≌△CEA(AAS),由全等三角形的性质得出AE =BD ,AD =CE ,则可得出结论;(2)由β=∠2或∠1=∠CQP ,即∠2=30°+β−α=β,解得α=30°,即可求解;由β=∠1或∠2=∠CQP ,同理可得:β=75°,即可求解;(3)①当α=30°,β=30°时,则∠2=∠B =α=30°,即可求解;②当β=75°,α=52.5°时,同理可解.此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,熟练掌握相似三角形的性质是解本题的关键.28.【答案】解:(1)将点A 、B 的坐标代入抛物线表达式得{a −b +c =09a +3b +c =0,解得{a =−1b =2, 故抛物线的表达式为y =−x 2+2x +3;(2)存在,理由:由(1)知,点A 、C 的坐标分别为(−1,0)、(0,3),设点P 的坐标为(m,−m 2+2m +3),点Q(x,0),当AC 是边时,点A 向右平移1个单位向上平移3个单位得到点C ,则Q(P)P 向右平移1个单位向上平移3个单位得到点(Q),则0±3=−m 2+2m +3,解得m =0(舍去)或2或1±√7,故点P 的坐标为(2,3)或(1−√7,−3)或(1+√7,−3);当AC 是对角线时, 由中点公式得:12(0+3)=12(0−m 2+2m +3),解得m =0(舍去)或2,故点P 的坐标为(2,3);综上,点P 的坐标为(2,3)或(1−√7,−3)或(1+√7,−3);(3)∵ON =O′N =1,∠O′ON =∠OCN ,∴tan∠O′OB =tan∠OCN =ONCO =13, 故点O′作O′M ⊥x 轴于点M ,在Rt △O′OM 中,设O′M =x ,则OM =3x ,则MN =3x −1,在Rt △NO′M 中,O′M 2+MN 2=O′N 2,即1=x 2+(3x −1)2,解得x =35, 则NM =3x −1=45,则OM =1+45=95,则点O′的坐标为(95,35),由点NO′的坐标得,直线NO′的表达式为y =34x −34,设直线O′C′交x 轴于点H ,则在Rt △O′NH 中,tan∠O′MH =34,则tan∠O′HN =43,则设直线O′C′的表达式为y =−43x +t ,将点O′的坐标代入上式并解得t =3,故直线C′O′的表达式为y =−43x +3.【解析】(1)用待定系数法即可求解;(2)分AC 是边、AC 是对角线两种情况,利用图形平移和中点公式分别求解即可;(3)在Rt △NO′M 中,O′M 2+MN 2=O′N 2,即1=x 2+(3x −1)2,解得x =35,求出点O′的坐标为(95,35),进而求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省成都市中考数学一诊试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣2的绝对值是()A.2 B.﹣2 C.D.2.2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数约13100000人,创历史新高,将数字13100000用科学记数法表示为()A.13.1×106B.1.31×107C.1.31×108D.0.131×1083.由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.4.函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠25.下列计算正确的是()A.a+3a=4a2B.a4•a4=2a4C.(a2)3=a5 D.(﹣a)3÷(﹣a)=a26.为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,8,7,14,10,8,9,7(单位:个),关于这组数据下列结论正确的是()A.极差是6 B.众数是7 C.中位数是8 D.平均数是107.用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是()A.0.2 B.0.3 C.0.4 D.0.58.如图,⊙O的直径CD过弦EF的中点G,∠DCF=40°,则∠EOD等于()A.10°B.20°C.40°D.80°9.如图,菱形ABCD的周长是20,对角线AC,BD相交于点O,若BD=6,则菱形ABCD的面积是()A.6 B.12 C.24 D.4810.某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x 米,则可列方程为()A.x(x﹣10)=200 B.2x+2(x﹣10)=200 C.2x+2(x+10)=200 D.x(x+10)=200二、填空题(本大题共4个小题,每小题4分,共16分)11.不等式x+3<﹣1的解集是.12.如图,添加一个条件:,使△ADE∽△ACB,(写出一个即可)13.如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是.14.如图,已知AB是⊙O的直径,弦CD⊥AB,AC=2,BC=1,那么cos∠ABD的值是.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤.)15.(1)计算:+||﹣(π﹣3)0+3tan30°=(2)解不等式组:.并写出该不等式组的最大整数解.16.先化简,再求值:÷(﹣x﹣2),其中x为﹣1≤x≤3的整数.17.如图,在亚丁湾一海域执行护航任务的我海军某军舰由东向西行驶.在航行到B处时,发现灯塔A在我军舰的正北方向500米处;当该军舰从B处向正西方向行驶至达C处时,发现灯塔A 在我军舰的北偏东60°的方向.求该军舰行驶的路程.(计算过程和结果均不取近似值)18.如图,在平面直角坐标系xOy中,一次函数y=ax+b的图象与x轴交于点A,与y轴交于点B,已知A(2,0),B(0,1),点C(﹣2,m)在直线AB上,反比例函数y=的图象经过点C.(1)求一次函数及反比例函数的解析式;(2)结合图象直接写出:当x<0时,不等式的解集.19.在一副扑克牌中,拿出红桃2、红桃3、红桃4、红桃5四张牌,洗匀后,小明从中随机摸出一张,记下牌面上的数字为x,然后放回并洗匀,再由小华随机摸出一张,记下牌面上的数字为y,组成一对数(x,y).(1)用列表法或树形图表示出(x,y)的所用可能出现的结果;(2)求小明、小华各摸一次扑克牌所确定的一对数是方程x+y=5的解的概率.20.如图(1),在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.容易证得:CE=CF;(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE、BE、GD三线段之间的数量关系,并证明你的结论.(2)运用(1)中解答所积累的经验和知识,完成下面两题:①如图(2),在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α°,∠ECG=β°,试探索当α和β满足什么关系时,图(1)中GE、BE、GD三线段之间的关系仍然成立,并说明理由.②在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图(3)).设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?若不变,请直接写出结论.一、填空(本大题5个小题,每小题4分,共20分.)21.已知m是方程x2﹣x﹣2=0的一个实数根,则代数式的值为.22.在正方形ABCD中,N是DC的中点,M是AD上异于D的点,且∠NMB=∠MBC,则tan∠ABM= .23.如图,点A为直线y=﹣x上一点,过A作OA的垂线交双曲线y=(x<0)于点B,若OA2﹣AB2=12,则k的值为.24.如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC =5S△BDF,其中正确的结论序号是.25.如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△A n B n C n的顶点B n、C n在圆上.如图1,当n=1时,正三角形的边长a1= ;如图2,当n=2时,正三角形的边长a2= ;如图3,正三角形的边长a n= (用含n的代数式表示).二、解答题(本大题共3个小题,共30分.解答题应写出必要的文字说明,证明过程或演算步骤.)26.某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶成本50元/千克,在第一个月的试销时间内发现,销量w(kg)与销售单价x(元/kg)满足关系式:w=﹣2x+240.(1)设该绿茶的月销售利润为y(元),求y与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,y的值最大?(销售利润=单价×销售量﹣成本﹣投资)(2)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?27.如图,已知AB为⊙O的直径,过⊙O上的点C的切线交AB的延长线于点E,AD⊥EC于点D 且交⊙O于点F,连接BC,CF,AC.(1)求证:BC=CF;(2)若AD=6,DE=8,求BE的长;(3)求证:AF+2DF=AB.28.如图,二次函数y=﹣x2+mx+m+的图象与x轴相交于点A、B(点A在点B的左侧),与y 轴相交于点C,顶点D在第一象限.过点D作x轴的垂线,垂足为H.(1)当m=时,求tan∠ADH的值;(2)当60°≤∠ADB≤90°时,求m的变化范围;(3)设△BCD和△ABC的面积分别为S1、S2,且满足S1=S2,求点D到直线BC的距离.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣2的绝对值是()A.2 B.﹣2 C.D.【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数约13100000人,创历史新高,将数字13100000用科学记数法表示为()A.13.1×106B.1.31×107C.1.31×108D.0.131×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:13100000=1.31×107【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】细心观察图中几何体摆放的位置,根据主视图是从正面看到的图象判定则可.【解答】解:从正面可看到从左往右三列小正方形的个数为:1,1,2.故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠2【考点】二次根式有意义的条件.【分析】二次根式的被开方数大于等于零.【解答】解:依题意,得2﹣x≥0,解得x≤2.故选:C.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.下列计算正确的是()A.a+3a=4a2B.a4•a4=2a4C.(a2)3=a5 D.(﹣a)3÷(﹣a)=a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【专题】探究型.【分析】计算出选项中各个式子的正确结果,即可判断哪个选项是正确的.【解答】解:a+3a=4a,a4•a4=a8 ,(a2)3=a6,(﹣a)3÷(﹣a)=(﹣a)2=a2,故选D.【点评】本题考查同底数幂的除法、合并同类项、同底数幂的乘法、幂的乘方与积的乘方,解题的关键是明确它们各自的计算方法.6.为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,8,7,14,10,8,9,7(单位:个),关于这组数据下列结论正确的是()A.极差是6 B.众数是7 C.中位数是8 D.平均数是10【考点】众数;加权平均数;中位数;极差.【分析】根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断.【解答】解:A.极差=14﹣7=7,结论错误,故A不符合题意;B.众数为7,结论正确,故B符合题意;C.中位数为8.5,结论错误,故C不符合题意;D.平均数是9,结论错误,故D不符合题意;故选:B.【点评】本题考查了极差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.7.用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是()A.0.2 B.0.3 C.0.4 D.0.5【考点】几何概率;扇形统计图.【分析】根据扇形统计图可以得出“陆地”部分占地球总面积的比例,根据这个比例即可求出落在陆地的概率.【解答】解:∵“陆地”部分对应的圆心角是108°,∴“陆地”部分占地球总面积的比例为:108÷360=,∴宇宙中一块陨石落在地球上,落在陆地的概率是=0.3,故选B.【点评】此题主要考查了几何概率,以及扇形统计图.用到的知识点为:概率=相应的面积与总面积之比.8.如图,⊙O的直径CD过弦EF的中点G,∠DCF=40°,则∠EOD等于()A.10°B.20°C.40°D.80°【考点】垂径定理;圆周角定理.【分析】由垂径定理得出,再由圆周角定理即可得出结果.【解答】解:∵⊙O的直径CD过弦EF的中点G,∴,∴∠EOD=2∠DCF=80°;故选:D.【点评】本题考查了垂径定理、圆周角定理;熟练掌握圆周角定理,由垂径定理得出是解决问题的关键.9.如图,菱形ABCD的周长是20,对角线AC,BD相交于点O,若BD=6,则菱形ABCD的面积是()A.6 B.12 C.24 D.48【考点】菱形的性质.【分析】由菱形ABCD的周长是20,即可求得AB=5,然后由股定理即可求得OA的长,继而求得AC的长,则可求得菱形ABCD的面积.【解答】解:∵菱形ABCD的周长是20,∴AB=20÷4=5,AC⊥BD,OB=BD=3,∴OA==4,∴AC=2OA=8,∴菱形ABCD的面积是:AC•BD=×8×6=24.故选C.【点评】此题考查了菱形的性质以及勾股定理.此题难度不大,注意掌握数形结合思想的应用.10.某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x 米,则可列方程为()A.x(x﹣10)=200 B.2x+2(x﹣10)=200 C.2x+2(x+10)=200 D.x(x+10)=200【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】根据花圃的面积为200列出方程即可.【解答】解:∵花圃的长比宽多10米,花圃的宽为x米,∴长为(x+10)米,∵花圃的面积为200,∴可列方程为x(x+10)=200.故选:D.【点评】考查列一元二次方程;根据长方形的面积公式得到方程是解决本题的基本思路.二、填空题(本大题共4个小题,每小题4分,共16分)11.不等式x+3<﹣1的解集是x<﹣4 .【考点】解一元一次不等式.【分析】移项、合并同类项即可求解.【解答】解:移项,得:x<﹣1﹣3,合并同类项,得:x<﹣4.故答案是:x<﹣4.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.如图,添加一个条件:∠ADE=∠ACB ,使△ADE∽△ACB,(写出一个即可)【考点】相似三角形的判定.【专题】开放型.【分析】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件.【解答】解:由题意得,∠A=∠A(公共角),则可添加:∠ADE=∠ACB,利用两角法可判定△ADE∽△ACB.故答案可为:∠ADE=∠ACB(答案不唯一).【点评】本题考查了相似三角形的判定,解答本题的关键是熟练掌握三角形相似的三种判定方法,本题答案不唯一.13.如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是50°.【考点】平行线的性质.【分析】根据平行线性质由AB∥CD得到∠1=∠BCD=40°,再根据垂直的定义得∠CBD=90°,然后利用三角形内角和定理计算∠2的度数.【解答】解:∵AB∥CD,∴∠1=∠BCD=40°,∵DB⊥BC,∴∠CBD=90°,∴∠2=90°﹣40°=50°.故答案为50°.【点评】本题考查了平行线性质:两直线平行,同位角相等.14.如图,已知AB是⊙O的直径,弦CD⊥AB,AC=2,BC=1,那么cos∠ABD的值是.【考点】垂径定理;圆周角定理;解直角三角形.【分析】由圆周角定理得出∠ACB=90°,∠ABD=∠ABC,由勾股定理求出AB,因而求sin∠ABD 的值的问题,就可以转化为求∠ABC的三角函数的值的问题.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴AB==3,∵CD⊥AB,∴,∴∠ABD=∠ABC,∴cos∠ABD=cos∠ABC==,故答案为:.【点评】本题考查了圆周角定理、勾股定理、垂径定理和锐角三角函数的定义;熟练掌握垂径定理,由圆周角定理得出∠ABD=∠ABC是解决问题的关键.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤.)15.(1)计算:+||﹣(π﹣3)0+3tan30°= 3+2(2)解不等式组:.并写出该不等式组的最大整数解.【考点】实数的运算;零指数幂;负整数指数幂;解一元一次不等式组;一元一次不等式组的整数解;特殊角的三角函数值.【专题】计算题;推理填空题.【分析】(1)将=4,||=,(π﹣3)0=1,tan30°=代入到原式,再利用实数的运算法则即可得出结论;(2)解不等式组得出3≤x<5,从而得出结论.【解答】解:(1)原式=4+﹣1+3×,=4+﹣1+,=3+2.故答案为:3+2.(2)解,得,即3≤x<5.故该不等式组的最大整数解是4.【点评】本题考查了实数的运算、零指数幂、负整数指数幂、特殊角的三角函数值以及解一元一次不等式组,解题的关键是:(1)将=4,||=,(π﹣3)0=1,tan30°=代入到原式;(2)能熟练解一元一次不等式组.16.先化简,再求值:÷(﹣x﹣2),其中x为﹣1≤x≤3的整数.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再选出合适的x的值代入进行计算即可.【解答】解:原式=÷=•=,∵x为2时,原代数式无意义,∴x=﹣1或0或1或3,当x=﹣1时,原式=﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.如图,在亚丁湾一海域执行护航任务的我海军某军舰由东向西行驶.在航行到B处时,发现灯塔A在我军舰的正北方向500米处;当该军舰从B处向正西方向行驶至达C处时,发现灯塔A 在我军舰的北偏东60°的方向.求该军舰行驶的路程.(计算过程和结果均不取近似值)【考点】解直角三角形的应用-方向角问题.【专题】计算题;几何图形问题.【分析】易得∠A的度数为60°,利用60°正切值可得BC的值.【解答】解:∵CE∥AB,∴∠ECB=90°∴∠A=∠ECA=60°,∴BC=AB×tan60°=500×=500m.答:该军舰行驶的路程为500m.【点评】考查解直角三角形的应用;用∠A的正切值表示出所求线段长是解决本题的关键.18.如图,在平面直角坐标系xOy中,一次函数y=ax+b的图象与x轴交于点A,与y轴交于点B,已知A(2,0),B(0,1),点C(﹣2,m)在直线AB上,反比例函数y=的图象经过点C.(1)求一次函数及反比例函数的解析式;(2)结合图象直接写出:当x<0时,不等式的解集.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A,B的坐标代入一次函数解析式中,求出a,b的值,得出一次函数解析式;把点C的坐标代入一次函数解析式求出m的值,确定出反比例函数式;(2)结合图象可得出当x<﹣2时,不等式.【解答】解:(1)依题意,得解得∴一次函数的解析式为.∵点C(﹣2,m)在直线AB上,∴,把C(﹣2,2)代入反比例函数y=中,得k=﹣4.∴反比例函数的解析式为.(2)如图,结合图象可知:当x<0时,不等式的解集为x<﹣2.【点评】本题主要考查了反比例函数与一次函数的交点,解题的关键是灵活利用数形结合的思想.19.在一副扑克牌中,拿出红桃2、红桃3、红桃4、红桃5四张牌,洗匀后,小明从中随机摸出一张,记下牌面上的数字为x,然后放回并洗匀,再由小华随机摸出一张,记下牌面上的数字为y,组成一对数(x,y).(1)用列表法或树形图表示出(x,y)的所用可能出现的结果;(2)求小明、小华各摸一次扑克牌所确定的一对数是方程x+y=5的解的概率.【考点】列表法与树状图法;二元一次方程的解.【专题】图表型.【分析】(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果即可.(2)从数对中找出方程x+y=5的解,然后根据概率公式求出该事件的概率即可解答.【解答】解:(1)出现的情况如下:红桃2 红桃3 红桃4 红桃5红桃2 2,2 2,3 2,4 2,5红桃3 3,2 3,3 3,4 3,5红桃4 4,2 4,3 4,4 4,5红桃5 5,2 5,3 5,4 5,5一共有16种.(2)数对(2,3),(3,2)是方程x+y=5的解,所以P(和等于5)==.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.如图(1),在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.容易证得:CE=CF;(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE、BE、GD三线段之间的数量关系,并证明你的结论.(2)运用(1)中解答所积累的经验和知识,完成下面两题:①如图(2),在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α°,∠ECG=β°,试探索当α和β满足什么关系时,图(1)中GE、BE、GD三线段之间的关系仍然成立,并说明理由.②在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图(3)).设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?若不变,请直接写出结论.【考点】四边形综合题.【分析】(1)利用正方形的性质和∠GCE=45°,求出∠GCD+∠BCE=45°,得出∠ECG=∠FCG,再根据△EBC≌△FDC,然后证出△ECG≌△FCG,即可得出结论;(2)①当α=2β时,(1)中的三角形的全等关系即可证明是成立的;②根据(1)的证明.可以得到:AM+CN=MN,据此即可证明△MNP的周长等于正方形边长的2倍,据此即可求解.【解答】解:(1)∵在△EBC和△FDC中,∴△EBC≌△FDC,∴∠DCF=∠BCE,∵∠GCE=45°,∴∠BCE+∠DCG=90°﹣45°=45°,即∠DCG+∠DCF=45°,∴GC=GC,ECG=∠FCG,在△ECG和△FCG中,,∴△ECG≌△FCG,∴EG=GF,即GE=BE+GD.(2)①α=2β.如图,延长AD到F点,使DF=BE,连接CF,可证△EBC≌△FDC,则∠BCE+∠DCG=∠GCF,由α=2β可知∠ECG=∠GCF,可证△ECG≌△FCG,故EG=GF,即GE=BE+GD.②在旋转正方形OABC的过程中,P值无变化.证明:如图,延长BA交y轴于E点,则∠AOE=45°﹣∠AOM,∠CON=90°﹣45°﹣∠AOM=45°﹣∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°﹣90°=90°=∠OCN.在△OAE和△OCN中,.∴△OAE≌△OCN(ASA).∴OE=ON,AE=CN.在△OME和△OMN中.∴△OME≌△OMN(SAS).∴MN=ME=AM+AE.∴MN=AM+CN,∴P=MN+BN+BM=AM+CN+BN+BM=AB+BC=2.∴在旋转正方形OABC的过程中,P值无变化.【点评】此题考查四边形综合题,利用图形的旋转,正方形的性质,三角形全等的判定与性质解决问题,正确理解(1)中的证明以及结论是解题的关键.一、填空(本大题5个小题,每小题4分,共20分.)21.已知m是方程x2﹣x﹣2=0的一个实数根,则代数式的值为 4 .【考点】一元二次方程的解;分式的化简求值.【专题】计算题.【分析】先把所求的分式变形得到(m2﹣m)(m﹣+1)=(m2﹣m)•,再根据一元二次方程的解的定义得到m2﹣m﹣2=0,变形得到m2﹣m=2和m2﹣2=m,然后把它们整体代入所求的代数式中即可得到代数式的值.【解答】解:∵m是方程x2﹣x﹣2=0的一个实数根,∴m2﹣m﹣2=0,∴m2﹣m=2,m2﹣2=m,∴(m2﹣m)(m﹣+1)=(m2﹣m)•=2×=2×2=4.故答案为4.【点评】本题考查了一元二次方程的解:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.也考查了分式的化简求值以及整体的思想的运用.22.在正方形ABCD中,N是DC的中点,M是AD上异于D的点,且∠NMB=∠MBC,则tan∠ABM= .【考点】解直角三角形;正方形的性质;相似三角形的判定与性质.【专题】计算题.【分析】根据∠NMB=∠MBC,延长MN,BC相交于T,得到等腰△TBM,连接点T和MB的中点,得到相似三角形,然后由相似三角形的性质进行计算,求出∠ABM的正切.【解答】解:如图:延长MN交BC的延长线于T,设MB的中点为O,连TO,则OT⊥BM,∵∠ABM+∠MBT=90°,∠OTB+∠MBT=90°,∴∠ABM=∠OTB,则△BAM∽△TOB,∴=,即=,即MB2=2AM•BT ①令DN=1,CT=MD=K,则:AM=2﹣K,BM=,BT=2+K,代入①中得:4+(2﹣K)2=2(2﹣K)(2+K),解方程得:K1=0(舍去),K2=.∴AM=2﹣=.tan∠ABM===.故答案是:.【点评】本题考查的是解直角三角形,运用正方形的性质,根据题目中角的关系,判断两个三角形相似,然后用相似三角形的性质进行计算,求出直角三角形中边的长度,再用正切的定义求出角的正切值.23.如图,点A为直线y=﹣x上一点,过A作OA的垂线交双曲线y=(x<0)于点B,若OA2﹣AB2=12,则k的值为﹣6 .【考点】反比例函数与一次函数的交点问题.【分析】延长AB交x轴于C点,作AF⊥x轴于F点,BE⊥x轴于E点,由于直线y=﹣x为第二、四象限的角平分线,则△AOB、△BEC为等腰直角三角形,根据等腰直角三角形的性质得AC=AO=AF,BC=BE=CE,AF=OC,可得到AB=AC﹣BC=(AF﹣BE),利用OA2﹣AB2=12变形得2AF•BE﹣BE2=6,即BE(2AF﹣BE)=6,由于OC=2AF,BE=EC,所以BE•OE=6,则得到B 点的横纵坐标之积为﹣6,从而得到k的值为﹣6.【解答】解:延长AB交x轴于C点,作AF⊥x轴于F点,BE⊥x轴于E点,如图,∵点A为直线y=﹣x上一点,∴∠AOC=90°,∵AB⊥直线y=﹣x,∴△AOC、△BEC为等腰直角三角形,∴AC=AO=AF,BC=BE=CE,AF=OC,∴AB=AC﹣BC=(AF﹣BE),∵OA2﹣AB2=12,∴(AF)2﹣[(AF﹣BE)]2=12,整理得2AF•BE﹣BE2=6,∴BE(2AF﹣BE)=6,∴BE(OC﹣CE)=6,即BE•OE=6,设B点坐标为(x,y),则BE=y,OE=﹣x,∴BE•OE=﹣xy=6,∴xy=﹣6,∴k=﹣6.故答案为﹣6.【点评】本题考查了反比例函数的综合题:反比例函数图象上点的坐标满足其解析式;熟练运用等腰直角三角形的性质解决几何计算.24.如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC =5S△BDF,其中正确的结论序号是①③.【考点】相似三角形的判定与性质;勾股定理;等腰直角三角形.【专题】压轴题.【分析】首先根据题意易证得△AFG∽△CFB,根据相似三角形的对应边成比例与BA=BC,继而证得正确;由点D是AB的中点,易证得BC=2BD,由等角的余角相等,可得∠DBE=∠BCD,即可得AG=AB,继而可得FG=BF;即可得AF=AC,又由等腰直角三角形的性质,可得AC=AB,即可求得AF=AB;则可得S△ABC =6S△BDF.【解答】解:∵在Rt△ABC中,∠ABC=90°,∴AB⊥BC,AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正确;∵∠ABC=90°,BG⊥CD,∴∠DBE+∠BDE=∠BDE+∠BCD=90°,∴∠DBE=∠BCD,在△ABG和△BCD中,故△ABG≌△BCD(ASA),则AG=BD,∵AB=CB,点D是AB的中点,∴BD=AB=CB,∵tan∠BCD==,∴在Rt△ABG中,tan∠DBE==,∵=,∴FG=FB,∵GE≠BF,∴点F不是GE的中点.故②错误;∵△AFG∽△CFB,∴AF:CF=AG:BC=1:2,∴AF=AC,∵AC=AB,∴AF=AB,故③正确;∵BD=AB,AF=AC,∴S△ABC =6S△BDF,故④错误.故答案为:①③.【点评】此题考查了相似三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题难度适中,解题的关键是证得△AFG∽△CFB,注意掌握数形结合思想与转化思想的应用.25.如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△A n B n C n的顶点B n、C n在圆上.如图1,当n=1时,正三角形的边长a1= ;如图2,当n=2时,正三角形的边长a2= ;如图3,正三角形的边长a n= (用含n的代数式表示).【考点】正多边形和圆.【专题】压轴题;规律型.【分析】(1)设PQ与B1C1交于点D,连接OB1,由特殊角的三角函数值可得,OD=A1D﹣OA1=a1﹣1,再由勾股定理即可求出a1的值;(2)设PQ与B2C2交于点E,连接OB2,由特殊角的三角函数值可得OE=2A1A2﹣OA1=a2﹣1,再由Rt△OB2E勾股定理即可求出a2的值;(3)设PQ与B n C n交于点F,连接OBn,则OF=na n﹣1,在Rt△OB n F中利用勾股定理可得,a n=.【解答】解:(1)设PQ与B1C1交于点D,连接OB1,则OD=A1D﹣OA1=a1﹣1,在Rt△OB1D中,OB12=B1D2+OD2,即12=(a1)2+(a1﹣1)2,解得,a1=;(2)设PQ与B2C2交于点E,连接OB2,则OE=2A1A2﹣OA1=a2﹣1,在Rt△OB2E中,OB22=B2E2+OE2,即12=(a2)2+(a2﹣1)2,解得,a2=;(3)设PQ与B n C n交于点F,连接OBn,则OF=na n﹣1,在Rt△OB n F中,OB n2=B n F2+OF2,即12=(a n)2+(na n﹣1)2,解得,a n=.故答案为:,,.【点评】本题考查的是正多边形与圆及特殊角的三角函数值,根据题意作出辅助线,找出规律是解答此题的关键.二、解答题(本大题共3个小题,共30分.解答题应写出必要的文字说明,证明过程或演算步骤.)26.某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶成本50元/千克,在第一个月的试销时间内发现,销量w(kg)与销售单价x(元/kg)满足关系式:w=﹣2x+240.(1)设该绿茶的月销售利润为y(元),求y与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,y的值最大?(销售利润=单价×销售量﹣成本﹣投资)。

相关文档
最新文档