数学知识点:向量共线的充要条件及坐标表示
向量三点共线的充要条件

向量三点共线的充要条件
零向量与任何向量共线。
非零向量共线条件是b=λa,其中
a≠0,λ是唯一实数。
共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,任意一组平行向量都可移到同一直线上,所以称为共线向量。
向量三点共线的充要条件 1
零向量与任何向量共线
以下考虑非零向量,三个方法
(1)方向相同或相反
(2)向量a=k向量b
(3)a=(x1,y1),b=(x2,y2)
a//b等价于x1y2-x2y1=0
共线向量基本定理
如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。
证明:
1)充分性:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由实数与向量的积的定义知,向量a与b共线。
2)必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即∣b∣=m∣a∣。
那么当向量a与b 同方向时,令λ=m,有b=λa,当向量a与b反方向时,令λ=-m,有b=λa。
如果b=0,那么λ=0。
3)唯一性:如果b=λa=μa,那么(λ-μ)a=0。
但因a≠0,所以λ=μ。
2 第2课时 两向量共线的充要条件及应用

第2课时 两向量共线的充要条件及应用问题导学预习教材P31-P33的内容,思考以下问题: 1.两向量共线的充要条件是什么? 2.如何利用向量的坐标表示两个向量共线?两向量共线的充要条件设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ,b (b ≠0)共线的充要条件是x 1y 2-x 2y 1=0. ■名师点拨(1)两个向量共线的坐标表示还可以写成x 1x 2=y 1y 2(x 2≠0,y 2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例.(2)当a ≠0,b =0时,a ∥b ,此时x 1y 2-x 2y 1=0也成立,即对任意向量a ,b 都有x 1y 2-x 2y 1=0⇔a ∥b .判断(正确的打“√”,错误的打“×”) (1)向量(1,2)与向量(4,8)共线.( )(2)已知a =(x 1,y 1),b =(x 2,y 2),若a ∥b ,则必有x 1y 2=x 2y 1.( ) 答案:(1)√ (2)√下列各组的两个向量共线的是( ) A .a 1=(-2,3),b 1=(4,6) B .a 2=(1,-2),b 2=(7,14) C .a 3=(2,3),b 3=(3,2) D .a 4=(-3,2),b 4=(6,-4) 答案:D已知两点A (2,-1),B (3,1),与AB →平行且方向相反的向量a 可能是( ) A .a =(1,-2) B .a =(9,3) C .a =(-1,2) D .a =(-4,-8)解析:选D.由题意得AB →=(1,2),结合选项可知a =(-4,-8)=-4(1,2)=-4AB →,所以D 正确.已知a =(3,1),b =(2,λ),若a ∥b ,则实数λ的值为________. 答案:23向量共线的判定(1)已知向量a =(1,-2),b =(3,4).若(3a -b )∥(a +k b ),则k =________. (2)已知A (-1,-1),B (1,3),C (2,5),判断AB →与AC →是否共线?如果共线,它们的方向相同还是相反?【解】 (1)3a -b =(0,-10),a +k b =(1+3k ,-2+4k ), 因为(3a -b )∥(a +k b ),所以0-(-10-30k )=0, 所以k =-13.故填-13.(2)因为AB →=(1-(-1),3-(-1))=(2,4), AC →=(2-(-1),5-(-1))=(3,6), 因为2×6-3×4=0,所以AB →∥AC →,所以AB →与AC →共线. 又AB →=23AC →,所以AB →与AC →的方向相同.[变问法]若本例(1)条件不变,判断向量(3a -b )与(a +k b )是反向还是同向? 解:由向量(3a -b )与(a +k b )共线,得k =-13,所以3a -b =(3,-6)-(3,4)=(0,-10), a +k b =a -13b =(1,-2)-13(3,4)=⎝⎛⎭⎫0,-103=13(0,-10), 所以向量(3a -b )与(a +k b )同向.向量共线的判定方法1.(2019·河北衡水景县中学检测)已知向量a =(-1,2),b =(λ,1).若a +b 与a 平行,则λ=( )A .-5B .52C .7D .-12解析:选D.a +b =(-1,2)+(λ,1)=(λ-1,3),由a +b 与a 平行,可得-1×3-2×(λ-1)=0,解得λ=-12.2.已知A (2,1),B (0,4),C (1,3),D (5,-3).判断AB →与CD →是否共线?如果共线,它们的方向相同还是相反?解:AB →=(0,4)-(2,1)=(-2,3), CD →=(5,-3)-(1,3)=(4,-6).法一:因为(-2)×(-6)-3×4=0,且(-2)×4<0, 所以AB →与CD →共线且方向相反.法二:因为CD →=-2AB →,所以AB →与CD →共线且方向相反.三点共线问题(1)已知OA →=(3,4),OB →=(7,12),OC →=(9,16),求证:点A ,B ,C 共线; (2)设向量OA →=(k ,12),OB →=(4,5),OC →=(10,k ),求当k 为何值时,A ,B ,C 三点共线.【解】 (1)证明:由题意知AB →=OB →-OA →=(4,8), AC →=OC →-OA →=(6,12),所以AC →=32AB →,即AB →与AC →共线.又因为AB →与AC →有公共点A ,所以点A ,B ,C 共线. (2)法一:因为A ,B ,C 三点共线,即AB →与AC →共线, 所以存在实数λ(λ∈R ),使得AB →=λAC →.因为AB →=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(10-k ,k -12), 所以(4-k ,-7)=λ(10-k ,k -12),即⎩⎪⎨⎪⎧4-k =λ(10-k ),-7=λ(k -12),解得k =-2或k =11.所以当k =-2或k =11时,A ,B ,C 三点共线. 法二:由已知得AB →与AC →共线,因为AB →=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(10-k ,k -12), 所以(4-k )(k -12)+7(10-k )=0, 所以k 2-9k -22=0,解得k =-2或k =11. 所以当k =-2或k =11时,A ,B ,C 三点共线.判断向量(或三点)共线的三个步骤1.已知A ,B ,C 三点共线,且A (-3,6),B (-5,2),若C 点的纵坐标为6,则C 点的横坐标为( )A .-3B .9C .-9D .3解析:选A.设C (x ,6),因为A ,B ,C 三点共线,所以AB →∥AC →, 又AB →=(-2,-4),AC →=(x +3,0), 所以-2×0+4(x +3)=0.所以x =-3.2.设点A (x ,1),B (2x ,2),C (1,2x ),D (5,3x ),当x 为何值时,AB →与CD →共线且方向相同,此时A ,B ,C ,D 能否在同一条直线上?解:AB →=(2x ,2)-(x ,1)=(x ,1), BC →=(1,2x )-(2x ,2)=(1-2x ,2x -2), CD →=(5,3x )-(1,2x )=(4,x ). 由AB →与CD →共线,所以x 2=1×4, 所以x =±2.又AB →与CD →方向相同,所以x =2.所以当x =2时,AB →与CD →共线且方向相同. 此时,AB →=(2,1),BC →=(-3,2), 而2×2≠-3×1,所以AB →与BC →不共线, 所以A ,B ,C 三点不在同一条直线上. 所以A ,B ,C ,D 不在同一条直线上.向量共线的应用如图所示,在△AOB 中,A (0,5),O (0,0),B (4,3),OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,求点M 的坐标.【解】 因为OC →=14OA →=14(0,5)=⎝⎛⎭⎫0,54, 所以C ⎝⎛⎭⎫0,54. 因为OD →=12OB →=12(4,3)=⎝⎛⎭⎫2,32, 所以D ⎝⎛⎭⎫2,32. 设M (x ,y ),则AM →=(x ,y -5),AD →=⎝⎛⎭⎫2-0,32-5=⎝⎛⎭⎫2,-72. 因为AM →∥AD →,所以-72x -2(y -5)=0,即7x +4y =20.①又CM →=⎝⎛⎭⎫x ,y -54,CB →=⎝⎛⎭⎫4,74, 因为CM →∥CB →,所以74x -4⎝⎛⎭⎫y -54=0, 即7x -16y =-20.②联立①②解得x =127,y =2,故点M 的坐标为⎝⎛⎭⎫127,2.应用向量共线的坐标表示求解几何问题的步骤如图所示,已知△ABC ,A (7,8),B (3,5),C (4,3),M ,N ,D 分别是AB ,AC ,BC 的中点,且MN 与AD 交于点F ,求DF →的坐标.解:因为A (7,8),B (3,5),C (4,3),所以AB →=(3-7,5-8)=(-4,-3),AC →=(4-7,3-8)=(-3,-5).又因为D 是BC 的中点,所以AD →=12(AB →+AC →)=12(-4-3,-3-5)=12(-7,-8)=⎝⎛⎭⎫-72,-4.因为M ,N 分别为AB ,AC 的中点,所以F 为AD 的中点,所以DF →=-FD →=-12AD →=-12⎝⎛⎭⎫-72,-4=⎝⎛⎭⎫74,2.1.已知向量a =(1,-2),b =(m ,4),且a ∥b ,那么2a -b =( ) A .(4,0) B .(0,4) C .(4,-8)D .(-4,8)解析:选C.因为向量a =(1,-2),b =(m ,4),且a ∥b ,所以1×4=(-2)×m ,所以m =-2,所以2a -b =(2-m ,-4-4)=(4,-8).2.若三点A (4,3),B (5,m ),C (6,n )在一条直线上,则下列式子一定正确的是( ) A .2m -n =3 B .n -m =1 C .m =3,n =5D .m -2n =3解析:选A.因为三点A (4,3),B (5,m ),C (6,n )在一条直线上,所以AB →=λAC →,所以(1,m -3)=λ(2,n -3),所以λ=12,所以m -3=12(n -3),即2m -n =3.3.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)求满足a =m b +n c 的实数m ,n 的值; (2)若(a +k c )∥(2b -a ),求实数k 的值.解:(1)因为a =m b +n c ,所以(3,2)=m (-1,2)+n (4,1)=(-m +4n ,2m +n ).所以⎩⎪⎨⎪⎧-m +4n =3,2m +n =2,解得⎩⎨⎧m =59,n =89.(2)因为(a +k c )∥(2b -a ),又a +k c =(3+4k ,2+k ),2b -a =(-5,2), 所以2×(3+4k )-(-5)×(2+k )=0. 所以k =-1613.[A 基础达标]1.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ) A .(-5,-10)B .(-4,-8)C .(-3,-6)D .(-2,-4)解析:选B.因为平面向量a =(1,2),b =(-2,m ),且a ∥b ,所以1×m -(-2)×2=0,解得m =-4,所以2a +3b =2(1,2)+3(-2,-4)=(-4,-8).2.已知a =(sin α,1),b =(cos α,2),若b ∥a ,则tan α=( ) A.12 B .2 C .-12D .-2解析:选A.因为b ∥a ,所以2sin α=cos α,所以sin αcos α=12,所以tan α=12.3.已知向量a =(1,2),b =(0,1),设u =a +k b ,v =2a -b ,若u ∥v ,则实数k 的值是( )A .-72B .-12C .-43D .-83解析:选B.v =2(1,2)-(0,1)=(2,3),u =(1,2)+k (0,1)=(1,2+k ).因为u ∥v ,所以2(2+k )-1×3=0,解得k =-12.4.若AB →=i +2j ,DC →=(3-x )i +(4-y )j (其中i ,j 的方向分别与x ,y 轴正方向相同且为单位向量).AB →与DC →共线,则x ,y 的值可能分别为( )A .1,2B .2,2C .3,2D .2,4解析:选B.由题意知,AB →=(1,2),DC →=(3-x ,4-y ). 因为AB →∥DC →,所以4-y -2(3-x )=0,即2x -y -2=0.只有B 选项,x =2,y =2代入满足.故选B.5.已知A (1,-3),B ⎝⎛⎭⎫8,12,且A ,B ,C 三点共线,则点C 的坐标可以是( ) A .(-9,1) B .(9,-1) C .(9,1)D .(-9,-1)解析:选C.设点C 的坐标是(x ,y ), 因为A ,B ,C 三点共线,所以AB →∥AC →.因为AB →=⎝⎛⎭⎫8,12-(1,-3)=⎝⎛⎭⎫7,72, AC →=(x ,y )-(1,-3)=(x -1,y +3), 所以7(y +3)-72(x -1)=0,整理得x -2y =7,经检验可知点(9,1)符合要求,故选C.6.已知向量a =(3x -1,4)与b =(1,2)共线,则实数x 的值为________.解析:因为向量a =(3x -1,4)与b =(1,2)共线,所以2(3x -1)-4×1=0,解得x =1. 答案:17.已知A (2,1),B (0,2),C (-2,1),O (0,0),给出下列结论: ①直线OC 与直线BA 平行; ②AB →+BC →=CA →; ③OA →+OC →=OB →; ④AC →=OB →-2OA →.其中,正确结论的序号为________.解析:①因为OC →=(-2,1),BA →=(2,-1),所以OC →=-BA →,又直线OC ,BA 不重合,所以直线OC ∥BA ,所以①正确;②因为AB →+BC →=AC →≠CA →,所以②错误;③因为OA →+OC →=(0,2)=OB →,所以③正确;④因为AC →=(-4,0),OB →-2OA →=(0,2)-2(2,1)=(-4,0),所以④正确.答案:①③④8.对于任意的两个向量m =(a ,b ),n =(c ,d ),规定运算“⊗”为m ⊗n =(ac -bd ,bc +ad ),运算“⊕”为m ⊕n =(a +c ,b +d ).设m =(p ,q ),若(1,2)⊗m =(5,0),则(1,2)⊕m 等于________.解析:由(1,2)⊗m =(5,0),可得⎩⎪⎨⎪⎧p -2q =5,2p +q =0,解得⎩⎪⎨⎪⎧p =1,q =-2,所以(1,2)⊕m =(1,2)⊕(1,-2)=(2,0).答案:(2,0)9.已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值. 解:(1)k a -b =k (1,0)-(2,1)=(k -2,-1), a +2b =(1,0)+2(2,1)=(5,2). 因为k a -b 与a +2b 共线,所以2(k -2)-(-1)×5=0,得k =-12.所以当k =-12时,k a -b 与a +2b 共线.(2)因为A ,B ,C 三点共线, 所以AB →=λBC →,λ∈R , 即2a +3b =λ(a +m b ),所以⎩⎪⎨⎪⎧2=λ,3=mλ,解得m =32.10.(1)已知A (-2,4),B (3,-1),C (-3,-4),且CM →=3CA →,CN →=2CB →,求M ,N 及MN →的坐标;(2)已知P 1(2,-1),P 2(-1,3),P 在直线P 1P 2上,且|P 1P →|=23|PP 2→|.求点P 的坐标.解:(1)法一:由A (-2,4),B (3,-1),C (-3,-4),可得CA →=(-2,4)-(-3,-4)=(1,8),CB →=(3,-1)-(-3,-4)=(6,3),所以CM →=3CA →=3(1,8)=(3,24),CN →=2CB →=2(6,3)=(12,6).设M (x 1,y 1),N (x 2,y 2).则CM →=(x 1+3,y 1+4)=(3,24),CN →=(x 2+3,y 2+4)=(12,6), 所以x 1=0,y 1=20,x 2=9,y 2=2,即M (0,20),N (9,2), 所以MN →=(9,2)-(0,20)=(9,-18). 法二:设点O 为坐标原点,则由CM →=3CA →,CN →=2CB →,可得OM →-OC →=3(OA →-OC →),ON →-OC →=2(OB →-OC →),从而OM →=3OA →-2OC →,ON →=2OB →-OC →,所以OM →=3(-2,4)-2(-3,-4)=(0,20),ON →=2(3,-1)-(-3,-4)=(9,2),即点M (0,20),N (9,2),故MN →=(9,2)-(0,20)=(9,-18).(2)①当点P 在线段P 1P 2上时,如图a :则有P 1P →=23PP 2→,设点P 的坐标为(x ,y ),所以(x -2,y +1)=23(-1-x ,3-y ),所以⎩⎨⎧x -2=23(-1-x ),y +1=23(3-y ),解得⎩⎨⎧x =45,y =35.故点P 的坐标为⎝⎛⎭⎫45,35.②当点P 在线段P 2P 1的延长线上时,如图b :则有P 1P →=-23PP 2→,设点P 的坐标为(x ,y ),所以(x -2,y +1)=-23(-1-x ,3-y ),所以⎩⎨⎧x -2=-23(-1-x),y +1=-23(3-y ),解得⎩⎪⎨⎪⎧x =8,y =-9.故点P 的坐标为(8,-9).综上可得点P 的坐标为⎝⎛⎭⎫45,35或(8,-9).[B 能力提升]11.已知向量a =(1,0),b =(0,1),c =k a +b (k ∈R ),d =a -b ,如果c ∥d ,那么() A .k =1且c 与d 同向B .k =1且c 与d 反向C .k =-1且c 与d 同向D .k =-1且c 与d 反向解析:选D.因为a =(1,0),b =(0,1),若k =1,则c =a +b =(1,1),d =a -b =(1,-1),显然,c 与d 不平行,排除A 、B.若k =-1,则c =-a +b =(-1,1),d =a -b =-(-1,1),即c ∥d 且c 与d 反向.12.已知向量a =(-2,3),b ∥a ,向量b 的起点为A (1,2),终点B 在坐标轴上,则点B 的坐标为________.解析:由b ∥a ,可设b =λa =(-2λ,3λ).设B (x ,y ),则AB →=(x -1,y -2)=b .由⎩⎪⎨⎪⎧-2λ=x -1,3λ=y -2⇒⎩⎪⎨⎪⎧x =1-2λ,y =3λ+2.又B 点在坐标轴上,则1-2λ=0或3λ+2=0,所以B ⎝⎛⎭⎫0,72或⎝⎛⎭⎫73,0. 答案:⎝⎛⎭⎫0,72或⎝⎛⎭⎫73,0 13.如图所示,在四边形ABCD 中,已知A (2,6),B (6,4),C (5,0),D (1,0),则直线AC 与BD 交点P 的坐标为______.解析:设P (x ,y ),则DP →=(x -1,y ),DB →=(5,4),CA →=(-3,6),DC→=(4,0).由B ,P ,D 三点共线可得DP →=λDB →=(5λ,4λ).又因为CP →=DP →-DC →=(5λ-4,4λ),由CP →与CA →共线得,(5λ-4)×6+12λ=0.解得λ=47, 所以DP →=47DB →=⎝⎛⎭⎫207,167, 所以P 的坐标为⎝⎛⎭⎫277,167.答案:⎝⎛⎭⎫277,16714.(2019·江苏扬州中学第一学期阶段性测试)设OA →=(2,-1),OB →=(3,0),OC →=(m ,3).(1)当m =8时,将OC →用OA →和OB →表示;(2)若A ,B ,C 三点能构成三角形,求实数m 应满足的条件.解:(1)当m =8时,OC →=(8,3),设OC →=xOA →+yOB →,则x (2,-1)+y (3,0)=(2x +3y ,-x )=(8,3),所以⎩⎪⎨⎪⎧2x +3y =8,-x =3,所以⎩⎪⎨⎪⎧x =-3,y =143,所以OC →=-3OA →+143OB →. (2)因为A ,B ,C 三点能构成三角形,所以AB →,AC →不共线,又AB →=(1,1),AC →=(m -2,4),所以1×4-1×(m -2)≠0,所以m ≠6.[C 拓展探究]15.已知平面上有A (-2,1),B (1,4),D (4,-3)三点,点C 在直线AB 上,且AC →=12BC →,连接DC ,点E 在CD 上,且CE →=14ED →,求E 点的坐标. 解:因为AC →=12BC →,所以2AC →=BC →, 所以2AC →+CA →=BC →+CA →,所以AC →=BA →.设C 点坐标为(x ,y ),则(x +2,y -1)=(-3,-3),所以x =-5,y =-2,所以C (-5,-2).因为CE →=14ED →, 所以4CE →=ED →,所以4CE →+4ED →=5ED →,所以4CD →=5ED →.设E 点坐标为(x ′,y ′),则4(9,-1)=5(4-x ′,-3-y ′).所以⎩⎪⎨⎪⎧20-5x ′=36,-15-5y ′=-4,解得⎩⎨⎧x ′=-165,y ′=-115. 所以E 点的坐标为⎝⎛⎭⎫-165,-115.。
两个向量共线的充要条件证明坐标证明

两个向量共线的充要条件证明坐标证明两个向量共线的充要条件,这个话题听起来可能有点高深,其实就像生活中的很多事情,有时候看似复杂,实际上却简单得令人惊讶。
我们先来聊聊什么是共线。
想象一下,两条路,交错在一起,这就是共线,向量也是如此。
当我们说两个向量共线,实际上是说它们在同一条直线上,方向一致,或者说是背道而驰。
好啦,咱们先把这些专业术语放一边,来点轻松的。
想象你和朋友一起走路,你们的步伐完全一致,走得慢的慢,走得快的快,简直就像双胞胎一样。
这时候,你们的步伐就是共线的。
再想象一下,如果你和朋友的步伐完全相反,就像在演一场“反向走”的戏剧,那也是共线,虽然方向不同。
这个时候,我们就得引入一个很重要的概念,比例。
简单来说,如果一个向量可以被另一个向量缩放,就像把一条橡皮筋拉长或者缩短,那这两个向量就一定是共线的。
为了更直观地理解这个,咱们来个例子。
假设你有一个向量A,它的坐标是(2, 4),你有另一个向量B,坐标是(1, 2)。
当你把向量A的每一个坐标都乘以1/2,嘿,神奇的事情发生了,你得到了向量B。
是不是感觉很神奇?这就是共线的直接体现。
好比你把一个大西瓜切成小块,虽然块变小了,但本质上还是西瓜。
就这么简单,两个向量,只要能互相变换,就能说它们是共线的。
让我们深入探讨一下坐标系统。
想象一个坐标轴,就像是一个巨大的棋盘,x轴是横着的,y轴是竖着的。
每个向量都在这个棋盘上占有一席之地。
举个例子,向量A (3, 6)在这个棋盘上可能正好坐落在一个特别的方格里。
假如有一个向量B(k, 2k),我们可以发现只要k是个正数,B就可以沿着A的方向移动。
再举个例子,如果k=3,那向量B就变成了(3, 6),这俩家伙现在真的是一模一样。
说到这里,可能有人会问,为什么要这么复杂呢?其实啊,生活中很多事情都是这样,有时候看上去特别复杂,实际上就是几个简单的原则在起作用。
想想看,当你和朋友一起去旅行,沿着同一条路走,无论你们走得多快,只要保持方向一致,那你们的旅程就是共线的。
高中数学 平面向量的基本定理及坐标表示 第3课时 平面向量共线的坐标表示课件 新人教A必修4

❖ [解析] ∵λa+b=(λ,2λ)+(2,3)=(λ+2,2λ +3),
❖ ∴存在实数k,使(λ+2,2λ+3)=k(-4,- 7),
❖ [例5] 已知A(-1,2),B(1,4). ❖ (1)求AB的中点M的坐标; ❖ (2)求AB的三等分点P、Q的坐标; ❖ (3)设D为直线AB上与A、B不重合的一点,
❖ 5.已知a=(3,2),b=(2,-1),若λa+b 与a+λb(λ∈R)平行,则λ=________.
❖ [答案] 1或-1
❖ [解析] λa+b=λ(3,2)+(2,-1)=(3λ+ 2,2λ-1),a+λb=(3,2)+λ(2,-1)=(3+ 2λ,2-λ).
❖ ∵(λa+b)∥(a+λb),
❖ 由(k-6,2k+4)=λ(14,-4),得
❖ 故当k=-1时,ka+2b与2a-4b平行. ❖ [点评] 可由向量平行的坐标表示的充要
条件得
❖ (k-6)×(-4)-(2k+4)×14=0,得k=-1.
❖ (08·全国Ⅱ)设向量a=(1,2),b=(2,3),若 向量λa+b与向量c=(-4,-7)共线,则λ =______.
❖ 3.[在证明直] 角由坐已标知条系件x得O,y内A→B,=(已0,1)知-(A-(-2,2-,3)=-(23,4),), A→BC(=0,(12),5,)-C(-(22,,5)-,3)求=(证4,8A).、B、C三点共线.
∵2×8-4×4=0,∴A→B∥A→C,
∵A→B与A→C有公共点 A,∴A、B、C 三点共线.
❖ 重点:用平面向量坐标表示向量共线条件.
❖ 难点:运用平面向量坐标表示向量共线条件 的应用,体会向量在解题中的工具性作用.
❖ 1.若a与b共线(b≠0),则存在实数λ,使a =λb,这里b≠0的条件千万不可忽视,而 在坐标表示的共线条件中,若a=(x1,y1), b=(x2,y2),则a∥b⇔x1y2-x2y1=0,对任 意向量a,b都成立,解题时,要区别应 用.
高中数学第二章平面向量2.3.4平面向量共线的坐标表示课件16

【典例】已知A(1,-3),B (8, 1) ,且A,B,C三点共线,则C的坐标可以是 ( )
2
A.(-9,1)
B.(9,-1)
C.(9,1)
D.(-9,-1)
【思路导引】设出点C的坐标,因为A,B,C三点共线,写出向量 AB,AC(或BC), 由向量共线的条件结合选项求解.
【解题策略】 (1)三点共线问题的实质是向量共线问题,其解题思路是:先利用三点构造出两 个向量,求出唯一确定的实数λ使得两个向量共线,由于两向量过同一点,所以 两向量所在的直线必重合,即三点共线. (2)求解直线或线段的交点问题,常规方法为写出直线或线段对应的直线方程, 建立方程组求解,而利用向量方法借助共线向量的充要条件可减少运算量,且思 路简单明快.
()
(2)向量(2,3)与向量(-4,-6)同向.
()
(3)如果x1y2-x2y1=0,那么向量a=(x1,y1)与向量b=(x2,y2)共线. ( )
2.下列向量组中,不共线的向量组是 ( )
A.e1=(0,0),e2=(1,-2) B.e1=(-1,2),e2=(5,7) C.e1=(3,5),e2=(6,10) D.e1=(2,-3),e2= (1 , 3)
22
3
5.已知圆C:(x-3)2+(y-3)2=4及点A(1,1),M为圆C上的任意一点,点N在线段MA的 延长线上,且MA=2养达标
1.下列满足平行的一组向量是 ( ) A.a=(1,-4),b=(504,-2 016) B.a=(2,3),b=(4,-6) C.a=(1,2),b=(-1 008,2 016) D.a=(-1,4),b=(3,12) 【解析】选A.a,b共线,当且仅当存在实数λ,使a=λb(b≠0),经验证,只有A选项 满足条件.
两向量共线的充要条件及应用课件 新人教A版必修第二册.ppt

(2)当 a≠0,b=0 时,a∥b,此时 x1y2-x2y1=0 也成立,即对 任意向量 a,b 都有 x1y2-x2y1=0⇔a∥b.
判断(正确的打“√”,错误的打“×”)
第六章 平面向量及其应用
第 2 课时 两向量共线的充要条件及应用
问题导学 预习教材 P31-P33 的内容,思考以下问题: 1.两向量共线的充要条件是什么? 2.如何利用向量的坐标表示两个向量共线?
两向量共线的充要条件
设 a=(x1,y1),b=(x2,y2),其中 b≠0.则 a,b(b≠0)共线的充 要条件是___x_1y_2_-__x_2y_1_=__0____. ■名师点拨
由A→B与C→D共线,所以 x2=1×4, 所以 x=±2. 又A→B与C→D方向相同,所以 x=2. 所以当 x=2 时,A→B与C→D共线且方向相同. 此时,A→B=(2,1),B→C=(-3,2), 而 2×2≠-3×1,所以A→B与B→C不共线, 所以 A,B,C 三点不在同一条直线上. 所以 A,B,C,D 不在同一条直线上.
(1)向量(1,2)与向量(4,8)共线.(√ ) (2)已知 a=(x1,y1),b=(x2,y2),若 a∥b,则必有 x1y2=x2y1.( √ )
下列各组的两个向量共线的是( ) A.a1=(-2,3),b1=(4,6) B.a2=(1,-2),b2=(7,14) C.a3=(2,3),b3=(3,2) D.a4=(-3,2),b4=(6,-4) 答案:D
-8).
2.若三点 A(4,3),B(5,m),C(6,n)在一条直线上,则下列
共线向量基本定理三点共线

共线向量基本定理三点共线
三点共线定理:若OC=λOA+μOB,且λ+μ=1,则A、B、C三点共线。
共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,所以称为共线向量。
证明过程:
AC=OC-OA=λOA+μOB-OA=μOB+(λ-1)OA=μ(OB-OA)。
而AB=OB-OA,即AB=μAC,故A、B、C三点共线。
共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上。
所以称为共线向量。
共线向量基本定理为如果a≠0,那么向量b 与a共线的充要条件是:存在唯一实数λ,使得b=λa。
高一数学人必修课件向量共线的条件与轴上向量坐标运算

计算分子间的相互作用力
03
利用向量的点积等运算,可以计算分子间的相互作用力,如范
德华力、氢键等。
向量在经济学中应用
描述经济变量的变化趋势
向量可以表示经济变量的变化趋势,如价格、产量等的变化方向 和幅度。
进行经济预测和决策分析
利用向量的运算和分析方法,可以对经济变量进行预测和决策分析 ,如回归分析、时间序列分析等。
轴的正方向。
03
标记坐标
空间中的任意一点P可以用一个有序实数组(x, y, z)来表示,其中x、y、
z分别称为点P的横坐标、纵坐标和竖坐标。
空间向量在坐标系中表示方法
确定向量的起点和终点
在空间直角坐标系中,向量可以用起点和终点两个点来确定。起点为向量的始点 ,终点为向量的终点。
向量的表示方法
向量可以用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向 表示向量的方向。同时,向量也可以用坐标形式来表示,即向量的坐标等于终点 坐标减去起点坐标。
案例二
已知向量a=(2, 1, -1)和向量b=(1, -2, 3),求向量a与向量b的和。根据空间向量的加法运算规则,可 得a+b=(2+1, 1+(-2), (-1)+3)=(3, -1, 2)。
04
向量共线与坐标运算综合 应用
平面向量与空间向量关系
平面向量是二维空间中的向量,可以 用有序数对表示,而空间向量是三维 空间中的向量,可以用有序三元组表 示。
高一数学人必修课件
向量共线的条件与轴
上向量坐标运算 汇报人:XX
20XX-01-21
目录
• 向量共线条件及性质 • 轴上向量坐标运算方法 • 空间向量在坐标系中表示方法 • 向量共线与坐标运算综合应用
高中数学向量知识点

高中数学向量知识点向量共线的重要条件如果B≠ 0,a//B的重要条件是存在唯一实数λ,使a=λBa//b的重要条件是xy'-x'y=0。
零向量0与任何向量平行。
[编辑本段]向量垂直的充要条件a的充要条件⊥ B是ab=0。
a⊥b的充要条件是xx'+yy'=0。
零向量0垂直于任何向量设a=x,y,b=x',y'。
1.矢量加法向量的加法满足平行四边形法则和三角形法则。
ab+bc=aca+b=x+x',y+y'。
a+0=0+a=a向量加法的运算律:交换律:a+B=B+a;结合律:a+b+c=a+b+c。
2.矢量减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0ab ac=cb。
也就是说,“共同的起点,指向被减法”a=x,yb=x',y'则a-b=x-x',y-y'.4.数字乘法向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。
当λ>为0时,λA与A的方向相同;当λ<0时,λa与a反方向;当λ=0,λA=0时,任意方向。
当a=0时,对于任意实数λ,都有λa=0。
注:根据定义,如果λA=0,则λ=0或A=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
什么时候∣ λ∣ > 1表示向量a的有向线段在原始方向λ>0或反向λ<0延伸到原始方向∣ λ∣ 时代;当∣λ∣<1时,表示向量a的有向线段在原方向λ>0或反方向λ<0上缩短为原来的∣λ∣倍。
数与向量的乘法满足下列运算法则结合律:λab=λab=aλb。
向量对数第一分布律:λ+μa=λa+μa。
数对于向量的分配律第二分配律:λa+b=λa+λb.数乘向量消去律:① 如果实数λ≠ 0和λa=λb,然后a=b。
② 如果≠ 0和λa=μa。
《两向量共线的充要条件及应用》平面向量及其应用

推论三:向量的三角形法则
总结词
三角形法则是指两个向量共线时,可以通过第三个向 量形成一个三角形。
详细描述
如果向量$overset{longrightarrow}{a}$、向量 $overset{longrightarrow}{b}$和向量 $overset{longrightarrow}{c}$共线,那么这三个向量 可以形成一个三角形。具体来说,从起点出发,沿着 $overset{longrightarrow}{a}$、 $overset{longrightarrow}{b}$和 $overset{longrightarrow}{c}$的方向分别作相同长度 的线段,连接三个终点,形成一个三角形。这个三角形 满足三角形的法则,即任意两边之和大于第三边,任意 两边之差小于第三边。
《两向量共线的充要条件及 应用》平面向量及其应用
汇报人: 2023-12-29
目录
• 平面向量的基本概念 • 两向量共线的充要条件 • 两向量共线的应用 • 两向量共线定理的证明 • 两向量共线定理的推论
01
平面向量的基本概念
向量的定义
总结词ห้องสมุดไป่ตู้
向量是一个既有大小又有方向的量, 通常用有向线段表示。
定理的证明方法三
总结词
利用向量的模的性质证明
详细描述
第三种证明两向量共线的方法是利用向量的 模的性质。如果两向量共线,则它们的模之 比是一个常数。通过比较两个向量的模,我 们可以找到这个常数。如果两个向量的模之 比等于这个常数,则它们共线。
05
两向量共线定理的推论
推论一:向量的倍数关系
总结词
向量的倍数关系是指两个向量共线时,一个 向量是另一个向量的倍数。
03
高B数学必修四课件向量共线的条件与轴上向量坐标运算

性质二
若向量a、b、c满足a+b+c=0, 且a、b、c均不为零向量,则a、b 、c三个向量一定共面且两两之间 的夹角均为120度。
性质三
若向量OA=a,OB=b,则A、B、 O三点共线的充要条件是存在唯一 实数k,使得a=k(a-b)成立。
02
轴上向量坐标运算规则
轴上向量基本概念
轴上向量定义
轴上向量坐标运算
在直角坐标系中,向量可以用坐标表 示。对于轴上向量,其坐标运算相对 简单。若两向量共线且在同一直角坐 标轴上,则它们的坐标运算只需考虑 该轴上的分量。
解题技巧分享
利用向量共线条件判 断两向量是否共线, 并求出共线向量的比 例系数。
熟练掌握轴上向量的 坐标运算规则,能够 快速准确地求解相关 问题。
向量的数乘
设向量$vec{a}=(x,y)$和实数$k$,则$kvec{a}=(kx,ky)$ 。
向量的坐标运算性质
向量的加法、减法和数乘满足交换律、结合律和分配律。
典型例题解析
例题1
已知向量$vec{a}=(2,1)$,$vec{b}=(1,2)$,求$vec{a}+vec{b}$和$2vec{a}-3vec{b}$。
高B数学必修四课件向量
共线的条件与轴上向量坐
标运算
汇报人:XX
20XX-01-12
• 向量共线条件及性质 • 轴上向量坐标运算规则 • 空间向量在轴上的投影与坐标表示 • 向量共线与轴上向量坐标运算应用举
例 • 总结归纳与拓展延伸
01
向量共线条件及性质
向量共线定义
• 定义:若向量a与向量b满足a=kb(k为实数),则称向量a与 向量b共线。特别地,当k=0时,a为零向量,零向量与任意向 量共线。
数学知识点:向量共线的充要条件及坐标表示_知识点总结

数学知识点:向量共线的充要条件及坐标表示_知识点总结
数学知识点:向量共线的充要条件及坐标表示向量共线的充要条件:向量与共线,当且仅当有唯一一个实数λ,使得。
向量共线的几何表示:
设,其中,当且仅当时,向量共线。
向量共线(平行)基本定理的理解:
(1)对于向量a(a≠0),b,如果有一个实数λ,使得b=λa,那么由向量数乘的定义知,学习规律,a与b共线.
(2)反过来,已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当a与b同方向时,有b=μa;当a与b反方向时,有b=-μa.
(3)向量平行与直线平行是有区别的,直线平行不包括重合.
(4)判断a(a≠0)与b是否共线时,关键是寻找a前面的系数,如果系数有且只有一个,说明共线;如果找不到满足条件的系数,则这两个向量不共线.
(5)如果a=b=0,则数λ仍然存在,且此时λ并不唯一,是任意数值.。
高中数学必修四 第2章 平面向量课件 2.3.4 平面向量共线的坐标表示

类型二 利用向量共线求参数 【例2】 已知a=(1,2),b=(-3,2),当k为何值时,ka+b与a-3b 平行?平行时它们是同向还是反向? [思路探索] 先求ka+b,a-3b的坐标,再由向量共线的充要条件 列方程组求k. 解 法一 ka+b=k(1,2)+(-3,2)=(k-3,2k+2), a-3b=(1,2)-3(-3,2)=(10,-4). 当ka+b与a-3b平行时,存在唯一的实数λ, 使ka+b=λ(a-3b), 即(k-3,2k+2)=λ(10,-4),
∴-6(x-2)+2(6-y)=0.② 解①②组成的方程组,得x=3,y=3, ∴点P的坐标为(3,3). [规律方法] 求解直线或线段的交点问题,常规方法为写出直线 或线段对应的直线方程,建立方程组求解,而利用向量方法借助 共线向量的充要条件可减少运算量,且思路简单明快.
【活学活用3】 平面上有A(-2,1),B(1,4),D(4,-3)三点,
新知导学 平面向量共线的坐标表示
前提条件
a=(x1,y1),b=(x2,y2),其中b≠0
结论 当且仅当 x1y2-x2y1=0 时,向量a,b(b≠0)共线
温馨提示:平面向量共线的坐标表示的记忆策略
互动探究 探究点1 如果两个非零向量共线,你能通过它们的坐标判断它们 同向还是反向吗? 提示 当两个向量的对应坐标同号或同为零时,同向;当两个向 量的对应坐标异号或同为零时,反向.例如,向量(1,2)与(-1, -2)反向;向量(1,0)与(3,0)同向;向量(-1,2)与(-3,6)同向;向 量(-1,0)与(3,0)反向等. 探究点2 若a∥b,a=(x1,y1),b=(x2,y2),则必有yx11=xy22吗? 提示 不一定,两个向量中,若有与坐标轴(x轴)平行的向量或 零向量,则不能写成比例式.
高中数学,空间向量基本定理

E
G B
O
A
练 习3、 如 图 所 示 , 四 面 体ABCD的 六 边 都 相 等 ,O1、O2
是BCD和ACD的中心,以向量AB,AC,AD 为一个 A
基底,求O1O(2 用基底表示)。
O2 D
B
O1
E
C
小结:
1、本节课的重点内容是空间向量基本定理及 推论.
2、注意空间向量基本定理就是空间向量分解 定理,即空间任一向量可分解为三个方向上 的向量之和;
a =λ1e1+λ2e2
我们把不共线的两个向量e1、e2 叫做表示这一 平面内所有向量的一组基底.
这表明:平面内任一向量可以用该平面内的两个 不共线向量来线性表示.
通过平面向量基本定理来类似地推广到 空间向量中吗? 空间向量基本定理:
向如量果p三,个存向在量惟e1一, e的2, e有3不序共实面数,组那(x么, y,对z),空使间任一
3、介绍了空间向量基本定理的应用。选定空 间不共面的三个向量作为基向量,并用它们 表示出指定的向量,是用向量法解立体几何 问题的一项基本功。
p xe1 ye2 ze3
z
O
y
x
建构数学
空间向量基本定理:
如果三个向量e1, e2 , 的有序实数组(x, y,
ze)3,不使共面p,那x么e1对空y间e2任一z向e3量p ,存在
唯一
{e1, e2, e3}— 基底 e1, e2, e3 — 基向量
强调:对于基底{e1, e2, e3}
1则、练a如习与果b有a, 什b与么任关何系向?量都共不 线 能构成空间的一个基底,
2、判断:O, A, B,C为空间四点,且向量OA,OB,OC不
向量的坐标表示及其运算

1向量的坐标表示及其运算一、知识点(一)向量及其表示:1.平面向量的有关概念:(1)向量的定义:既有大小又有方向的量叫做向量.(2)表示方法:用有向线段来表示向量.有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示.对于平面直角坐标系内的任意一个向量a ,我们都能将它正交分解为基本单位向量,i j 的线性组合吗?如下图左.显然,如上图右,我们一定能够以原点O 为起点作一位置向量OA ,使OA a =.于是,可知:在平面直角坐标系内,任意一个向量a 都存在一个与它相等的位置向量OA .由于这一点,我们研究向量的性质就可以通过研究其相应的位置向量来实现.由于任意一个位置向量都可以正交分解为基本单位向量,i j 的线性组合,所以平面内任意的一个向量a 都可以正交分解为基本单位向量,i j 的线性组合.即:a =OA =xi y j +上式中基本单位向量,i j 前面的系数x,y 是与向量a 相等的位置向量OA 的终点A 的坐标.由于基本单位向量,i j 是固定不可变的,为了简便,通常我们将系数x,y 抽取出来,得到有序实数对(x,y ).可知有序实数对(x,y )与向量a 的位置向量OA 是一一对应的.因而可用有序实数对(x,y )表示向量a ,并称(x,y )为向量a 的坐标,记作:a =(x,y )[说明](x,y )不仅是向量a 的坐标,而且也是与a 相等的位置向量OA 的终点A 的坐标!当将向量a 的起点置于坐标原点时,其终点A 的坐标是唯一的,所以向量a 的坐标也是唯一的.这样,我们就将点与向量、向量与坐标统一起来,使复杂问题简单化.显然,依上面的表示法,我们有:(1,0),(0,1),0(0,0)i j ===.(3)模:向量的长度叫向量的模,记作|a|或|AB|.(4)零向量:长度为零的向量叫做零向量,记作0;零向量的方向不确定.(5)单位向量:长度为1个长度单位的向量叫做单位向量.(6)共线向量:方向相同或相反的向量叫共线向量,规定零向量与任何向量共线.(7)相等的向量:长度相等且方向相同的向量叫相等的向量.2向量坐标的有关概念(1)基本单位向量(2)位置向量(3)向量的正交分解我们称在平面直角坐标系中,方向与x轴和y轴正方向分别相同的的两个单位向量叫做基本单位向量,分别记为,i j,如图,称以原点O为起点的向量为位置向量,如下图左,OA即为一个位置向量.如上图右,设如果点A的坐标为(),x y,它在小x轴,y轴上的投影分别为M,N,那么向量OA能用向量OM与ON来表示吗?(依向量加法的平行四边形法则可得OA OM ON=+),OM与ON 能用基本单位向量,i j来表示吗?(依向量与实数相乘的几何意义可得,OM xi ON y j==),于是可得:OA OM ON xi y j=+=+由上面这个式子,我们可以看到:平面直角坐标系内的任一位置向量OA都能表示成两个相互垂直的基本单位向量,i j的线性组合,这种向量的表示方法我们称为向量的正交分解.向量的坐标运算:设),(),(),(),,(1121212211yxayyxxbayxbyxaλλλλ=±±=±ℜ∈==,,3.向量的摸:22yxa+=(二)向量平行的充要条件:1向量共线定理:向量b与非零向量a共线的充要条件是有且仅有一个实数λ,使得b=λa,即b∥a⇔b=λa(a≠0).2设a=(x1,y1),b=(x2,y2)则b∥a⇔1221yxyx=练习2:1.已知向量(2,3)a =,(,6)b x =,且//a b ,则x 为_________;2.设a =(x 1,y 1),b =(x 2,y 2),则下列a 与b 共线的充要条件的有( ) ① 存在一个实数λ,使a =λb 或b =λa ; ②2121y yx x =;③(a +b )//(a -b ) A 、0个 B 、1个 C 、2个 D 、3个3.设0a 为单位向量,有以下三个命题:(1)若a 为平面内的某个向量,则0a a a =⋅;(2)若a 与0a 平行,则0a a a =⋅;(3)若a 与0a 平行且1a =,则0a a =.上述命题中,其中假命题的序号为 ;问题一:已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k=____ [说明] 三点共线的证明方法总结: 法一:利用向量的模的等量关系法二:若A 、B 、C 三点满足AB AC λ=,则A 、B 、C 三点共线.*法三:若A 、B 、C 三点满足OC mOA nOB =+,当1m n +=时,A 、B 、C 三点共线. 问题二:定比分点公式:设点P 1(),11y x ,),(222y x P ,点P 是直线 21P P 上任意一点,且满足 12PP PP λ=,求点P 的坐标.解:由12PP PP λ= ,可知{)()(2121x x x x y y y y -=--=-λλ,因为λ≠-1, 所以⎩⎨⎧++=++=λλλλ112121x x x y y y ,这就是点P 的坐标.[说明]由定比分点公式可知λ=1 时有⎪⎩⎪⎨⎧+=+=222121x x x y y y ,此公式叫做线段21P P 的中点公式.例、已知平面上A 、B 、C 三点的坐标分别为A (),11y x , ),(22y x B , ),(33y x C ,G 是△ABC 的重心,求点G 的坐标.解:由于点G 是△ABC 的重心,因此CG 与AB 的交点D 是AB 的中点,于是点D 的坐标是(2,22121y y x x ++). 设点G 的坐标为),(y x ,且2CG GD =则由定比分点公式得 ⎪⎩⎪⎨⎧+++=+++=21222122213213x x x x y y y y ,整理得 ⎪⎩⎪⎨⎧++=++=3332121x x x x y y y y 这就是△ABC 的重心G 的坐标.例、)15,12(),0,3(),5,2(21P P P - 且有12PP PP λ=求实数λ的值. 解1: 由已知可求 1(10,10)PP =,2(15,15)PP λλ=-- 故10=λ .(-15),所以定比λ=-32.解2: 因为12PP PP λ=,所以P 1,P ,2P 三点共线,由定比分点公式得12=λλ+-⨯+1)3(2解出实数λ=-32.解3:由图形可知点P 在线段21P P 外,故λ﹤0 ,又21PP P P= 32 ,所以λ=-32 .3.向量的坐标表示的运算我们学过向量的运算,知道向量有加法、减法、实数与向量的乘法等运算,那么,在学习了向量的坐标表示以后,我们怎么用向量的坐标形式来表示这些运算呢?设λ是一个实数,1122(,),(,).a x y b x y == 由于1111(,),a x y x i y j ==+ 2222(,)b x y x i y j ==+ 所以1122(,)(,)a b x y x y ±=±()()1122x i y j x i y j =+±+()()()()()121212121212,x i x i y j y j x x i y y j x x y y =±+±=±+±=±± ()()11111111(,),a x y x i y j x i y j x y λλλλλλλ==+=+=于是有:1122(,)(,)x y x y ±()1212,x x y y =±±()1111(,),x y x y λλλ=[说明]上面第一个式子用语言可表述为:两个向量的和(差)的横坐标等于它们对应的横坐标的和(差),两个向量的和(差)的纵坐标也等于它们对应的纵坐标的和(差),可笼统地简称为:两个向量和(差)的坐标等于对应坐标的和(差);同样,第二个式子用语言可表述为:数与向量的积的横坐标等于数与向量的横坐标的积,数与向量的积的纵坐标等于数与向量的纵坐标的积,也可笼统地简称为:数与向量积的坐标等于数与向量对应坐标的积. 例.如图,平面上A 、B 、C 三点的坐标分别为()2,1、()3,2-、()1,3-.(1)写出向量,AC BC 的坐标; (2)如果四边形ABCD 是平行四边形,求D 的坐标.解:(1)()()12,313,2AC =---=- ()()()13,322,1BC =----=(2)在上图中,因为四边形ABCD 是平行四边形,所以DC AB = 设点D 的坐标为(),D D x y ,于是有()1,3D D x y AB ---= 又 ()()32,215,1AB =---=- 故 ()()1,35,1D D x y ---=- 由此可得1531D D x y --=-⎧⎨-=⎩ 解得42D D x y =⎧⎨=⎩因此点D 的坐标为()4,2.1. 如图,写出向量,,a b c 的坐标.2.已知(1,2)a =-,若其终点坐标是(2,1),则其起点的坐标是 ;DC(-1,3)A(2,1)B(-3,2)yxO若其起点坐标是(2,1),则其终点的坐标是 . 3.已知向量()2,3a =-与()1,5b =-,求3a b -及3b a -的坐标.解:1.由题意:()()()()()()2,1,1,1,2,11,121,1(1)1,2a b c ==-=--=---=2.设起点的坐标是(x,y),则(2,1)-(x,y)=(-1,2),解得:(x,y)=(3,-1),即起点的坐标是(3,-1);设终点的坐标是(x,y),则(x,y)-(2,1) =(-1,2),解得:(x,y)=(1,3),即起点的坐标是(1,3).3. 3a b -=3()7,14---()()1,57,14-=- 3b a -=()1,5--3()2,3-()7,14=-[另法]:3b a -=()3a b --=()7,14--()7,14=-二、典型例题例1若向量b a ,. 满足.b a b a -=+,则b a 与所成角的大小为多少?例2 下列哪些是向量?哪些是标量?(1)浓度 (2)年龄 (3)风力 (4) 面积 (5)位移 (6)人造卫星速度 (7)向心力 (8)电量 (9)盈利 (10)动量 例3. ∆ABC 中,A (1,1),B (-3,5), C (8,-3),G 是ABC ∆重心,求GA 的坐标例4. 已知A ()()()()3,2,2,3,1,2,2,1--D C B ()反向的单位向量求与AB 1 ()()的坐标,求点,若E BE 522-= ()3若a BD AC a 求,-=()三点不共线,,求证:C B A 4 ()CD BD AD AC AB ++来表示,以5()()坐标三点共线,求点,,且若P P B A x P 3,6()如图7所示,若点M 分BA 的比λ为3:1,点N 在线段BC 上,且ABC AMNC S S ∆=32,求点N 点的坐标例5若ABCD 为正方形,E 是CD 的中点,且AB =a ,AD =b ,则BE 等于 A.b +21a B.b -21a C.a +21b D.a -21b 例6.e 1、e 2是不共线的向量,a =e 1+k e 2,b =k e 1+e 2,则a 与b 共线的充要条件是实数k 等于 A.0 B.-1 C.-2 D.±1例7.若a =“向东走8 km ”,b =“向北走8 km ”,则|a +b |=_______,a +b 的方向是_______.例8 已知向量a 、b 满足|a |=1,|b |=2,|a -b |=2,则|a +b |等于 A.1B.2C.5D.6. 例11若a 、b 是两个不共线的非零向量(t ∈R ).(1)若a 与b 起点相同,t 为何值时,a 、t b 、31(a +b )三向量的终点在一直线上?(2)若|a |=|b |且a 与b 夹角为60°,那么t 为何值时,|a -t b |的值最小?例12.若a 、b 为非零向量,且|a +b |=|a |+|b |,则有A.a ∥b 且a 、b 方向相同B.a =bC.a =-bD.以上都不对例13.设四边形ABCD 中,有DC =21AB 且|AD |=|BC |,则这个四边形是 A.平行四边形 B.矩形 C.等腰梯形 D.菱形例15.设两向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围..例16已知向量a =2e 1-3e 2,b =2e 1+3e 2,其中e 1、e 2不共线,向量c =2e 1-9e 2.问是否存在这样的实数λ、μ,使向量d =λa +μb 与c 共线?例17.如图所示,D 、E 是△ABC 中AB 、AC 边的中点,M 、N 分别是DE 、BC 的中点,已知BC =a ,BD =b ,试用a 、b 分别表示DE 、CE 和MN .AB CDMN E例18在△ABC 中,AM ∶AB =1∶3,AN ∶AC =1∶4,BN 与CM 交于点E ,AB =a ,AC =b ,用a 、b 表示AE .A BCMNE1.若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b 等于 A.(-3,6) B.(3,-6)C.(6,-3)D.(-6,3) 2.已知向量a =(3,4),b =(sin α,cos α),且a ∥b ,则tan α等于A.43 B.-43 C.34D.-343已知平面向量a =(3,1),b =(x ,-3)且a ⊥b ,则x 等于 A.3 B.1 C.-1 D.-31.如图,已知四边形ABCD 是梯形,AB ∥CD ,E 、F 、G 、H 分别是AD 、BC 、AB 与CD 的中点,则EF 等于( )A .BC AD +B .DC AB +C .DH AG +D .GH BG +2.下列说法正确的是 ( ) A .方向相同或相反的向量是平行向量 B .零向量的长度为0C .长度相等的向量叫相等向量D .共线向量是在同一条直线上的向量3.在△ABC 中,D 、E 、F 分别BC 、CA 、AB 的中点,点M 是△ABC 的重心,则 MC MB MA -+等于( )A .OB .MD 4C .MF 4D .ME 4 4.已知向量b a 与反向,下列等式中成立的是( )A .||||||b a b a -=-B .||||b a b a -=+C .||||||b a b a -=+D .||||||b a b a +=+5.在 ABCD 中,设d BD c AC b AD a AB ====,,,,则下列等式中不正确的是( ) A .c b a =+ B .d b a =-C .d a b =-D .b a c =- 6.下列各量中是向量的是( ) A .质量 B .距离C .速度D .电流强度7.在矩形ABCD 中,O 是对角线的交点,若OC e DC e BC 则213,5=== ( )A .)35(2121e e + B .)35(2121e e - C .)53(2112e e - D .)35(2112e e - 8.若),,(,,,R o b a b a ∈=+μλμλ不共线则( )A .o b o a ==,B .o o a ==μ,C .o b o ==,λD .o o ==μλ, 9.化简)]24()82(21[31b a b a --+的结果是( )A .b a -2B .a b -2C .a b -D .b a -10.下列三种说法:①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底 ②一个平面内有无数对不共线向量可作为该平面的所有向量的基底 ③零向量不可作为基底中的向量.其中正确的是 ( )A .①②B .②③C .①③D .①②③ 11.若2121,,PP P P b OP a OP λ===,则OP 等于 ( )A .b a λ+B .b a +λC .b a )1(λλ-+D .b a λλλ+++111 12.对于菱形ABCD ,给出下列各式: ①BC AB =②||||BC AB =③||||BC AD CD AB +=-④||4||||22AB BD AC =+ 2其中正确的个数为( )A .1个B .2个C .3个D .4个二、填空题(每小题4分,共16分,答案填在横线上)13.21,e e 不共线,当k= 时,2121,e k e b e e k a +=+=共线. 14.非零向量||||||,b a b a b a +==满足,则b a ,的夹角为 . 15.在四边形ABCD 中,若||||,,b a b a b AD a AB -=+==且,则四边形ABCD 的形状是 .16.已知c b a ,,的模分别为1、2、3,则||c b a ++的最大值为 .三、解答题(本大题共74分,17—21题每题12分,22题14分)17.设21,e e 是两个不共线的向量,2121212,3,2e e CD e e CB e k e AB -=+=+=,若A 、 B 、D 三点共线,求k 的值.19.已知向量,,32,32212121e e e e b e e a 与其中+=-=不共线向量,9221e e c -=,问是否存在这样的实数,,μλ使向量c b a d 与μλ+=共线?20.如图,在△ABC 中,P 是BC 边上的任一点,求证:存在,1)1,0(,2121=+∈λλλλ且使AC AB AP 21λλ+=.1.已知(2,0),(1,3),a b ==-则a b +与a b -的坐标分别为( ) (A)(3,3),(3,-3) (B)(3,3),(1,-3) (C)(1,3),(3,3) (D)(1,3),(3,-3)2.若点A 坐标为(2,-1),AB 的坐标为(4,6),则B 点的坐标为( ) (A)(-2,-7) (B)(2,7) (C)(6,5) (D)(-2,5)3.已知(,4),(3,2).a x b y ==-若1,2a b =则x= ,y= . 4.已知AB (1)i x j +-=(2-x),且AB 的坐标所表示的点在第四象限,则x 的取值范围是.5.已知A(5,-2),B(2,-5),C(7,4),D(4,1),求证:AB=CD .6.已知(1,2),(3,1),(11,7),a b c =-=-=-并且.c xa yb =+求x,y 的值.7.已知22(,2),(5,)a m n b mn =+=,且.a b =求,.m n 的值.。
共线向量公式

共线向量公式
两个向量共线公式:向量m=(a,b),向量n=(c,d)。
量共线的充要条件:
若向量a与向量b(b为非零向量)共线,则a=λb(λ为实数).
向量a与向量b共线的充要条件是,a与b线性相关,即存在不全为0的两个实数λ和μ,使λa+μb=0
更一般的,平面内若a =(p1,p2)b =(q1,q2),a∥b 的充要条件是p1·q2=p2·q1
向量共线定理公式是b=λa,共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,所以称为共线向量。
充分性:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由实数与向量的积的定义知,向量a与b共线。
必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即∣b∣=m ∣a∣。
那么当向量a与b同方向时,令λ=m,有b=λa,当向量a与b反方向时,令λ=-m,有b=λa。
如果b=0,那么λ=0。
唯一性:如果b=λa=μa,那么(λ-μ)a=0。
但因a≠0,所以λ=μ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学知识点:向量共线的充要条件及坐标表示数学知识点:向量共线的充要条件及坐标表示向量共线的充要条件:
向量与共线,当且仅当有唯一一个实数λ,使得。
向量共线的几何表示:
设,其中,当且仅当时,向量共线。
向量共线(平行)基本定理的理解:
(1)对于向量a(a≠0),b,如果有一个实数λ,使得b=λa,那么由向量数乘的定义知,学习规律,a与b共线.
(2)反过来,已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当a与b同方向时,有b=μa;当a与b反方向时,有b=-μa.
(3)向量平行与直线平行是有区别的,直线平行不包括重合.
(4)判断a(a≠0)与b是否共线时,关键是寻找a前面的系数,如果系数有且只有一个,说明共线;如果找不到满足条件的系数,则这两个向量不共线.
(5)如果a=b=0,则数λ仍然存在,且此时λ并不唯一,是任意数值.
精心整理,仅供学习参考。