八年级下册数学试题
人教版初中数学八年级下册期末测试题、答案
人教版初中数学八年级下册期末测试题一、选择题(本大题共小题,每小题分,共分)在每小题给出的四个选项中,只有一项是正确的,每小题选对得分,选错、不选或多选均得零分.)A B C D 如图,O A B 为直角三角形,O A =,A B =,则点A 的坐标为()A()B ()C ()D ()如图,矩形A B C D 的对角线A C =,B O C Ð=°,则A B 的长为()A B C D 一次函数()y kx k =-¹的函数值y 随x 的增大而减小,它的图象不经过的象限是()A 第一象限B 第二象限C 第三象限D 第四象限如图,直线y x =和y k x b =+相交于点()P ,则不等式x k x b £+的解集为()A.x ³B.x £C.x ³D.x £一组数据:n a a a ×××的平均数为P ,众数为Z ,中位数为W ,则以下判断正确的是()A P 一定出现在n a a a ×××中B Z 一定出现在n a a a ×××中C W 一定出现在n a a a ×××中D P ,Z ,W 都不会出现在n a a a ×××中二、填空题(本大题共小题,每小题分,共分)将函数y x =的图象向下平移个单位,所得图象的函数解析式为______如图,点P 是正方形A B C D 内位于对角线A C 下方的一点,已知:P C A P B C Ð=Ð,则B P C Ð的度数为______.南吕是国家历史文化名城,其名源于“昌大南疆,南方昌盛”之意,市内的滕王阁、八一起义纪念馆、海昏候遗址、绳金塔、八大山人纪念馆等都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学,人数分别为:,,,,(单位:人),这组数据的中位数是______.一组数据,,,x 的众数只有一个,则x 的值不能为______.如图,在A B C 中,已知:A C B Ð=°,c m A B =,c m A C =,动点P 从点B 出发,沿射线B C 以c m s 的速度运动,设运动的时间为t 秒,连接P A ,当A B P △为等腰三角形时,t 的值为______.三、解答题(本大题共小题,每小题分,共分)()计算:+-()求x =.如图,点C为线段A B上一点且不与A,B两点重合,分别以A C,B C为边向A B的同侧做锐角为°的菱形.请仅用无刻度的直尺分别按下列要求作图.(保留作图痕迹)=,作出线段D F的中点M;()在图中,连接D F,若A C B C()在图中,连接D F,若A C B C¹,作出线段D F的中点N.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图、(图为图的平面示意图),推开双门,双门间隙C D的距离为寸,点C和点D距离门槛A B都为尺(尺寸),则A B 的长是多少?某种子站销售一种玉米种子,单价为元千克,为惠民促销,推出以下销售方案:付款金额y(元)与购买种子数量x(千克)之间的函数关系如图所示.()当x³时,求y与x之间的的函数关系式:()徐大爷付款元能购买这种玉米种子多少千克?已知:①,,,,的平均数是,方差是;②,,,,的平均数是,方差是;③,,,,的平均数是,方差是;④,,,,的平均数是,方差是;请按要求填空:()n,n+,n+,n+,n+的平均数是,方差是;()n,n+,n+,n+,n+的平均数是,方差是;()n,n,n,n,n的平均数是,方差是.四、解答题(本大题共小题,每小题分,共分)下表是某公司员工月收入的资料.职位总经理财务总监部门经理技术人员前台保安保洁人数月收入元()这家公司员工月收入的平均数是元,中位数是和众数是;()在()中的平均数,中位数和众数哪些统计量能反映该公司全体员工收入水平?说明理由;()为了避免技术人员流失,该公司决定给他们每人每月加薪x元至公司员工月收入的平均数,求x的值.已知:一次函数()()y m x m m =+-¹与x 轴、y 轴交于A点,B 点()当m =时,求O A B 的面积;()请选择你喜欢的两个不同的()m m ¹的值,求得到的两个一次函数的交点坐标;()m 为何值时,O A B 是等腰直角三角形?如图,若D E 是A B C 的中位线,则A B C A D E S S =△△,解答下列问题:()如图,点P 是B C 边上一点,连接P D 、P E ①若P D E S =△,则A B CS=;②若P D B S =△,P C E S =△,连接A P ,则A P DS =,A P E S =△,A B CS=.()如图,点P 是A B C 外一点,连接P D 、P E ,已知:P D BS=,P C E S =△,P D E S =△,求A B CS的值;()如图,点P 是正六边形F G H I J K 内一点,连接P G 、P F 、P K ,已知:P G F S =△,P K J S =△,P F K S =△,求F G H I J K S 六边形的值.五、综合题(本大题共小题,共分)已知直线y x =-+分别与x 轴、y 轴交于A 点,B 点,点()n n Q x y 为这条直线上的点,Q P x ^轴于点P ,Q R y ^轴于点R .()①将下表中的空格填写完整:nn x --ny --n nx y +②根据表格中的数据,下列判断正确的是.A .x y =,B .x yS S =,C .x y S +=.()当点Q 在第一象限时,解答下列问题:①求证:矩形O P Q R 的周长是一个定值,并求这个定值;②设矩形O P Q R 的面积为S ,求证:S £.()当点Q 在第四象限时,直接写出Q P ,Q R 满足的等式关系.参考答案B C B A D By x﹣°或或()解:()原式(=+-=(=,∴x-=,∴x=解:()如图点M为D F的中点()如图点N为D F的中点解:取A B的中点O,过D作D E⊥A B于E,如图所示:由题意得:O A O B A D B C,设O A O B A D B C r寸,则A B r(寸),D E寸,O E C D寸,∴A E(r-)寸,在R t△A D E中,A E D E A D,即(r-)r,解得:r,∴r(寸),∴A B寸.解:()当x³时,设y与x之间的的函数关系式为y k x b=+,将点(),()带入解析式得k b k b+=ìí+=î解得k b=ìí=î∴y x=+.()将y=时,带入y x=+中解得x=千克.答:徐大爷付款元能购买这种玉米种子千克.解:()∵数据n,n+,n+,n+,n+是在数据,,,,的基础上每个数据均加上(n E)所得,∴数据n,n+,n+,n+,n+的平均数+n E=n+,方差依然是,()∵数据n,n+,n+,n+,n+是在数据,,,,的基础上每个数据均加上(n E)所得,∴n,n+,n+,n+,n+的平均数是+n E=n+,方差依然是,()数据n,n,n,n,n是将,,,,分别乘以n所得,∴数据n,n,n,n,n的平均数为n,方差为n,解:()∵一共有++++++=(人),∴这组数据的中位数是第、个数据的平均数,而第、个数据分别为、,∴中位数是+=(元),∵数据出现次数最多,∴这组数据的众数为元,故答案为:元,元;()中位数和众数能反映该公司全体员工收入水平,该公司员工月收入的平均数为,在这名员工中只有名员工的收入在元以上,有名员工的收入在元以下,因此用平均数不能反映所有员工的收入水平,中位数和众数为元能反映多数员工的收入水平.()由题意列方程:x x +=+,解得x =元∴技术人员需要加薪元.解:()当m =时,y x =-,当x =时,y =-,∴()B -,∴O B =当y =时,x =,∴A æöç÷èø,∴O A =,O A B S O A O B =×=△;()取m =,y x =+,取m =,y x=,∴y x y x =+ìí=î解得x y=ìí=î∴两个一次函数的交点坐标为()()当x =时,y m =-,∴O B m =-;当y =时,m x m-=,∴m O A m -=,∵O A B 是等腰直角三角形,∴O A O B =,即m m m--=;∵m -¹,∴m =±.解:()如图,连接B E ,∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,∴S △P D E =S △B D E =,∴S △A B E =,∴S △A B C =,②∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,∴S △P B D =S △A P D =,S △A P E =S △P E C =,∴S △A B C =;()如图,连接A P ,∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,S △A B C =S △A D E ,∴S △P B D =S △A P D =,S △A P E =S △P E C =,∴S △A D E =S △A P D S △A P E ﹣S △P D E =,∴S △A B C =S △A D E =;()如图,延长G F ,J K 交于点N ,连接G J ,连接P N ,∵六边形F G H I J K 是正六边形,∴F G =F K =K J ,∠G F K =∠J K F =°,S 六边形F G H I J K =S 四边形F G J K ,∴∠N F K =∠N K F =°,∴△N F K 是等边三角形,∴N F =N K =F K =F G =K J ,∴S △P G F =S △P F N =,S △P K J =S △P K N =,F K 是△N G J 的中位线,∴S △N F K =S △P F N S △P K N ﹣S △P F K =,∵F K 是△N G J 的中位线,∴S △N G J =S △N F K =;∴S 四边形F G J K =﹣=,∴S 六边形F G H I J K =.()①填表如下:n n x --n y --n nx y +②x y ==´--+++++++,故A 正确;[]x S =--+--+-+-+-+-+-+-+-=[]y S =--+--+-+-+-+-+-+-+-=∴x y S S =,故B 正确;∵x y +=∴x y S +=故C 正确;故答案为:A 、B 、C()①设()Q x x -+,∵点Q 在第一象限,∴O P x =,P Q x =-+,∴()O P Q R C O P P Q ==矩形+,∴矩形O P Q R 的周长是一个定值,周长为;②∵()()S x x x x x -=--+=+-=-³∴S £.()设点Q 的坐标为()xx -+,∵点Q 在第四象限,∴Q R x =,Q P x =-,∴Q R Q P -=.。
新人教版八年级数学下册期末考试题(完整版)
新人教版八年级数学下册期末考试题(完整版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 5.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.若3x x=,则x=__________2.分解因式:22a4a2-+=__________.3.如果实数a,b满足a+b=6,ab=8,那么a2+b2=________.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.5.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=_________度。
八年级数学下册期末试卷(Word版含解析)
八年级数学下册期末试卷(Word 版含解析) 一、选择题 1.二次根式2x -中x 的值不能是( )A .0B .1C .2D .32.下列条件:①222b c a =-;②C A B ∠=∠-∠;③111::::345a b c =;④::3:4:5A B C ∠∠∠=,能判定ABC 是直角三角形的有( )A .4个B .3个C .2个D .1个3.四边形的三个相邻内角的度数依次如下,那么其中是平行四边形的为( ) A .88︒,108︒,88︒ B .108︒,108︒,82︒ C .88︒,92︒,92︒D .108︒,72︒,108︒ 4.某单位招聘项目经理,考核项目为个人形象、专业知识、策划能力,三个项目权重之比为2:3:5,某应聘者三个项目的得分依次为80,90,80,则他最终得分为( ) A .79 B .83 C .85 D .875.如图,菱形ABCD 的边长为2,60BAD ∠=︒,点P 是边AD 的中点,点Q 是对角线AC 上一动点,则DPQ 周长的最小值是( )A .13+B .33+C .23+D .36.如图,将□ABCD 沿对角线AC 折叠,使点B 落在'B 处,若1240︒∠=∠=,则B =( )A .60︒B .100︒C .110︒D .120︒7.如图,已知AOBC 的顶点O (0,0),点B 在x 轴正半轴上,按以下步骤作图: ①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G .若G 的坐标为(2,4),则点A 的坐标是( )A .(﹣3,4)B .(﹣2,4)C .(225,4)-D .(54,4)- 8.如图,在平面直角坐标系中,OABC 的顶点A 在x 轴上,定点B 的坐标为(8,4),若直线经过点D (2,0),且将平行四边形OABC 分割成面积相等的两部分,则直线DE 的表达式是( )A .y=x-2B .y=2x-4C .y=x-1D .y=3x-6二、填空题9.若225b a a =-+--,则a b -=_______________________.10.菱形两条对角线长分别为2、6,则这个菱形的面积为_________.11.在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,2AC =,斜边AB 的长为__________. 12.如图,在矩形ABCD 中,AD =10,AB =6,点E 为BC 上的点,ED 平分∠AEC ,则EC =___.13.已知一次函数y =kx ﹣b ,当自变量x 的取值范围是1≤x ≤3时,对应的因变量y 的取值范围是5≤y ≤10,那么k ﹣b 的值为_______.14.如图, 在矩形ABCD 中, 对角线AC , BD 交于点O , 已知∠AOD=120°, AB=1,则BC 的长为______15.如图1,在平面直角坐标系中,将平行四边形ABCD 放置在第一象限,且AB //x轴.直线y =﹣x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2,那么AB 的长为___.16.如图所示,将矩形ABCD 沿直线AE 折叠(点E 在边CD 上),折叠后顶点D 恰好落在边BC 上的点F 处,若AD =5,AB =4,则EC 的长是_____.三、解答题17.(1)23317(2)21148--+--- (2)1(6215)36252-⨯-+- (3)148312242÷-⨯+ (4)205112(31)(31)35+-⨯++- 18.位于沈阳周边的红河峡谷漂流项目深受欢迎,在景区游船放置区,工作人员把偏离的游船从点A 拉回点B 的位置(如图).在离水面高度为8m 的岸上点C ,工作人员用绳子拉船移动,开始时绳子AC 的长为17m ,工作人员以0.7米/秒的速度拉绳子,经过10秒后游船移动到点D 的位置,问此时游船移动的距离AD 的长是多少?19.如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形或四边形.(绘图要求:①所绘图形不得超出正方形网格;②必须用直尺和中性笔绘图,确保所绘图形的顶点必须在格点上)(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数; (3)在图③中,画一个直角三角形,使它的三边长都是无理数;(4)在图④中,画一个正方形,使它的面积为10.20.如图,ABCD 的对角线AC 的垂直平分线与AD 、BC 分别交于E 、F ,垂足为点O .(1)求证:四边形AFCE 是菱形.(2)若2AE ED =,6AC =,4EF =,则ABCD 的面积为 . 21.先阅读下列材料,再解决问题: 阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:22232232121(2)212(12)+=+⨯⨯=++⨯⨯=+=|1+2|=1+2解决问题:①模仿上例的过程填空:146514235+=+⨯⨯=_________________=________________=_________________②根据上述思路,试将下列各式化简:(1)28103-; (2)312+. 22.某市为了倡导居民节约用水,生活用自来水按阶梯式水价计费.如图是居民每户每月的水(自来水)费y (元)与所用的水(自来水)量x (吨)之间的函数图象.根据下面图象提供的信息,解答下列问题:(1)当1730x ≤≤时,求y 与x 之间的函数关系式;(2)已知某户居民上月水费为91元,求这户居民上月的用水量;(3)当一户居民在某月用水为15吨时,求这户居民这个月的水费.23.如图1,四边形ACBD 中,AC =AD ,BC =BD .我们把这种两组邻边分别相等的四边形叫做“筝形”,如图2,在“筝形”ACBD 中,对角线AB =CD ,过点B 作BE ⊥AC 于E 点,F 为线段BE 上一点,连接FA 、FD ,FA =FB .(1)求证:△ABF ≌△CDA ;(2)如图3,FA 、FD 分别交CD 、AB 于点M 、N ,若AM =MF ,求证:BN =CM +MN .24.定义:对于平面直角坐标系xOy中的点P(a,b)和直线y=ax+b,我们称点P((a,b)是直线y=ax+b的关联点,直线y=ax+b是点P(a,b)的关联直线.特别地,当a=0时,直线y=b(b为常数)的关联点为P(0,b).如图,已知点A(-2,-2),B(4,-2),C(1,4).(1)点A的关联直线的解析式为______;直线AB的关联点的坐标为______;(2)设直线AC的关联点为点D,直线BC的关联点为点E,点P在y轴上,且S△DEP=2,求点P的坐标.(3)点M(m,n)是折线段AC→CB(包含端点A,B)上的一个动点.直线l是点M的关联直线,当直线l与△ABC恰有两个公共点时,直接写出m的取值范围.25.如图①,已知正方形ABCD的边长为3,点Q是AD边上的一个动点,点A关于直线BQ的对称点是点P,连接QP、DP、CP、BP,设AQ=x.(1)BP+DP的最小值是_______,此时x的值是_______;(2)如图②,若QP的延长线交CD边于点M,并且∠CPD=90°.①求证:点M是CD的中点;②求x的值.(3)若点Q是射线AD上的一个动点,请直接写出当△CDP为等腰三角形时x的值.【参考答案】一、选择题1.D解析:D【分析】根据二次根式有意义的条件即可得出答案.【详解】 2x -∴20x -≥,解得:2x ≤,故选项中符合条件的x 的值有0,12,, ∴x 不能为3,故选:D .【点睛】本题考查了二次根式有意义的条件,熟知根号下为非负数是解本题的关键.2.C解析:C【分析】根据三角形的内角和定理以及勾股定理的逆定理即可得到结论.【详解】解:①222b c a =-即222+=a b c ,△ABC 是直角三角形,故①符合题意;②∵∠A +∠B +∠C =180°,∠C =∠A −∠B ,∴∠A +∠B +∠A −∠B =180°,即∠A =90°,∴△ABC 是直角三角形,故②符合题意;③∵111::::345a b c =, 设a =3k ,b =4k ,c =5k , 则222543k k k ⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴△ABC 不是直角三角形,故③不合题意;④∵::3:4:5A B C ∠∠∠=,∴∠C =5345++×180°=75°,故不是直角三角形;故④不合题意. 综上,符合题意的有①②,共2个,故选:C .【点睛】本题主要考查了直角三角形的判定方法.①如果三角形中有一个角是直角,那么这个三角形是直角三角形;②如果一个三角形的三边a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.3.D解析:D【解析】【分析】两组对角分别相等的四边形是平行四边形,根据所给的三个角的度数可以求出第四个角,然后根据平行四边形的判定方法验证即可.【详解】A 、第四个角是76°,有一组对角不相等,不是平行四边形;B 、第四个角是72°,两组对角都不相等,不是平行四边形;C 、第四个角是88°,而C 中相等的两个角不是对角,不是平行四边形;D 、第四个角是72°,满足两组对角分别相等,因而是平行四边形.故选:D .【点睛】本题主要考查平行四边形的判定:两组对角分别相等的四边形是平行四边形.注意角的对应的位置关系,并不是有两组角相等的四边形就是平行四边形.4.B解析:B【解析】【分析】根据加权平均数的定义列式计算即可.【详解】 解:他最终得分为802903805235⨯+⨯+⨯++=83(分). 故选:B .【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义. 5.A解析:A【分析】连接BQ ,BD ,当P ,Q ,B 在同一直线上时,DQ +PQ 的最小值等于线段BP 的长,依据勾股定理求得BP的长,即可得出DQ+PQ的最小值,进而得出△DPQ周长的最小值.【详解】解:如图所示,连接BQ,BD,∵点Q是菱形对角线AC上一动点,∴BQ=DQ,∴DQ+PQ=BQ+PQ,当P,Q,B在同一直线上时,BQ+PQ的最小值等于线段BP的长,∵四边形ABCD是菱形,∠BAD=60°,∴△BAD是等边三角形,又∵P是AD的中点,∴BP⊥AD,AP=DP=1,∴Rt△ABP中,∠ABP=30°,∴AP=1AB=1,2∴BP22413--AB AP∴DQ+PQ3又∵DP=1,∴△DPQ3+1,故选:A.【点睛】本题主要考查了菱形的性质以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.6.D解析:D【解析】【分析】由平行线的性质可得∠DAC=∠B'AB=40°,由折叠的性质可得∠BAC=∠B'AC=20°,由三角形内角和定理即可求解.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠1=∠B'AB=40°,同理,∠2=∠DAC=40°,∵将□ABCD沿对角线AC折叠,∴∠BAC =∠B 'AC =20°,∴∠B =180°﹣∠2﹣∠BAC =120°,故选:D .【点睛】本题考查了翻折变换的性质、平行四边形的性质以及三角形内角和定理;熟练掌握折叠的性质是解题的关键.7.A解析:A【解析】【分析】首先证明AO AG =,设AO AG x ==,则2AT x =-,在Rt AOT △中,2224(2)x x =+-,求出x ,可得结论.【详解】解:如图,设AC 交y 轴于T .(2,4)G ,2TG ∴=.4OT =,四边形AOBC 是平行四边形,//AC OB ∴,AGO GOB ∴∠=∠,AOG GOB ∠=∠,AOG AGO ∴∠=∠,AO AG ∴=,设AO AG x ==,则2AT x =-,在Rt AOT △中,2224(2)x x =+-,5x ∴=,523AT ∴=-=,(3,4)A ∴-,故选:A .【点睛】本题考查作图-基本作图,平行四边形的性质,等腰三角形的判定和性质,勾股定理等知识,解题的关键是证明AO AG =,学会利用参数解决问题.8.A解析:A【分析】过平行四边形的对称中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形对称中心的坐标,再利用待定系数法求一次函数解析式解答即可.【详解】解:∵点B 的坐标为(8,4),∴平行四边形的对称中心坐标为(4,2),设直线DE 的函数解析式为y=kx+b ,则4220k b k b +=⎧⎨+=⎩, 解得12k b =⎧⎨=-⎩, ∴直线DE 的解析式为y=x-2.故选:A .【点睛】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.二、填空题9.7【解析】【分析】先由二次根式有意义可得20,20a a -≥⎧⎨-≥⎩从而依次求解,a b 的值,可得答案. 【详解】解: 5b =20,20a a -≥⎧∴⎨-≥⎩解得:2,a =5,b ∴=-()257.a b ∴-=--=故答案为:7.【点睛】本题考查的是二次根式有意义的条件,一元一次不等式组的解法,掌握二次根式有意义的条件是解题的关键.10【解析】【分析】根据菱形的面积等于两对角线乘积的一半求出其面积即可.【详解】解:∵一个菱形的两条对角线长分别为2和6, ∴这个菱形的面积12632=⨯⨯=, 故答案为:3.【点睛】本题考查的是菱形的面积计算,熟知菱形的面积等于两对角线乘积的一半是解题的关键. 11.B解析:433【解析】【分析】由90C ∠=︒,30A ∠=︒得到2,AB BC = 利用勾股定理可得答案.【详解】解:设BC ,x =90C ∠=︒,30A ∠=︒, 2,AB x ∴=2AC =,222(2)2,x x ∴=+122323,33x x ∴==-(舍去), 42 3.3AB x ∴==4 3.3【点睛】 本题考查的是含30角的直角三角形的性质与勾股定理的应用,掌握相关知识点是解题的关键.12.A解析:2【分析】根据平行线的性质以及角平分线的定义证明∠ADE=∠AED,根据等角对等边,即可求得AE 的长,在直角△ABE中,利用勾股定理求得BE的长,进而得出EC.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠ADE,又∵∠DEC=∠AED,∴∠ADE=∠AED,∴AE=AD=10,在直角△ABE中,BE8=.∴EC=BC-BE=10-8=2,故答案为:2.【点睛】本题考查了矩形的性质,勾股定理,等腰三角形的判定,解决本题的关键是灵活运用矩形的性质,等腰三角形的判定和勾股定理.13.5或10【分析】本题分情况讨论①k>0时,x=1时对应y=5;②k>0时,x=1时对应y=10.【详解】解:①k>0时,由题意得:x=1时,y=5,∴k-b=5;②k<0时,由题意得:x=1时,y=10,∴k-b=10;综上,k-b的值为5或10.故答案为:5或10.【点睛】本题考查了待定系数法求函数解析式,注意本题需分两种情况,不要漏解.14.A【分析】根据矩形的性质可得∠ACB的度数,从而利用勾股定理可求出BC的长度.【详解】解:由题意得:∠ACB=30°,∠ABC=90°,在Rt△ABC中,AC=2AB=2,由勾股定理得,【点睛】本题考查了矩形的性质,比较简单,解答本题的关键是求出∠ACB的度数.15.4【分析】由图1,当直线在DE 的左下方时,由图2可得AE 长度;由图1,当直线在DE 和BF 之间时,长度不变,由图2可得EB 的长度,从而AB=AE+EB ,即求得AB .【详解】如图1,当直线在DE解析:4【分析】由图1,当直线在DE 的左下方时,由图2可得AE 长度;由图1,当直线在DE 和BF 之间时,长度不变,由图2可得EB 的长度,从而AB =AE +EB ,即求得AB .【详解】如图1,当直线在DE 的左下方时,由图2得:AE =7-4=3;由图1,当直线在DE 和BF 之间时,由图2可得:EB=8-7=1,所以AB =AE +EB =3+1=4.故答案为:4.【点睛】本题考查一次函数的图象与图形的平移,平行四边形的性质,关键是明确题意,读懂函数图象,利用数形结合的思想.16.5【分析】由折叠可得,.再由矩形性质结合勾股定理即可求出BF 的长,从而求出CF 的长.设,则,在中,利用勾股定理列出关于x 的等式,解出x 即可.【详解】解:由折叠可知,,∵四边形ABCD 是矩形解析:5【分析】由折叠可得5AD AF ==,DE EF =.再由矩形性质结合勾股定理即可求出BF 的长,从而求出CF 的长.设EC x =,则4DE EF x ==-,在Rt CEF 中,利用勾股定理列出关于x 的等式,解出x 即可.【详解】解:由折叠可知5AD AF ==,DE EF =,∵四边形ABCD 是矩形,∴在Rt ABF 中,3BF ==,∴532CF BC BF =-=-=.设EC x =,则4DE EF x ==-,∴在Rt CEF 中,222+=CF CE EF ,即2222(4)x x +=-,解得: 1.5x =.故EC 的长为1.5.故答案为1.5.【点睛】本题考查折叠的性质,矩形的性质和勾股定理.利用数形结合的思想是解答本题的关键.三、解答题17.(1)1;(2);(3);(4).【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简,再利用有理数的加减运算法则计算得出答案;(2)直接利用二次根式的乘法运算法则以及结合绝对值的性质解析:(1)1;(2)2-;(3)44)3.【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简,再利用有理数的加减运算法则计算得出答案;(2)直接利用二次根式的乘法运算法则以及结合绝对值的性质化简,先算乘法,再化简二次根式,去绝对值,最后利用二次根式的加减运算法则计算得出答案;(3)直接利用二次根式的乘除运算法则化简,先算乘除,再利用二次根式的加减运算法则计算得出答案;(4)直接利用二次根式的乘法运算法则化简,先算乘除,再利用有理数的加减运算法则计算得出答案.【详解】解:(13212=- 312122=--+ =1;(2)2=62=2=2-;(3==4=4(41)=-13121231=+-+-=.3【点睛】本题主要考查了二次根式的混合运算以及实数运算,正确化简二次根式是解题关键.18.游船移动的距离AD的长是9米【分析】根据条件先计算经过10秒拉回绳子的长,然后计算出绳子CD的长,在中,在中,,即可求出最终结果.【详解】解:工作人员以0.7米/秒的速度拉绳子,经过10秒解析:游船移动的距离AD的长是9米【分析】根据条件先计算经过10秒拉回绳子的长,然后计算出绳子CD的长,在Rt BCD中BD Rt ABC中,AB=【详解】解:工作人员以0.7米/秒的速度拉绳子,∴经过10秒拉回绳子100.7=7⨯米,开始时绳子AC的长为17m,∴拉了10秒后,绳子CD的长为17-7=10米,∴在Rt BCD中,6BD===米,在Rt ABC中,222217815AB AC BC =-=-=米, ∴AD =15-6=9米,答:游船移动的距离AD 的长是9米.【点睛】本题主要考查勾股定理的运用,属于综合题,难度一般,熟练掌握勾股定理解三角形是解决本题的关键.19.(1)见解析;(2)见解析;(3)见解析;(4)见解析;【解析】【分析】根据勾股定理即可得.【详解】解:(1)如图①所示,三边分别为:3,4,5;(2)如图②所示,三边分别为:,,2或解析:(1)见解析;(2)见解析;(3)见解析;(4)见解析;【解析】【分析】根据勾股定理即可得.【详解】解:(1)如图①所示,三边分别为:3,4,5;(2)如图②所示,三边分别为:2,2,2或22,22,4 ;(3如图③所示,三边分别为:5,5,10或2,22,10或10,10,25;(4)如图④所示,正方形的边长为:10,则面积:(10)2=10.【点睛】本题考查了勾股定理,解题的关键是掌握勾股定理.20.(1)见解析;(2)18【分析】(1)由四边形ABCD 是平行四边形易证△AOE ≌△COF ,从而可得OE=OF ,所以四边形AFCE 是平行四边形,又EF ⊥AC ,根据菱形的判定定理即可得证; (2)由解析:(1)见解析;(2)18【分析】(1)由四边形ABCD 是平行四边形易证△AOE ≌△COF ,从而可得OE =OF ,所以四边形AFCE 是平行四边形,又EF ⊥AC ,根据菱形的判定定理即可得证;(2)由(1)可求三角形ACE 的面积,又2AE ED =,从而可得三角形CED 的面积,则ABCD 的面积即可求解.【详解】(1)∵四边形ABCD 是平行四边形,∴AE //FC .∴∠EAO =∠FCO ,∠AEO =∠CFO .∵EF 平分AC ,∴OA =OC .∴△AOE ≌△COF .∴OE =OF .∴四边形AFCE 是平行四边形.又∵EF ⊥AC ,∴四边形AFCE 是菱形(对角线互相垂直的平行四边形是菱形).(2)∵四边形AFCE 是菱形,6AC =,4EF =,∴三角形ACE 的面积为16262⨯⨯=, ∵2AE ED =,∴三角形CED 的面积等于三角形ACE 的面积的一半,即三角形CED 的面积为1632⨯=, ∴三角形ACD 的面积为639+=,∴ABCD 的面积等于三角形ACD 的面积的2倍,即ABCD 的面积为1892=⨯. 故答案为:18.【点睛】本题考查了菱形的判定及平行四边形面积的求法,解题的关键是熟练掌握菱形的判定定理.21.①,,3+;②(1)5-;(2) .【解析】【分析】①模仿阅读材料的方法将原式变形,计算即可得到结果;②仿照以上方法将各式化简即可.【详解】①===3+,故答案为,,3+;②(1)解析:3+②(1)5(2) 12 【解析】【分析】 ①模仿阅读材料的方法将原式变形,计算即可得到结果;②仿照以上方法将各式化简即可.【详解】3+3=5=12+=12. 【点睛】本题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.22.(1);(2)25吨;(3)45元【分析】(1)利用待定系数法求解函数关系式的方法即可;(2)将y=91代入(1)中解析式中求得x 值即可;(3)将x=17代入(1)中解析式中求得y 值,再求得解析:(1)534y x =-;(2)25吨;(3)45元【分析】(1)利用待定系数法求解函数关系式的方法即可;(2)将y =91代入(1)中解析式中求得x 值即可;(3)将x =17代入(1)中解析式中求得y 值,再求得当017x ≤<时,y 与x 之间的函数关系式,将x =15代入求解y 值即可.【详解】解:(1)设y 与x 之间的函数关系式为:y kx b =+,由题意得:116306620k b k b=+⎧⎨=+⎩,∴534k b =⎧⎨=-⎩, ∴y 与x 之间的函数关系式为:534y x =-.(2)∵91元66>元,∴由91534x =-得:25x =. 答:这户居民上月用水量25吨.(3)当17x =吨时,5173451y =⨯-=元,∴当017x ≤<时,y 与x 之间的函数关系式为:3y x =,当15x =时,45y =元,答:这户居民这个月的水费45元.【点睛】本题考查一次函数的应用,理解题意,能从函数图象中获取有效信息,会利用待定系数法求解函数关系式是解答的关键.23.(1)证明见解析;(2)证明见解析【分析】(1)根据已知条件可得△ABC ≌△ABD ,再根据∠AOC+∠AOD=180°,进而可证得AB ⊥CD ,进而得到∠ACO=∠ABE ,进而证得△ABF ≌△CD解析:(1)证明见解析;(2)证明见解析【分析】(1)根据已知条件可得△ABC ≌△ABD ,再根据∠AOC+∠AOD=180°,进而可证得AB ⊥CD ,进而得到∠ACO=∠ABE ,进而证得△ABF ≌△CDA ;(2)取AB 中点H ,根据已知条件可知MO 为△AFH 的中位线,进而可证得△AFH ≌△DAO ,进一步得到△AFD 为等腰直角三角形,然后过点F 作FI ⊥AF 交AB 于点I ,取CD 上点G 使MG=MN ,连接AG ,先证△AFI ≌△DAM ,而后△FMN ≌△FIN ,得到∠FIN =∠FMN ,进而可证△AMG ≌△FMN ,得到∠AGM=∠FNM ,进而证得△ACG ≌△FBN ,得到BN=CG ,再根据CG=CM+MG ,得到BN=CM+MG ,又MG=MN ,继而得到BN=CM+MN .【详解】证明:(1)∵AC=AD ,BC=BD ,AB=AB ,∴△ABC≌△ABD,∴∠CAO=∠DAO,又∵∠ACO=∠ADO,∴∠AOC=∠AOD,又∵∠AOC+∠AOD=180°,∴∠AOC=∠AOD=90°,∴AB⊥CD,在Rt△AOC中,∠ACO+∠CAO=90°,在Rt△AEB中,∠ABE+∠CAO=90°,∴∠ACO=∠ABE,又∵AC=AD,FA=FB,∴∠ACO=∠ADO=∠ABF=∠FAB,∵,∴△ABF≌△CDA;(2)如图,取AB中点H,∵△ABF是等腰三角形,∴FH⊥AB,∵AM=MF且MO⊥AB,∴MO为△AFH的中位线,∴AO=OH=,又∵AH===DO,由△ABF≌△CDA,可知:AF=BF=AC=AD,∴△AFH≌△DAO,∴∠AFH=∠DAO,∵∠FAH+∠AFH=90°,∴∠FAH+∠DAO=90°,∴∠FAD=90°,∴△AFD为等腰直角三角形,过点F作FI⊥AF交AB于点I,取CD上点G使MG=MN,连接AG,由△AFH≌△DAO可得∠FAI=∠ADM,又∵AD=AF,∴△AFI≌△DAM,∴FI=AM,又∵AM=MF,∴FI=MF,由FI⊥AF可知∠AFI=90°,∠AFN=45°,∴∠NFI=∠AFI-∠AFN=90°-45°=45°,∴∠MFN=∠NFI,又∵FI=FM,∴△FMN≌△FIN,∴∠FIN =∠FMN,又∵∠AMD=∠FIA,∴∠AMD=∠FMN,又∵AM=FM,MG=MN,∴△AMG≌△FMN,∴∠AGM=∠FNM,又∵∠FNM=∠FNB,∴∠AGM=∠FNB,又∵∠ACG=∠FBN,AC=FB,∴△ACG≌△FBN,∴BN=CG,又∵CG=CM++MG,∴BN=CM+MG,又∵MG=MN,∴BN=CM+MN.【点睛】本题考查全等三角形的判定与性质、等腰三角形的性质、中位线等知识,解题的关键是综合运用相关知识解题.24.(1)y=-2x-2,(0,-2);(2)P(0,5)或P(0,3);(3)-2≤m<,或2<m≤4【解析】【分析】(1)利用待定系数法求得直线AB的解析式,根据关联点和关联直线的定义可得结论解析:(1)y=-2x-2,(0,-2);(2)P (0,5)或P (0,3);(3)-2≤m <23,或2<m≤4【解析】【分析】 (1)利用待定系数法求得直线AB 的解析式,根据关联点和关联直线的定义可得结论; (2)先根据关联点求D 和E 的坐标,根据面积和列式可得P 的坐标;(3)点M 分别在线段AC→CB 上讨论,根据直线l 与△ABC 恰有两个公共点时,可得m 的取值范围.【详解】解:(1)设直线AB 的解析式为:y=kx+b ,把点A (-2,-2),B (4,-2)代入得:2242k b k b -+=-⎧⎨+=-⎩, 解得:02k b =⎧⎨=-⎩, ∴直线AB 的解析式为:y=-2,∴点A 的关联直线的解析式为y=-2x-2;直线AB 的关联点的坐标为:(0,-2);故答案为:y=-2x-2,(0,-2);(2)∵点A (-2,-2),B (4,-2),C (1,4).∴直线AC 的解析式为y=2x+2,直线BC 的解析式为y=-2x+6,∴D (2,2),E (-2,6).∴直线DE 的解析式为y=-x+4,∴直线DE 与y 轴交于点F (0,4),如图1,设点P (0,y ),∵S △DEP =2,∴S △DEP =S △EFP +S △DFP=142y ⨯-×|-2|+1422y ⨯-⨯=2,解得:y=5或y=3,∴P(0,5)或P(0,3).(3)①当M在线段AC上时,如图3,∵AC:y=2x+2,∴设M(m,2m+2)(-2≤m≤1),则关联直线l:y=mx+2m+2,把C(1,4)代入y=mx+2m+2得:m+2m+2=4,m=23,∴-2≤m<23;②当M在线段BC上时,如图3,∵BC:y=-2x+6,∴设M(m,-2m+6)(1≤m≤4),则关联直线l:y=mx-2m+6,把A(-2,-2)代入y=mx-2m+6得:-2m-2m+6=-2,m=2,∴2<m≤4;综合上述,-2≤m<23或2<m≤4.【点睛】本题是一次函数的综合题,也是有关关联点和关联直线的新定义问题,考查了一次函数图象上点的坐标特征、理解新定义、利用待定系数法求一次函数的解析式,本题中理解关联点和关联直线的定义,正确进行分类讨论是解题的关键.25.(1);;(2)①见详解;②x=1;(3)△CDP为等腰三角形时x的值为:或或.【分析】(1)BP+DP为点B到D两段折线的和.由两点间线段最短可知,连接DB,若P点落在BD上,此时和最短,且为解析:(1)32;323-;(2)①见详解;②x=1;(3)△CDP为等腰三角形时x的值为:633-或3或633+.【分析】(1)BP+DP为点B到D两段折线的和.由两点间线段最短可知,连接DB,若P点落在BD 上,此时和最短,且为32.考虑动点运动,这种情形是存在的,由AQ=x,则QD=3-x,PQ=x.又PDQ=45°,所以QD=2PQ,即3-x=2x.求解可得答案;(2)由已知条件对称分析,AB=BP=BC,则∠BCP=∠BPC,由∠BPM=∠BCM=90°,可得∠MPC=∠MCP.那么若有MP=MD,则结论可证.再分析新条件∠CPD=90°,易得①结论.②求x的值,通常都是考虑勾股定理,选择直角三角形QDM,发现QM,DM,QD都可用x来表示,进而易得方程,求解即可.(3)若△CDP为等腰三角形,则边CD比为改等腰三角形的一腰或者底边.又P点为A点关于QB的对称点,则AB=PB,以点B为圆心,以AB的长为半径画弧,则P点只能在弧AB上.若CD为腰,以点C为圆心,以CD的长为半径画弧,两弧交点即为使得△CDP为等腰三角形(CD为腰)的P点.若CD为底边,则作CD的垂直平分线,其与弧AC的交点即为使得△CDP为等腰三角形(CD为底)的P点.则如图所示共有三个P点,那么也共有3个Q点.作辅助线,利用直角三角形性质求之即可.【详解】解:(1)连接DB,若P点落在BD上,此时BP+DP最短,如图:由题意,∵正方形ABCD的边长为3,∴223332BD+=∴BP +DP 的最小值是32; 由折叠的性质,PQ AQ x ==,则3QD x =-,∵∠PDQ=45°,∠QPD=90°,∴△QPD 是等腰直角三角形,∴22QD QP x ==,∴32x x -=,解得:323x =-;故答案为:32;323-;(2)如图所示:①证明:在正方形ABCD 中,有AB=BC ,∠A=∠BCD=90°.∵P 点为A 点关于BQ 的对称点,∴AB=PB ,∠A=∠QPB=90°,∴PB=BC ,∠BPM=∠BCM , ∴∠BPC=∠BCP ,∴∠MPC=∠MPB-∠CPB=∠MCB-∠PCB=∠MCP ,∴MP=MC .在Rt △PDC 中,∵∠PDM=90°-∠PCM ,∠DPM=90°-∠MPC ,∴∠PDM=∠DPM ,∴MP=MD ,∴CM=MP=MD ,即M 为CD 的中点.②解:∵AQ=x ,AD=3,∴QD=3-x ,PQ=x ,CD=3.在Rt △DPC 中,∵M 为CD 的中点,∴DM=QM=CM=32, ∴QM=PQ+PM=x+32,∴(x+32)2=(3−x)2+(32)2,解得:x=1.(3)如图,以点B为圆心,以AB的长为半径画弧,以点C为圆心,以CD的长为半径画弧,两弧分别交于P1,P3.此时△CDP1,△CDP3都为以CD为腰的等腰三角形.作CD的垂直平分线交弧AC于点P2,此时△CDP2以CD为底的等腰三角形.;①讨论P1,如图作辅助线,连接BP1、CP1,作QP1⊥BP1交AD于Q,过点P1,作EF⊥AD 于E,交BC于F.∵△BCP1为等边三角形,正方形ABCD边长为3,∴P1F33P1E=333在四边形ABP1Q中,∵∠ABP1=30°,∴∠AQP1=150°,∴△QEP1为含30°的直角三角形,∴31=9332.∵AE=3,2∴x=AQ=AE-QE=39(33)633--=-.22②讨论P2,如图作辅助线,连接BP2,AP2,过点P2作QG⊥BP2,交AD于Q,连接BQ,过点P2作EF⊥CD于E,交AB于F.∵EF垂直平分CD,∴EF垂直平分AB,∴AP2=BP2.∵AB=BP2,∴△ABP2为等边三角形.在四边形ABP2Q中,∵∠BAD=∠BP2Q=90°,∠ABP2=60°,∴∠AQG=120°∴∠EP2G=∠DQG=180°-120°=60°,∴P2E=333∴EG=933,2∴DG=DE+GE=39+=,3333322∴QD=33∴3③对P3,如图作辅助线,连接BP1,CP1,BP3,CP3,过点P3作BP3⊥QP3,交AD的延长线于Q,连接BQ,过点P1,作EF⊥AD于E,此时P3在EF上,不妨记P3与F重合.∵△BCP1为等边三角形,△BCP3为等边三角形,BC=3,∴P1P3=33P1E=333∴EF=333+在四边形ABP3Q中∵∠ABF=∠ABC+∠CBP3=150°,∴∠EQF=30°,∴39332.∵AE=32,∴x=AQ=AE+QE=32+9333362=.综合上述,△CDP为等腰三角形时x的值为:633-3633+.【点睛】本题第一问非常基础,难度较低.第二问因为动点的原因,思路不易找到,这里就需要做题时充分分析已知条件,尤其是新给出的条件.其中求边长是勾股定理的重要应用,是很重要的考点.第三问是一个难度非常高的题目,可以利用尺规作图的思想将满足要求的点P找全.另外求解各个Q点也是考察三角函数及勾股定理的综合应用,有着极高的难度.。
八年级下册数学全套试卷
八年级下册数学全套试卷一、选择题(每题3分,共30分)1. 若二次根式√(x - 3)有意义,则x的取值范围是()A. x≤slant3B. x≠3C. x≥slant3D. x > 32. 下列二次根式中,属于最简二次根式的是()A. √(frac{1){2}}B. √(0.8)C. √(4)D. √(5)3. 下列计算正确的是()A. √(2)+√(3)=√(5)B. √(2)×√(3)=√(6)C. √(8)=4√(2)D. √(4)-√(2)=√(2)4. 已知平行四边形ABCD中,∠ A = 50^∘,则∠ C的度数为()A. 50^∘B. 130^∘C. 40^∘D. 100^∘5. 直角三角形的两条直角边分别为6和8,则斜边上的高为()A. (24)/(5)B. (12)/(5)C. 5D. 106. 下列命题中,正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形。
B. 对角线互相垂直的四边形是菱形。
C. 对角线相等的四边形是矩形。
D. 对角线互相垂直平分且相等的四边形是正方形。
7. 若函数y=(m - 1)x^m^{2-3}是正比例函数,则m的值为()A. 1B. - 1C. ±1D. √(3)8. 一次函数y = kx + b(k≠0)的图象经过点(0,2),且y随x的增大而减小,则这个函数的表达式可能是()A. y = 2x + 3B. y=-3x + 2C. y = (1)/(2)x + 2D. y = x - 29. 数据1,2,3,4,5的方差是()A. 1B. 2C. (5)/(4)D. (1)/(2)10. 已知点A(x_1,y_1),B(x_2,y_2)在一次函数y = kx + b(k≠0)的图象上,当x_1时,y_1,则k的取值范围是()A. k < 0B. k>0C. k≤slant0D. k≥slant0二、填空题(每题3分,共18分)1. 计算:√(12)-√(3)=_√(3)。
八年级数学下册期末试卷(附含答案)精选全文完整版
可编辑修改精选全文完整版八年级数学下册期末试卷(附含答案)(满分:120分;考试时间:120分)一、选择题(共10小题,每小题3分,满分30分) 1、使1x -有意义的x 的取值范围是( )A x >1B x >-1C x ≥1D x ≥-1 2、在根式xy 、12、2ab 、x y -、2x y 中,最简二次根式有( )A 1个B 2个C 3个D 4个 3、下列计算正确的是( )A 20210=B 5630⨯=C 2236⨯=D 2(3)3-=- 4、一元二次方程x (x-2)=2-x 的根式( )A -1B 2C 1和2D -1和2 5、下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形; ③一组对边平行,另一组对边相等的四边形是平行四边形;A 3个B 2个C 1个D 0个 6、在△ABC 中,三边长分别为a 、b 、c ,且a+c=2b ,c-a=12b ,则△ABC 是( )A 直角三角形B 等边三角形C 等腰三角形D 等腰直角三角形 7、某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼 (跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼 的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据 下列说法不正确的是( )A 平均每天锻炼里程数据的中位数是2B 平均每天锻炼里程数据的众数是2C 平均每天锻炼里程数据的平均数是2.34D 平均每天锻炼里程数不少于4km 的人数占调查职工的20% 8、疫情期间居民为了减少外出时间,更愿意使用APP 在线上购物,某购物APP 今年二月份用户比一月份增加了44%,三月份用户比二月份增加了21%,则二、三两个月用户的平均每月增长率是( )A 28%B 30%C 32%D 32.5% 9、有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,以下四个结论中,错误的是( ) A 如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B 如果方程M 有两根符号相同,那么方程N 也有两根符号相同 C 如果5是方程M 的一个根,那么15是方程N 的一个根D 如果方程M和方程N有一个相同的实数根,那么这个跟必是x=110、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=()二、填空题(共6小题,每小题3分,满分18分)11的结果是12、已知关于x的一元二次方程x2-bx+8=0,一个根为2,则另一个根是13、有一棵9米高的大树,如果大树距离地面4米处这段(没有断开),则小孩至少离开大树米之处才是安全的。
人教版八年级数学下册试题及参考答案
人教版八年级数学下册试题及参考答案work Information Technology Company.2020YEAR人教版八年级(下册)数学学科试题(考试时间:90分钟 总分:120分)题 号 一 二 三 总分 得 分一、选择题(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1、如果分式x-11有意义,那么x 的取值范围是( ) A 、x >1 B 、x <1 C 、x ≠1 D 、x =12、己知反比例数xky =的图象过点(2,4),则下面也在反比例函数图象上的点是( ) A 、(2,-4) B 、(4,-2) C 、(-1,8) D 、(16,21)3、一直角三角形两边分别为3和5,则第三边为( )A 、4B 、34C 、4或34D 、24、用两个全等的等边三角形,可以拼成下列哪种图形( )A 、矩形B 、菱形C 、正方形D 、等腰梯形5、菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致为( )A B C D6、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考( )A 、众数B 、平均数C 、加权平均数D 、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为( )A 、120cmB 、360cmC 、60cmD 、cm 320第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为( )A 、16B 、14C 、12D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为( )A 、100B 、150C 、200D 、30010、下列命题正确的是( )A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。
人教版八年级下册数学期末考试卷及详细答案解析(部分试题选自全国各地中考真题)
人教版八年级下册数学期末考试卷附详细答案解析(部分试题选自全国各地中考真题)一、选择题(每小题3分,共30分)1.下列计算正确的是( )。
A.×=4 B.+= C.÷=2 D.=-152.要使式子错误!未找到引用源。
有意义,则x 的取值范围是( )。
A.x>0B.x ≥-2C.x ≥2D.x ≤23.矩形具有而菱形不具有的性质是( )。
A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等4.根据表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )。
A.1B.-1C.3D.-35.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )。
A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元x -2 0 1 y 3 p 0 工资(元) 2 000 2 200 2 400 2 600 人数(人) 1 3 4 26.如右图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )。
A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC7.如右图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是( )。
A.24B.16C.4错误!未找到引用源。
D.2错误!未找到引用源。
8.如右图,图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD长( )A.错误!未找到引用源。
B.2错误!未找到引用源。
C.3错误!未找到引用源。
D.4错误!未找到引用源。
9.如图,正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是( )10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( )A.x<错误!未找到引用源。
八年级数学下册期末考试试卷(答案解析版)
八年级数学下册期末考试试卷(答案解析版)一.选择题1.下列各点中,位于直角坐标系第二象限的点是()A. (2,1)B. (﹣2,﹣1)C. (2,﹣1)D. (﹣2,1)2.在①平行四边形,②矩形,③菱形,④正方形中,既是轴对称图形,又是中心对称图形的是()A. ①②③④B. ②③C. ②③④D. ①③④3.如图,在Rt△ABC中,∠C=90°,如果AB=5,BC=3,那么AC等于()A. B. 3 C. 4 D. 54.下列条件中,能判定两个直角三角形全等的是()A. 一锐角对应相等B. 两锐角对应相等C. 一条边对应相等D. 两条直角边对应相等5.如图,如果CD是Rt△ABC的中线,∠ACB=90°,∠A=50°,那么∠CDB等于()A. 100°B. 110°C. 120°D. 130°6.如图,在▱ABCD中,对角线AC、BD相交于点O,点E是AD的中点,如果OE=2,AD=6,那么▱ABCD的周长是()A. 20B. 12C. 24D. 87.若一个多边形的内角和等于900°,则这个多边形的边数是()A. 8B. 7C. 6D. 58.如图,在四边形ABCD中,对角线AC与BD交于点O,下列条件中不一定能判定这个四边形是平行四边形的是()A. AB∥DC,AD=BCB. AD∥BC,AB∥DCC. AB=DC,AD=BCD. OA=OC,OB=OD9.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是()A. 28B. 24C. 16D. 610.对于函数y=x﹣1,下列结论不正确的是()A. 图象经过点(﹣1,﹣2)B. 图象不经过第一象限C. 图象与y轴交点坐标是(0,﹣1)D. y的值随x值的增大而增大11.函数y=2x和y=ax+4的图象相交于点A(m,3),则关于x的不等式2x<ax+4的解集为()A. x<B. x<C. x>﹣D. x<﹣12.如图,在矩形ABCD中,AB=2,AD=3,BE=1,动点P从点A出发,沿路径A→D→C→E运动,则△APE 的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A. B. C. D.二.填空题13.如图,四边形ABCD是菱形,如果AB=5,那么菱形ABCD的周长是________.14.点P(2,3)关于x轴的对称点的坐标为________.15.将直线y=2x向上平移4个单位,得到直线________.16.在一次函数y=﹣x+2的图象上有A(x1,y1),B(x2,y2)两点,若x1>x2,那么y1________y2.17.如图所示,已知△ABC的周长是18,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是________.18.如图,在边长为4的正方形ABCD中,点E是边CD的中点,AE的垂直平分线交边BC于点G,交边AE 于点F,连接DF,EG,以下结论:①DF= ,②DF∥EG,③△EFG≌△ECG,④BG= ,正确的有:________(填写序号)三.解答题19.如图,在▱ABCD中,AE=CF.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为平行四边形.20.如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是否是直角,并说明理由.(2)求四边形草坪ABCD的面积.21.某校为了解八年级学生的视力情况,对八年级的学生进行了一次视力调查,并将调查数据进行统计整理,绘制出如下频数分布表和频数分布直方图的一部分.视力频数(人)频率4.0≤x<4.3 20 0.14.3≤x<4.6 40 0.24.6≤x<4.9 70 0.354.9≤x<5.2 a 0.35.2≤x<5.5 10 b(1)在频数分布表中,a=________,b=________;(2)将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,求视力正常的人数占被调查人数的百分比是多少?22.我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.(1)若0<x≤6,请写出y与x的函数关系式.(2)若x>6,请写出y与x的函数关系式.(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?23.△ABC在平面直角坐标系中的位置如图所示,△ABC的顶点均在格点上,其中每个小正方形的边长为1个单位长度,将△ABC绕原点O旋转180°得△A1B1C1.(1)在图中画出△A1B1C1;(2)写出点A1的坐标________;(3)求出点C所经过的路径长.24.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB= ,∠DCF=30°,求四边形AECF的面积.(结果保留根号)25.甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,已知甲车匀速行驶;乙车出发2h 后休息,与甲车相遇后继续行驶,结果同时分别到达B,A两地.设甲、乙两车与B地的距离分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)当0<x<2时,求乙车的速度;(2)求乙车与甲车相遇后y乙与x的关系式;(3)当两车相距20km时,直接写出x的值.26.如图,在平面直角坐标系xOy中,已知直线AB:y= x+4交x轴于点A,交y轴于点B.直线CD:y=﹣x﹣1与直线AB相交于点M,交x轴于点C,交y轴于点D.(1)直接写出点B和点D的坐标;(2)若点P是射线MD上的一个动点,设点P的横坐标是x,△PBM的面积是S,求S与x之间的函数关系;(3)当S=20时,平面直角坐标系内是否存在点E,使以点B、E、P、M为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点E的坐标;若不存在,说明理由.答案解析部分一.<b >选择题</b>1.【答案】D【考点】点的坐标【解析】【解答】A、(2,1)在第一象限,A不符合题意;B、(﹣2,﹣1)在第三象限,B不符合题意;C、(2,﹣1)在第四象限,C不符合题意;D、(﹣2,1)在第二象限,D符合题意.故答案为:D.【分析】依据第二象限各点的横坐标为负数,纵坐标为正数解答即可.2.【答案】C【考点】中心对称及中心对称图形【解析】【解答】①只是中心对称图形;②、③、④两者都既是中心对称图形又是轴对称图形;故答案为:C.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,然后依据上述方法进行判断即可.3.【答案】C【考点】勾股定理【解析】【解答】∵在Rt△ABC中,∠C=90°,AB=5,BC=3,∴AC= = =4.故答案为:C.【分析】依据勾股定理可得到AC=,然后将AB、BC的值代入计算即可.4.【答案】D【考点】直角三角形全等的判定【解析】【解答】两直角三角形隐含一个条件是两直角相等,要判定两直角三角形全等,起码还要两个条件,故可排除A、C;而B构成了AAA,不能判定全等;D构成了SAS,可以判定两个直角三角形全等.故答案为:D.【分析】判定两个直角三角形全等的方法有:SAS、SSS、AAS、ASA、HL五种,然后结合题目所给的条件进行判断即可.5.【答案】A【考点】直角三角形斜边上的中线【解析】【解答】∵CD是Rt△ABC的中线,∠ACB=90°,∴DC=DA,∴∠DCA=∠A=50°,∴∠CDB=∠DCA+∠A=100°,故答案为:A.【分析】首先依据在直角三角形中,斜边上的中线等于斜边的一半得到DC=DA,接下来,再依据等边对等角的性质得到∠DCA=∠A=50°,最后,依据三角形的外角的性质进行计算即可.6.【答案】A【考点】三角形中位线定理,平行四边形的性质【解析】【解答】∵▱ABCD对角线相交于点O,E是AD的中点,∴AB=CD,AD=BC=6,EO是△ABD的中位线,∴AB=2OE=4,∴▱ABCD的周长=2(AB+AD)=20.故答案为:A.【分析】首先依据平行四边形的性质可得到O为BD的中点,然后依据三角形的中位线的性质可得到AB=OE=4,然后再依据平行四边形的性质得到各边的长,最后再求得其周长即可.7.【答案】B【考点】多边形内角与外角【解析】【解答】设这个多边形的边数是n,则:(n﹣2)180°=900°,解得n=7故答案为:B.【分析】设这个多边形的边数是n,然后依据多边形的内角和公可得到180°(n﹣2)=900°,最后,再解这个关于n的方程即可.8.【答案】A【考点】平行四边形的判定【解析】【解答】A、“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;B、根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C、根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;D、根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;故答案为:A.【分析】首先结合图形确定出其中的已知条件,然后再依据平行四边形的判定定理逐项进行判断即可. 9.【答案】C【考点】利用频率估计概率【解析】【解答】∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,∴摸到红色球、黑色球的概率分别为0.15和0.45,∴摸到白球的概率为1﹣0.15﹣0.45=0.4,∴口袋中白色球的个数可能为0.4×40=16.故答案为:C.【分析】先求得摸到白球的频率,最后依据频数=总数×频率进行计算即可.10.【答案】B【考点】一次函数的性质【解析】【解答】A、当x=﹣1时,y=x﹣1=﹣1﹣1=﹣2,则图象经过点(﹣1,﹣2),A不符合题意;B、由于k>0,b<0,则图象经过第一、三、四象限,B符合题意;C、当x=0时,y=﹣1,则图象与y轴交点交点坐标是(0,﹣1),C不符合题意;D、由于k=1>0,所以y的值随x值的增大而增大,D不符合题意.故答案为:B.【分析】对于A,将(-1,-2)代入直线的解析式进行判断即可;对于B,依据题意可知k>0,b<0,然后再依据一次函数的图像和性质进行判断即可;对于C,当x=0时,求得对应的y值,从而可得到直线与y轴交点的坐标;对于D,依据一次函数的图像和性质进行判断即可.11.【答案】B【考点】一次函数与一元一次不等式【解析】【解答】把A(m,3)代入y=2x得2m=3,解得m= ,把A(,3)代入y=ax+4得3= a+4,解得a=﹣,解不等式2x<﹣x+4得x<.故答案为:B.【分析】将点A的坐标代入两直线的解析式可求得m、a的值,然后将a的值代入不等式,得到关于x的一元一次不等式,最后,再解这个不等式即可.12.【答案】A【考点】分段函数,一次函数的图象,根据实际问题列一次函数表达式【解析】【解答】∵在矩形ABCD中,AB=2,AD=3,∴CD=AB=2,BC=AD=3,∵BE=1,∴CE=BC﹣BE=2,①点P在AD上时,△APE的面积y= x•2=x(0≤x≤3),②点P在CD上时,S△APE=S梯﹣S△ADP﹣S△CEP,形AECD= (2+3)×2﹣×3×(x﹣3)﹣×2×(3+2﹣x),=5﹣x+ ﹣5+x,=﹣x+ ,∴y=﹣x+ (3<x≤5),③点P在CE上时,S△APE= ×(3+2+2﹣x)×2=﹣x+7,∴y=﹣x+7(5<x≤7),故答案为:A.【分析】分为点P在AD上、点P在CD上、点P在CE上三种情况列出三角形的面积与x的关系,即y与x的关系式,然后依据关系可得到函数的大致图像,故此可得到问题的答案.二.<b >填空题</b>13.【答案】20【考点】菱形的性质【解析】【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴菱形的周长为20,故答案为20【分析】依据菱形的四条边相等可得到BC=AB=CD=AD=5,然后再求得菱形的周长即可.14.【答案】(2,﹣3)【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:∵点P(2,3)∴关于x轴的对称点的坐标为:(2,﹣3).故答案为:(2,﹣3).【分析】依据关于x轴对称点的横坐标互为相反数,纵坐标相等进行解答即可.15.【答案】y=2x+4【考点】一次函数图象与几何变换【解析】【解答】解:直线y=2x向上平移4个单位后得到的直线解析式为y=2x+4.故答案为:y=2x+4.【分析】当直线y=kx+b(k≠0)平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.16.【答案】<【考点】一次函数的性质【解析】【解答】解:∵﹣1<0,∴直线y=﹣x+2上,y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【分析】已知k=-1<0,一次函数的性质可知y随x的增大而减小,然后依据两点的横坐标的大小可得到它们纵坐标的大小关系.17.【答案】36【考点】角平分线的性质【解析】【解答】解:如图,过点O作OE⊥AB于E,作OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD=OF=4,∴△ABC的面积= ×18×4=36.故答案为:36.【分析】过点O作OE⊥AB于E,作OF⊥AC于F,依据平分线的性质可得到OE=OD=OF,然后将三角形ABC 的面积转化为△ABO、△BCO、△ACO的面积之和求解即可.18.【答案】①④【考点】全等三角形的判定与性质,线段垂直平分线的性质,正方形的性质【解析】【解答】解:如图,设FG交AD于M,连接BE.∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠ADC=∠C=90°,∵DE=EC=2,在Rt△ADE中,AE= = =2 .∵AF=EF,∴DF= AE= ,故①正确,易证△AED≌△BEC,∴∠AED=∠BEC,∵DF=EF,∴∠FDE=∠FED=∠BEC,∴DF∥BE,∵BE与EG相交,∴DF与EG不平行,故②错误,∵AE⊥MG,易证AE=MG=2 ,由△AFM∽△ADE,可知= ,∴FM= ,FG= ,在Rt△EFG中,EG= = ,在Rt△ECG中,CG= = ,∴BG=BC﹣CG=4﹣= ,故④正确,∵EF≠EC,FG≠CG,∴△EGF与△EGC不全等,故③错误,故答案为①④.【分析】设FG交AD于M,连接BE.对于①先依据勾股定理求得AE的长,然后依据直角三角形斜边上中线依据斜边的一半可得到DF的长;对于②,先证明DF∥BE,然后依据过一点有且只有一条直线与已知直线平行进行判断即可;对于③,依据全等三角形的判定定理可对③作出判断;对于④,先依据相似三角形的性质可求得FM和FG的长,然后依据勾股定理可求得EG和CG的长,最后依据BG=BC﹣CG可求得BG的长.三.<b >解答题</b>19.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS)(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=CF,∴DF=EB,∵DF∥EB,∴四边形BFDE是平行四边形.【考点】全等三角形的判定与性质,平行四边形的判定与性质【解析】【分析】(1)首先依据平行四边形的性质可得到AD=BC,∠A=∠C,然后再根据SAS证明即可;(2)依据平行四边形的性质得到DC∥AB,DC=AB,然后再依据等式的性质可得到DF=BE,最后,再依据一组对边平行且相等的四边形为平行四边形进行证明即可.20.【答案】(1)解:∠D是直角,理由如下:连接AC,∵∠B=90°,AB=24m,BC=7m,∴AC2=AB2+BC2=242+72=625,∴AC=25(m).又∵CD=15m,AD=20m,152+202=252,即AD2+DC2=AC2,∴△ACD是直角三角形,或∠D是直角(2)解:S四边形ABCD=S△ABC+S△ADC= •AB•B C+ •AD•DC=234(m2).【考点】勾股定理的应用【解析】【分析】(1)连接AC,先根据勾股定理求出AC的长,再依据勾股定理的逆定理得到∠D是直角;(2)由题意可知S四边形ABCD=S△ABC+S△ADC,然后将四边形ABCD的面积转化为两个直角三角形的面积之和求解即可.21.【答案】(1)60;0.05(2)解:频数分布直方图如图所示,(3)解:视力正常的人数占被调查人数的百分比是×100%=70%.【考点】频数(率)分布表,频数(率)分布直方图【解析】【解答】解:(1)总人数=20÷0.1=200.∴a=200×0.3=60,b=1﹣0.1﹣0.2﹣0.35﹣0.3=0.05,故答案为60,0.05.(2)频数分布直方图如图所示,(3)视力正常的人数占被调查人数的百分比是×100%=70%.故答案为:(1)1;2;(2)见解答过程;(3)70%.【分析】(1)依据总数=频数÷频率可求得总人数,然后依据频数=总数×频率,频率=频数÷总数求解即可;(2)依据(1)中结果补全统计图即可;(3)依据百分比=频数÷总数求解即可.22.【答案】(1)解:根据题意可知:当0<x≤6时,y=2x;(2)解:根据题意可知:当x>6时,y=2×6+3×(x﹣6)=3x﹣6(3)解:∵当0<x≤6时,y=2x,y的最大值为2×6=12(元),12<27,∴该户当月用水超过6吨.令y=3x﹣6中y=27,则27=3x﹣6,解得:x=11.答:这个月该户用了11吨水.【考点】一次函数的应用【解析】【分析】(1)当0<x≤6时,根据“水费=用水量×2”可得出y与x的函数关系式;(2)当x>6时,根据“水费=6×2+(用水量-6)×3”可得出y与x的函数关系式;(3)当0<x≤6时,y≤12,由此可知这个月该户用水量超过6吨,将y=27代入y=3x-6中,得到关于x的一元一次方程,然后求得x的值即可.23.【答案】(1)解:如图所示,△A1B1C1即为所求;(2)(2,﹣4)(3)解:由勾股定理可得,CO=∴点C所经过的路径长为:×2×π× = π.【考点】图形的旋转,旋转的性质,作图-旋转变换【解析】【解答】解:(1)如图所示,△A1B1C1即为所求;(2)由图可得,点A1的坐标为(2,﹣4),(3)由勾股定理可得,CO= 10∴点C所经过的路径长为:×2×π× = π.故答案为:(1)见解答过程;(2)(2,﹣4);(3)π.【分析】(1)根据旋转角度、旋转方向、旋转中心,确定出对应点的位置,然后顺次连结对应点可得到△A1B1C1;(2)根据点A1在坐标系中的位置可得到点A1的坐标;(3)点C所经过的路径为以O为圆心,为半径的半圆,然后再依据弧长公式进行计算即可.24.【答案】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形(2)解:∵四边形ABCD是矩形,∴CD=AB= ,在Rt△CDF中,cos∠DCF= ,∠DCF=30°,∴CF= =2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2【考点】菱形的判定,矩形的性质【解析】【分析】(1)首先根据线段垂直平分线的性质得到AF=CF,AE=CE,OA=OC,然后再证明△AOF ≌△COE,则可得AF=CE,从而可得到四边形的四条边都相等,故此可作出判断;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,最后依据菱形的面积=底×高求解即可.25.【答案】(1)解:200÷2=100(km/h).答:当0<x<2时,乙车的速度为100km/h.(2)解:甲车的速度为(400﹣200)÷2.5=80(km/h),甲、乙两车到达目的地的时间为400÷80=5(h).设乙车与甲车相遇后y乙与x的关系式为y乙=kx+b,将点(2.5,200)、(5,400)代入y乙=kx+b,,解得:,∴乙车与甲车相遇后y乙与x的关系式为y乙=80x(2.5≤x≤5).(3)解:根据题意得:y乙= ,y甲=400﹣80x(0≤x≤5).当0≤x<2时,400﹣80x﹣100x=20,解得:x= >2(不合题意,舍去);当2≤x<2.5时,400﹣80x﹣200=20,解得:x= ;当2.5≤x≤5时,80x﹣(400﹣80x)=20,解得:x= .综上所述:当x的值为或时,两车相距20km.【考点】一次函数的应用【解析】【分析】(1)先根据函数图像确定乙车行驶2小时所行驶的路程,然后再根据速度=路程÷时间求解即可;(2)依据函数图像可得到甲车行驶2.5行驶的路程,然后根据速度=路程÷时间可求出甲车的速度,由时间=路程÷速度可求出甲、乙两车到达目的地的时间,再结合二者相遇的时间,利用待定系数法即可求出乙车与甲车相遇后y乙与x的关系式;(3)根据数量关系,找出y甲、y乙关于x的函数关系式,分0≤x<2、2≤x<2.5和2.5≤x≤5三种情况,列出关于x的一元一次方程,最后解关于x的一元一次方程即可.26.【答案】(1)解:∵点B是直线AB:y= x+4与y轴的交点坐标,∴B(0,4),∵点D是直线CD:y=﹣x﹣1与y轴的交点坐标,∴D(0,﹣1);(2)解:如图1,∵直线AB与CD相交于M,∴M(﹣5,),∵点P的横坐标为x,∴点P(x,﹣x﹣1),∵B(0,4),D(0,﹣1),∴BD=5,∵点P在射线MD上,即:x≥0时,S=S△BDM+S△BDP= ×5(5+x)= x+ ,(3)解:如图,由(1)知,S= x+ ,当S=20时,x+ =20,∴x=3,∴P(3,﹣2),①当BP是对角线时,取BP的中点G,连接MG并延长取一点E'使GE'=GE,设E'(m,n),∵B(0,4),P(3,﹣2),∴BP的中点坐标为(,1),∵M(﹣5,),∴= ,=1,∴m=8,n= ,∴E'(8,),②当AB为对角线时,同①的方法得,E(﹣9,6),③当MP为对角线时,同①的方法得,E''(﹣2,﹣),即:满足条件的点E的坐标为(8,)、(﹣9,6)、(﹣2,﹣).【考点】直线与坐标轴相交问题【解析】【分析】(1)将x=0代入函数解析式得到对应的y值,从而可得到点B和点D的坐标;(2)将所求三角形的面积转为△BDM和△BDP的面积之和,然后依据三角形的面积公式列出函数关系式即可;(3)分三种情况利用对角线互相平分的四边形是平行四边形和线段的中点坐标的确定方法即可得出结论.。
新人教版八年级数学下册期末试卷(完整)
新人教版八年级数学下册期末试卷(完整)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是()A.2 B.12C.12-D.2-2.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±33.如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm4.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0C.k>0,且b<0 D.k<0,且b<05.实数a,b在数轴上对应点的位置如图所示,化简|a|+2()a b+的结果是( )A.﹣2a-b B.2a﹣b C.﹣b D.b6.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形7.下列图形中,是轴对称图形的是()A.B. C.D.8.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④ 9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是 .2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.32|1|0a b -++=,则2020()a b +=_________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D在同一直线上.若AB=2,则CD=________.5.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= _________度。
新人教版八年级数学(下册)期末试卷(带答案)
新人教版八年级数学(下册)期末试卷(带答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x <52(1)x -+|x-5|=________.2x 1-有意义,则x 的取值范围是 ▲ .3.4的平方根是 .4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.已知:如图所示△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD.求证:AE=BD.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、A4、C5、B6、B7、D8、C9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、42、x1≥.3、±2.4、20°.5、49 136、6三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、x+2;当1x=-时,原式=1.3、(1)12b-≤≤;(2)24、略.5、24°.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
人教版八年级下册数学期末考试试题及答案
人教版八年级下册数学期末考试试卷一、单选题1.下列选项中,属于最简二次根式的是()A B C D2x的取值范围是()A .4x >B .4x <C .4x ≥D .4x ≤3.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9.这5个数据的众数是()A .6B .7C .8D .94.在ABC 中,D ,E 分别是AB ,AC 的中点,若10BC =,12AB =,则DE 的长为()A .4B .5C .6D .75.如图,每个小正方形的边长都是1,A ,B ,C 分别在格点上,则ABC ∠的度数为()A .30°B .45︒C .50︒D .60︒6.甲、乙、丙三人进行射箭测试,每人10次射箭成绩的平均数均是8.9环,方差分别是20.55s =甲,20.65s =乙,20.50s =丙,则成绩最稳定的是()A .甲B .乙C .丙D .无法确定7.小明向东走80m 后,沿方向A 又走了60m ,再沿方向B 走了100m 回到原地,则方向A 是A .南向或北向B .东向或西向C .南向D .北向8.若函数3y x m =-+的图象如图所示,则函数1y mx =+的大致图象是()A .B .C .D .9.如图,将边长分别是4,8的矩形纸片ABCD 折叠,使点C 与点A 重合,则BF 的长是()A .2B .3CD .410.已知矩形的对角线为1,面积为m ,则矩形的周长为()A .212m -B .212m +C .D .二、填空题11.在ABCD 中,50A ∠=︒,则C ∠=______.12.若0a >,0b >,则0ab >.的逆命题为______(填“真”或“假”)命题.13.如图,在ABC 中,90ABC ∠=︒,AD DC =,4BD =,则AC =______.14.如图,已知直线111y k x b =+与直线222y k x b =+相交于点()1,2A ,若12y y <,则x 的取值范围为______.15.一组数据4,2,x ,6,3的平均数是4,则这组数据的中位数是______.16.观察311111122=+-=11111236=+-=,111113412=+-==_____;依此类推,按照每个等式反映的规律,第n 个二次根式的计算结果是______.17.计算:三、解答题18.在Rt ABC 中,90C ∠=︒,30A ∠=︒,3AC =,求AB 的长.19.如图,在ABCD 中,点E ,F 分别在AB ,DC 上,且AE CF =.求证:四边形DEBF 是平行四边形.20.某公司有15名员工,他们所在部门及相应每人所创年利润如表所示.部门人数每人所创年利润/万元A53B28C17D44E39(1)这个公司平均每人所创年利润是多少?(2)公司规定,个人所创年利润由高到低前40%的人可以获奖.试判断D部门的员工能否获奖,并说明理由.21.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的中线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB为邻余线,E,F在格点上.22.A、B两家物流公司为了吸引顾客,推出不同的优惠方案,其中A公司原运费是5元/千克,现按8折计费.B公司原运费是6元/千克,优惠方案为:10千克以内不优惠,超过10千克部分按5折计费.(1)以x(单位:千克)表示商品重量,y(单位:元)表示运费,分别就两家公司的优惠方案写出y关于x的函数解析式;(2)在同一直角坐标系中画出(1)中两个函数的大致图象.23.如图,直线6y ax =+与直线2y x =相交于点(),4A m ,且与x 轴相交于点B .(1)求a 和m 值;(2)求AOB 的边AB 上的高.24.已知在平面直角坐标系中,直线28y x =-与x 轴交于点A ,与y 轴交于点B .(1)求A 、B 的坐标;(2)平移线段AB ,使得点A 、B 的对应点M ,N 分别落在直线1l :36y x =+和直线2l :4y x =+上,求M ,N 的坐标;(3)试证明直线()112y kx k =+-恒平分四边形ABNM 的面积,其中0k ≠.25.正方形ABCD 的CD 边长作等边△DCE,AC 和BE 相交于点F ,连接DF.求AFD 的度数.26.下图是交警在某个路口统计的某时段来往车辆的车速情况.(单位:千米/时)(1)车速的众数是多少?(2)计算这些车辆的平均数度;(3)车速的中位数是多少?参考答案1.A【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A,是最简二次根式,符合题意;B==C=能化简,不是最简二次根式,不符合题意;D=故选A.【点睛】本题考查了最简二次根式的定义,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.2.C【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【详解】由题意得,40x-≥,解得,4x≥,故选:C.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.3.D【解析】【分析】根据众数的定义:一组数据中出现次数最多的数,进行求解即可.【详解】解:∵6,7,9,8,9这5个数中9出现了两次,出现的次数最多,∴这组数据的众数为9,故选D.【点睛】本题主要考查了众数的定义,解题的关键在于能够熟练掌握众数的定义.4.B【解析】【分析】由于DE分别是AB、AC的中点,根据中位线性质可知中位线是底边长度的一半.【详解】∵DE分别是AB、AC的中点∴DE为△ABC的中位线∴DE=12BC=1102⨯=5故选B【点睛】本题考查中位线的判定和性质,掌握这两点是解体的关键.5.B 【解析】【分析】利用勾股定理的逆定理证明△ACB 为等腰直角三角形即可得到∠ABC 的度数.【详解】解:连接AC ,由勾股定理得:AC =BC AB =∵AC 2+BC 2=AB 2=10,∴△ABC 为等腰直角三角形,∴∠ABC =45°,故选B .【点睛】本题考查了勾股定理的逆定理,解答本题的关键是根据正方形的性质求出边长,由勾股定理的逆定理判断出等腰直角三角形.6.C 【解析】【分析】根据方差是用来衡量一组数据波动大小的量,故由甲、乙、丙的方差可作出判断.【详解】解:由于222=0.50=0.55=0.65SS S <<甲乙丙,∴成绩较稳定的是丙.故选C .【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.A 【解析】【分析】设小明一开始的位置为O ,向东走到的位置为C ,沿A 方向走到的位置为D ,由题意得OC =80m ,CD =60m ,OD =100m ,然后利用勾股定理的逆定理得到∠OCD =90°即可求解.【详解】解:设小明一开始的位置为O ,向东走到的位置为C ,沿A 方向走到的位置为D ,∴由题意得OC =80m ,CD =60m ,OD =100m ,∴2222226080100OC CD OD +=+==,∴∠OCD =90°,∵OC 的方向为东,∴CD 的方向为南或北,即A 的方向为南或北,故选A .【点睛】本题主要考查了勾股定理的逆定理,解题的关键在于能够熟练掌握相关知识进行求解.8.D 【解析】【分析】根据一次函数的图象的性质确定m 的符号,进而解答即可.【详解】解:由函数3y x m =-+的图象可得:0m <,所以函数1y mx =+的大致图象经过第一、二、四象限,故选:D .【点睛】本题考查了一次函数的图象和性质,关键是根据一次函数的图象的性质确定m 的符号.9.B 【解析】【分析】由折叠的性质可得出AF =CF ,设BF =m ,则AF =8−m ,在Rt △ABF 中,利用勾股定理可得出关于m 的方程,解之即可得出结论.【详解】解:由折叠的性质可知:AF =CF .设BF =m ,则AF =CF =8−m ,在Rt △ABF 中,∠ABF =90°,AB =4,BF =m ,AF =8−m ,∴222AF AB BF =+,即()22284m m -=+,∴m =3.故选:B .【点睛】本题考查了翻转变换、矩形的性质以及勾股定理,在Rt △ABF 中,利用勾股定理找出m (AF 的长)的方程是解题的关键.10.C 【解析】【分析】设矩形的长、宽分别为a 、b ,根据矩形的性质和面积、周长公式计算即可.【详解】解:设矩形的长、宽分别为a 、b ,∵矩形的对角线为1,面积为m ,∴221a b +=,ab m =,∴a b +=∴矩形的周长为()2a b +=故选:C .【点睛】本题考查矩形的性质,关键是用22a b +和ab 表示出a b +.11.50°【解析】【分析】利用平行四边形的对角相等,进而求出即可.【详解】解:∵四边形ABCD 是平行四边形,∴∠A =∠C =50°.故答案为:50°.【点睛】考查平行四边形的性质,掌握平行四边形的对角相等是解题的关键.12.假【解析】【分析】根据逆命题的定义:把原命题的结论作为命题的条件,把原命题的条件作为命题的结论,所组成的命题叫做原命题的逆命题,进行求解即可.【详解】解:若0a >,0b >,则0ab >的逆命题为:若0ab >,则0a >,0b >,这是一个假命题,故答案为:假.【点睛】本题主要考查了判定命题的真假和命题的逆命题,解题的关键在于能够熟练掌握逆命题的定义.13.8【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半求解即可.【详解】解:∵∠ABC =90°,AD =DC ,BD =4,∴AC =2BD =8.故答案为:8.【点睛】本题主要考查了直角三角形斜边上的中线,解题的关键在于能够熟练掌握直角三角形斜边上的中线等于斜边的一半.14.1x <【解析】【分析】根据函数图像,写出直线111y k x b =+的图像在直线222y k x b =+的下方所对应的自变量的范围即可.【详解】由题意知,直线111y k x b =+与直线222y k x b =+相交于点()1,2A ,当12y y <时,1x <,故答案为:1x <.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.15.4【解析】【分析】根据平均数的定义可以先求出x 的值,再根据中位数的定义求出这组数的中位数即可.【详解】解:利用平均数的计算公式,得(4+2+x +6+3)=4×5,解得x =5,这组数据为2,3,4,5,6,中位数为4.故答案为:4.【点睛】本题考查了中位数、平均数,将数据从小到大依次排列是解题的关键.16.1120()211n nn n+++【解析】【分析】利用题中的等式可得第四个式子的结果为11145+-,第n个二次根式的结果为1111n n+-+,然后进行分式的加减运算即可.【详解】111111112122+-=+=⨯;111111123236+-=+=⨯;1111111343412+-=+=⨯;1111111454520=+-=+=⨯;第n()()()()2111111111n n n n n nn n n n n n+++-+++-==+++.故答案为1120;()211n nn n+++.【点睛】本题考查了二次根式的加减混合运算,列代数式.找出结果与序号之间的关系是解题的关键.17.【解析】【分析】根据实数的计算规则与顺序按步骤计算即可,注意结果能开出来的要开出来.【详解】解:原式===+故答案为4362+【点睛】本题考查实数的混合运算,掌握运算定律和顺序是解题关键.18.23【解析】【分析】由30°角的直角三角形的性质可得12BC AB =,再根据勾股定理可求解.【详解】解:∵90C ∠=︒,30A ∠=︒∴12BC AB =在Rt ABC 中,3AC =22222132AB BC AC AB ⎛⎫=+=+ ⎪⎝⎭解得23AB =【点睛】本题主要考查含30°角的直角三角形的性质,勾股定理,由含30度角的直角三角形的性质得12BC AB =是解题的关键.19.见解析【解析】【分析】根据一组对边平行且相等判断四边形DEBF 是平行四边形即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB CD =,//EB DF .又AE CF =,∴AB AE CD CF-=-.即EB DF=.∴四边形DEBF是平行四边形.【点睛】本题主要考查了矩形的性质,平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定定理进行求解.20.(1)5.4万元;(2)不能,理由见解析【解析】【分析】(1)利用加权平均数,即可求解;(2)算出能获奖的人数,然后个人所创年利润由高到低进行排列,进而即可求解.【详解】解:(1)公司平均每人所创年利润=532817443981 5.41515⨯+⨯+⨯+⨯+⨯==(万元)答:这个公司平均每人所创年利润是5.4万元;(2)D部门员工不能获奖,理由如下:获奖人数为:1540%6⨯=(人)个人所创年利润由高到低分别为E部门3人,B部门2人,C部门1人,共6人,所以D部门不能获奖.【点睛】本题主要考查加权平均数以及统计表,准确找出表格中的相关数据是解题的关键.21.(1)见解析;(2)见解析【解析】【分析】(1)由等腰三角形的“三线合一“性质可得AD⊥BC,则可得∠DAB与∠DBA互余,即∠FAB 与∠EBA互余,从而可得答案;(2)根据邻余四边形的概念画出图形即可.【详解】(1)证明:∵AB=AC AD是△ABC的中线∴AD⊥BC∴∠ADB=90°∴∠FAB+∠B =90°∴四边形ABEF 是邻余四边形(2)如图所示,即为所求.【点睛】本题考查了四边形的新定义,综合考查了等腰三角形的“三线合一“性质,读懂定义并明确相关性质及定理是解题的关键.22.(1)A 公司:4y x =(0x ≥),B 公司:()()601033010x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)见解析【解析】【分析】(1)根据两个公式的优惠政策进行求解即可得到答案;(2)根据(1)求得的结果,在坐标系中描点连线画出函数图像即可【详解】解:(1)A 公司:4y x =(0x ≥),B 公司:()()601033010y x x y x x ⎧=≤≤⎪⎨=+>⎪⎩(2)如图所示,即为所求.【点睛】本题主要考查了画一次函数图像,求函数关系式,解题的关键在于能够熟练掌握相关知识进行求解.23.(1)1a =-,2m =;(2)32【解析】【分析】(1)先把A 点坐标代入直线2y x =求出A 点的坐标,然后代入到6y ax =+求解即可;(2)过点A 作AC OB ⊥于点C ,然后求出B 点的坐标,即可得到AB 的长,设AOB 的边AB上的高为h ,根据1122AOB S OB AC AB h =⋅=⋅△求解即可.【详解】解:(1)把点(),4A m 代入2y x =得:42m =,∴2m =把点()2,4A 代入6y ax =+得426a =+,∴1a =-;(2)把1a =-代入6y ax =+得6y x =-+令0y =,得6x =∴()6,0B ,6OB =.过点A 作AC OB ⊥于点C ,∵()2,4A ∴4AC =,2OC =,4CB =在Rt ACB 中,224442AB =+=设AOB 的边AB 上的高为h ,∴1116412222AOB S OB AC AB h =⋅=⋅=⨯⨯=△116422h ⨯=⨯⨯,解得h =∴△AOB 的边AB 上的高为【点睛】本题主要考查了求一次函数解析式,两直线的交点问题,三角形的高,一次函数与坐标轴的交点问题,解题的关键在于能够熟练掌握相关知识进行求解.24.(1)()4,0A ,()0,8B -;(2)()1,9M ,()3,1N -;(3)见解析【解析】【分析】(1)与x 相交时,y =0;与y 轴相交时,x =0;据此解出第一问;(2)设其中一个变化后的点的坐标为未知数,再根据平移的数量关系和一次函数等量关系建立等式,解出未知数从而求出M 、N 坐标.(3)根据直线的解析式,求出直线恒过的点的坐标,再证明这个坐标就是平行四边形对角线的交点,从而证明该直线横平分平行四边形面积.【详解】解:(1)在直线28y x =-中,令0y =得280x -=,4x =,∴()4,0A 令0x =,∴8y =-,∴()0,8B -(2)点N 在直线2l 上,可设(),4N t t +,又线段MN 是由线段AB 平移得到,由()0,8B -移动到点(),4N t t +,则()4,0A 相应移动到点()4,48M t t +++把()4,48M t t +++代入直线1l ,得()12346t t +=++解得3t =-∴()1,9M ,()3,1N -另解:设()4,0A 移动到点(),M m n ,则()0,8B -相应移动到点()4,8N m n --,分别代入直线解析式中,得方程组36448m n m n +=⎧⎨-+=-⎩解得19m n =⎧⎨=⎩,∴()1,9M ,()3,1N -(3)∵()11111122222y kx k kx k k x ⎛⎫=+-=+-=-+ ⎪⎝⎭当12x =时,12y =∴直线过定点11,22⎛⎫ ⎪⎝⎭∵线段AB 平移得到线段MN∴四边形ABNM 是平行四边形∵()4,0A ,()3,1N -ABNM 的对角线的交点为4301,22-+⎛⎫ ⎝⎭,即11,22⎛⎫ ⎪⎝⎭∴直线()112y kx k =+-恒平分四边形ABNM 的面积,其中0k ≠.【点睛】本题考查平面直角坐标系中的平移问题,一次函数的表达式,平行四边形的性质,掌握基础知识是解题关键.25.60°【解析】【详解】根据正方形及等边三角形的性质求得∠ABF ,∠BAF 的度数,再根据外角的性质即可求得答案解:∵∠CBA=90°,∠ABE=60°,∴∠CBE=150°,∵四边形ABCD为正方形,三角形ABE为等边三角形,∴BC=BE,∴∠BEC=∠BCF=15°,在△CBF和△ABF中,BF=BF,∠CBF=∠ABF,BC=BA,,∴△CBF≌△ABF(SAS),∴∠BAF=∠BCE=15°,又∠ABF=45°,且∠AFD为△AFB的外角,∴∠AFD=∠ABF+∠FAB=15°+45°=60°“点睛”本题考查了正方形的性质、等边三角形的性质、全等三角形的判定与性质、等腰三角形的判定与性质;熟练掌握正方形的性质,并能进行推理论证是解决问题的关键. 26.(1)车速的众数是42千米/时;(2)这些车辆的平均数度是42.6千米/时;(3)车速的中位数是42.5千米/时.【解析】【详解】试题分析:(1)根据条形统计图所给出的数据求出出现的次数最多的数即可,(2)根据加权平均数的计算公式和条形统计图所给出的数据列出算式计算即可,(3)根据中位数的定义求出第10和11个数的平均数即可.解:(1)根据条形统计图所给出的数据得:42出现了6次,出现的次数最多,则车速的众数是42千米/时;(2)这些车辆的平均数度是:(40+41×3+42×6+43×5+44×3+45×2)÷20=42.6(千米/时),答:这些车辆的平均数度是42.6千米/时;(3)因为共有20辆车,中位数是第10和11个数的平均数,所以中位数是42和43的平均数,(42+43)÷2=42.5(千米/时),所以车速的中位数是42.5千米/时.考点:条形统计图;加权平均数;中位数;众数.21。
八年级数学下册期末试卷(附答案解析)
八年级数学下册期末试卷(附答案解析)学校:___________姓名:___________班级:_____________一、单选题(每题3分,共27分)1( )A B .C D 2.下列图形中,不是中心对称图形的是( )A .B .C .D .3.下列表达式中,y 是x 的函数的是( )A .2y x =B .||1y x =+C .||y x =D .221y x =-4.下列几组数中,能作为直角三角形三边长度的是( )A .2,3,4a b c ===B .5,6,8a b c ===C .5,12,13a b c ===D .7,15,12a b c === 5.下列运算中正确的是( )AB =C 2±D =6.下列说法不正确的是( )A .数据0、1、2、3、4、5的平均数是3B .选举中,人们通常最关心的数据是众数C .数据3、5、4、1、2的中位数是3D .甲、乙两组数据的平均数相同,方差分别是S 甲2=0.1,S 乙2=0.11,则甲组数据比乙组数据更稳定 7.如图①,正方形ABCD 在平面直角坐标系中,其中AB 边在y 轴上,其余各边均与坐标轴平行,直线:1l y x =-沿y 轴的正方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m (米),平移的时间为t (秒),m 与t 的函数图象如图①所示,则图①中b 的值为( )A .B .C .D .8.在下列给出的条件中,能判定四边形ABCD 是平行四边形的是( )A .//AB CD ,AD BC =B .A B ∠=∠,CD ∠=∠ C .//AD BC ,AD BC = D .AB AD =,CD BC =9.下列哪个点在一次函数34y x =-上( ).A .(2,3)B .(-1,-1)C .(0,-4)D .(-4,0)10.如图,菱形ABCD 的对角线AC 、BD 交于点O ,将①BOC 绕着点C 旋转180°得到B O C '',若AC =2,AB ='AB 的长是( )A .4B .C .5D .二、填空题(每题5分,共25分)11在实数范围内有意义,则x 应满足的条件是_____.12.一个正方形的面积是5,那么这个正方形的对角线的长度为_______.13.新定义[a ,b ]为一次函数y =ax +b (其中a ≠0,且a ,b 为实数)的“关联数”,若“关联数”[3,m +2]所对应的一次函数是正比例函数,则关于x 的方程1111x m+=-的解为____. 14.如图,已知面积为1的正方形ABCD 的对角线相交于点O ,过点O 任作一条直线分别交AD BC ,于E F ,,则阴影部分的面积是________.15.在平面直角坐标系中,若点P(x﹣2,x+1)关于原点的对称点在第四象限,则x的取值范围是_____.三、解答题16.(6分)计算:;)031+;17.在数轴上表示a、b、c三数点的位置如下图所示,化简:|c||a-b|.18.(6分)如图,四边形ABCD是平行四边形,AE①BC于E,AF①CD于F,且BE=DF.(1)求证:四边形ABCD是菱形;(2)连接EF,若①CEF=30°,BE=2,直接写出四边形ABCD的周长.19.(10分)2019年10月1日是新中国成立七十周年,某校为庆祝国庆,组织全校学生参加党史知识竞赛,从中抽取200名学生的成绩(得分取正整数,满分100分)进行统计,绘制了如图尚不完整的统计图表.200名学生党史知识竞赛成绩的频数表请结合表中所给的信息回答下列问题:(1)频数表中,a = ,b = ,c = ;(2)将频数直方图补充完整;(3)若该校共有1500名学生,请估计本次党史知识竞赛成绩超过80分的学生人数.20.(10分)某校有一露天舞台,纵断面如图所示,AC 垂直于地面,AB 表示楼梯,AE 为舞台面,楼梯的坡角①ABC =45°,坡长AB =2m ,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD ,使①ADC =30°.(1)求舞台的高AC (结果保留根号);(2)求DB 的长度(结果保留根号).21.(10分)如图,直线6y kx =+与x 轴、y 轴分别交于点E 、点F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-.(1)求一次函数的解析式;(2)若点(),P x y 是线段EF (不与点E 、F 重合)上的一点,试写出OPA ∆的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下探究:当点P 在什么位置时,OPA ∆的面积为278,并说明理由. 22.(10分)如图,矩形ABCD 的对角线相交于点O ,分别过点C 、D 作//CE BD 、//DE AC ,CE 、DE 交于点E .(1)求证:四边形OCED 是菱形;(2)将矩形ABCD 改为菱形ABCD ,其余条件不变,连结OE .若10AC =,24BD =,则OE 的长为多少?23.(10分)某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用. 24.(10分)如图,ABC 中,D 是AB 边上任意一点,F 是AC 中点,过点C 作CE ①AB 交DF 的延长线于点E ,连接AE ,CD .(1)求证:四边形ADCE 是平行四边形:(2)若4BC =,45CAB ∠=︒,AC =AB 的长.参考答案与解析:1.D=故答案为:D .【点睛】本题考查了无理数化简的问题,掌握无理数化简的方法是解题的关键.2.B【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A 、是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项正确;C 、是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项错误.故选:B .【点睛】本题考查中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.C【分析】根据函数的定义:在某一变化过程中有两个变量x 与y ,如果对x 的每一个值,y 都有唯一确定的值与之对应,那么就说x 是自变量,y 是x 的函数,进行求解即可.【详解】解:A 、2y x =,对于一个x ,存在有两个y 与之对应,例如:当x =1时,y =±1,y 不是x 的函数,故此选项不符合题意;B 、||1y x =+对于一个x ,存在有两个y 与之对应,例如:当x =1时,y =±2,y 不是x 的函数,故此选项不符合题意;C 、||y x =对于一个x ,对于任意的x ,y 都有唯一的值与之对应,y 是x 的函数,故此选项符合题意;D 、221y x =-对于一个x ,存在有两个y 与之对应,例如:当x =0时,y =±1,y 不是x 的函数,故此选项不符合题意;故选C .【点睛】本题主要考查了函数的定义,解题的关键在于能够熟记定义.4.C【分析】由勾股定理的逆定理逐一分析各选项,从而可得答案.【详解】解:22222223134,a b c +=+=≠= 故A 不符合题意;22222256618,a b c +=+=≠= 故B 不符合题意;22222251216913,a b c +=+=== 故C 符合题意;22222271219315,a c b +=+=≠= 故D 不符合题意;故选:.C【点睛】本题考查的是勾股定理的逆定理,掌握“利用勾股定理的逆定理判断三角形是不是直角三角形.”是解题的关键5.D【分析】根据二次根式的加法、混合运算以及二次根式的化简等知识逐一进行分析即可得.【详解】A.,故A 选项错误;B.42=-=2,故B 选项错误;C.2=,故C 选项错误;D.故选D.【点睛】本题考查了二次根式的混合运算以及二次根式的化简等知识,熟练掌握各运算的运算法则是解题的关键.6.A【详解】试题分析:A 、数据0、1、2、3、4、5的平均数是16×(0+1+2+3+4+5)=2.5,此选项错误; B 、选举中,人们通常最关心的数据是得票数最多的,即众数,此选项正确;C 、数据3、5、4、1、2从小到大排列后为1、2、3、4、5,其中位数为3,此选项正确;D 、①S 甲2<S 乙2,①甲组数据比乙组数据更稳定,此选项正确;故选A .考点:平均数;众数;中位数;方差.7.D【分析】先根据图①分析a 和b 的含义,先求出a 后再利用勾股定理求出b 即可.【详解】解:由图①可知,当直线l 运动a 秒时,m 的值最大为b ,当直线l 运动10秒时,m 的值又变为0,①可以得出直线l 运动到经过A 点时用了a 秒,经过D 点时用了10秒,①55a AB ==,,即正方形边长为5,①AC = ①b =故选:D .【点睛】本题考查了正方形的性质、勾股定理、一次函数的图象与性质等知识,解题关键是理解图象中的点的含义.8.C【分析】根据平行四边形的判定条件判断即可;【详解】根据分析可得当//AD BC ,AD BC =时,根据一组对边平行且相等的四边形是平行四边形能证明;故答案选C .【点睛】本题主要考查了平行四边形的判定,准确判断是解题的关键.9.C【详解】A 选项:①当x=2时,y=3×2-4=2≠3,①点(2,3)不在此函数的图象上,故本选项错误; B 选项:①当x=-1时,y=3×(-1)-4=-7≠-1,①点(-1,-1)不在此函数的图象上,故本选项错误; C 选项:当x=0时,y=0-4=-4,①点(0,-4)在此函数的图象上,故本选项正确;D 选项:当x=-4时,y=3×(-4)-4=-16≠0,①点(-4,0)不在此函数的图象上,故本选项错误. 故选C .10.C【分析】利用菱形的性质求出OB 的长度,再利用勾股定理求出'AB 的长即可.【详解】解:①菱形ABCD ,①BD ①AC ,AB =BC ,AO =OC =1在Rt①OBC 中,4OB =,①旋转,①OB O B ''=,90O '∠=︒,在Rt①AO B ''中,'5AB =,故选:C .【点睛】本题主要考查菱旋转和形的性质,能够利用勾股定理结合性质解三角形是解题关键.11.x ≥5.【分析】直接利用二次根式的定义分析得出答案.x﹣5≥0,解得:x≥5.故答案为:x≥5.【点睛】本题考查二次根式有意义的条件以及绝对值的性质,解题关键是掌握二次根式中的被开方数是非负数.12【详解】解:设正方形的对角线长为x,由题意得,12x2=5,解得13.5 3【详解】试题分析:根据“关联数”[3,m+2]所对应的一次函数是正比例函数,得到y=3x+m+2为正比例函数,即m+2=0,解得:m=-2,则分式方程为11112x-=-,去分母得:2-(x-1)=2(x-1),去括号得:2-x+1=2x-2,解得:x=53,经检验x=53是分式方程的解.考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义.14.1 4【详解】依据已知和正方形的性质及全等三角形的判定可知△AOE①①COF,则得图中阴影部分的面积为正方形面积的14,因为正方形的边长为1,则其面积为1,于是这个图中阴影部分的面积为14. 故答案为14. 15.﹣1<x <2【分析】根据题意可得点P 在第二象限,再利用第二象限内点的坐标符号可得关于x 的不等式组,然后解不等式组即可.【详解】解:①点P (x ﹣2,x +1)关于原点的对称点在第四象限,①点P 在第二象限,①2010x x -<⎧⎨+>⎩, 解得:﹣1<x <2,故答案为:﹣1<x <2.【点睛】此题主要考查了关于原点对称点的坐标,关键是掌握第二象限内点的坐标符号.16.(1)(2)4【分析】(1)根据二次根式的加减运算法则即可求出答案;(2)原式利用二次根式的除法,绝对值的意义,以及0指数幂的法则计算即可的到结果.(1==(2)031+(31=-+31+=4 【点睛】本题考查二次根式的混合运算,以及0指数幂,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.17.2a【分析】首先根据数轴可以确定,,a b c 的符号,以及各个绝对值数内的数的大小,然后即可去掉绝对值符号,从而对式子进行化简.【详解】解:根据数轴可以得到:0c a b <<<,且a b c <<,①c a b -()(),c c a b b a =-+++--,c c a a =-+++=2a .18.(1)见解析(2)16【分析】(1)根据平行四边形的性质可得①B =①D ,进而易证△ABE ≌△ADF (ASA ),即得出AB =AD ,进而即可求证结论:▱ABCD 是菱形;(2)由菱形的性质可知BC =CD ,进而可得CE =CF ,再由等腰三角形的性质和三角形内角和定理即可求出①ECF =120°,即求出①B =60°,最后利用含30°角的直角三角形的性质即可求出AB 的长,进而即可求出菱形的周长.(1)证明:①四边形ABCD 是平行四边形①①B =①D ,①AE ①BC ,AF ①CD ,①①AEB =①AFD =90°,在①AEB 和①AFD 中,B D BE DFAEB AFD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ①①AEB ①①AFD (ASA ),①AB =AD ,①四边形ABCD 是菱形.(2)如图,由(1)可知BC =CD ,①BE =DF ,①CE =CF ,①①CFE =①CEF =30°,①①ECF =180°−2①CEF =120°,①①B =180°−①ECF =60°,在Rt①ABE中,①BAE=30°,①24==,AB BE⨯=.①菱形ABCD的周长为4416【点睛】本题考查平行四边形的性质,菱形的判定和性质,全等三角形的判定和性质,等腰三角形的判定和性质以及含30°角的直角三角形的性质等知识.利用数形结合的思想是解答本题的关键.19.(1)20,80,0.32;(2)补全的频数分布直方图见解析;(3)本次党史知识竞赛成绩超过80分的学生有1080人.【分析】(1)根据频数表可直接进行求解;(2)由(1)可直接进行作图;(3)由(1)、(2)可得成绩超过80分的学生人数的频率,然后直接列式求解即可.【详解】(1)a=200×0.10=20,b=200×0.40=80,c=64÷200=0.32,故答案为:20,80,0.32;(2)由(1)知,a=20,b=20,补全的频数分布直方图见右图;(3)1500×(0.40+0.32)=1500×0.72=1080(人),即本次党史知识竞赛成绩超过80分的学生有1080人.【点睛】本题主要考查频数与频率,熟练掌握频数与频率是解题的关键.20.(2)m【分析】(1)在Rt △ABC 中,根据①ABC =45°,得到AC =BC =AB •sin45°=; (2)根据Rt △ADC 中,①ADC =30°,得到CD=tan AC ADC=∠推出BD =CD ﹣BC =)m . (1)解:①AC ①BC ,①①ACB =90°,①在Rt △ABC 中,AB =2m ,①ABC =45°,①①BAC =90°-①ABC =45°,①AC =BC =AB •sin45°=2×2m ),答:舞台的高ACm ; (2)在Rt △ADC 中,①ADC =30°,则CD=tan AC ADC==∠①BD =CD ﹣BC =)m ,答:DBm . 【点睛】本题考查了解直角三角形,熟练运用含30°角的直角三角形性质和含45°角的直角三角形的性质,是解决本题的关键.21.(1)364y x =+;(2)9184s x =+;80x -<<;(3)当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278,见解析【分析】(1)把点E 的坐标为(-8,0)代入6y kx =+求出k 即可解决问题;(2)△OP A 是以OA 长度6为底边,P 点的纵坐标为高的三角形,根据1••2PAO y SOA P =, 列出函数关系式即可;(3)利用(2)的结论,列出方程即可解决问题;【详解】解:(1)把()8,0E -代入6y kx =+中有086k =-+ ①34k = ①一次函数解析式为364y x =+ (2)如图:①OPA ∆是以OA 为底边,P 点的纵坐标为高的三角形①()6,0A -①6OA = ①1139666182244s y x x ⎛⎫=⨯⨯=⨯+=+ ⎪⎝⎭ 自变量x 的取值范围:80x -<<(3)当OPA ∆的面积为278时,有9271848x += 解得132x =-把132x =-代入一次函数364y x =+中,得98y = ①当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278 【点睛】本题考查一次函数综合题、三角形的面积、一元一次方程等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会构建一次函数或方程解决实际问题.22.(1)见解析;(2)13【分析】(1)先证明四边形OCED 是平行四边形,再根据矩形性质证明OC=OD ,即可证得结论;(2)根据菱形的性质和勾股定理可得到CD =13,再根据矩形的判定和性质即可得到OE 的长.【详解】(1)证明:①//DE AC 、//CE BD ,①四边形OCED 是平行四边形,①四边形ABCD 是矩形,①AC BD =,12OC AC =,12OD BD =, ①OC OD =,①四边形OCED 是菱形;(2)解:①四边形ABCD 是菱形,①AC BD ⊥,152OC AC ==,1122OD BD ==,①13CD ,①//DE AC 、//CE BD ,①四边形OCED 是平行四边形,①AC BD ⊥,①四边形OCED 是矩形,①13OE CD ==.【点睛】本题考查矩形的判定与性质、平行四边形的判定、菱形的判定与性质、勾股定理,熟练掌握相关知识的联系与运用是解答的关键.23.1)22800y x =+;(2)购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.【详解】试题分析:(1)根据购车的数量以及价格根据总费用直接表示出等式;(2)根据购买中型客车的数量少于大型客车的数量,得出y=22x+800,中x 的取值范围,再根据y 随着x 的增大而增大,得出x 的值.试题解析:(1)因为购买大型客车x 辆,所以购买中型客车(20)x -辆.()62402022800y x x x =+-=+.(2)依题意得< x . 解得x >10.① 22800y x =+,y 随着x 的增大而增大,x 为整数,① 当x=11时,购车费用最省,为22×11+800="1" 042(万元).此时需购买大型客车11辆,中型客车9辆.答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.考点:一次函数的应用24.(1)证明见解析(2)2【分析】(1)根据平行线的性质得到CAD ACE ∠=∠,ADE CED ∠=∠.根据全等三角形的性质得到AD CE =,于是得到四边形ADCE 是平行四边形;(2)过点C 作CG AB ⊥于点G ,根据等腰三角形的性质和勾股定理即可得到结论.(1)证明:①AB CE ,①CAD ACE ∠=∠,ADE CED ∠=∠.①F 是AC 中点,①AF CF =.在AFD △与CFE 中,CAD ACE ADE CED AF CF ∠∠⎧⎪∠∠⎨⎪=⎩==,①AFD CFE AAS ≌(),①AD CE =.①AB CE ,①四边形ADCE 是平行四边形;(2)解:过点C 作CG AB ⊥于点G ,在ACG 中,=90AGC ∠︒,4BC =,45CAB ∠=︒,AC =由勾股定理得(22228CG AG AC +===,①2CG AG ==,在BCG 中,90BGC ∠=︒,2CG =,4BC =,①BG =①2AB AG BG =+=.【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,解直角三角形,正确的识别图形是解题的关键.。
八年级数学下册期末考试卷(含有答案)
八年级数学下册期末考试卷(含有答案)(满分:120分;时间120分钟)一、选择题(本大题共10个小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案A超过一个均记零分。
)1. 若式子√2x−4在实数范围内有意义,则x的取值范围是( )A. x≠2B. x≥2C. x≤2D. x≠−22. 下列方程是一元二次方程的是( )=5 D. x2=0A. x2+2y=1B. x3−2x=3C. x2+1x23. 下列说法中正确的有( ) ①四边相等的四边形一定是菱形; ②顺次连接矩形各边中点形成的四边形定是正方形; ③对角线相等的四边形一定是矩形; ④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.A. 4个B. 3个C. 2个D. 1个4. 把代数式(a−1)⋅√1中的a−1移到根号内,那么这个代数式等于( )1−aA. −√1−aB. √a−1C. √1−aD. −√a−15. 陈师傅应客户要求加工4个长为4cm、宽为3cm的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,图中有可能不合格的零件是( )A. B. C. D.6. 已知m是一元二次方程x2−3x+1=0的一个根,则2022−m2+3m的值为( )A. 2023B. 2022C. 2021D. −20207. 对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B′M=1,则CN的长为( )A. 7B. 6C. 5D. 48. 若最简二次根式√7a+b与√6a−bb+3是同类二次根式,则a+b的值为( )A. 2B. −2C. −1D. 19. 关于x的一元二次方程(m−3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为( )A. 0B. ±3C. 3D. −3A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分只要求填写最后结果。
2023-2024学年冀教版八年级数学下册期末复习试题(一)(含答案)
2023-2024学年度下期冀教版数学八年级下册期末复习习题精选(一)(满分120分,限时100分钟)一、选择题(每小题3分,共42分)1.(2023河北保定期末)为了解某市七年级8 000名学生的身高情况,从中抽取了60名学生进行身高检查.下列判断:①这种调查方式是抽样调查;②8 000名学生是总体;③每名学生的身高是个体;④60名学生是总体的一个样本;⑤60名学生是样本容量.其中正确的判断有( )A.5个B.4个C.3个D.2个2.(2023广东深圳南山二模)剪纸艺术是中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是轴对称图形,将其放在平面直角坐标系中,如果图中点E的坐标为(m,3),其关于y轴对称的点F的坐标为(4,n),则m+n的值为( )A.-1B.0C.1D.-93.(2023陕西西安雁塔模拟)一次函数y=(-2m+1)x的图像经过(-1,y1),(2,y2)两点,且y1>y2,则m的值可以是( )A. B.0 C.1 D.-4.(2023浙江温州三模)某校九(1)班50名学生的视力频数分布直方图如图所示(每一组含前一个边界值,不含后一个边界值),若视力达到 4.8以上(含 4.8)为达标,则该班学生视力的达标率为( )A.8%B.18%C.29%D.36%5.(2023山东临沂兰陵期中)下面的三个问题中都有两个变量:①正方形的周长y与边长x;②汽车以30千米/时的速度行驶,它的行驶路程y(千米)与时间x(小时);③水箱以0.8 L/min的流量往外放水,水箱中的剩余水量y(L)与放水时间x(min).其中,变量y与变量x之间的函数关系可以利用如图所示的图像表示的是( )A.①②B.①③C.②③D.①②③6.(2023天津南开期末)已知张强家、体育场、文具店在同一直线上.给出的图像反映的过程是:张强从家跑步去体育场,在体育场锻练了若干分钟后又走到文具店去买笔,然后散步走回家.图中x(min)表示张强离开家的时间,y(km)表示张强离家的距离,则下列说法错误的是( )A.体育场离文具店1 kmB.张强在文具店停留了20 minC.张强从文具店回家的平均速度是 km/minD.当30≤x≤45时,y=7.(2023重庆忠县期末)如图,四边形ABCD是矩形,有一动点P从点B出发,沿B→C→D→A绕矩形的边匀速运动,当点P到达点A时停止运动.在点P的运动过程中,△ABP的面积S随时间t变化的函数图像大致是( )8.【新独家原创】在菱形ABCD中,AC=6,BD=8,点E为BC上一动点,则的最小值为( )A. B. C. D.9.(2023河南新乡长垣期末)随着暑假临近,某游泳馆推出了甲、乙两种消费卡,设消费次数为x,所需费用为y元,且y与x的函数关系的图像如图所示.根据图中信息判断,下列说法错误的是( )A.甲种消费卡为20元/次=10x+100B.y乙C.点B的坐标为(10,200)D.洋洋爸爸准备了240元钱用于洋洋在该游泳馆消费,选择甲种消费卡划算10.(2023上海虹口期末)在平面直角坐标系中,点A(0,6),点B(-6,0),坐标轴上有一点C,使得△ABC为等腰三角形,则这样的点C一共有( )A.5个B.6个C.7个D.8个11.(2023河南濮阳二模)如图,以矩形ABCD的顶点A为圆心,AD长为半径画弧交CB的延长线于点E,过点D作DF∥AE交BC于点F,连接AF.若AB=4,AD=5,则AF的长是( )A.2B.3C.3D.312.(2023福建福州台江模拟)“开开心心”商场2021年1~4月的销售总额如图1,其中A商品的销售额占当月销售总额的百分比如图2.根据图中信息,有以下四个结论,其中推断不合理的是( )A.1~4月该商场的销售总额为290万元B.2月份A商品的销售额为12万元C.1~4月A商品的销售额占当月销售总额的百分比最低的月份是4月D.2~4月A商品的销售额占当月销售总额的百分比与1月份相比都下降了13.【新考法】(2023河南郑州金水期末)现有一四边形ABCD,借助此四边形作平行四边形EFGH,两位同学提供了如图所示的方案,对于方案Ⅰ、Ⅱ,下列说法正确的是( )方案Ⅰ方案Ⅱ作边AB,BC,CD,AD的垂直平分线l1,l2,l3,l4,分别交AB,BC,CD,AD于点E,F,G,H,顺次连接这四点得到的四边形EFGH即为所求连接AC,BD,过四边形ABCD各顶点分别作AC,BD 的平行线EF,GH,EH,FG,这四条平行线围成的四边形EFGH即为所求A.Ⅰ可行、Ⅱ不可行B.Ⅰ不可行、Ⅱ可行C.Ⅰ、Ⅱ都可行D.Ⅰ、Ⅱ都不可行14.【一题多解】(2022贵州黔东南州中考)如图,在边长为2的等边三角形ABC的外侧作正方形ABED,过点D作DF⊥BC交CB的延长线于点F,则DF的长为( )A.2+2B.5-C.3-D.+1二、填空题(每小题4分,共12分)15.(2023北京房山期末)如图,菱形ABCD的对角线AC,BD相交于点O,点E为BC的中点,连接OE,若OE=,OA=4,则AB= ,菱形ABCD的面积是.16.【河北常考·双填空题】(2023河北石家庄桥西期末)在同一直线上,甲骑自行车,乙步行,分别由A,B两地同时向右匀速出发,当甲追上乙时,两人同时停止.下图是两人之间的距离y(km)与所经过的时间t(h)之间的函数关系图像,观察图像,出发后h甲追上乙.若乙的速度为8 km/h,则经过1.5 h甲行驶的路程为.17.(2023河北沧州献县期末)五子棋是一种两人对弈的棋类游戏,规则是:在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子获胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图.观察棋盘,以点O为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点.若黑子A的坐标为(7,5),为了不让白方获胜,此时黑方应该下在坐标为的位置.三、解答题(共66分)18.[含评分细则](2023湖北武汉期中)(12分)已知点P(2a-2,a+5),解答下列各题:(1)若点P在x轴上,求出点P的坐标.(2)若点Q的坐标为(4,5),直线PQ∥y轴,求出点P的坐标.(3)若点P在第二象限,且它到x轴的距离与到y轴的距离相等,求a2 023+2 023的值.19.[含评分细则](2023广东深圳期中)(12分)自行车骑行爱好者小轩为备战中国国际自行车公开赛,积极训练.下图是他最近一次在深圳湾体育公园骑车训练时,离家的距离s(km)与所用时间t(h)之间的函数图像.请根据图像回答下列问题:(1)途中小轩共休息了h.(2)小轩第一次休息后,骑行速度恢复到第1小时的速度,请求出目的地离家的距离a是多少.(3)小轩第二次休息后返回家时,速度和到达目的地前的最快车速相同,则全程最快车速是km/h.(4)已知小轩是早上7点离开家的,请通过计算,求出小轩回到家的时间.20.[含评分细则]【新素材】(2023四川绵阳涪城模拟)(14分)青少年“心理健康”问题引起社会的广泛关注,某区为了解学生的心理健康状况,对中学初二学生进行了一次“心理健康”知识测试,随机抽取了部分学生的成绩作为样本,绘制了不完整的频率分布表和频率分布直方图(频率分布表每组含前一个边界值,不含后一个边界值).学生心理健康测试成绩频率分布表分组频数频率50~60 4 0.0860~70 14 0.2870~80 m 0.3280~90 6 0.1290~100 10 0.20合计 1.00请解答下列问题:(1)学生心理健康测试成绩频率分布表中,m= .(2)请补全学生心理健康测试成绩频数分布直方图.(3)若成绩在60分以下(不含60分)心理健康状况为不良,60分~70分(含60分)为一般,70分~90分(含70分)为良好,90分(含90分)以上为优秀,请补全学生心理健康测试成绩扇形统计图.21.[含评分细则](2023江苏无锡梁溪期末)(14分)某学校新建的初中部即将投入使用,为了改善教室空气环境,该校八年级1班班委会计划到朝阳花卉基地购买绿植,已知该基地一盆绿萝与一盆吊兰的费用之和是16元.班委会决定用80元购买绿萝,用120元购买吊兰,所购绿萝数量正好是吊兰数量的两倍.(1)分别求出每盆绿萝和每盆吊兰的价格.(2)该校八年级所有班级准备一起到该基地购买绿萝和吊兰共计120盆,其中绿萝数量不超过吊兰数量的一半,则八年级购买这两种绿植各多少盆时总费用最少?最少费用是多少元?22.[含评分细则](2023四川达州渠县期末)(14分)如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD以每秒1个单位长度的速度运动,同时点Q从点C出发沿射线CB以每秒2个单位长度的速度运动,在线段QC 上取点E,使得QE=2,连接PE,设点P的运动时间为t秒.(1)若PE⊥BC,求BQ的长.(2)是否存在t值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.答案解析1.D 为了解某市七年级8 000名学生的身高情况,从中抽取了60名学生进行身高检查.①这种调查方式是抽样调查,说法正确;②8 000名学生的身高情况是总体,故原说法错误;③每名学生的身高是个体,说法正确;④60名学生身高情况是总体的一个样本,故原说法错误;⑤60是样本容量,故原说法错误.所以正确的判断有2个.故选D.2.A ∵图中点E的坐标为(m,3),其关于y轴对称的点F的坐标为(4,n),∴m=-4,n=3,∴m+n=-4+3=-1,故选A.3.C ∵-1<2,且y1>y2,∴y随x的增大而减小,∴-2m+1<0,解得m>.故选C.4.D 若视力达到4.8以上(含4.8)为达标,则该班学生视力的达标率为×100%=36%.故选D.5.A 正方形的周长y与边长x的关系式为y=4x,故①符合题意;汽车以30千米/时的速度行驶,它的行驶路程y(千米)与时间x(小时)的关系式为y=30x,故②符合题意;水箱以0.8 L/min的流量往外放水,水箱中的剩余水量y(L)与放水时间x(min)的关系式为y=水箱原来的水量-0.8x,故③不符合题意.所以变量y与变量x之间的函数关系可以用题中的图像表示的是①②.故选A.6.D A.体育场到文具店的距离为2.5-1.5=1(km),故A选项正确,不符合题意;B.张强在文具店停留了65-45=20(min),故B选项正确,不符合题意;C.张强从文具店回家的平均速度为 1.5÷(100-65)= km/min,故C选项正确,不符合题意;D.当30≤x≤45时,设y=kx+b(k≠0),则∴当30≤x≤45时,y=-,故D选项错误,符合题意.故选D.7.B 由题意可知,当点P从点B向点C运动时,S=AB·BP,△ABP的面积S与t成正比例函数关系且随时间t的增大而增大;当点P从点C向点D运动时,S=AB·BC,△ABP的面积S不随时间t的变化而变化;当点P从点D向点A运动时,S=AB·AP,△ABP的面积S是t的一次函数且随时间t的增大而减小.所以在点P的运动过程中,△ABP的面积S随时间t变化的函数图像大致是选项B的图像.故选B.8.B ∵四边形ABCD是菱形,AC=6,BD=8,∴OB=AC=3,AC⊥BD.OB是定值,要想的值最小,则OE取最小值.当OE⊥BC时,OE取最小值,由勾股定理可求得BC==5,∵BC·OE=OB·OC,∴OE=,∴.故选B.9.D 设甲对应的函数解析式为y甲=kx(k≠0),∵点(5,100)在该函数图像上,∴5k=100,解得k=20,即甲对应的函数解析式为y甲=20x,即甲种消费卡为20元/次,故选项A不符合题意;设乙对应的函数解析式为y乙=ax+b(a≠0),∵点(0,100),(20,300)在该函数图像上,∴即乙对应的函数解析式为y乙=10x+100,故选项B不符合题意;令20x=10x+100,解得x=10,20×10=200,故点B的坐标为(10,200),故选项C不符合题意;当y=240时,甲种消费卡可消费240÷20=12(次),乙种消费卡可消费的次数为(240-100)÷10=14,因为12<14,所以洋洋爸爸准备240元钱用于洋洋在该游泳馆消费,选择乙种消费卡划算,故选项D符合题意.故选D.10.C 如图,当BC=AB时,以点B为圆心、AB长为半径画圆,与坐标轴分别交于点C1、C2、C3、A.当AC=AB时,以点A为圆心、AB长为半径画圆,与坐标轴分别交于点C4、C5、C6、B.当AC=BC时,点C应该在AB的垂直平分线上,∵OA=OB,∴点O在AB的垂直平分线上.综上,这样的C点共有7个,分别是点C1、C2、C3、C4、C5、C6、O.故选C.11.A ∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,∴∠ABE=90°,∵DF∥AE,AD∥EF,∴四边形ADFE是平行四边形,由作图得AE=AD=5,∴四边形ADFE是菱形,∴FE=AE=5,∵BE==3,∴BF=FE-BE=5-3=2,∴AF=.12.C A.1~4月该商场的销售总额为85+80+60+65=290万元,故A不符合题意;B.2月份A商品的销售额为80×15%=12万元,故B不符合题意;C.1~4月A商品的销售额占当月销售总额的百分比最低的月份是2月,故C符合题意;D.2~4月A商品的销售额占当月销售总额的百分比与1月份相比都下降了,故D不符合题意. 故选C.12.C 本题列举两种方案,从中选取可行方案,考查形式比较新颖.方案Ⅰ,如图,连接AC,∵l1,l2,l3,l4分别垂直平分AB,BC,CD,AD,∴E,F,G,H分别是AB,BC,CD,AD的中点,∴EF是△ABC的中位线,GH是△ADC的中位线,∴EF∥AC,EF=AC,GH∥AC,GH=AC,∴EF∥GH,且EF=GH,∴四边形EFGH是平行四边形,∴方案Ⅰ可行.方案Ⅱ,∵EF∥AC,GH∥AC,∴EF∥GH,∵EH∥BD,FG∥BD,∴EH∥FG,∴四边形EFGH是平行四边形,方案Ⅱ可行.故选C.14.D 解法一:如图1,延长DA,BC交于点G,∵四边形ABED是正方形,∴∠BAD=90°,AD=AB,∴∠BAG=180°-90°=90°.∵△ABC是边长为2的等边三角形,∴AB=AC=2,∠ABC=∠BAC=60°,∴∠CAG=∠BAG-∠BAC=30°,∠G=90°-∠ABC=30°,∴∠CAG=∠G,∴AC=CG=2,∴BG=BC+CG=4,∴AG=,∴DG=AD+AG=2+2.在△DFG中,DF⊥BC,∠G=30°,∴DF=×(2+2.故选D.解法二:如图2,过点E作EG⊥DF于点G,作EH⊥BC交CB的延长线于点H,则∠BHE=∠DGE=90°.∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°.∵四边形ABED是正方形,∴BE=DE=AB=2,∠ABE=∠BED=90°,∴∠EBH=180°-∠ABC-∠ABE=180°-60°-90°=30°,∴EH=×2=1,∴BH=.∵EG⊥DF,EH⊥BC,DF⊥BC,∴∠EGF=∠EHB=∠DFH=90°,∴四边形EGFH是矩形,∴FG=EH=1,∠BEH+∠BEG=∠GEH=90°.∵∠DEG+∠BEG=90°,∴∠BEH=∠DEG.在△BEH和△DEG中,∴△BEH≌△DEG(AAS),∴DG=BH=,∴DF=DG+FG=+1.故选D.15.2;16解析∵菱形ABCD的对角线AC与BD相交于点O,∴DO⊥CO,AC=2OA=2OC=8,∵E是BC的中点,∴OE是△CAB的中位线,∴AB=2OE=2,∴OB==2,∴BD=2OB=4,∴菱形ABCD的面积=×8×4=16.16.2;30km解析由图像可知,出发后2 h甲追上乙,A,B两地相距24 km,设甲的速度为x km/h,根据题意得2x=8×2+24,解得x=20,20×1.5=30(km).经过1.5 h甲行驶的路程为30 km.17.(3,7)或(7,3)18.解析(1)∵点P在x轴上,∴a+5=0,∴a=-5,∴2a-2=-12,∴点P的坐标为(-12,0).4分(2)∵点Q的坐标为(4,5),直线PQ∥y轴,∴2a-2=4,∴a=3,∴a+5=8,∴P(4,8).8分(3)∵点P在第二象限,且它到x轴的距离与到y轴的距离相等,∴2a-2=-(a+5),∴a=-1,此时P(-4,4)在第二象限,符合题意,∴a2 023+2 023=(-1)2 023+2 023=2 022,∴a2 023+2 023的值为2 022.12分19.解析(1)途中小轩共休息了2-1.5+4-3=1.5(h).故答案为1.5.3分(2)25+15×(3-2)=40(km).∴a=40.6分(3)全程最快车速是(25-15)÷(1.5-1)=20(km/h).故答案为20.9分(4)4+40÷20=6(h),7+6=13,∴小轩回到家的时间是13点.12分20.解析(1)由表格可得,抽取的学生数为4÷0.08=50,∴m=50×0.32=16.故答案为16.4分(2)补全的学生心理健康测试成绩频数分布直方图如图1所示.8分(3)良好率:(0.32+0.12)×100%=44%,9分优秀率:0.2×100%=20%,10分补全的学生心理健康测试成绩扇形统计图如图2所示.14分21.解析(1)设每盆绿萝x元,则每盆吊兰(16-x)元.根据题意得=2×,解得x=4.4分经检验,x=4是方程的解且符合题意.∴16-x=12.答:每盆绿萝4元,每盆吊兰12元.6分(2)设购买吊兰a盆,总费用为y元.依题意得,购买绿萝(120-a)盆,则y=12a+4(120-a)=8a+480.9分∵绿萝数量不超过吊兰数量的一半,∴120-a≤a,解得a≥80.10分对于y=8a+480,y随a的增大而增大,∴当a=80时,y取得最小值,最小值为8×80+480=1 120,12分此时120-a=40.答:购买吊兰80盆,绿萝40盆时,总费用最少,为1 120元.14分22.解析(1)如图,过A点作AM⊥BC于点M,设AC交PE于点N.∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,∴AB=AC,∴BM=CM,∴AM=BC=5,2分∵AD∥BC,∴∠PAN=∠C=45°,∵PE⊥BC,∴PE=AM=5,PE⊥AD,∴△APN和△CEN是等腰直角三角形,4分∴PN=AP=t,∴CE=NE=PE-PN=5-t,∵CE=CQ-QE=2t-2,∴5-t=2t-2,6分解得t=,∴BQ=BC-CQ=10-2×.7分(2)存在.8分若以A,B,E,P为顶点的四边形为平行四边形,则AP=BE,分两种情况:①当点E在点B的右侧时,有解得t=4.②当点E在点B的左侧时,有解得t=12.∴存在t值,使以A,B,E,P为顶点的四边形为平行四边形,此时t的值为4或12.14分。
人教版八年级数学下册期末统考试题及参考答案(WL精编)
八年级数学下册期末试题(WL县统考)(时间:100分钟,满分:120分)一、选择题(1-8小题每小题3分,9-12小题每小题4分,满分40分)1.下列二次根式中,与√3是同类二次根式的是()A.√0.3B.√24C.√13D.√182.我县某初中学校举办“经典通读”比赛,13名学生进入决赛,他们所得分数互不相同,比赛共设7个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是()A.众数B.中位数C.平均数D.方差3.下列条件中,不能判定四边形是平行四边形的是()A.两组对边分别平行B.一组对边平行,另一组对边相等C.两组对边分别相等D.一组对边平行且相等4.某班10名学生的校服尺寸与对应人数如表所示只寸(cm)尺寸(cm)160 165 170 175 180学生人数(人) 1 3 2 2 2则这10名学生校服尺寸的众数和中位数分别为()A. 165cm,165cmB. 170cm,165cmC.165cm,170cmD.170cm,170cm5.用a、b、c作三角形的三边,其中不能构成直角三角形的是()A.b2=(a+c)(a-c)B.a:b:c=1:2:√3C.a=32,b=42,c=52D.a=6,b=8,c=106.下列各式,计算正确的是()A.√2+√3=√5B.3√2+√2=3C.2√3×3√3=6√3D.(√8-√6)÷√2=2-√37.如图,菱形ABCD的边长为8,∠ABC=60°,点E、F分别为AO、AB的中点,则EF的长度为()A.2√3B.3C.√3D.48.若式子√a−2+(a−2)0有意义,则一次函数y=(a-2)x+2-a的图象可能是()9.如图所示,矩形ABCD 中,AB=3,AD=2,点M 在CD 上,若AM 平分∠DMB 则DM 的长是( ) A.√53 B.13C.√5−32D.3−√5 10.如图所示,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y 与x 之间的函数关系,下列说法中错误的是( )A.B 点表示快车与慢车出发4小时两车相遇B.B-C-D 段表示慢车先加速,后减速,最后到达甲地C.快车的速度为200km/hD 慢车的速度为100km/h11.如图,正方形ABCD 的边长为5,AG=CH=4,BG=DH=3,连接GH ,则线段GH 的长为( )A.√2B.4√53C.85D.5−√2 12.如图所示,在平面直角坐标系中,点A 1,A 2,A 3都在x 轴上,点B 1,B 2, B 3都在直线y=x 上,△OA 1B 1,△B 1A 1A 2,△B 2B 1A 2,△B 2A 2A 3, △B 3B 2A 3…都是等腰直角三角形,且OA 1=2,则点B 2024的坐标是( )A.(22023,22023)B.(22024,22024)C.(22023,22024)D.(22024,22025)二、填空题(每小题4分,共16分)13.已知√a −1+|b+2|=0,则(a +b)2023=_______。
人教版初中数学八年级下册期末测试题、参考答案
人教版初中数学八年级下册期末测试卷一、选择题(本大题共个小题,每小题分,共分。
在每小题给出的四个选项中,只有一项是符合题目要求的).(分)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器的容积.(分)若二次根式有意义,则x的值不可以是()A.B.C.D..(分)下列各组数中,能够作为直角三角形的三边长的一组是()A.,,B.,,C.,,D.,,.(分)如图,A D,C E是△A B C的高,过点A作A F∥B C,则下列线段的长可表示图中两条平行线之间的距离的是()A.A B B.A D C.C E D.A C.(分)下列二次根式是最简二次根式的是()A.B.C.D..(分)一组数据:,,,,若添加一个数据,则发生变化的统计量是()A.平均数B.中位数C.方差D.众数.(分)实数不可以写成的形式是()A.B.﹣C.D.(﹣).(分)如图,在△A B C中,∠A C B=°,D是A B的中点,则下列结论不一定正确的是()A.C D=B D B.∠A=∠D C AC.B D=A C D.∠B∠A C D=°.(分)对于n(n>)个数据,平均数为,则去掉最小数据和最大数据后得到一组新数据的平均数()A.大于B.小于C.等于D.无法确定.(分)若点P(m,n)在直角坐标系的第二象限,则一次函数y=m x n的大致图象是()A.B.C.D..(分)如图,在平面直角坐标系中,已知点A(﹣,),B(,),以点A为圆心,A B长为半径画弧,交x轴的正半轴于点C,则点C的横坐标介于()A.和之间B.和之间C.和之间D.和之间.(分)某速度滑冰队从甲、乙、丙、丁四位选手中选取一名参加省冰雪运动会,对他们进行了十次测试,结果他们的平均成绩均相同,方差如下表:选手甲乙丙丁方差(秒)a若决定发挥最稳定的丁参加省运会,则a的值可以是()A.B.C.D..(分)已知某四边形的两条对角线相交于点O.动点P从点A出发,沿四边形的边按A→B→C的路径匀速运动到点C.设点P运动的时间为x,线段O P的长为y,表示y与x的函数关系的图象大致如图所示,则该四边形可能是()A.B.C.D..(分)勾股定理是人类最伟大的科学发现之一,在我国古算术《周髀算经》中早有记载.以直角三角形纸片的各边分别向外作正方形纸片,再把较小的两张正方形纸片按如图的方式放置在最大正方形纸片内.若已知图中阴影部分的面积,则可知()A.直角三角形纸片的面积B.最大正方形纸片的面积C.最大正方形与直角三角形的纸片面积和D.较小两个正方形纸片重叠部分的面积二、填空题(本小题共个小题,每个空分,共分).(分)计算的结果为..(分)如图,E F是△A B C的中位线,B D平分∠A B C交E F于D,B E=,D F=,则B C的长度为..(分)在四边形A B C D中,∠B=∠B A D,∠D=°,B C=,A C=,延长B C到E,若C D平分∠A C E,则A D=;点D到B C的距离是.三、解答题(本大题共个小题,满分分,解答题应写出必要的解题步骤或文字说明).(分)已知x=﹣,y=﹣,求(x y)..(分)如图,车高m(A C=m),货车卸货时后面挡板A B弯折落在地面A处,经过测量A C=m,求B C的长..(分)某公司销售部有营业员人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这人某月的销售量,如下表所示:月销售量件数人数()直接写出这名营业员该月销售量数据的平均数、中位数、众数;()如果想让一半左右的营业员都能达到月销售目标,你认为()中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由..(分)已知矩形A B C D,A E平分∠D A B交D C的延长线于点E,过点E作E F⊥A B,垂足F在边A B的延长线上,求证:四边形A D E F是正方形..(分)如图,直角坐标系x O y中,过点A(,)的直线l与直线l:y=k x﹣相交于点C(,),直线l与x轴交于点B.()求k的值及l的函数表达式;的值;()求S△A B C()直线y=a与直线l和直线l分别交于点M,N.直接写出点M,N都在y轴右侧时a的取值范围..(分)如图,菱形A B C D中,E,F分别为A D,A B上的点,且A E=A F,连接并延长E F,与C B的延长线交于点G,连接B D.()求证:四边形E G B D是平行四边形;()连接A G,若∠F G B=°,G B=A E=,求A G的长..(分)A城有肥料t,B城有肥料t.现要把这些肥料全部运往C、D两乡,C 乡需要肥料t,D乡需要肥料t,其运往C、D两乡的运费如下表:两城两乡C(元t)D(元t)AB设从A城运往C乡的肥料为x t,从A城运往两乡的总运费为y元,从B城运往两乡的总运费为y元()分别写出y、y与x之间的函数关系式(不要求写自变量的取值范围).()试比较A、B两城总运费的大小.()若B城的总运费不得超过元,怎样调运使两城总费用的和最少?并求出最小值.参考答案.B A D B D.C B C C B.B D A D...;.解:由题意可得:x y=(﹣)(﹣)=﹣﹣=﹣,∴(x y)=(﹣)=﹣()=﹣=﹣..解:由题意得,A B=A B,∠B C A=°,设B C=x m,则A B=A B=(﹣x)m,在R t△A B C中,A C B C=A B,即:x=(﹣x),解得:x=.答:B C的长为米.解:()这名营业员该月销售量数据的平均数==(件),中位数为件,∵出现了次,出现的次数最多,∴众数是件;()如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为件,月销售量大于和等于的人数超过一半,所以中位数最适合作为月销售目标,有一半以上的营业员能达到销售目标..解:∵四边形A B C D是矩形,∴∠D=∠D A B=°,∵A E平分∠D A B,∴∠E A F=°,∵E F⊥A B,∴∠D=∠D A F=∠F=°,∴四边形A F E D是矩形,∵∠E A F=°,∴∠A E F=°,∴∠E A F=∠A F E,∴A F=E F,∴矩形A D E F是正方形..解:()将C(,)代入y=k x﹣,得:=k﹣,解得:k=;设直线l的函数表达式为y=m x n(m≠),将A(,),C(,)代入y=m x n,得:,解得:,∴直线l的函数表达式为y=﹣x;()当y=时,x﹣=,解得:x=,∴点B的坐标为(,),∴A B=﹣=,∴S=A B•y C=××=;△A B C()当x=时,y=x﹣=﹣,y=﹣x=,∴M,N都在y轴右侧时a的取值范围为﹣<a<..证明:()连接A C,如图:∵四边形A B C D是菱形,∴A C平分∠D A B,且A C⊥B D,∵A F=A E,∴A C⊥E F,∴E G∥B D.又∵菱形A B C D中,E D∥B G,∴四边形E G B D是平行四边形.()过点A作A H⊥B C于H.∵∠F G B=°,∴∠D B C=°,∴∠A B H=∠D B C=°,∵G B=A E=,∴A B=A D=,在R t△A B H中,∠A H B=°,∴A H=,B H=.∴G H=,∴A G===..解:()根据题意得:y=x(﹣x)=﹣x,y=(﹣x)(﹣x)=x.()若y=y,则﹣x=x,解得x=,A、B两城总费用一样;若y<y,则﹣x<x,解得x>,A城总费用比B城总费用小;若y>y,则﹣x>x,解得<x<,B城总费用比A城总费用小.()依题意得:y=x≤,解得x≤,设两城总费用为y,则y=y y=﹣x,∵﹣<,∴y随x的增大而减小,∴当x=时,y有最小值.答:当从A城调往C乡肥料t,调往D乡肥料t,从B城调往C乡肥料t,调往D乡肥料t,两城总费用的和最少,最小值为元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下册数学试题
关于八年级下册数学试题
一、选择题(本大题共l0小题.每小题3分.共30分.)
1.下列不等式中,一定成立的是()
A.B.C.D.
2.若分式的值为0,则x的值为()
A.1
B.1
C.±1
D.2
3.一项工程,甲单独做需天完成,乙单独做需天完成,则甲乙两人合做此项工程所需时间为()
A.天
B.天
C.天
D.天
4.若反比例函数的图象经过点,则这个函数的图象一定经过点()
A.(1,2)
B.(2,1)
C.(1,2)
D.(1,2)
5.下列关于x的一元二次方程中,有两个不相等的实数根的方程是()
A.x2+1=0
B.x2-2x+1=0
C.x2+x+2=0
D.x2+2x-1=0
6.如图,DE∥FG∥BC,AE=EG=BG,则S1:S2:S3=()
A.1:1:1
B.1:2:3
C.1:3:5
D.1:4:9
7.如图,每个小正方形边长均为1,则下列图中的三角形(阴影
部分)与左图中△ABC相似的是()
8.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为()
A.B.C.D.
9.对于句子:①延长线段AB到点C;②两点之间线段最短;③轴
对称图形是等腰三角形;④直角都相等;⑤同角的余角相等;⑥如果
│a│=│b│,那么a=b.其中正确的.句子有()
A.6个
B.5个
C.4个
D.3个
10.如图,在正方形ABCD中,点O为对角线AC的中点,过点O
作射线OM、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交
于点P.则下列结论中:
(1)图形中全等的三角形只有两对;(2)正方形ABCD的面积等于四边形OEBF面积
的4倍;(3)BE+BF=OA;(4)AE2+CF2=2OPOB,正确的结论有()个.
A、1
B、2
C、3
D、4
二、填空题(本大题共8小题,每小题2分,共l6分.)
11.在比例尺为1:20的图纸上画出的某个零件的长是32cm,这
个零件的实际长是cm.
12.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m.紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起手臂超出
头顶______________m.
13.如图,D,E两点分别在△ABC的边AB,AC上,DE与BC不平行,当满足_______________条件(写出一个即可)时,△A
14.如图,点A的坐标为(3,4),点B的坐标为(4,0),以O为位似中心,按比例尺1:2将△AOB放大后得△A1O1B1,则A1坐标为
______________.
15.若关于x的分式方程有增根,则.
16.已知函数,其中表示当时对应的函数值,
如,则=_______.
17.如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE=________.
18.两个反比例函数(k>1)和在第一象限内的图象如图所示,点P
在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,
交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与
△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB
始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一
定正确的是(把你认为正确结论的序号都填上).
三、解答题(本大题共10小题.共84分.)
19.(本题满分15分)
(1)解不等式组(2)解分式方程:(3)求值:3tan230+2
以上就是为大家提供的最新八年级下册数学试题。
大家仔细阅读了吗?加油哦!。