七年级上数学辅导资料

合集下载

浙教版七年级(上册)数学知识点复习资料全

浙教版七年级(上册)数学知识点复习资料全
4.绝对值:
数轴上一点a到原点的距离表示a的绝对值。
绝对值的性质:
(1) 正数的绝对值是其本身, 0的绝对值是0, 负数的绝对值 是它的相反数
(2) 绝对值可表示为:

绝对值的问题经常分类讨论;
(3)
5.有理数大小的概念:
(1)正数的绝对值越大, 这个数越大;
(2)正数永远比0大, 负数永远比0小;
(2)常数项: 多项式中,不含字母的项叫做常数项.
(3)多项式次数: 多项式里,次数最高的项的次数,就是这个多项式的次数.
4.整式:
单项式和多项式统称整式。
5.同类项:
所含字母相同,并且相同字母的次数也相同的项,叫做同类项. 常数项都是同类项。
合并同类项法则: 同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
(3)整式的加减运算可归结为去括号和合并同类项。
7、常用的关系:
奇数2n-1或2n+1;偶数2n;三个连续的整数一般写作n-1, n, n+1;三个连续的偶数一般写作2n-2, 2n, 2n+2;三个连续的奇数一般写作2n-1, 2n+1, 2n+3
练习题
1.已知

是同类项, 则
A. 4 B. 37 C. 2或4 D. 2
A
B
4、下列说法,正确是( ) A、零是最小的自然数 B、零是最小的正整数 C、零是最小的有理数 D.零既是负数又是正数
A
1、下列各对数中,互为相反数是( ) A.2和
C.
和2 D.

D
5、火车上的车次号有两个意义,一是数字越小表示车速越快,1∽98次为特快列车,101∽198次为直快列车,301∽398次为普快列车,401∽498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京方向.根据以上规定,杭州开往北京的某一直快列车的车次号可能是( ) A、20 B、119 C、120 D.319

七年级上数学辅导资料

七年级上数学辅导资料

第一章 有理数 课题:1.1 正数和负数正数和负数的表示方法一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的.正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“-”(读作负)号来表示,如上面的-3、—8、-47。

正数、负数的概念1)大于0的数叫做 ,小于0的数叫做 。

2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【课堂练习】:1.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,—4万元表示________________. 2.已知下列各数:51-,432-,3。

14,+3065,0,—239; 则正数有_____________________;负数有____________________。

3.下列结论中正确的是 …………………………………………( )A .0既是正数,又是负数B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个 B .3个C .4个D .5个【拓展训练】:1.零下15℃,表示为_________,比O℃低4℃的温度是_________.2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为—5米,其中最高处为_______地,最低处为_______地.3.“甲比乙大-3岁”表示的意义是______________________.4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。

我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用__________ 和___________来分别表示它们.例 (1)一个月内,小明体重增加2kg ,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;解:(1)这个月小明体重增长__________ ,小华体重增长_________ ,小强体重增长_________ (2)2001年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%, 法国减少2.4%, 英国减少3.5%, 意大利增长0.2%, 中国增长7。

七年级数学上册辅导资料

七年级数学上册辅导资料

七年级数学上册辅导资料七年级数学上册辅导资料一、教材解读知识点1有理数加减法统一成加法的意义1.有理数加减混合运算,可以通过有理数减法法则将减法转化为加法,统一成只有加法运算的和式.如:(-11)-(+7)+(-4)-(-3)=(-11)+(-7)+(-4)+(3)2.在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式:如:(-11)+(-7)+(-4)+(+3)=-11-7-4+33.和式的读法:一是按这个式子表示的意义,读作“-11,-7,-4,+3的和”二是按运算意义读作“负11,减7,减4,加3”.例1把下列各式写成省略加号的和的形式.(1)(-26)-(-7)+(-10)-(-3);(2)(-30)-(-8)+(-12)-(-5).分析:先统一成加法,再省略括号和加号.解:(1)(-26)-(-7)+(-10)-(-3)=-26+(+7)+(-10)+(+3)=-26+7-10+3.(2)(-30)-(-8)+(-12)-(-5)=(-30)+(+8)+(-12)+(+5)=-30+8-12+5.小结:在把加减混合运算的式子写成省略加号的和的形式时,符号容易变错,做这样的题目时,一定要注意符号的变化.知识点2有理数的加减混合运算的加法和步骤1.运用减法法则将有理数的混合运算中的加减法变化为加法,写成省略加号,括号的代数和.2.利用加法的交换律、结合律简化运算,这里应注意的是:通常把同号(指同正、同负)的结合,整数与整数结合,同分母分数或容易通分的分数结合,互为相反数的结合,几个加数能凑整的结合在一起相加;对于特殊结构的计算题要灵活运用运算律.例2计算:(-47111)-(-5)+(-4)-(+3).8248分析:加减混合运算应注意有条理按步骤进行,下面将具体作法及其根据写在每一步后面的括号里,以便你更好地归纳.解:原式=(-47111)+(+5)+(-4)+(-3)(统一化成加法)82487111+5-4-3(省略加号)82487111=-4-4+5-3(加法交换律)84287111=(-4-4+3)+5(加法结合律)84827111=(-4+4+3)+5(加法法则)848211=-12+5423=-6(加法法则).4=4小结:把同号的数相结合相加,这样可以使计算简便.二、典型题解析(一)基本概念题例1把下列各式写成省略加号的和的形式,并说出它们的两种读法.(1)-2-(+3)-(-5)+(-4);(2)(+8)-(-9)+(-12)+(+5).分析:先把加减法统一成加法;再省略括号和加号.解:(1)-2-(+3)-(-5)+(-4)=-2+(-3)+(+5)+(-4)=-2-3+5-4读作:①负2,负3,正5,负4的和;②负2减3加5减4.(2)(+8)-(-9)+(-12)+(+5)=(+8)+(+9)+(-12)+(+5)=8+9-12+5学习是一个不断深入的过程,他需要我们对每天学习的新知识点及时整理,接下来由为大提供了初一上册数学辅导练习,望大家好好阅读。

初中数学竞赛辅导资料(七年级上)

初中数学竞赛辅导资料(七年级上)

数的整除(一)内容提要:如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除.①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。

如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 例题例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。

求x,y解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3例2己知五位数x 1234能被12整除, 求X解:∵五位数能被12整除,必然同时能被3和4整除,当1+2+3+4+X 能被3整除时,x=2,5,8 当末两位X 4能被4整除时,X =0,4,8 ∴X =8例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。

练习1.分解质因数:(写成质因数为底的幂的連乘积)①593 ② 1859 ③1287 ④3276 ⑤10101 ⑥10296 2.若四位数a 987能被3整除,那么 a=_______________ 3.若五位数3412X 能被11整除,那么 X =__________- 4.当 m=_________时,535m 能被25整除5.当 n=__________时,n 9610能被7整除 6.能被11整除的最小五位数是________,最大五位数是_________7.能被4整除的最大四位数是____________,能被8整除的最小四位数是_________8.8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972中,能被下列各数整除的有(填上编号):6________,8__________,9_________,11__________9. 从1到100这100个自然数中,能同时被2和3整除的共_____个, 能被3整除但不是5的倍数的共______个。

北师大版七年级数学上辅导材料一.doc

北师大版七年级数学上辅导材料一.doc

初中数学试卷鼎尚图文**整理制作辅导材料一【教学内容】小升初衔接课程——几何初步知识【教学目的】1、掌握直线、射线、线段三者之间的联系和区别;能熟练地辨别垂线与平行线以及常见的几种角;会画已知直线的平行线与垂线。

2、掌握长方形、正方形、平行四边行、三角形、梯形、圆、长方体、正方体、圆柱、圆锥的主要特征;会画长方形、正方形、圆;进一步认识轴对称图形与对称轴。

3、加深对平面图形的周长、面积、体积意义的理解;通过公式的推导,加深对辩证唯物主义事物都是联系的观点,使学生能熟练掌握已学过平面图形的周长、面积、立体图形的表面积体积公式计算,并能应用公式来解答一些实际问题。

【知识讲解】 1、平面图形的认识(1)点——直线——线段——射线用直尺把两点连接起来,就得到一条线段,把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。

(2)直线、射线和线段有什么联系和区别?名 称 图 形特 征 备 注 直 线 没有端点,可以无限延长 不可以度量 射 线 有一个端点,可以向一端无限延长不可以度量 线 段有两个端点,长度是有限的可以度量(3)同一平面里两条直线的位置关系。

平行 —— 平行线锐角(小于90°)两 直角 —— 互相垂直 —— 垂线条 (等于90°)直 相交 —— 角 钝角(大于90°小于180°) 线 平角(等于180°) 周角(等于360°) 重合(4)①角的大小要看两条边叉开的大小,叉开得越大,角越大。

角的大小与角的两边画的长短没有关系。

②两条直线相交成直角时,这两条直线互相垂直。

③在同一个平面内.......,不相交的两条直线叫做平行线,也可以说是互相平行。

锐角三角形 按角分 直角三角形 ①三角形 钝角三角形 (内角和是180°) 不等边三角形 平 按边分 等腰三角形 等边三角形 面 不规则四边形图 平行四边形 长方形 正方形 ②四边形形 (内角和是360°) 等腰梯形 梯形 直角梯形 ③圆、扇形……(6)在同圆、等圆里,所有的直径都相等,所有的半径也相等,直径等于半径的2倍,直径所在的直线是对称轴。

(完整)人教版七年级数学上册辅导讲义

(完整)人教版七年级数学上册辅导讲义

最新人教版 七年级数学上册培优辅导讲义第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量.2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米 ⑵收人-50元 ⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量应该包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( )A . -18%B . -8%C . +2%D . +8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间15:00,纽约时问是_ ___【例2】在-227,π,0,0.033.3这四个数中有理数的个数( ) A . 1个 B . 2个 C . 3个 D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;(2)按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数,0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0,15,-12,-301,31.25,-18,100,1,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1,-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14,-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007. 【变式题组】01(湖北宜昌)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四个数是17=9+8…观察并猜想第六个数是 .02.(毕节)毕达哥拉斯学派发明了一种“馨折形”填数法,如图则?填____.03.(茂名)有一组数1,2,5,10,17,26…请 观察规律,则第8个数为__ __ .【例4】(2008年河北张家口)若1+m 2的相反数是-3,则m 的相反数是____. 【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫 互为相反数,本题m 2=2,m =4,则m 的相反数-4。

七年级上册辅导材料

七年级上册辅导材料

比零小的数一、知识要点:1、负数的认识2、会判断一个数是正数还是负数.3、有理数分类二、基础知识练习1、若飞机的高度为80m ,潜水艇的高度是-50m ,则飞机比潜水艇高多少米?2、数学兴趣小组测量校园周长,测得的数据是2503m ,2498m ,2502m ,2497m (1)求这4次测量的平均值(2)以“平均值”为基准,用正、负数表示出每一次测量的数值与平均值的差。

(3)请你想一想你还有什么更好的求上述四个数的平均值的方法。

把你的想法能与我们分享吗? 3、把下列各数填写在相应的集合里,正整数集合{ …};负整数集合{ …}; 正分数集合{ …};负分数集合{ …};4、填空(1)如果温度上升4℃,记作+4℃,那么下降7℃,记作____ (2)如果顺时针转300,记作-30°,那么逆时针转60°,记作_____ (3)成本提高-4%,实际表示______(4)向北走-100m 的实际意义是_____5、判断题。

(1)向南走-20米,表示向北走20米; ( ) (2)若前进3千米记作+3千米,则-5千米表示后退-5千米; ( ) (3)温度下降-3°C ,是零上3°C ; ( ) (4)有理数包括正数和负数两部分; ( ) (5)0是整数但不是正数; ( ) (6)31.25不是分数,所以不是有理数。

( ) 6、用“<”将它们连接起来: -3, 0, 1, -23, 1.5, +5, 621, -310.7、把下列各数填在相应的集合内. -3,7,-25,-0.86,0,227,0.7523,-2.3536.整数集合{ …}; 负数集合{ …}. 三、基础知识提高。

1.如果零上8℃记作8℃,那么零下5℃记作__________.2.如果温度上升2℃记作2℃,那么温度下降3℃记作_________. 3.如果向西走6米记作-6米,那么向东走10米记作_________. 4.如果产量减少5%记作-5%,那么20%表示_________. 5.判断题:(1)一个整数不是正数就是负数. ( ) (2)最小的整数是零. ( ) (3)负数中没有最大的数. ( )+0.02㎏-0.03㎏ (4)自然数一定是正整数. ( ) (5)有理数包括正有理数、零和负有理数. ( )6.下列说法中正确的是……………………………………………………( ) A .有最小的正数; B .有最大的负数;C .有最小的整数; D .有最小的正整数7.零是 ……………………………………………………………………( ) A .最小的正数 B .最大的负数 C .最小的有理数 D .整数8.下列一组数:-8,2.6,-312,223,-5.7中负分数有………………( )A .1个B .2个C .3个D .4个10、一零件的长度在图纸上标为10±0.05(单位:毫米),表示这种零件的长度为10毫米,则加工时要求最大不超过多少?最小不少于多少?实际生产时,测得一零件的长为9.9毫米,问此零件合格吗?1、观察下面一列数,根据规律写出横线上的数,;第2012个数是 。

七年级数学上册复习资料

七年级数学上册复习资料

七年级数学上册复习资料学习是把知识、能力、思维方法等转化为你的私有产权的重要手段,是“公有转私”的重要途径。

下面给大家分享一些关于七年级数学上册复习资料,希望对大家有所帮助。

第三章一次方程与方程组-----------3.1一元一次方程及其解法①方程是含有未知数的等式。

②方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的整式方程叫做一元一次方程。

③注意判断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;(系数中含字母时不能为零)3)经整理后方程中未知数的次数是1.④解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

方程的解代入满足,方程成立。

⑤等式的性质:1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等)。

a=b得:a+(-)c=b+(-)c2)等式两边同时乘以或除以同一个不为零的数,等式不变。

a=b得:a×c=b×c或a÷c=b÷c(c≠0)注意:运用性质时,一定要注意等号两边都要同时+、-、×、÷;运用性质2时,一定要注意0这个数。

⑥解一元一次方程一般步骤:去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个步骤不一定完全用上,或有些步骤还需要重复使用.因此,解方程时,要根据方程的特点,灵活选择方法.在解方程时还要注意以下几点:⑴去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;注意:去分母(等式的基本性质)与分母化整(分数的基本性质)是两个概念,不能混淆;⑵去括号:遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号(连着符号相乘);⑶移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(以=为界限),移项要变号;⑷合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式.⑸系数化1:(两边同除以未知数的系数)把方程化成ax=b(a≠0)的形式,字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒(一步一步来) --------3.2一次方程的应用:(一)、概念梳理⑴列一元一次方程解决实际问题的一般步骤是:审题,特别注意关键的字和词的意义,弄清相关数量关系,注意单位统一,注意设未知数;①解:设出未知数(注意单位),②根据相等关系列出方程,③解这个方程,④答(包括单位名称,检验)。

七年级上册数学复习资料

七年级上册数学复习资料

七年级上册数学复习资料相关推荐七年级上册数学复习资料七年级上册数学复习资料11.有理数:(1)凡能写成形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数;(2)有理数的分类: ① ②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数? 0和正整数; a>0 ? a是正数; aa≥0 ? a是正数或0 ? a是非负数; a≤ 0 ? a是负数或0 ? a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0 ? a+b=0 ? a、b互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或 ;(3) ; ;(4) |a|是重要的非负数,即|a|≥0;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数; 若ab=1? a、b互为倒数; 若ab=-1? a、b互为负倒数.等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。

七年级数学上复习资料

七年级数学上复习资料

第一章基础回顾与练习一、【正负数】 有理数的分类:★☆▲_____________统称整数,试举例说明。

_____________统称分数,试举例说明。

____________统称有理数。

[基础练习] 1☆把下列各数填在相应额大括号内: 1,-0.1,-789,25,0,-20,-3.14,-590,6/7²正整数集{ …};²正有理数集{ …};²负有理数集{ …}; ²负整数集{ …};²自然数集{ …};²正分数集{ …} ²负分数集{ …}2☆某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 ;如果这种油的原价是76元,那么现在的卖价是 。

二、【数轴】 规定了 、 、 的直线,叫数轴[基础练习]1☆如图所示的图形为四位同学画的数轴,其中正确的是( )2☆在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。

4,-|-2|, -4.5, 1, 0 3下列语句中正确的是( )A数轴上的点只能表示整数 B数轴上的点只能表示分数C数轴上的点只能表示有理数D所有有理数都可以用数轴上的点表示出来 4、★ ①比-3大的负整数是_______;②已知m是整数且-4<m<3,则m为_______________。

③有理数中,最大的负整数是 ,最小的正整数是 。

最大的非正数是 。

④与原点的距离为三个单位的点有_ _个,他们分别表示的有理数是 _和_ _。

5、★★在数轴上点A 表示-4,如果把原点O 向负方向移动1个单位,那么在新数轴上点A 表示的数是( )A.-5,B.-4C.-3D.-2 三、【相反数】的概念1、☆-5的相反数是 ;-(-8)的相反数是 ;- [+(-6)]=0的相反数是 ; a 的相反数是 ;81的相反数的倒数是_ _2、☆若a 和b 是互为相反数,则a+b =( )A. –2a B .2b C. 0 D. 任意有理数3、★(1)如果a =-13,那么-a =______;(2)如果-a =-5.4,那么a =______; (3)如果-x =-6,那么x =______;(4)-x =9,那么x =______.有理数有理数4、★★已知a 、b 都是有理数,且|a|=a ,|b|=-b 、,则ab 是( )A .负数; B.正数; C.负数或零; D.非负数 四、【绝对值】一个正数的绝对值是 ;一个负数的绝对值是它的 ;0的绝对值是 . [基础练习]1、☆—2的绝对值表示它离开原点的距离是 个单位,记作 .2、☆ |-8|= 。

新人教版七年级数学培训资料Word版上下册(全年级章节培优已整理完善)

新人教版七年级数学培训资料Word版上下册(全年级章节培优已整理完善)

七年级数学培训资料Word版上下册目录第01讲与有理数有关的概念(2--8)第02讲有理数的加减法(3--15)第03讲有理数的乘除、乘方(16--22)第04讲整式(23--30)第05讲整式的加减(31--36)第06讲一元一次方程概念和等式性质(37--43)第07讲一元一次方程解法(44--51)第08讲实际问题与一元一次方程(52--59)第09讲多姿多彩的图形(60--68)第10讲直线、射线、线段(69--76)第11讲角(77--82)第12讲与相交有关概念及平行线的判定(83--90)第13讲平行线的性质及其应用(91--100)第14讲平面直角坐标系(一)(101--106)第15讲平面直角坐标系(二)(107--112)第16讲认识三角形(113--119)第17讲认识多边形(120--126)第18讲二元一次方程组及其解法(127--134)第19讲实际问题与二元一次方程组(135--145)第20讲三元一次方程组和一元一次不等式组(146--155)第21讲一元一次不等式(组)的应用(156--164)第22讲一元一次不等式(组)与方程(组)的结合(165--174)第23讲数据的收集与整理(175--186)模拟测试一模拟测试二模拟测试三第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量. 2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( )A . -18%B . -8%C . +2%D . +8% 02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间l 5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数( )A . 1个B . 2个C . 3个D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0.1 5,-12,-301.31.25,-18,100.l ,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1.-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007.【变式题组】 01.(湖北宜宾)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是 . 02.(毕节)毕选哥拉斯学派发明了一种“馨折形”填数法,如图则?填____. 03.(茂名)有一组数l ,2,5,10,17,26…请观察规律,则第8个数为____.【例4】(2008年河北张家口)若l +m2的相反数是-3,则m 的相反数是____.【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题m2=-4,m =-8【变式题组】 01.(四川宜宾)-5的相反数是( )A .5B . 15C . -5D . -1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A 、B 、C 内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填人正方形A 、B 、C 内的三个数依次为( )A . - 1 ,2,0B . 0,-2,1C . -2,0,1D . 2,1,0 【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b |>a ,则a ,b 、-a ,-b 的大小顺序是( )A . b <-a <a <-bB . –a <b <a <-bC . –b <a <-a <bD . –a <a <-b <b【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点到原点的距离,即|a |,用式子表示为|a |=0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴标出a 、b ,依相反数的意义标出-b ,-a ,故选A .【变式题组】01.推理①若a =b ,则|a |=|b |;②若|a |=|b |,则a =b ;③若a ≠b ,则|a |≠|b |;④若|a |≠|b |,则a ≠b ,其中正确的个数为( )A . 4个B . 3个C . 2个D . 1个 02.a 、b 、c 三个数在数轴上的位置如图,则|a |a +|b |b +|c |c= .03.a 、b 、c 为不等于O 的有理散,则a |a |+b |b |+c|c |的值可能是____.【例6】(江西课改)已知|a -4|+|b -8|=0,则a +bab的值.【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a 的绝对值都是非负数,即|a |≥0.所以|a -4|≥0,|b -8|≥0.而两个非负数之和为0,则两数均为0.解:因为|a -4|≥0,|b -8|≥0,又|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a +b ab =1232=38【变式题组】01.已知|a |=1,|b |=2,|c |=3,且a >b >c ,求a +b +C . 02.(毕节)若|m -3|+|n +2|=0,则m +2n 的值为( )A . -4B . -1C . 0D . 403.已知|a |=8,|b |=2,且|a -b |=b -a ,求a 和b 的值【例7】(第l 8届迎春杯)已知(m +n )2+|m |=m ,且|2m -n -2|=0.求mn 的值.【解法指导】本例关键是通过分析(m +n )2+|m |的符号,挖掘出m 的符号特征,从而把问题转化为(m +n )2=0,|2m -n -2|=0,找到解题途径.解:∵(m +n )2≥0,|m |≥O∴(m +n )2+|m |≥0,而(m +n )2+|m |=m∴ m ≥0,∴(m +n )2+m =m ,即(m +n )2=0 ∴m +n =O ① 又∵|2m -n -2|=0 ∴2m -n -2=0 ②由①②得m =23,n =-23,∴ mn =-49【变式题组】 01.已知(a +b )2+|b +5|=b +5且|2a -b –l |=0,求a -B . 02.(第16届迎春杯)已知y =|x -a |+|x +19|+|x -a -96|,如果19<a <96.a ≤x ≤96,求y 的最大值.演练巩固·反馈提高01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( )A . 156B . 172C . 190D . 111002.(芜湖)-6的绝对值是( )A . 6B . -6C . 16D . -1603.在-227,π,8..0.3四个数中,有理数的个数为( )A . 1个B . 2个C . 3个D . 4个 04.若一个数的相反数为a +b ,则这个数是( )A . a -bB . b -aC . –a +bD . –a -b 05.数轴上表示互为相反数的两点之间距离是6,这两个数是( )A . 0和6B . 0和-6C . 3和-3D . 0和3 06.若-a 不是负数,则a ( )A . 是正数B . 不是负数C . 是负数D . 不是正数 07.下列结论中,正确的是( )①若a =b ,则|a |=|b | ②若a =-b ,则|a |=|b | ③若|a |=|b |,则a =-b ④若|a |=|b |,则a =b A . ①② B . ③④ C . ①④ D . ②③08.有理数a 、b 在数轴上的对应点的位置如图所示,则a 、b ,-a ,|b |的大小关系正确的是( )A . |b |>a >-a >bB . |b | >b >a >-aC . a >|b |>b >-aD . a >|b |>-a >b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____.10.已知|x +2|+|y +2|=0,则xy =____.11.a 、b 、c 三个数在数轴上的位置如图,求|a |a +|b |b +|abc |abc +|c |c12.若三个不相等的有理数可以表示为1、a 、a +b 也可以表示成0、b 、ba的形式,试求a 、b 的值.13.已知|a |=4,|b |=5,|c |=6,且a >b >c ,求a +b -C .14.|a|具有非负性,也有最小值为0,试讨论:当x为有理数时,|x-l|+|x-3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b| 当A、B两点都不在原点时有以下三种情况:①如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;综上,数轴上A、B两点之间的距离|AB|=|a-b|.回答下列问题:⑴数轴上表示2和5的两点之间的距离是 , 数轴上表示-2和-5的两点之间的距离是 , ,数轴上表示1和-3的两点之间的距离是;⑵数轴上表示x和-1的两点分别是点A和B,则A、B之间的距离是,如果|AB|=2,那么x=;⑶当代数式|x+1|+|x-2|取最小值时,相应的x的取值范围是.培优升级·奥赛检测01.(重庆市竞赛题)在数轴上任取一条长度为199919的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A . 1998B . 1999C . 2000D . 2001 02.(第l 8届希望杯邀请赛试题)在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论:①abc <0;②|a -b |+|b -c |=|a -c |;③(a -b )(b -c )(c -a )>0;④|a |<1-bc .其中正确的结论有( )A . 4个B . 3个C . 2个D . 1个03.如果a 、b 、c 是非零有理数,且a +b +c =0.那么a |a |+b |b |+c |c |+abc|abc |的所有可能的值为( )A . -1B . 1或-1C . 2或-2D . 0或-2 04.已知|m |=-m ,化简|m -l |-|m -2|所得结果( )A . -1B . 1C . 2m -3D . 3- 2m05.如果0<p <15,那么代数式|x -p |+|x -15|+|x -p -15|在p ≤x ≤15的最小值( )A . 30B . 0C . 15D . 一个与p 有关的代数式 06.|x +1|+|x -2|+|x -3|的最小值为 .07.若a >0,b <0,使|x -a |+|x -b |=a -b 成立的x 取值范围 . 08.(武汉市选拔赛试题)非零整数m 、n 满足|m |+|n |-5=0所有这样的整数组(m ,n )共有 组 09.若非零有理数m 、n 、p 满足|m |m +|n |n +|p |p =1.则2mnp|3mnp |= .10.(19届希望杯试题)试求|x -1|+|x -2|+|x -3|+…+|x -1997|的最小值.11.已知(|x +l |+|x -2|)(|y -2|+|y +1|)(|z -3|+|z +l |)=36,求x +2y +3的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.第02讲有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐山)某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A这天的收盘价为()A.0.3元B.16.2元C.16.8元D.18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-1.5)+(0.3)=16.8,故选C.【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()A.8℃B.-8℃C.6℃D.2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________03.(浙江)珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155 m,则它们的平均海拔高度为__________【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】01.(-2.5)+(-312)+(-134)+(-114)02.(-13.6)+0.26+(-2.7)+(-1.06)03.0.125+314+(-318)+1123+(-0.25)132164116181412-a -b 0b a【例3】计算111112233420082009++++⨯⨯⨯⨯【解法指导】依111(1)1n n n n =-++进行裂项,然后邻项相消进行化简求和.解:原式=1111111(1)()()()2233420082009-+-+-++-=111111112233420082009-+-+-++-=112009-=20082009【变式题组】01.计算1+(-2)+3+(-4)+ … +99+(-100)02.如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111248163264128256+++++++=__________. 【例4】如果a <0,b >0,a +b <0,那么下列关系中正确的是( ) A .a >b >-b >-a B .a >-a >b >-b C .b >a >-b >-a D .-a >b >-b >a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论.解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴| a |>| b |将a 、b 、-a 、-b 表示在同一数轴上,如图,则它们的大小关系是-a >b >-b>a【变式题组】01.若m >0,n <0,且| m |>| n |,则m +n ________ 0.(填>、<号) 02.若m <0,n >0,且| m |>| n |,则m +n ________ 0.(填>、<号)03.已知a <0,b >0,c <0,且| c |>| b |>| a |,试比较a 、b 、c 、a +b 、a +c 的大小【例5】425-(-33311)-(-1.6)-(-21811)【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.解:425-(-33311)-(-1.6)-(-21811)=425+33311+1.6+21811=4.4+1.6+(33311+21811)=6+55=61【变式题组】01.21511 ()()()()(1) 32632 --+---+-+02.434-(+3.85)-(-314)+(-3.15)03.178-87.21-(-43221)+1531921-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少?第n个数是多少?⑵这列数中有多少个数是正数?从第几个数开始是负数?⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n个数为25-2(n-1)⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】01.(杭州)观察下列等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答下列问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少?02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n(n≥1的自然数)的等式表示这个规律;⑵当这个等式的右边等于2008时求n.【例7】(第十届希望杯竞赛试题)求12+(13+23)+(14+24+34)+(15+25+3 5+45)+…+(150+250+…+4850+4950)【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=12+(13+23)+(14+24+34)+…+(150+250+…+4850+4950)则有S=12+(23+13)+(34+24+14)+…+(4950+4850+…+250+150)将原式和倒序再相加得2S=12+12+(13+23+23+13)+(14+24+34+34+24+14)+…+(150+2 50+…+4850+4950+4950+4850+…+250+150)即2S=1+2+3+4+ (49)49(491)2⨯+=1225 ∴S=12252【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.(第8届希望杯试题)计算(1-12-13-…-12003)(12+13+14+…+12003+1 2004)-(1-12-13-…-12004)(12+13+14+…+12003)演练巩固·反馈提高01.m是有理数,则m+|m|()A.可能是负数B.不可能是负数C.比是正数D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为()A. 5 B.1 C.1或5 D.±1或±5 03.在1,-1,-2这三个数中,任意两数之和的最大值是()A. 1 B.0 C.-1 D.-3 04.两个有理数的和是正数,下面说法中正确的是()05.下列等式一定成立的是()A.|x|-x=0 B.-x-x=0 C.|x|+|-x|=0 D.|x|-|x|=0 06.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是()A.-4℃B.4℃C.-3℃D.-5℃07.若a<0,则|a-(-a)|等于()A.-a B.0 C.2a D.-2a08.设x是不等于0的有理数,则||||2x xx值为()A.0或1 B.0或2 C.0或-1 D.0或-2 09.(济南)2+(-2)的值为__________10.用含绝对值的式子表示下列各式:⑴若a<0,b>0,则b-a=__________,a-b=__________⑵若a>b>0,则|a-b|=__________⑶若a<b<0,则a-b=__________11.计算下列各题:⑴23+(-27)+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712⑷33.1-10.7-(-22.9)-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A地多远?⑵若每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克?14.将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少?15.独特的埃及分数:埃及同中国一样,也是世界著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15,…190,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测01.(第16届希望杯邀请赛试题)1234141524682830-+-+-+-+-+-+-等于( ) A .14 B .14- C .12 D .12- 02.自然数a 、b 、c 、d 满足21a +21b +21c +21d =1,则31a +41b +51c+61d 等于( ) A .18 B .316 C .732 D .1564 03.(第17届希望杯邀请赛试题)a 、b 、c 、d 是互不相等的正整数,且abcd =441,则a +b +c +d 值是( )A .30B .32C .34D .3604.(第7届希望杯试题)若a =1995199519961996,b =1996199619971997,c =1997199719981998,则a 、b 、c25632015201051216158412410982654321534333231305.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯的值得整数部分为( )A .1B .2C .3D .406.(-2)2004+3×(-2)2003的值为( )A .-22003B .22003C .-22004D .2200407.(希望杯邀请赛试题)若|m |=m +1,则(4m +1)2004=__________ 08.12+(13+23)+(14+24+34)+ … +(160+260+…+5960)=__________ 09.19191976767676761919-=__________ 10.1+2-22-23-24-25-26-27-28-29+210=__________11.求32001×72002×132003所得数的末位数字为__________12.已知(a +b )2+|b +5|=b +5,且|2a -b -1|=0,求aB .13.计算(11998-1)(11997-1) (11996-1) … (11001-1) (11000-1)14.请你从下表归纳出13+23+33+43+...+n 3的公式并计算出13+23+33+43+ (1003)值.第03讲 有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算.经典·考题·赏析【例1】计算 ⑴11()24⨯- ⑵1124⨯ ⑶11()()24-⨯- ⑷25000⨯ ⑸3713()()(1)()5697-⨯-⨯⨯- 【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积. 解:⑴11111()()24248⨯-=-⨯=- ⑵11111()24248⨯=⨯= ⑶11111()()()24248-⨯-=+⨯= ⑷250000⨯= ⑸3713371031()()(1)()()569756973-⨯-⨯⨯-=-⨯⨯⨯=- 【变式题组】01.⑴(5)(6)-⨯- ⑵11()124-⨯ ⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯- ⑸111112(2111)42612-⨯-+-02.24(9)5025-⨯ 3.1111(2345)()2345⨯⨯⨯⨯---04.111(5)323(6)3333-⨯+⨯+-⨯A .a >0,b <0B .a <0,b >0C .a 、b 异号D .a 、b 异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a 、b 异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab <0知a 、b 异号,又由a +b <0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D .【变式题组】01.若a +b +c =0,且b <c <0,则下列各式中,错误的是( )A .a +b >0B .b +c <0C .ab +ac >0D .a +bc >002.已知a +b >0,a -b <0,ab <0,则a___________0,b___________0,|a|___________|b|. 03.(山东烟台)如果a +b <0,0b a>,则下列结论成立的是( ) A .a >0,b >0 B .a <0,b <0 C .a >0,b <0 D .a <0,b >004.(广州)下列命题正确的是( )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若ab =0,则a =0或b =0D .若ab =0,则a =0且b =0【例3】计算⑴(72)(18)-÷- ⑵11(2)3÷- ⑶13()()1025-÷ ⑷0(7)÷- 【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184-÷-=÷= ⑵17331(2)1()1()3377÷-=÷-=⨯-=-⑶131255()()()()10251036-÷=-⨯=- ⑷0(7)0÷-=【变式题组】01.⑴(32)(8)-÷- ⑵112(1)36÷- ⑶10(2)3÷- ⑷13()(1)78÷-02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷ ⑶530()35÷-⨯03.113()(10.2)(3)245÷-+-÷⨯-【例4】(茂名)若实数a 、b 满足0a b +=,则ab =___________.【解法指导】依绝对值意义进行分类讨论,得出a 、b 的取值范围,进一步代入结论得出结果.解:当ab >0,2(0,0)2(0,0)a b a b a b a b >>⎧+=⎨-<<⎩; 当ab <0,0a b a b+=,∴ab <0,从而ab ab =-1. 【变式题组】01.若k 是有理数,则(|k|+k )÷k 的结果是( )A .正数B .0C .负数D .非负数02.若A .b 都是非零有理数,那么ab a b a b ab ++的值是多少?03.如果0x y x y +=,试比较x y -与xy 的大小.【例5】已知223(2),1x y =-=-⑴求2008xy 的值; ⑵求32008x y的值. 【解法指导】n a 表示n 个a 相乘,根据乘方的符号法则,如果a 为正数,正数的任何次幂都是正数,如果a 是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1x y =-=-⑴当2,1x y ==-时,200820082(1)2xy=-= 当2,1x y =-=-时,20082008(2)(1)2xy =-⨯-=-⑵当2,1x y ==-时,332008200828(1)x y ==- 当2,1x y =-=-时,3320082008(2)8(1)x y -==-- 【变式题组】01.(北京)若2(2)0m n m -+-=,则nm 的值是___________.02.已知x 、y 互为倒数,且绝对值相等,求()n n x y --的值,这里n 是正整数.【例6】(安徽)2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为( )A .0.135×106B .1.35×106C .0.135×107D .1.35×107【解法指导】将一个数表示为科学记数法的a×10n 的形式,其中a 的整数位数是1位.故答案选B .【变式题组】01.(武汉)武汉市今年约有103000名学生参加中考,103000用科学记数法表示为( )A .1.03×105B .0.103×105C .10.3×104D .103×10302.(沈阳)沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( )A .25.3×105亩B .2.53×106亩C .253×104亩D .2.53×107亩【例7】(上海竞赛)222222221299110050002200500010050009999005000k k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ 【解法指导】找出21005000k k -+的通项公式=22(50)50k -+ 原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ =222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+ 222222222495150[](4950)50(5150)50(5050)50++-+-+-+ =49222+1++⋅⋅⋅+个=99【变式题组】3333+++=( )2+4+6++10042+4+6++10062+4+6++10082+4+6++2006⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅A .31003 B .31004 C .1334 D .1100002.(第10届希望杯试题)已知11111111 1.2581120411101640+++++++= 求111111112581120411101640---+--++的值.演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为( )A .1个B .2个C .3个D .1个或3个 02.两个有理数的和是负数,积也是负数,那么这两个数( )A .互为相反数B .其中绝对值大的数是正数,另一个是负数C .都是负数D .其中绝对值大的数是负数,另一个是正数 03.已知abc >0,a >0,ac <0,则下列结论正确的是( )A .b <0,c >0B .b >0,c <0C .b <0,c <0D .b >0,c >004.若|ab |=ab ,则( )A .ab >0B .ab ≥0C .a <0,b <0D .ab <005.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式a b m cd m +-+的值为( )A .-3B .1C .±3D .-3或106.若a >1a,则a 的取值范围( ) A .a >1 B .0<a <1 C .a >-1 D .-1<a <0或a >1 07.已知a 、b 为有理数,给出下列条件:①a +b =0;②a -b =0;③ab <0;④1a b =-,其中能判断a 、b 互为相反数的个数是( )A .1个B .2个C .3个D .4个08.若ab≠0,则a b a b+的取值不可能为( ) A .0 B .1 C .2 D .-209.1110(2)(2)-+-的值为( )A .-2B .(-2)21C .0D .-21010.(安徽)2010年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的是( )A .2.89×107B .2.89×106C .2.89×105D .2.89×10411.已知4个不相等的整数a 、b 、c 、d ,它们的积abcd =9,则a +b +c +d =___________.12.21221(1)(1)(1)n n n +--+-+-(n 为自然数)=___________.13.如果2x y x y +=,试比较x y-与xy 的大小.14.若a 、b 、c 为有理数且1a b c a b c ++=-,求abc abc的值.15.若a 、b 、c 均为整数,且321a b c a -+-=.求a c c b b a -+-+-的值.培优升级·奥赛检测01.已知有理数x 、y 、z 两两不相等,则,,x y y z z xy z z x x y------中负数的个数是( ) A .1个 B .2个 C .3个 D .0个或2个 02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是( )A .1B .3C .7D .5 03.已知23450ab c d e <,下列判断正确的是( )A .abcde <0B .ab 2cd 4e <0 C .ab 2cde <0 D .abcd 4e <0 04.若有理数x 、y 使得,,,xx y x y xy y+-这四个数中的三个数相等,则|y |-|x |的值是( ) A .12-B .0C .12D .3205.若A =248163264(21)(21)(21)(21)(21)(21)(21)+++++++,则A -1996的末位数字是( )A .0B .1C .7D .9 06.如果20012002()1,()1a b a b +=--=,则20032003a b +的值是( )A .2B .1C .0D .-1 07.已知5544332222,33,55,66a b c d ====,则a 、b 、c 、d 大小关系是( )A .a >b >c >dB .a >b >d >cC .b >a >c >dD .a >d >b >c 08.已知a 、b 、c 都不等于0,且a b c abc a b c abc+++的最大值为m ,最小值为n ,则2005()m n +=___________. 09.(第13届“华杯赛”试题)从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753- 第二组:112,315-第三组:52.25,,412-10.一本书的页码从1记到n ,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少? 11.(湖北省竞赛试题)观察按下列规律排成一列数:11,12,21,13,22,31,14,23,32,41,15,24,23,42,51,16,…(*),在(*)中左起第m 个数记为F(m),当F(m)=12001时,求m 的值和这m 个数的积.12.图中显示的填数“魔方”只填了一部分,将下列9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x 的值.32 x6413.(第12届“华杯赛”试题)已知m 、n 都是正整数,并且111111(1)(1)(1)(1)(1)(1);2233A m m =-+-+⋅⋅⋅-+ 111111(1)(1)(1)(1)(1)(1).2233B n n=-+-+⋅⋅⋅-+证明:⑴11,;22m n A B m n ++== ⑵126A B -=,求m 、n 的值.第04讲整式考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念.3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值.经典·考题·赏析【例1】判断下列各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.【解法指导】理解单项式的概念:由数与字母的积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,错误!未找到引用源。

七年级上册数学配套

七年级上册数学配套

七年级上册数学配套
七年级上册数学配套资料有很多,以下是一些常见的选择:
1. 七年级数学上册(人教版)配套教学学案:这是一个全册的学案,包括有理数、数学、负数等方面的内容,适合教师使用,也是家长帮助学生学习的良好工具。

2. 初中教材划重点七年级上册:这是一本同步课本的全解读教辅书,涵盖了七年级上册数学北师版的内容,适合学生自学或复习。

3. 中学教材全解七年级数学上册:这是一本全面的中学数学教材解析书,包括七年级上册和下册的内容,适合课前预习和课后复习。

4. 七彩课堂七年级下册上册:这是一套全国通用的初中教材全解书,包括语文、数学、英语等科目,适合学生自学或家长辅导。

总的来说,选择合适的配套资料要根据自己的学习需求和水平来决定。

如果你是教师或家长,可以帮助孩子选择一本全面的、适合孩子水平的数学配套资料,以帮助他们更好地学习数学。

七年级上学期数学角的辅导资料

七年级上学期数学角的辅导资料

七年级上学期数学角的辅导资料
角的概念:
1、角:有公共端点的两条射线组成的图形叫做角。

2、角的度量单位:度、分、秒。

3、角的度量与表示:
①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

②一度的1/60是一分,一分的1/60是一秒。

角的度、分、秒是60进制。

4、角的比较:
①角也可以看成是由一条射线绕着他的端点旋转而成的。

②平角和周角:一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。

始边继续旋转,当他又和始边重合时,所成的角叫做周角。

平角等于180度。

周角等于360度。

直角等于90度。

③平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

④工具:量角器、三角尺、经纬仪。

5、余角和补角
①余角:两个角的和等于90度,这两个角互为余角。

即其中每一个是另一个角的余角。

②补角:两个角的和等于180度,这两个角互为补角。

即其中一个是另一个角的补角。

③补角的性质:等角的补角相等。

④余角的性质:等角的余角相等。

七年级数学上册复习资料

七年级数学上册复习资料

七年级数学上册复习资料丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体1几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

2点动成线,线动成面,面动成体。

3、常见的几何体及其特点长方体:有8个顶点,12条棱,6个面,且各面都是长方形正方形是特殊的长方形,正方体是特殊的长方体。

棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。

棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。

圆柱:有上下两个底面和一个侧面曲面,两个底面是半径相等的圆。

圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

圆锥:有一个底面和一个侧面曲面。

侧面展开图是扇形,底面是圆。

球:由一个面曲面围成的几何体4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共n+2个面;3n条棱,n条侧棱;2n个顶点。

5、正方体的平面展开图:11种6、截一个正方体:1用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

注意:①、正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形. ②、长方体、棱柱的截面与正方体的截面有相似之处.2用平面截圆柱体,可能出现以下的几种情况.3用平面去截一个圆锥,能截出圆和三角形两种截面还有其他截面,初中不予研究4用平面去截球体,只能出现一种形状的截面——圆.5需要记住的要点:几何体截面形状正方体三角形、正方形、长方形、梯形、五边形、六边形圆柱圆、长方形、正方形、……圆锥圆、三角形、……球圆7、三视图物体的三视图指主视图、俯视图、左视图。

七年级上学期数学复习资料

七年级上学期数学复习资料

七年级上学期数学复习资料数学是一门非常重要的学科。

不仅是在学校阶段,而且在我们日常生活中也扮演着重要的角色。

数学可以帮助我们解决各种各样的问题。

因此,我们需要努力学习数学知识。

在七年级上学期,我们学习了很多重要的数学概念和技能。

现在,为了复习已学的内容,我整理了些许资料,希望对大家的学习有所帮助。

以下是七年级上学期数学复习资料。

第一章:小数小数是数学中最基本的概念之一。

在本章中,我们学习了如何将分数转换成小数,并以小数的方式表示数。

在此章节,我们重点学习小数的各种性质。

包括小数的大小关系、小数加减乘除等。

第二章:整数整数是小学数学中比较基本的概念。

在七年级上学期的数学中,我们学习了如何识别正数和负数,并且熟练地进行正数和负数的加减运算。

在整数的运算中,我们还学习了绝对值的概念。

绝对值是指一个数和0的距离,因此,当一个数的绝对值大于另一个数的绝对值时,我们可以得出这两个数的大小关系。

第三章:代数代数是数学中比较抽象的概念之一。

通过本章学习,我们了解到了代数中的基本符号和概念,比如,实数、变量、常数等。

同时,我们也学习了如何解代数方程。

在此章节,我们的重点是学习代数方程的应用。

在七年级上学期数学中,我们通过实际例题来了解代数方程在日常生活中的应用。

第四章:直线和角度在七年级上学期数学中,我们还学习了关于直线和角度的知识。

在直线的学习过程中,我们学习了直线的各种性质;在角度的学习过程中,我们了解了不同角度的命名方式及其度量单位。

除此之外,我们还学习了如何通过知道角度和角的特性来求解角度。

第五章:平面图形在数学中,平面图形也是重要的概念之一。

在此章节,我们学习了平面图形的基本分类和命名方式。

此外,我们还了解了不同平面图形的特点和性质。

在学习平面图形时,我们极其重视面积的概念。

面积是指平面内一定区域的大小。

因此,在学习平面图形时,我们需要掌握关于面积的计算方法。

以上就是七年级上学期数学复习资料的简单总结。

七年级上册数学辅导知识点

七年级上册数学辅导知识点

七年级上册数学辅导知识点数学是一门高深的学科,要想掌握好它,需要不断地积累知识点和掌握解题技巧。

在七年级上册的数学学习中,以下是一些重点知识点的辅导,希望能帮助您更好地掌握数学。

一、整数的加减法整数加减法是七年级上册数学的基础知识之一,在这个知识点中,我们需要掌握整数的正、负、零、加、减、乘、除的基本概念和规则。

1. 整数的正、负和零正整数是大于零的整数,如1、2、3等;负整数是小于零的整数,如-1、-2、-3等;零是整数中唯一的非正负数。

2. 整数的加减法整数的加减法可以转化成同符号的加法。

同符号相加就是将它们的绝对值相加再加上它们的符号;不同符号相加就是将它们的绝对值相减,然后给差的符号。

例如,对于-3+4,我们可以将其转化为4-3,然后得到1,在最后加上符号就是-3+4=1。

二、有理数的概念有理数指的是可以表示成分数的数。

其中,“有”指的是存在,“理”指的是比例,“数”指的是数值。

1. 有理数的分类有理数可以分为正有理数、负有理数、零。

2. 有理数的大小比较当两个有理数同号时,只需比较它们的绝对值;当两个有理数异号时,正数大于负数。

三、图形变换图形变换是数学中非常重要的知识点之一,它可以帮助我们更好地理解几何学的基本概念。

1. 平移平移是指将图形沿着平移方向移动一定距离的过程。

平移不改变图形的形状和大小。

2. 旋转旋转是指将图形绕一个旋转中心旋转一定角度的过程。

在旋转过程中,图形的顶点不变,而其他点会围绕顶点旋转。

3. 对称对称是指将一个图形围绕一个中心轴对称的操作。

这个中心轴可以是水平、垂直或斜着的。

四、平面几何平面几何是数学中的一个重要分支,它主要研究平面图形的性质和变换。

1. 直线、线段和射线直线、线段和射线是平面几何中最基本的图形,它们都由无限多个点组成。

2. 角的概念角是由两条射线和它们的公共端点所构成的图形。

角可以分为锐角、直角、钝角、平角四种类型。

3. 三角形的分类三角形是由三条线段连接的图形,可以分为等边三角形、等腰三角形和普通三角形三种类型。

七年级数学上册复习资料

七年级数学上册复习资料

C. a < b 零
D. 不能判断 大
点评:有理数大小比较:正数
负数,两个负数,
的反而小;数轴上表示的两个数 边的数总比 边的数大。 5.某工厂在上一星期的星期日生产了 100 台彩电,下表是本星期的生产情况: 星期 增减/辆 一 –1 二 +3 三 –2 四 +4 五 +7 六 –5 日 –10
比前一天的产量多的记为正数,比前一天产量少的记为负数。请算出本星期最 后一天星期日的产量是 台, 本星期的总产量是 台, 星期 的 产量最多,星期 的产量最少。 反馈练习: 1.如果水位升高 3m 时水位变化记作+3m,则水位下降 5 米时水位变化记作: 2.大于–3 且不大于 2 的所有整数写出来是
的结果是 C、 22001 D、 22001 )


B、-2
0 ,则下列结论正确的是(
n 0 B. m
n 0 A. m
C. m 0, n 0
D. m 0, n 0
10.有理数 a、b、c 在数轴上的位置如图所示,化简 a b a c b c 的结果 是________________.
22 ,2.7,-4,0.14 按从小到大的顺序排列,用“<”号连接 7 起来应为_____________ ______. 4.已知有理数 a、b 在数轴上的位置如图所示,下列结论正确的是( ) A、b<a B、ab<0 C、b—a>0 D、a+b>0 b a 0 5.与 a-b 互为相反数的是( ) A.a+b B.a-b C.-a-b D.b-a
) C.±1 D.±1 和 0
9 16 25 36 9.瑞士中学教师巴尔末成功的从光谱数据: , , , ,„„中得到巴 5 12 21 32
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 有理数课题:1.1 正数和负数正数和负数的表示方法一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“-"(读作负)号来表示,如上面的—3、—8、—47。

正数、负数的概念1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

【课堂练习】:1.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,—4万元表示________________. 2.已知下列各数:51-,432-,3。

14,+3065,0,-239;则正数有_____________________;负数有____________________。

3.下列结论中正确的是…………………………………………( )A.0既是正数,又是负数B .O是最小的正数ﻩC.0是最大的负数 D.0既不是正数,也不是负数 5.给出下列各数:-3,0,+5,213-,+3。

1,21-,2004,+2010; 其中是负数的有……………………………………………………( ) A.2个B .3个 ﻩC.4个D .5个【拓展训练】:1.零下15℃,表示为_________,比O℃低4℃的温度是_________。

2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.3.“甲比乙大-3岁”表示的意义是______________________。

4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用__________ 和___________ 来分别表示它们.例 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;解:(1)这个月小明体重增长__________ ,小华体重增长_________ ,小强体重增长_________ (2)2001年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%, 意大利增长0.2%, 中国增长7。

5%。

写出这些国家2001年商品进出口总额的增长率;美国 —6.4% 德国__________ 法国___________ 英国__________ 意大利__________ 中国__________1)甲冷库的温度是—12°C,乙冷库的温度比甲冷酷低5°C ,则乙冷库的温度是 ;2)一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?课题:1。

2。

1有理数你能写出一些不同类的数吗?。

___________________________________________________________________ 我们将所写的数做一下分类: 分为类,分别是: 引导归纳:我们是否可以把上述数分为两类?如果可以,应分为哪两类? 所有的正数组成集合,所有的负数组成集合 【课堂练习】1。

把下列各数填入它所属于的集合的圈内:15, -91, —5, 152, 813-, 0。

1, —5.32, -80, 123, 2.333;正整数集合 负整数集合正分数集合 负分数集合有理数分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 或者 ⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数【拓展训练】1、在下表适当的空格里画上“√”号课题:1.2.2数轴1、观察下面的温度计,读出温度。

分别是°C、°C、°C;2、在一条东西向的马路上,有一个汽车站,汽车站东3m和7。

5m处分别有一棵柳树和一棵杨树,汽车站西3m 和4。

8m处分别有一棵槐树和一根电线杆,试画图表示这一情境?画数轴需要三个条件,即、方向和长度。

【课堂练习】1、请你画好一条数轴2、利用上面的数轴表示下列有理数1.5, -2, 2,—2。

5,92,23-, 0;3、写出数轴上点A,B,C,D,E所表示的数:1、观察上面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?2、每个数到原点的距离是多少?由此你又有什么发现?【拓展练习】1、在数轴上,表示数—3,2。

6,53-,0,314,322-,-1的点中,在原点左边的点有个。

—8是—2.25是53是0是2、在数轴上点A表示-4,如果把原点O向正方向移动1个单位,那么在新数轴上点A表示的数是( )A。

—5,B.—4 C.—3 D。

-23、你觉得数轴上的点表示数的大小与点的位置有什么关系?课题:1。

2。

3相反数1、在上面的数轴上描出表示5、—2、—5、+2 这四个数的点。

2、观察上图并填空:数轴上与原点的距离是2的点有个,这些点表示的数是;与原点的距离是5的点有个,这些点表示的数是。

从上面问题可以看出,一般地,如果a是一个正数,那么数轴上与原点的距离是a的点有两个,即一个表示a,另一个是,它们分别在原点的左边和右边,我们说,这两点关于原点对称。

相反数的概念:像2和—2、5和—5、3和-3这样,只有不同的两个数叫做互为相反数。

练习(1)、2。

5的相反数是,-115和是互为相反数,的相反数是2010;(2)、a和互为相反数,也就是说,—a是的相反数例如a=7时,—a=—7,即7的相反数是-7。

a=-5时,-a=—(—5),“—(—5)”读作“-5的相反数”,而—5的相反数是5.所以:—(—5)=5你发现了吗,在一个数的前面添上一个“—”号,这个数就成了原数的(3)简化符号:-(+0。

75)=,-(-68)=,-(-0.5 )=,-(+3。

8)=;(4)、0的相反数是.3、数轴上表示相反数的两个点和原点的距离。

【拓展训练】1。

在数轴上标出3,-1.5,0各数与它们的相反数.2。

-1。

6的相反数是,2x的相反数是,a—b的相反数是;3。

相反数等于它本身的数是,相反数大于它本身的数是;4。

填空:(1)如果a=-13,那么-a=;(2)如果-a=-5。

4,那么a=;(3)如果-x=-6,那么x=;(4)-x=9,那么x=;5.数轴上表示互为相反数的两个数的点之间的距离为10,求这两个数。

课题:1。

2.4绝对值问题:如下图小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线(填相同或不相同),他们行走的距离(即路程远近)1、由上问题可以知道,10到原点的距离是,-10到原点的距离也是 到原点的距离等于10的数有个,它们的关系是一对。

这时我们就说10的绝对值是10,—10的绝对值也是10; 例如,—3.8的绝对值是3。

8;17的绝对值是17;—613的绝对值是 一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作∣a ∣. 2、练习(1)、式子∣-5.7∣表示的意义是。

(2)、—2的绝对值表示它离开原点的距离是个单位,记作; (3)、∣24∣=. ∣—3.1∣=,∣-13∣=,∣0∣=; 3、思考、交流、归纳由绝对值的定义可知:一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是。

用式子表示就是:1)、当a 是正数(即a 〉0)时,∣a∣=;2)、当a是负数(即a〈0)时,∣a ∣=; 3)、当a=0时,∣a ∣=;在数轴上表示的两个数,右边的数总要左边的数。

也就是:1)、正数0,负数0,正数大于负数。

2)、两个负数,绝对值大的。

【课堂练习】:比较下列各对数的大小:—3和—5; —2.5和-∣—2.25∣ 一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是。

【拓展练习】1.如果a a 22-=-,则a 的取值范围是…………………………( )A .a >O ﻩB .a ≥O ﻩC .a ≤O ﻩD .a <O2.7=x ,则______=x ; 7=-x ,则______=x . 3.如果3>a ,则______3=-a ,______3=-a .4.绝对值等于其相反数的数一定是…………………………………( ) A .负数 B.正数 ﻩC .负数或零 D .正数或零5.给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数; ③不相等的两个数绝对值不相等; ④绝对值相等的两数一定相等.其中正确的有个课题:1.3。

1有理数的加法(1)探究:借助数轴来讨论有理数的加法1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了米,这个问题用算式表示就是:2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两次共向西走多少米?很明显,两次共向西走了米。

这个问题用算式表示就是:如图所示:3)如果向西走2米,再向东走4米, 那么两次运动后,这个人从起点向东走了米,写成算式就是这个问题用数轴表示如下图所示:4)利用数轴,求以下情况时这个人两次运动的结果:①先向东走3米,再向西走5米,这个人从起点向( )走了( )米;②先向东走5米,再向西走5米,这个人从起点向()走了( )米;③先向西走5米,再向东走5米,这个人从起点向( )走了( )米.写出这三种情况运动结果的算式5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人从起点向东(或向西)运动了米。

写成算式就是有理数加法法则(1)同号的两数相加,取的符号,并把相加。

(2)绝对值不相等的异号两数相加,取的加数的符号,并用较大的绝对值较小的绝对值.互为相反数的两个数相加得;(3)一个数同0相加,仍得。

4.新知应用计算(自己动动手吧!)(1) (-3)+(-9); (2) (-4.7)+3。

9.【课堂练习】:1.填空:(口答)(1)(-4)+(-6)= ; (2)3+(-8)= ;(4)7+(-7)= ; (4)(-9)+1=;(5)(-6)+0= ; (6)0+(-3)=;2.判断题:(1)两个负数的和一定是负数;(2)绝对值相等的两个数的和等于零;(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数。

3.已知│a│=8,│b│= 2;(1)当a、b同号时,求a+b的值;(2)当a、b异号时,求a+b的值。

相关文档
最新文档