一次函数专题训练[1]

合集下载

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册一、利用一次函数模型解决实际问题例1.实验表明,在某地,温度在15℃至25℃的范围内,一种蟋蟀1min的平均鸣叫次数y可近似看成该地当时温度x(℃)的一次函数.已知这种蟋蟀在温度为16℃时,1min平均鸣叫92次;在温度为23℃时,1min平均鸣叫155次.(1)求y与x之间的函数表达式;(2)当这种蟋蟀1min平均鸣叫128次时,该地当时的温度约是多少?变式1.如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位:cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数表达式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8cm,求此时碗的数量最多为多少个?变式2.某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.二、利用一次函数解决行程问题例2.小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,l1,l2分别表示小军与观光车所行的路程y(m)与时间x(min)之间的关系.根据图象解决下列问题:(1)观光车出发分钟追上小军;(2)求l2所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.变式1.在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A 地路程s(米)之间的函数图象.(1)a=,乐乐去A地的速度为;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.变式2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s (km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h,C点的坐标为.(2)慢车出发多少小时后,两车相距200km.变式3.某物流公司的一辆货车A从乙地出发运送货物至甲地,1小时后,这家公司的一辆货车B从甲地出发送货至乙地.货车A、货车B距甲地的距离y(km)与时间x(h)之间的关系如图所示.(1)求货车B距甲地的距离y与时间x的关系式;(2)求货车B到乙地后,货车A还需多长时间到达甲地.三、利用一次函数解决最低费用和最高利润问题例3.某校开设棋类社团,购买了五子棋和象棋.五子棋比象棋的单价少8元,用1000元购买的五子棋数量和用1200元购买的象棋数量相等.(1)两种棋的单价分别是多少?(2)学校准备再次购买五子棋和象棋共30副,根据学生报名情况,购买五子棋数量不超过象棋数量的3倍.问购买两种棋各多少副时费用最低?最低费用是多少?变式1.眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用960元购进的A款文创产品和用780元购进的B款文创产品数量相同.每件A款文创产品进价比B款文创产品进价多15元.(1)求A,B两款文创产品每件的进价各是多少元?(2)已知A款文创产品每件售价为100元,B款文创产品每件售价为80元,根据市场需求,商店计划再用不超过7400元的总费用购进这两款文创产品共100件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?变式 2.近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如表:价格/类别短款长款进货价(元/件)8090销售价(元/件)100120(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?变式3.某小区物管中心计划采购A,B两种花卉用于美化环境.已知购买2株A 种花卉和3株B种花卉共需要21元;购买4株A种花卉和5株B种花卉共需要37元.(1)求A,B两种花卉的单价.(2)该物管中心计划采购A,B两种花卉共计10000株,其中采购A种花卉的株数不超过B种花卉株数的4倍,当A,B两种花卉分别采购多少株时,总费用最少?并求出最少总费用.变式4.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见如表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.变式5.成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A 种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.变式6.某县著名传统土特产品“豆笋”、“豆干”以“浓郁豆香,绿色健康”享誉全国,深受广大消费者喜爱.已知2件豆笋和3件豆干进货价为240元,3件豆笋和4件豆干进货价为340元.(1)分别求出每件豆笋、豆干的进价;(2)某特产店计划用不超过10440元购进豆笋、豆干共200件,且豆笋的数量不低于豆干数量的,该特产店有哪几种进货方案?(3)若该特产店每件豆笋售价为80元,每件豆干售价为55元,在(2)的条件下,怎样进货可使该特产店获得利润最大,最大利润为多少元?变式7.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?四、利用一次函数解决含参数的最高利润问题例4.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.变式1.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?变式2.为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.变式3.为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:衬衫价格甲乙m m﹣10进价(元/件)260180售价(元/件)若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠a元(60<a<80)出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?五、利用一次函数解决方案问题例5.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.变式1.某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为a kg时,它们的利润和为1500元,求a的值.。

完整版)一次函数专项练习题

完整版)一次函数专项练习题

完整版)一次函数专项练习题一次函数专项练题题型一、点的坐标在x轴上的点,其纵坐标为0,在y轴上的点,其横坐标为0.若两个点关于x轴对称,则它们的横坐标相同,纵坐标互为相反数;若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数。

1、若点A(m,n)在第二象限,则点(|m|,-n)在第三象限;2、若点P(2a-1,2-3b)是第二象限的点,则a的范围为(0,1/2],b的范围为(0,2/3];3、已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=4,b=-(-2)=2;若A,B关于y轴对称,则a=-4,b=b;若A,B关于原点对称,则a=-4,b=-b;4、若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第一象限。

题型二、关于点的距离的问题点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示。

任意两点A(xA,yA),B(xB,yB)的距离为√[(xA-xB)²+(yA-yB)²];A(xA,0),B(xB,0)的距离为|xA-xB|;若AB∥y轴,则A(0,yA),B(0,yB)的距离为|yA-yB|;点A(xA,yA)到原点之间的距离为√(xA²+yA²)。

1、点B(2,-2)到x轴的距离是2;到y轴的距离是2;2、点C(0,-5)到x轴的距离是5;到y轴的距离是0;到原点的距离是5;3、点D(a,b)到x轴的距离是|b|;到y轴的距离是|a|;到原点的距离是√(a²+b²);4、已知点P(3,0),Q(-2,0),则PQ=5;已知点M(0,1),N(0,-1),则MN=2;已知点E(2,-1),F(2,-8),则EF的距离是7;已知点G(2,-3)、H(3,4),则GH两点之间的距离是7.5、求出点(3,-4)和(5,a)间的距离为2,可以利用两点间距离公式:$\sqrt{(5-3)^2+(a+4)^2}=2$,化简后得到$(a+4)^2=4$,解得$a=-2,2$。

中考数学《一次函数》专题训练(附带答案)

中考数学《一次函数》专题训练(附带答案)

中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。

八年级数学一次函数专项训练(含答案)

八年级数学一次函数专项训练(含答案)

16. 如 图 所 示 , 在 同 一 直 角 坐 标 系 中 , 一 次 函 数 y k1x , y k2 x , y k3x ,
y k4 x 的 图 像 分 别 是 l1 , l2 , l3 , l4 ; 那 么 k1 , k2 , k3 , k4 的 大 小 关 系


y l2
l1
O
l3 l4
3. 【答案】D
4. 【答案】A 【解析】 kx b 0 ,即 y 0 ,∴由图象看出与 x 轴交于点(-2,0)
5. 【答案】C 【解析】设该一次函数的解析式为 y=kx+b(k≠0),将点(5,0)、
{ ) { ) (10,-10)代入到
y=kx+b 中得,-100==51k+0k+b b
令 y 0 ,则 3x 2 0 ,解得 x 2 ,因此图象交 x 轴于点 ( 2 ,0)
3
3
∴函数
y
3x
2
与两坐标轴围成的三角形面积
S
1 2
2 3
2
2 3
19. 【答案】
y 1 x 2 ,它不是正比例函数,是一次函数.
3
【解析】依题意,设 y 2 kx , 整理得: y kx 2 将 x 3,y 1代入上式,得:1 3x 2 ∴ x 1
x
y l2
l1
O
l3 l4
x
三、解答题
17. 如图,在平面直角坐标系中,点 P x, y 是第一象限直线 y x 6 上的点, 点 A5, 0 , O 是坐标原点, PAO 的面积为 s ,求 s 与 x 的函数关系式.
y P① x, y①
O
A
x
18. 求一次函数 y 3x 2 的图象与两坐标轴围成的三角形面积.

一次函数专项练习题

一次函数专项练习题

一次函数专项练习题一、选择题1. 一次函数的图象是一条()。

A. 折线B. 曲线C. 直线D. 折线和曲线2. 下列函数中,是一次函数的是()。

A. y = 2x^2 + 1B. y = 3x + 5C. y = x^3D. y = √x3. 一次函数y = kx + b中,当k > 0时,函数图象在()。

A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限4. 一次函数y = kx + b的图象与y轴的交点为()。

A. (0, k)B. (0, b)C. (k, 0)D. (b, 0)5. 一次函数y = 2x + 3的图象经过()。

A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限二、填空题1. 一次函数的图象是一条______。

2. 一次函数的一般形式为______。

3. 一次函数y = kx + b中,当k > 0时,函数图象经过______象限。

4. 一次函数y = kx + b的图象与x轴的交点为______。

5. 若一次函数y = 3x 2的图象经过点(1, a),则a的值为______。

三、解答题1. 已知一次函数y = kx + b的图象经过点(2, 5)和(4, 9),求该一次函数的解析式。

2. 一次函数y = 2x + 3与y = x + 5的图象相交于点A,求点A的坐标。

3. 在一次函数y = kx + b的图象上,任意取两点P(a, ka + b)和Q(c, kc + b),若|PQ| = 5,求k的值。

4. 已知一次函数y = kx + 1的图象与两坐标轴围成的三角形面积为2,求该一次函数的解析式。

5. 一次函数y = kx + b的图象经过点(0, 3)和(3, 0),求该一次函数的解析式。

四、判断题1. 一次函数的图象一定经过原点。

()2. 一次函数的斜率k决定了函数图象的倾斜方向,k越大,图象越陡峭。

()3. 一次函数的截距b表示函数图象与y轴的交点的横坐标。

5.3一次函数(一) 基础训练(含答案)

5.3一次函数(一) 基础训练(含答案)

5.3 一次函数(一)1.下列y 关于x 的函数中,是一次函数的是(B )A. y =1-xB. y =15x +1C. y =x 2+1D. y =x2.若y =(m -3)x +1是一次函数,则(C )A. m =3B. m =-3C. m ≠3D. m ≠-33.(1)在一次函数y =5-13x 中,系数k =-13,b =__5__. (2)已知y 与x 成正比例,且当x =-2时,y =4,则y 与x 之间的函数表达式是y =-2x .(3)已知函数y =(3m -4)x n -2+(m +2n )是正比例函数,则m =-6,n =__3__,此时函数表达式为y =-22x .4.已知函数y =3x +1,当自变量增加3时,相应的函数值增加多少?【解】 由y =3x +1,y +a =3(x +3)+1,两式相减,得a =9.∴相应的函数值增加9.5.请说出下列函数中k 和b 的值:(1)y =60x .(2)y =3000-300x .(3)y =9+8x .(4)y =-3(2+x )-7.【解】 (1)k =60,b =0.(2)k =-300,b =3000.(3)k =8,b =9.(4)代简,得y =-3x -13,∴k =-3,b =-13.6.已知y -3与x 成正比例,且当x =2时,y =7.(1)求y 与x 之间的函数表达式.(2)当x =-2时,求y 的值.(3)当y =-3时,求x 的值.【解】 (1)设y -3=kx .∵当x =2时,y =7,∴7-3=2k ,∴k =2.∴y =2x +3.(2)当x =-2时,y =-2×2+3=-1.(3)当y =-3时,-3=2x +3,∴x =-3.7.定义[a ,b ]为一次函数y =ax +b (a ≠0,a ,b 为实数)的“关联数”.若“关联数”为[1,m -3]的一次函数是正比例函数,则关于x 的方程mx -6=0的解为多少?【解】 ∵“关联数”为[1,m -3]的一次函数是正比例函数,∴y =x +m -3是正比例函数,即m -3=0,解得m =3.把m =3代入mx -6=0,得3x -6=0,解得x =2.8.写出下列各小题中y 关于x 的函数表达式,并判断y 是否为x 的一次函数?是否为x 的正比例函数?(1)长方形的面积为20,长方形的长y 与宽x 之间的函数表达式.(2)某地西瓜刚上市时的价格为3.6元/千克,买西瓜的总价y (元)与所买西瓜x (kg)之间的函数表达式.(3)地面气温为28 ℃,高度每升高1 km ,气温下降5 ℃,气温y (℃)与高度x (km )之间的函数表达式.(4)小林的爸爸为小林存了一份教育储蓄,首次存入10000元,以后每个月存入500元,存入总钱数y (元)与月数x 之间的函数表达式.【解】 (1)y =20x,不是一次函数,也不是正比例函数. (2)y =3.6x ,是一次函数,也是正比例函数.(3)y =28-5x ,是一次函数,但不是正比例函数.(4)y =10000+500x ,是一次函数,但不是正比例函数.9.某市住宅电话的资费标准为:通话前3 min 计费0.20元,以后每分钟(不足1 min 按1 min 计算)加收0.10元.(1)某人一次通话的时间为10 min ,他这次通话的资费是0.90元.(2)某人一次通话的资费为1.50元,他这一次的通话时间t 的范围是15__min<t ≤16__min .【解】 (1)当通话时间为10 min 时,通话前3 min 收费0.20元,后7 min 收费7×0.10=0.70(元),∴总资费为0.20+0.70=0.90(元).(2)当一次通话的资费为1.50元时,此人通话时间最多为3+(1.50-0.20)÷0.10=16(min), ∴通话时间t 应满足15 min<t ≤16 min.10.(1)已知一次函数y =kx +b ,当x 的值减少1时,y 的值减少2,则当x 的值增加2时,y 的值(A )A. 增加4B. 减少4C. 增加2D. 减少2【解】 由y =kx +b ,y -2=k (x -1)+b ,两式相减,得k =2.由y =2x +b ,y +a =2(x +2)+b ,两式相减,得a =4,∴y 的值增加4.(2)设m ,n (m ≠0)为常数,如果在正比例函数y =kx 中,自变量x 增加m ,对应的函数值y 增加n ,那么k 的值是(A )A. n mB. m nC. -n mD. -m n【解】 由题意,得⎩⎪⎨⎪⎧y =kx ,①y +n =k (x +m ),②②-①,得n =km ,解得k =n m.11.若函数y =(2k -5)x +(k -25)为正比例函数,求12+16+112+…+1k +k 2的值. 【解】 ∵函数y =(2k -5)x +(k -25)为正比例函数,∴k -25=0,解得k =25.∵1k +k 2=1k (k +1)=1k -1k +1, ∴12+16+112+…+1k +k 2=1-12+12-13+13-14+125-126=1-126=2526.(第12题)12.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物,装卸货物共用45 min ,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60 km /h ,两车之间的距离y (km )与货车行驶时间x (h )之间的函数图象如图所示,有下列结论:①快递车从甲地到乙地的速度为100 km /h ;②甲、乙两地之间的距离为120 km ;③图中点B 的坐标为(3.75,75);④快递车从乙地返回时的速度为90 km /h .其中正确的是(C )A. ①②③B. ②③④C. ①③④D. ①③【解】 根据题意可得:点A 表示快递车已到达乙地,y 表示两车距离,3 h 时两车相距120 km .设快递车从甲地到乙地的速度为a(km/h),则有3a-3×60=120,解得a=100,故①正确.两地距离为3×100=300(km),故②错误.∵快递车到达后装卸货物共用时45 min,即34h,∴点B的横坐标x=3.75.=45(km),∵45 min货车走了60×34∴点B的纵坐标为120-45=75,故③正确.BC段中的点B表示快递车装好货后又出发,点C表示两车相遇.∵4.25-3.75=0.5(h),即两车经过0.5 h相遇,∴快递车返回的速度为(75-0.5×60)÷0.5=90(km/h),故④正确.综上所述,①③④正确.。

一次函数练习题及答案

一次函数练习题及答案

一次函数练习题及答案一、选择题(每题2分,共10分)1. 一次函数y=kx+b的斜率k表示什么?A. 函数的截距B. 函数的增长速度C. 函数的对称轴D. 函数的顶点2. 下列哪个选项不是一次函数?A. y = 3x + 5B. y = x^2 + 1C. y = -2x - 3D. y = 53. 一次函数y=kx+b中,当k>0时,函数的图像在坐标平面内如何变化?A. 从左下角向右上角延伸B. 从左上角向右下角延伸C. 从右上角向左下角延伸D. 从左上角向右上角延伸4. 已知一次函数y=2x-4,当x=3时,y的值是多少?A. 2B. -2C. 0D. 55. 如果一次函数y=kx+b的图像经过点(1,1)和(2,4),那么k和b的值分别是多少?A. k=3, b=-2B. k=2, b=-1C. k=1, b=2D. k=4, b=-3二、填空题(每题2分,共10分)6. 一次函数y=kx+b的图像是一条______。

7. 当k<0时,一次函数y=kx+b的图像会经过第______象限。

8. 一次函数y=kx+b中,如果b>0,则函数的图像与y轴的交点在y轴的______半轴。

9. 已知一次函数y=kx+b的图像经过点(-1,5),且与x轴相交于点(3,0),则k=______。

10. 一次函数y=kx+b的图像与x轴相交于点(x,0),则x=______。

三、解答题(每题5分,共20分)11. 已知一次函数y=kx+b的图像经过点(2,-3)和(-1,6),请求出k和b的值。

12. 一次函数y=kx+b的图像与x轴相交于点(a,0),与y轴相交于点(0,b),若a=4,b=-1,请写出该一次函数的解析式。

13. 已知一次函数y=kx+b的图像经过点(0,5)和(1,10),求出该一次函数的解析式,并判断其增减性。

14. 一次函数y=kx+b的图像与反比例函数y=1/x的图像在第一象限相交于点(2,m),求m的值。

一次函数图像及性质专项练习题

一次函数图像及性质专项练习题

一次函数图像及性质专项练习题姓名:第1题. 如图所示,函数y=mx +m 的图像中可能是( )第2题. 当自变量x 增大时,下列函数值反而减小的是( )A . y=3xB .y=2xC .y=3x- D .y=-2+5x第3题. 直线y=(2-5k )x +3k -2不过第一象限,则k 需满足第4题. 直线y=4x -2与x 轴的交点是 ,与y 轴的交点是 . 第5题. 直线y=(2-5k)x+3k-2若经过原点,则k= ;若直线与x 轴交于点(-1,0),则k= ,第6题. 一次函数24y x =-+的图像经过的象限是____,它与x 轴的交点坐标是____,与y 轴的交点坐标是____,y 随x 的增大而____. 第7题. 如图,直线l 是一次函数y=kx+b 的图像,看图填空:(1) b =______,k =______; (2) x =-20时,y =_______; (3) 当y =-20时,x =_______.第8题. 若一次函数y=kx+b 交于y 轴的负半轴,且y的值随x 的增大而减小,则k_____0,b ______0.(填">"、"="、或"<")(A)(C)(D)(B)ABCD第9题. 如图,函数y=kx-2中,y随x的增大而减小,则它的图像是()第10题. 若一次函数y=k x+b的图象经过一、三、四象限,则k,b应满足()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0求一次函数的表达式(待定系数法)专项训练知识点:先设待求函数表达式(其中含有待定系数)再根据条件列出方程或方程组,求出待定系数,从而得到所求结果的方法,叫做待定系数法。

1、如果一次函数y=kx+3的图像经过点(1,1),那么一次函数的解析式是x+b(k,b为常数,k≠0)的图像经过点A 2、(2014常州)已知一次函数y=k(0,-2)和点B(1,0),则k= ,b= .x+b的图象与y轴的交点的纵坐标为-5,且当x=1时,y=-2,3、一次函数y=k那么这个函数的表达式为。

中考数学《一次函数》专题训练及答案

中考数学《一次函数》专题训练及答案

中考数学《一次函数》专题训练及答案一、单选题1.已知M(1,2),N(3,-3),P(x,y)三点可以确定一个圆,则以下P点坐标不满足要求的是()A.(3,5)B.(-3,5)C.(1,2)D.(1,-2)2.一次函数y=ax+b与二次函数y=ax2+bx+c在同一直角坐标系中的图象可能是()A.B.C.D.3.若函数y=kx的图象经过(1,-2)点,那么它一定经过()A.(2,-1)B.( −12,1)C.(-2,1)D.(-1,12)4.两条直线y1=mx﹣n与y2=nx﹣m在同一坐标系中的图象可能是图中的()A.B.C.D.5.满足k>0,b=13的一次函数y=kx+b的图象大致是()A.B.C .D .6.一次函数 y =kx +b , k <0 , b >0 ,那么它的图像不经过( )A .第一象限B .第二象限C .第三象限D .第四象限7.两条直线y=k 1x+b 1和y=k 2x+b 2相交于点A (﹣2,3),则方程组 {y =k 1x +b 1y =k 2x +b 2的解是( )A .{x =2y =3B .{x =−2y =3C .{x =3y =−2D .{x =3y =28.已知P 1(x 1,y 1),P 2(x 2,y 2)是一次函数y =﹣ 23x+5图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是( ) A .y 1=y 2B .y 1<y 2C .y 1>y 2D .无法确定9.如图所示,l 1反映了某公司销售一种医疗器械的销售收入y 1(万元)与销售量x(台)之间的关系,l 2反映了该公司销售该种医疗器械的销售成本y 2(万元)与销售量x(台)之间的关系.当销售收入大于销售成本时,该医疗器械才开始赢利.根据图象,则下列判断错误的是( )A .当销售量为4台时,该公司赢利4万元B .当销售量多于4台时,该公司才开始赢利C .当销售量为2台时,该公司亏本1万元D .当销售量为6台时,该公司赢利1万元10.正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象大致是()A.B.C.D.11.已知一次函数y=x+b的图象经过第一、二、三象限,则b的值可以是().A.-2B.-1C.0D.212.若变量y与x成正比例,变量x又与z成反比例,则y与z的关系是()A.成反比例B.成正比例C.y与z2成正比例D.y与z2成反比例二、填空题13.若直线y=k2x−2与直线y=4x+k没有交点,则k=.14.一次函数y=kx+b的图象经过点(1,5),交y轴于(0,3),则k=,b=. 15.某工程队承建30km的管道铺设,工期60天,施工x天后剩余管道y km,则y与x的关系式为.16.已知:如图,在平面直角坐标系xOy中,一次函数y=34x+3的图象与x轴和y轴交于A、B两点将△AOB绕点O顺时针旋转90°后得到△A′OB′则直线A′B′的解析式是.17.将直线y=(k+1)x﹣2平移能和直线y=﹣3x重合,那么k的值是.18.若点P1(3,y1)、P2(√10,y2)在一次函数y=2x﹣1的图象上,则y1y2(填大小关系).三、综合题19.如图,直线OA和直线AB的交点坐标为A(8,6),B为直线AB与y轴交点,且OA=2OB.(1)求直线OA和直线AB的函数解析式;(2)求△AOB的面积.20.如图,抛物线y=−x2+2x+3与x轴交于A,B两点,交y轴于点C,点M抛物线的顶点.(1)连接BC,求BC与对称轴MN的交点D坐标.(2)点E是对称轴上的一个动点,求OE+CE的最小值.21.某学校计划购A、B两种树苗共500株用来绿化校园,A种树苗每株25元,B种树苗每株30元,经调查了解,A、B两种树苗的成活率分别是93%和97%.(1)若购买这两种树苗共用去14000元,则A、B两种树苗各购买多少株?(2)为确保这批树苗的总成活率不低于95%,则A种树苗最多购买多少株?(3)在(2)的条件下,应如何购买树苗,使购买树苗的费用最低?并求出最低费用.22.某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示.(1)根据图象,求y与x的函数表达式;(2)当销售单价为80元/千克时,商店的利润是多少?23.在平面直角坐标系xOy中,函数y=k x(x>0)的图象与直线y=mx交于点A(2,2).(1)求k,m的值;(2)点P的横坐标为n(n>0),且在直线y=mx上,过点P作平行于x轴的直线,交y轴于点M,交函数y=kx(x>0)的图象于点N.①n=1时,用等式表示线段PM与PN的数量关系,并说明理由;②若PN≥3PM,结合函数的图象,直接写出n的取值范围.24.某通讯公司推出A、B两种手机话费套餐,这两种套餐每月都有一定的固定费用和免费通话时间,超过免费通话时间的部分收费标准为:A套餐a元/分,B套餐b元/分,使用A、B两种套餐的通话费用y(元)与通话时间x(分)之间的函数图象如图所示.(1)当手机通话时间为50分钟时,写出A、B两种套餐的通话费用.(2)求a,b的值.(3)当选择B种套餐比A种套餐更合算时,求通话时间x的取值范围.参考答案1.【答案】C 2.【答案】B 3.【答案】B 4.【答案】B 5.【答案】A 6.【答案】C 7.【答案】B 8.【答案】C 9.【答案】A 10.【答案】D 11.【答案】D 12.【答案】A 13.【答案】2 14.【答案】2;315.【答案】y=30-0.5x (0≤x≤60) 16.【答案】y =−43x +417.【答案】-4 18.【答案】<19.【答案】(1)解:设直线OA 的解析式为y =ax把A (8,6)代入得6=8a ∴a =34∴直线OA 为y =34x∵A (8,6) ∴OA =√82+62=10 ∵OA =2OB ∴OB =5 ∴B (0,﹣5)设直线AB 的解析式为y =kx ﹣5 代入A 的坐标得,6=8k ﹣5 ∴k =118∴直线AB 为y =118x ﹣5;(2)解:∵ A (8,6), B (0,﹣5) ∴ OB =5∴S △AOB =12OB ·xA =12×5×8=20.20.【答案】(1)解:对于二次函数 y =−x 2+2x +3当 y =0 时, −x 2+2x +3=0 ,解得 x =−1 或 x =3 则 A(−1,0),B(3,0)当 x =0 时, y =3 ,则 C(0,3)二次函数 y =−x 2+2x +3 化成顶点式为 y =−(x −1)2+4 则二次函数的对称轴为 x =1∵ 点D 为BC 与二次函数的对称轴的交点 ∴ 点D 的横坐标为1设直线BC 的函数解析式为 y =kx +b将点 B(3,0),C(0,3) 代入得: {3k +b =0b =3 ,解得 {k =−1b =3则直线BC 的函数解析式为 y =−x +3 将 x =1 代入得: y =−1+3=2 即点D 的坐标为 D(1,2) ;(2)解:如图,作点C 关于对称轴MN 的对称点 C ′ ,连接 C ′E由二次函数的对称性得:点 C ′ 一定在此二次函数的图象上,其纵坐标与点C 的纵坐标相同,且 C ′E =CE则 OE +CE =OE +C ′E由两点之间线段最短得:当点 O ,E ,C ′ 共线时, OE +C ′E 取最小值,最小值为 OC ′ 设点 C ′ 的坐标为 C ′(a ,3)∵二次函数的对称轴为x=1,点C的坐标为C(0,3)∴0+a2=1解得a=2,即C′(2,3)则最小值OC′=√(2−0)2+(3−0)2=√13故OE+CE的最小值为√13.21.【答案】(1)解:设购甲种树苗x株,乙种树苗y株,由题意,得{x+y=50025x+30y=14000解得:{x=200y=300.答:购甲种树苗200株,乙种树苗300株;(2)解:购买甲种树苗a株,则购买乙种树苗(500−a)株,由题意,得93%a+97%(500−a)≥95%×500解得:a≤250.答:甲种树苗最多购买250株;(3)解:设购买树苗的总费用为W元,购买甲种树苗a株,由题意,得W=25a+30(500−a)=−5a+15000.∵a=−5<0∴W随a的增大而减小∵0<a≤250∴当a=250时,W最小=13750元.∴购买甲种树苗250株,乙种树苗250株时总费用最低,最低费用为13750元.22.【答案】(1)解:设y与x的函数关系式为y=kx+b将(40,160),(120,0)代入,得{40k+b=160120k+b=0,解得{k=−2b=240所以y与x的函数关系式为y=-2x+240(40≤x≤120);(2)解:当销售单价为80元/千克时,销售量y=-160+240=80千克,商店的利润是(80-40)×80=3200元.23.【答案】(1)解:∵ y=kx(x>0)的图象与直线y=mx交于点A(2,2)∴ k=2×2=4,2=2m∴ m=1即k=4,m=1;(2)解:①由(1)知,k=4,m=1∴ 双曲线的解析式为y=4x ,直线OA 的解析式为y=x∵ n=1 ∴ P (1,1) ∵ PM//x 轴∴ M (0,1),N (4,1) ∴ PM=1,PM=4﹣1=3 ∴ PN=3PM ; ②0<n≤1.24.【答案】(1)解:由图象可知,当手机通话时间为50分钟时,A 、B 两种套餐的通话费用分别为10元、20元;(2)解:a= 25−10150−75 =0.2,b= 47−20300−150 =0.18所以,a ,b 的值分别是0.2,0.18;(3)解:A 种套餐超过免费时间y 与x 的函数关系式为y=0.2x ﹣5(x >75) 由图象可知,当75<x <150时,若A 、B 两种套餐的通话费相同,则0.2x ﹣5=20 解得x=125∴当x >125时,选择B 种套餐更合算.。

一次函数综合练习题

一次函数综合练习题

一次函数综合练习题一、选择题1. 一次函数的图象是一条()。

A. 折线B. 曲线C. 直线D. 折线和曲线2. 下列函数中,是一次函数的是()。

A. y = 2x^2 + 1B. y = 3x + 5C. y = x^3D. y = √x3. 一次函数y = kx + b中,当k > 0时,函数图象在()。

A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限4. 一次函数y = 2x 3的图象与x轴的交点坐标是()。

A. (1.5, 0)B. (1.5, 0)C. (3, 0)D. (3, 0)5. 一次函数y = x + 5的图象与y轴的交点坐标是()。

A. (0, 5)B. (0, 5)C. (5, 0)D. (5, 0)二、填空题1. 一次函数的一般形式是_________。

2. 一次函数的图象是一条_________。

3. 一次函数y = 3x 2的斜率是_________,y轴截距是_________。

4. 当一次函数的斜率k > 0时,函数图象_________;当斜率k < 0时,函数图象_________。

5. 一次函数y = 2x + 4的图象与x轴的交点坐标是_________。

三、解答题1. 已知一次函数y = kx + b的图象过点(1, 3)和(3, 7),求该一次函数的解析式。

2. 一次函数y = x + 6的图象与x轴、y轴分别相交于点A、B,求线段AB的长度。

3. 已知一次函数y = 2x 5的图象在x轴下方,求x的取值范围。

4. 画出一次函数y = x 2的图象,并标出其与x轴、y轴的交点坐标。

5. 已知一次函数y = kx + 1的图象过点(2, 5),求斜率k的值。

四、应用题1. 某商品的单价为x元,销售量为y件。

根据市场调查,销售量与单价之间存在一次函数关系,已知当单价为50元时,销售量为100件;当单价为80元时,销售量为50件。

专题01 一次函数 压轴题(十大题型)(原卷版)

专题01 一次函数 压轴题(十大题型)(原卷版)

(1)OC 的长为______,OD 的长为______;(2)如图,点()1,M a -是线段CD 上一点,连接OM ,作ON 并判断MON △的形状;(3)如备用图,若点()1,E b 为直线AB 上的点,点P 为y 轴上的点,是以点E 为直角顶点的等腰直角三角形,若存在,请求出此时(1)求直线CD 的函数表达式和点D 的坐标;(2)点P 为线段DE 上的一个动点,连接BP .①若直线BP 将ACD 的面积分为7:9两部分,试求点②点P 是否存在某个位置,将BPD △沿着直线BP 翻折,使得点在,请直接写出点P 的坐标;若不存在,请说明理由.题型2:取值范围问题(1)求点A 的坐标;(2)若点C 在第二象限,ACD ①求点C 的坐标;②直接写出不等式组4x kx +>③将CAD 沿x 轴平移,点C(1)求点C 的坐标及直线BC 的表达式;(2)在点E 运动的过程中,若△DEF 的面积为5,求此时点(3)设点E 的坐标为(0,m );①用m 表示点F 的坐标;②在点E 运动的过程中,若△DEF 始终在△ABC 的内部(包括边界)题型3:最值问题5.已知一次函数()134502y kx k k =++≠.的坐标为(),a a ,求CM MP +的最小值.6.如图1,在平面直角坐标系xoy 中,直线1:1l y x =+与x 轴交于点A ,直线2:33l y x =-与x 轴交于点B ,与1l 相交于C 点,过x 轴上动点(),0E t 作直线3l x ⊥轴分别与直线1l 、2l 交于P 、Q 两点.(1)①请直接写出点A ,点B ,点C 的坐标:A ______,B ______,C ______.②若2PQ =,求t 的值;(2)如图2,若E 为线段AB 上动点,过点P 作直线PF PQ ⊥交直线2l 于点F ,求当t 为何值时,PQ PF -最大,并求这个最大值.题型4:旋转问题7.如图1,在平面直角坐标系中,一次函数()0y kx b k =+≠的图象交y 轴于点()0,1A -,交x 轴交于点B ,且2OB OC OA ==,过点C 作y 轴的垂线,交直线AB 于点D .(1)求点D 的坐标;(2)点E 是线段CD 上一动点,直线BE 与y 轴交于点F .①若BDF V 的面积为8,求点F 的坐标;②如图2,当点F 在y 轴正半轴上时,将直线BF 绕点B 顺时针旋转45︒后的直线与线段CD 交于点M ,连接FM ,若1OF MF =+,求线段MF 的长.备用图(1)求直线1l 的表达式;(2)过M 作y 轴的平行线,分别交直线1l ,直线2l 于点D ,E ,连接DE ,①当3m =时,求DE 的长;(1)求n 的值及直线2l 的表达式;(2)在直线2l 上是否存在点E ,使BO ABE A S S =△△若存在,则求出点(3)如图2,点P 为线段AD 上的一个动点,一动点H(1)求直线AB 的表达式;(2)由图象直接写出关于x 的不等式102x kx b <<+的解集;(3)如图②所示,P 为x 轴上A 点右侧任意一点,以BP 为边作等腰Rt BPM 直线MA 交y 轴于点Q .当点P 在x 轴上运动时,线段OQ 的长度是否发生变化?若不变,求出线段长度;若变化,求线段OQ 的取值范围.题型6:定值问题11.如图1所示,直线l :10y mx m =+与x 轴负半轴、y 轴正半轴分别交于(1)若点D坐标为(12,3).①求直线BC的函数关系式;②若Q为RS中点,求点P坐标.(2)在点P运动的过程中,PQCR的值是否变化?若不变,求出该值;若变化,请说明理由.题型7:新定义题型13.函数图象是研究函数的重要工具,类比一次函数的学习,表是探究过程中的部分信息:x…2-1-01232y x=-…4a2-14(1)a的值为______;(2)在图中画出该函数的图象;(3)结合函数的图象,解决下列问题:①下列说法正确的是:______.(填所有正确选项)A.函数图像关于x轴对称x=时,函数有最小值,最小值为B.当0x>时,y随x的增大而增大C.当0③若12x -≤≤,则y 的取值范围为【拓展提升】18.对于两个不同的函数,通过加法运算可以得到一个新函数,我们把这个新函数称为两个函数的数”.例如:对于函数12y x =和231y x =-,则函数1y ,2y 的“和函数”3y =(1)已知函数1y x =和2=y ①写出3y 的表达式,并求出当②函数1y ,2y 的图象如图①所示,则....(2)已知函数4y x =和5y =,这两个函数的“和函数”记为6y .按照上图的速度步行前往学校,记录下小东10天到达学校所用的时间,如表.上学日期4号5号6号7号8号11号到达学校所用时间(单位:min)2524.825.324.925.124.8某天早上7:20,小东按照上表的速度步行上学.t(0<t≤10)分钟后,小明骑自行车以从小区出发,沿着相同的路线上学.骑行7分钟后,自行车因零件损坏无法继续骑行,小明只好将自行车停在路边非机动车停靠点(停车时间忽略不计),改用步行前往学校.为了赶时间,小明的步行速度不小于。

八年级数学一次函数专项训练(含参考答案)

八年级数学一次函数专项训练(含参考答案)
一次函数专项训练
练习一 一次函数与正比例函数 1. 已知正比例函数的图像过点(2,-4),求这个正比例函数的关系式。
2. 已知一次函数的关系式为 y kx 2 ,当 x 2 时 y 的值为 4,求 k 的值及一次 函数的关系式。
3. 已知关于 x 的一次函数 y kx 4k 2(k 0) 。若其图像经过原点,求这个一次 函数的关系式。
4. 已知一次函数 y kx b ,在 x 0 时的 y 值为 4;在 x 1 时的值为-2,求这 个一次函数的关系式。
5. 已知一次函数 y kx b 的图像经过点 A(0,4),点 B(2,0) (1)求这个一次函数的关系式; (2)当 x 1 时,求 y 的值。
第1页共8页
练习二 确定一次函数的关系式 1. 已知直线 l 过 A,B 两点,A(0,-1),B(1,0)。求直线 l 的函数关系式。
4 5. y xBiblioteka 16. (1) y 9x 7
1. y 3 x 6 2
2. k 1 ,b 6 2
3. y 3x 1
(2) x 5 9
练习三 确定一次函数的关系式
4. (1) y x 2
(2)(0,-2)或(2,0)
5. (1) y 2x 7
(2)12.25
1. k 1,b 2
2. 在平面直角坐标系中,一次函数 y kx b 的图像经过点 A(2,1),B(0,2),C (-1,n),试求 n 的值。
3. 一次函数的图像与 y 轴的交点为(0,-3),且与坐标轴围成的三角形的面积为 6,求这个一次函数的关系式。
4. 如图,已知一次函数 y kx b 的图像经过 A(-2,-1),B(1,3)两点,并且 交 x 轴于点 C,交 y 轴于点 D。 (1)求该一次函数的关系式; (2)求△AOB 的面积。

一次函数提高篇(含答案)[1]1

一次函数提高篇(含答案)[1]1

巩固练习一、选择题:1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A)一象限(B)二象限(C)三象限(D)四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是()(A)4 (B)6 (C)8 (D)164.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为()(A)y1>y2(B)y1=y2(C)y1<y2(D)不能确定5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,•则有一组a,b的取值,使得下列4个图中的一个为正确的是()6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第()象限.(A)一(B)二(C)三(D)四7.一次函数y=kx+2经过点(1,1),那么这个一次函数()(A)y随x的增大而增大(B)y随x的增大而减小(C)图像经过原点(D)图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.要得到y=-32x-4的图像,可把直线y=-32x().(A)向左平移4个单位(B)向右平移4个单位(C)向上平移4个单位(D)向下平移4个单位10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为()(A)m>-14(B)m>5 (C)m=-14(D)m=511.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是().(A)k<13(B)13<k<1 (C)k>1 (D)k>1或k<1312.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作()(A)4条(B)3条(C)2条(D)1条13.已知abc≠0,而且a b b c c ac a b+++===p,那么直线y=px+p一定通过()(A)第一、二象限(B)第二、三象限(C)第三、四象限(D)第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是()(A)-4<a<0 (B)0<a<2(C)-4<a<2且a≠0 (D)-4<a<215.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()(A)1个(B)2个(C)3个(D)4个16.一次函数y=ax+b(a为整数)的图象过点(98,19),交x轴于(p,0),交y轴于(•0,q),若p为质数,q为正整数,那么满足条件的一次函数的个数为()(A)0 (B)1 (C)2 (D)无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k 的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个18.(2005年全国初中数学联赛初赛试题)在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个19.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,(a<b);乙上山的速度是12a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t(分),离开点A的路程为S(米),•那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A的路程S(米)•之间的函数关系的是()20.若k、b是一元二次方程x2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过()(A)第1、2、4象限(B)第1、2、3象限(C)第2、3、4象限(D)第1、3、4象限二、填空题1.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m的取值范围是________.3.某一次函数的图像经过点(-1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.已知直线y=-2x+m不经过第三象限,则m的取值范围是_________.5.函数y=-3x+2的图像上存在点P,使得P•到x•轴的距离等于3,•则点P•的坐标为__________.6.过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________.7.y=23x与y=-2x+3的图像的交点在第_________象限.8.某公司规定一个退休职工每年可获得一份退休金,•金额与他工作的年数的算术平方根成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年(b≠a),他的退休金比原来的多q元,那么他每年的退休金是(以a、b、p、•q•)表示______元.9.若一次函数y=kx+b,当-3≤x≤1时,对应的y值为1≤y≤9,•则一次函数的解析式为________.10.(湖州市南浔区2005年初三数学竞赛试)设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为S k (k=1,2,3,……,2008),那么S 1+S 2+…+S 2008=_______. 11.据有关资料统计,两个城市之间每天的电话通话次数T•与这两个城市的人口数m 、n (单位:万人)以及两个城市间的距离d (单位:km )有T=2kmnd 的关系(k 为常数).•现测得A 、B 、C 三个城市的人口及它们之间的距离如图所示,且已知A 、B 两个城市间每天的电话通话次数为t ,那么B 、C 两个城市间每天的电话次数为_______次(用t 表示).三、解答题1.已知一次函数y=ax+b 的图象经过点A (2,0)与B (0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y 的值在-4≤y ≤4范围内,求相应的y 的值在什么范围内.2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤4,求y的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:第一档第二档第三档第四档凳高x(cm) 37.0 40.0 42.0 45.0桌高y(cm) 70.0 74.8 78.0 82.8(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x (小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)•求小明出发多长时间距家12千米?5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.在直角坐标系x0y中,一次函数y=23x+2的图象与x轴,y轴,分别交于A、B两点,•点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.9.已知:如图一次函数y=12x-3的图象与x 轴、y 轴分别交于A 、B 两点,过点C (4,0)作AB 的垂线交AB 于点E ,交y 轴于点D ,求点D 、E 的坐标.10.已知直线y=43x+4与x 轴、y 轴的交点分别为A 、B .又P 、Q 两点的坐标分别为P (•0,-1),Q (0,k ),其中0<k<4,再以Q 点为圆心,PQ 长为半径作圆,则当k 取何值时,⊙Q•与直线AB 相切?11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A 地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A地 1800元/台 1600元/台B地 1600元/台 1200元/台(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.已知写文章、出版图书所获得稿费的纳税计算方法是f(x)=(800)20%(130%),400(120%)20%(130%),400x xx x--≤⎧⎨-->⎩其中f(x)表示稿费为x元应缴纳的税额.假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.•又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.14.某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:用水量(m3) 交水费(元)一月份 9 9二月份 15 19三月 22 33根据上表的表格中的数据,求a、b、c.15.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D 市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E 市的运费为400元和500元.(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值.(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y 表示总运费W(元),并求W的最大值和最小值.答案:1.B 2.B 3.A 4.A5.B 提示:由方程组y bx ay ax b=+⎧⎨=+⎩的解知两直线的交点为(1,a+b),•而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D•中交点纵坐标是大于a,小于b的数,不等于a+b,故图D不对;故选B.6.B 提示:∵直线y=kx+b经过一、二、四象限,∴0,kb<⎧⎨>⎩对于直线y=bx+k,∵0,kb<⎧⎨>⎩∴图像不经过第二象限,故应选B.7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,∵k=-1<0,∴y随x的增大而减小,故B正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误.∵k<0,b=•2>0,∴其图像经过第二象限,故D错误.8.C 9.D 提示:根据y=kx+b的图像之间的关系可知,将y=-32x•的图像向下平移4个单位就可得到y=-32x-4的图像.10.C 提示:∵函数y=(m-5)x+(4m+1)x中的y与x成正比例,∴5,50,1410,,4mmm m≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即∴m=-14,故应选C.11.B 12.C 13.B 提示:∵a b b c c ac a b+++===p,∴①若a+b+c≠0,则p=()()()a b b c c aa b c+++++++=2;②若a+b+c=0,则p=a b cc c+-==-1,∴当p=2时,y=px+q过第一、二、三象限;当p=-1时,y=px+p过第二、三、四象限,综上所述,y=px+p一定过第二、三象限.14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p 2+4│q │>0, ||0k b p k b q k b +=-⎫⎪=-⇒⎬⎪≠⎭k ·b<0, 一次函数y=kx+b 中,y 随x 的增大而减小000k k b <⎫⇒<⇒⇒⎬>⎭一次函数的图像一定经过一、二、四象限,选A . 二、1.-5≤y ≤19 2.2<m<3 3.如y=-x+1等.4.m ≥0.提示:应将y=-2x+m 的图像的可能情况考虑周全. 5.(13,3)或(53,-3).提示:∵点P 到x 轴的距离等于3,∴点P 的纵坐标为3或-3 当y=3时,x=13;当y=-3时,x=53;∴点P 的坐标为(13,3)或(53,-3).提示:“点P 到x 轴的距离等于3”就是点P 的纵坐标的绝对值为3,故点P 的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b . ∵直线y=kx+b 与y=x+1平行,∴k=1,∴y=x+b .将P (8,2)代入,得2=8+b ,b=-6,∴所求解析式为y=x-6.7.解方程组92,,83323,,4x y x y x y ⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩得 ∴两函数的交点坐标为(98,34),在第一象限. 8.222()aq bp bp aq --. 9.y=2x+7或y=-2x+3 10.1004200911.据题意,有t=25080160⨯k ,∴k=325t . 因此,B 、C 两个城市间每天的电话通话次数为T BC =k ×2801003253205642t t⨯=⨯=.三、1.(1)由题意得:202 44a b ab b+==-⎧⎧⎨⎨==⎩⎩解得∴这个一镒函数的解析式为:y=-2x+4(•函数图象略).(2)∵y=-2x+4,-4≤y≤4,∴-4≤-2x+4≤4,∴0≤x≤4.2.(1)∵z与x成正比例,∴设z=kx(k≠0)为常数,则y=p+kx.将x=2,y=1;x=3,y=-1分别代入y=p+kx,得2131k pk p+=⎧⎨+=-⎩解得k=-2,p=5,∴y与x之间的函数关系是y=-2x+5;(2)∵1≤x≤4,把x1=1,x2=4分别代入y=-2x+5,得y1=3,y2=-3.∴当1≤x≤4时,-3≤y≤3.另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.3.(1)设一次函数为y=kx+b,将表中的数据任取两取,不防取(37.0,70.0)和(42.0,78.0)代入,得21 31 k pk p+=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套.4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),代入得:y=15x-15,(2≤x≤3).当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米.(3)设过E、F两点的直线解析式为y=k2x+b2,由E(4,30),F(6,0),代入得y=-15x+90,(4≤x≤6)过A、B两点的直线解析式为y=k3x,∵B(1,15),∴y=15x.(0≤x≤1),•分别令y=12,得x=265(小时),x=45(小时).答:小明出发小时265或45小时距家12千米.5.设正比例函数y=kx ,一次函数y=ax+b ,∵点B 在第三象限,横坐标为-2,设B (-2,y B ),其中y B <0, ∵S △AOB =6,∴12AO ·│y B │=6, ∴y B =-2,把点B (-2,-2)代入正比例函数y=kx ,•得k=1.把点A (-6,0)、B (-2,-2)代入y=ax+b ,得1062223a b a a b b ⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩解得∴y=x ,y=-12x-3即所求. 6.延长BC 交x 轴于D ,作DE ⊥y 轴,BE ⊥x 轴,交于E .先证△AOC ≌△DOC , ∴OD=OA=•1,CA=CD ,∴CA+CB=DB=222234DE BE +=+= 5. 7.当x ≥1,y ≥1时,y=-x+3;当x ≥1,y<1时,y=x-1; 当x<1,y ≥1时,y=x+1;当x<•1,y<1时,y=-x+1.由此知,曲线围成的图形是正方形,其边长为2,面积为2.8.∵点A 、B 分别是直线y=23x+2与x 轴和y 轴交点, ∴A (-3,0),B (0,2),∵点C 坐标(1,0)由勾股定理得BC=3,AB=11, 设点D 的坐标为(x ,0).(1)当点D 在C 点右侧,即x>1时,∵∠BCD=∠ABD ,∠BDC=∠ADB ,∴△BCD ∽△ABD , ∴BC CD AB BD =,∴23|1|112x x -=+ ① ∴22321112x x x -+=+,∴8x 2-22x+5=0, ∴x 1=52,x 2=14,经检验:x 1=52,x 2=14,都是方程①的根, ∵x=14,不合题意,∴舍去,∴x=52,∴D•点坐标为(52,0).设图象过B 、D 两点的一次函数解析式为y=kx+b ,22255022b k k b b ⎧⎧==-⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为y=-225x+2.(2)若点D 在点C 左侧则x<1,可证△ABC ∽△ADB ,∴AD BD AB CB =,∴2|3|2113x x ++= ② ∴8x 2-18x-5=0,∴x 1=-14,x 2=52,经检验x 1=14,x 2=52,都是方程②的根. ∵x 2=52不合题意舍去,∴x 1=-14,∴D 点坐标为(-14,0),∴图象过B 、D (-14,0)两点的一次函数解析式为y=42x+2,综上所述,满足题意的一次函数为y=-225x+2或y=42x+2. 9.直线y=12x-3与x 轴交于点A (6,0),与y 轴交于点B (0,-3), ∴OA=6,OB=3,∵OA ⊥OB ,CD ⊥AB ,∴∠ODC=∠OAB , ∴cot ∠ODC=cot ∠OAB ,即OD OAOC OB=, ∴OD=463OC OA OB ⨯= =8.∴点D 的坐标为(0,8), 设过CD 的直线解析式为y=kx+8,将C (4,0)代入0=4k+8,解得k=-2.∴直线CD :y=-2x+8,由2213524285x y x y x y ⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩解得 ∴点E 的坐标为(225,-45).10.把x=0,y=0分别代入y=43x+4得0,3,4;0.x x y y ==-⎧⎧⎨⎨==⎩⎩ ∴A 、B 两点的坐标分别为(-3,0),(0,4)•.•∵OA=3,OB=4,∴AB=5,BQ=4-k ,QP=k+1.当QQ ′⊥AB 于Q ′(如图), 当QQ ′=QP 时,⊙Q 与直线AB 相切.由Rt △BQQ′∽Rt △BAO ,得`BQ QQ BQ QP BA AO BA AO ==即.∴4153k k -+=,∴k=78.∴当k=78时,⊙Q 与直线AB 相切.11.(1)y=200x+74000,10≤x ≤30(2)三种方案,依次为x=28,29,30的情况. 12.设稿费为x 元,∵x>7104>400,∴x-f (x )=x-x (1-20%)20%(1-30%)=x-x ·45·15·710x=111125x=7104. ∴x=7104×111125=8000(元).答:这笔稿费是8000元. 13.(1)设预计购买甲、乙商品的单价分别为a 元和b 元,则原计划是:ax+by=1500,①.由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+1.5)(x-10)+(b+1)y=1529,②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:(a+1)(x-5)+(b+1)y=1563.5, ③.由①,②,③得: 1.51044,568.5.x y a x y a +-=⎧⎨+-=⎩ ④-⑤×2并化简,得x+2y=186.(2)依题意有:205<2x+y<210及x+2y=186,得54<y<5523. 由于y 是整数,得y=55,从而得x=76.14.设每月用水量为xm3,支付水费为y元.则y=8,08(),c x ab x ac x a+≤≤⎧⎨+-+≥⎩由题意知:0<c≤5,∴0<8+c≤13.从表中可知,第二、三月份的水费均大于13元,故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别代入②式,得198(15)338(22)b a cb a c=+-+⎧⎨=+-+⎩解得b=2,2a=c+19,⑤.再分析一月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9-a)+c,即2a=c+17,⑥.⑥与⑤矛盾.故9≤a,则一月份的付款方式应选①式,则8+c=9,∴c=1代入⑤式得,a=10.综上得a=10,b=2,c=1. ()15.(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.又010,010, 01828,59, x xx x≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x是整数).由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;•当x=5时,W取到最大值13200元.(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是W=200x+800(10-x)+300y+700(10-y)+•400(19-x-y)+500(x+y-10)=-500x-300y-17200.又010,010, 010,010, 0188,1018, x xy yx y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且010,010,018.xyx y≤≤⎧⎪≤≤⎨⎪≤+≤⎩(x,y为整数).W=-200x-300(x+y)+17200≥-200×10-300×18+17200=9800.当x=•10,y=8时,W=9800.所以,W的最小值为9800.又W=-200x-300(x+y)+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W的最大值为14200.。

12.2一次函数专题训练及答案

12.2一次函数专题训练及答案

212.2 一次函数专题一 一次函数解析式的确定 1.如图,在平面直角坐标系中,线段AB 的端点坐标为A (-2,4),B (4,2),直线y =kx -2与线段AB 有交点,则k 的值可能是( ) A.-5 B.-2 C.3 D. 5 2.小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量筒中水面升高_______cm ;(2)求放入小球后量筒中水面的高度y (cm )与小球个数x (个)•之间的一次函数关系式(不要求写出自变量的取值范围);(3)量筒中至少放入几个小球时有水溢出?专题二 一次函数中的开放性问题3. “一根弹簧原长10cm,在弹性限度内最多可挂质量为5kg 的物体,挂上物体后弹簧伸长的长度与所挂物体的质量成正比, ,则弹簧的总长度y (cm )与所挂物体质量x (kg)之间的函数关系式是y =10+0.5x (0≤x ≤5).”王刚同学在阅读上面材料时就发现部分内容被墨迹污染,被污染部分是确定函数关系式的一个条件,你认为该条件可以是: (只需写出一个).4.阅读函数图象,并根据你所获得的信息回答问题:(1)折线OAB 表示某个实际问题的函数图象,请你编写一道符合图象意义的应用题;(2)根据你所给出的应用题分别指出x 轴,y 轴所表示的意义,并写出A ,B 两点的坐标;(3)求出图象AB 的函数解析式,并注明自变量x 的取值范围.yx B专题三 一次函数中的实验操作题5.在平面直角坐标系中,点P 从原点O 出发,每次向上平移2个单位长度或向右平移1个单位长度.(1)实验操作:在平面直角坐标系中描出点P 从点O 出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:(2)观察发现:任一次平移,点P 可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数 的图象上;平移2次后在函数 的图象上……由此我们知道,平移n 次后在函数 的图象上.(请填写相应的解析式)(3)探索运用:点P 从点O 出发经过n 次平移后,到达直线x y 上的点Q ,且平移的路径长不小于50,不超过56,求点Q 的坐标.【知识要点】1.函数y =kx +b (k ≠0)叫做一次函数,当b =0时,叫做正比例函数.2.一次函数y =kx +b 的图象是一条直线,其位置是由k 和b 来确定的.只要知道一次函数图象两个点的坐标,就可以画出该函数的图象.3.一次函数y =kx +b 有下列性质:当k >0时,y 随着x 的增大而增大(图象是自左向右上升的).当k <0时,y 随着x 的增大而减小(图象是自左向右下降的).4.求一次函数的解析式常用的方法是待定系数法.【温馨提示】1.弄清一次函数和正比例函数的关系,正比例函数是一次函数的特殊情形,即正比例函数是一次函数,但一次函数不一定是正比例函数.2.一次函数的性质可借助函数的图象直观得到,注意“数形结合”思想的合理利用.3.确定一次函数解析式的基本方法是待定系数法,其实质是二元一次方程组知识的应用.除此以外,还可以根据题目所给基本数量关系或数学公式列出一次函数的解析式.【方法技巧】1.直线y =kx +b 的位置是由k 和b 的符号决定的,其中k 决定直线从左到右是呈上升趋势还是下降趋势,b 决定直线与y 轴的交点位置.2.用待定系数法求函数解析式的一般步骤是:(1)设含有待定系数的函数解析式;(2)把已知条件代入解析式,得到关于待定系数的方程(组);(3)解方程(组),得到待定系数;(4)将求得的待定系数的值代回所设的解析式.参考答案1.B 提示:将A (-2,4)代入y =kx -2,得k =-3,将B (4,2)代入y =kx -2得k =1,从而得k 值在-3与1之间,因此只有B 符合条件.2.(1)(36-30)÷3=2;即放入一个小球量筒中水面升高2cm .(2)放入小球后量筒中水面的高度y (cm)与小球个数x (个)之间的一次函数关系式y =30+2x .(3)当y =49时,30+2x =49,解得x =9.5,所以至少放入10个小球时有水溢出.3.如果悬挂2kg 物体弹簧总长度为11cm. (答案不唯一).4.答案一:(1)小明从家跑步去离家800米的学校,用了5分钟,立即又用了10分钟步行回到家中;(2)x 轴表示时间,y 轴表示距离,A (5,800),B (15,0);(3)图象AB 的解析式为y =-80x +1200(5≤x ≤15).答案二:一容器深8米,往里注满水用去5分钟,接着打开底部的排水管放完全部水用去10分钟.此时,x 轴表示时间(分),y 轴表示容器内水面的高(米),A (5,8),B (15,0);图象AB 的解析式为y =412(515)5x x -+≤≤). 答案三:小明用5分钟把一杯冰水混合物加热道50℃后,立即把它放入冰柜中,又经过10分钟,杯中的水又降到0℃,此时,x ,y 轴分别表示时间与温度,A (5,50),B (15,0);图象AB 的解析式及自变量的取值范围,由同学们完成.(2)22+-=x y ;42+-=x y ;n x y 22+-=.(3)设点Q 的坐标为),(y x ,依题意,⎩⎨⎧=+-=.,22x y n x y 解这个方程组,得到点Q 的坐标为)32,32(n n . ∵平移的路径长为y x +,∴50≤34n ≤56. ∴37.5≤n ≤42. 而点Q 的坐标为正整数,因此点Q 的坐标为)26,26(,)28,28(.。

一次函数专项训练题

一次函数专项训练题

一次函数专项训练题一、选择题1. 下列函数中,是一次函数的是()A. y = 2/xB. y = 3x²C. y = x + 1D. y = √x解析:一次函数的一般形式为y = kx + b(k、b 为常数,k≠0)。

A 选项是反比例函数;B 选项是二次函数;C 选项符合一次函数形式;D 选项不是一次函数。

答案是C。

2. 若函数y = (m - 1)x + m² - 1 是一次函数,则m 的值为()A. m = 1B. m = -1C. m ≠ 1D. m = ±1解析:因为是一次函数,所以x 的系数不能为0,即m - 1≠0,解得m≠1。

答案是C。

二、填空题1. 已知一次函数y = 2x - 3,则当x = 2 时,y = _____。

解析:把x = 2 代入函数y = 2x - 3,可得y = 2×2 - 3 = 1。

2. 若一次函数y = kx + 3 的图象经过点(1,5),则k = _____。

解析:把点(1,5)代入函数y = kx + 3,可得 5 = k×1 + 3,解得k = 2。

三、解答题1. 已知一次函数y = 3x + b 的图象经过点(-2,5),求这个一次函数的解析式。

解析:把点(-2,5)代入函数y = 3x + b,可得 5 = 3×(-2) + b,解得 b = 11。

所以这个一次函数的解析式为y = 3x + 11。

2. 若一次函数y = (2m - 1)x + 3 - 2m 的图象经过第一、二、四象限,求m 的取值范围。

解析:因为图象经过第一、二、四象限,所以斜率小于0,在y 轴上的截距大于0。

即2m - 1<0 且 3 - 2m>0。

解2m - 1<0 得m<1/2;解 3 - 2m>0 得m<3/2。

综合起来,m 的取值范围是m<1/2。

3. 已知一次函数y = kx + b 的图象与直线y = -2x + 1 平行,且经过点(2,-1),求这个一次函数的解析式。

一次函数专项练习(经典题型收集)

一次函数专项练习(经典题型收集)

1 / 8一次函数练习〔一〕1.51x y x +=+中,自变量x 的取值X 围是。

2.y x=x 的取值X 围是。

3.点P 〔-2,m 〕在函数y=2x+1的图象上,如此m=。

4.函数y=2x-1的图象经过点〔1,〕和点〔,2〕,它与x 轴的交点坐标为,与y 轴的交点坐标为。

5.函数224y mx m =+-的图象经过原点,如此m=。

6.如下哪个点在函数112y x =+的图象上〔 〕 A 、〔2,1〕 B 、〔-2,1〕 C 、〔2,0〕 D 、〔-2,0〕 7.三角形的面积为8,高为x ,底为y ,如此y=。

8.如下各图象中,y 不是x 的函数的是〔 〕9.一根蜡烛长20cm ,点燃后每小时燃烧5cm ,燃烧剩下的长度y 与燃烧时间x 的函数关系式为。

10.函数y=kx+5与y=2x-b 的交点为〔1,6〕,如此k=,b=。

一次函数练习〔一〕1.51x y x +=+中,自变量x 的取值X 围是。

2.y x=x 的取值X 围是。

3.点P 〔-2,m 〕在函数y=2x+1的图象上,如此m=。

4.函数y=2x-1的图象经过点〔1,〕和点〔,2〕,它与x 轴的交点坐标为,与y 轴的交点坐标为。

5.函数224y mx m =+-的图象经过原点,如此m=。

6.如下哪个点在函数112y x =+的图象上〔 〕 A 、〔2,1〕 B 、〔-2,1〕 C 、〔2,0〕 D 、〔-2,0〕 7.三角形的面积为8,高为x ,底为y ,如此y=。

8.如下各图象中,y 不是x 的函数的是〔 〕9.一根蜡烛长20cm ,点燃后每小时燃烧5cm ,燃烧剩下的长度y 与燃烧时间x 的函数关系式为。

10.函数y=kx+5与y=2x-b 的交点为〔1,6〕,如此k=,b=。

2 / 8一次函数练习〔二〕1.假如(1)ny n x =-是正比例函数,如此n=。

2.23(21)my m x -=-是正比例函数,且y 随x 的增大而减小,如此这个函数的解析式为。

一次函数基础知识练习

一次函数基础知识练习

一次函数基础知识练习一、一次函数的定义1、下列函数(1)y=πx(2)y=2x-1 (3)y = 1x (4)y =21-3x (5)y =x 2-1中,是一次函数有( ) 2、已知一次函数k x k y )1(-=+3,则k =. 如果函数3)2(1+-=-k xk y 是一次函数,则=k 3、已知函数32)2(3--+=m x m y 是一次函数,则m =;此图象经过第象限。

4、28(3)1my m x m -=-++是一次函数,则m =二、单调性应用 1、已知点(-4,y 1),(2,y 2)都在直线y =- 12x +2上,则y 1与y 2大小关系是( ) (A )y 1>y 2 (B )y 1=y 2 (C )y 1<y 2 (D )不能比较2、已知点A (-1,a )与B (2,b )都在直线332+=x y 上,试用两种以上的方法比较a 与b 的大小; 3、若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,• 则k____0,b______0.4、点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x + 3 图象上的两个点,且 x 1<x 2,则y 1与y 2的大小关系是5、点P 1(x 1,y 1)点p 2(x 2,y 2)是一次函数=-4x+3图象上的两点,且x 1<x 2,则y 1与y 2的大小关系是6、点A (5-,1y )和B (2-,2y )都在直线112y x =-+上,则1y 与2y 的关系是 三、图像的基本识别1、已知一次函数y =kx +b 的图象如图所示,则k 、b 的符号是( )(A)k >0,b >0 (B)k >0,b <0 (C)k <0,b >0 (D)k <0,b2、已知直线y=(k –2)x+k 不经过第三象限,则k 的取值范围是( )A .k ≠2B .k>2C .0<k<2D .0≤k<23、直线y=kx +b 经过一、二、四象限,则k 、b 应满足 ( )A . k>0, b<0B . k>0,b>0C . k<0, b<0;D . k<0, b>04、一次函数y=-(m 2+1)x -(m 2+2)的图象(m 为常数)不经过第象限5、已知一次函数4)2(-+-=m x m y 不经过第二象限,则m 的取值范围是6、若点P(a ,b)在第二象限内,则直线y =ax +b 不经过第_______限四、与不等式的关系1、如图,直线b kx y +=与x 轴的交点为(-3,0)则y >0时x 的取值范围是( )A.x >-3B.x >0C.x <-3D.x <02、对于一次函数32--=x y ,当x _______时,图象在x 轴下方.3、一次函数的图像交x 轴于(2,0),交y 轴于(0,3),当函数值大于0时,x 的取值范围是4、根据一次函数y=-3x-6的图像,当函数值大于零时,x 的范围是______________.5、根据函数33y x =-+的图象,回答下列问题:(1)y 的值随x 的增大而.(2)图象与x 轴的交点坐标是,与y 轴的交点坐标是.(3)当x 时,y >0;当x 时,y <0;当x 时,y =0.五、直线的平移(一)上下平移1、把直线32+-=x y 向下平移2个单位长度所得直线的解析式为2、将直线14+=x y 的图象向下平移3个单位长度,得到直线____________.3、已知一次函数b kx y +=的图象与43-=x y 的图象平行,而且经过点(1,1),则该一次函数的解析式为_________________5、若在同一坐标系中作出下列直线:①112y x =--;②21y x =-;③112y x =-+;④1y x =-.那么互相平行的直线是 7、已知直线y =(5-3m )x +32m -4与直线y =21x +6平行,求此直线的解析式. 8、直线(1)y k x b =-+与32y x =-平行,且过点(1,-2),请问直线y bx k =-不经过 象限9、若把一次函数y=2x -3,向上平移3个单位长度,得到图象解析式是(二)、左右平移1、把一次函数12-=x y 沿着x 轴向左平移1个单位,得到的直线的解析式为__________.2、直线21y x =+向右平移2个单位后的解析式是;3、已知直线:y=3x -12,将直线向右平移5个单位长度得到直线,则直线的解析式. 4、已知直线:y=3x -12,将直线向左平移5个单位长度得到直线,则直线的解析式.5、直线y=-5x -12向左平移2个单位长度后得到的直线解析式是___;直线y=向右平移3个单位长度后得到的直线解析式是___.(三)、综合应用1、直线y=8x +13既可以看作直线y=8x -3向___平移(填“上”或“下”)___单位长度得到;也可以看作直线y=8x -3向___平移(填“左”或“右”)___单位长度得到.2、要由直线y=2x +12得到直线y=2x -6,可以通过平移得到:先将直线y=2x +12向___平移(填“上”或“下”)___单位长度得到直线y=2x ,再将直线y=2x 向___平移(填“上”或“下”)得到直线y=2x -6;当然也可以这样平移:先将直线y=2x +12向___平移(填“左”或“右”)___单位长度得到直线y=2x ,再将直线y=2x 向___平移(填“左”或“右”)得到直线y=2x -6;以上这两种方法是分步平移.也可以一次直接平移得到,即将直线y=2x +12向___平移(填“上”或“下”)直接得到直线y=2x -6,或者将直线y=2x +12向___平移(填“左”或“右”)直接得到直线y=2x -6.六、直线与坐标轴围成的三角形的面积1、一次函数y=-2x+4的图象与x 轴交点坐标 是,与y 轴交点坐标是 图象与坐标轴所围成的三角形面积是 .2、一次函数y=2x -4的图象与x 轴交点坐标是,与y 轴交点坐标是.3、一次函数y=2x+b 与两坐标轴围成三角形的面积为4,则b=________________.4、直线443--=x y 与两坐标轴围成的三角形面积是 5、如果一次函数4+=kx y 与两坐标轴围成的三角形面积为4,则=k _____6、函数25+-=x y 与x 轴的交点是,与y 轴的交点是,与两坐标轴围成的三角形面积是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数专题训练(一)1、自变量取值范围的确定自变量取值范围:使函数有意义的的自变量的取值的全体叫做自变量的取值范围。

(1)自变量取值范围的确定方法:①当解析式是整式时,自变量的取值范围是全体实数。

②解析式是分式时,自变量的取值范围是使分母部位0的全体实数。

③当解析式是二次根式时,自变量的取值范围是使被开方数不小于0的实数。

④当解析式中含有0指数幂或负整数指数幂时,自变量的取值范围应使相应的底数不为0.(2)当函数解析式表示实际问题时,自变量的取值还必须使实际问你题有意义。

(1)3242---=x x x y (2)x y 111-=2、一次函数、正比例函数的概念若两个变量x ,y 之间的关系式可以表示成b kx y +=(k 、b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 是因变量,y 是自变量)特别地,当b =0时,一次函数y =kx (常数k ≠0)叫正比例函数。

正比例函数也是一次函数,它是一次函数的特例.它们的取值范围是全体实数。

例题:如果函数32)2(-+=m x m y 是正比例函数,求m 的值。

例题1:下列各式中是一次函数的是:( )A 、x y 51-=B 、y=5xC 、252-=x yD 、2)3(x x x y --= 例题2:已知a y +与a z +(a 为常数)成正比例,z 是x 的正比例函数,判断y 与x 是什么函数关系?例题3:已知函数y=2x+m-4.(1) m 为何值时,y 是x 的正比例函数? m 为何值时,y 是x 的一次函数?应用探究与拓展创新例题1、甲乙两地相距500KM ,汽车从甲地以每小时80KM 的速度开往乙地。

(1) 写出开出时间t (小时)与汽车离乙地的距离s (KM )之间的函数关系式(t 是自变量)(2) 写出自变量的取值范围。

(3) 汽车从甲地开出多久离乙地100KM ?例题2、某校办工厂生产一批新产品,现有两种销售方案,方案一:在本学期开学时售出该批产品,可获利30000元,然后将该批产品的成本(生产该批产品之处的总费用)和已获利30000元进行再投资,到这学期结束时再投资又获利4.8%;方案二:在这学期结束时售出该批产品,可获利35940元,但要付出成本的0.2%作为保管费。

(1)设该批次产品的成本为x元,方案一的获利为y1元,方案二的获利为y2元,分别求出y1、y2的函数关系式。

(2)当该批产品的成本是多少元时,方案一与方案二的获利是样的?(3)就成本是x元,要论是方案一好,还是方案二好?例题3、商店出售茶壶每个定价20元,茶杯每个定价5元,该店制定了两种优惠办法:①买一个茶壶赠送一个茶杯。

②按照总价的92%付款。

某顾客需要购买茶壶4只,茶杯若干(不少于4个),假设购买茶杯数为(个)付款数y(元)。

试建立两种优惠办法y与x之间的函数关系式,并讨论该顾客买同样多的茶杯时,两种办法那种更省钱?例题4、A市和B市库存某种机器分别为12台和6台,现决定支援给C市10台和D市8台,已知从A市调运一台机器到C市和D市的运费分别为400元和800元,从B市调运一台机器到C市和D市的运费分别为300元和500元.(1)设B市运往C市的机器x台,求总运费W(元)与x的函数式.(2)若要求总运费不超过9000元,问:共有几种调运方案.(3)请选择最佳调运方案,使总运费最少,并求出最少总运费.4、一次函数的图像性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。

(3).函数不是数,它是指某一变化过程中两个变量之间的关系。

(4).k,b与函数图像所在象限:当k>0时,直线只通过一、三象限,不会通过二、四象限。

当k<0时,直线只通过二、四象限,不会通过一、三象限。

3.特殊位置关系当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等。

当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K 值的乘积为-1)。

5、一次函数的图像的平移向左平移n个单位:y=k(x+n)+b向右平移n个单位:y=k(x-n)+b口诀:左加右减(对于y=kx+b来说,只改变x)向上平移n个单位:y=kx+b+n向下平移n个单位:y=kx+b-n口诀:上加下减(对于y=kx+b来说,只改变b)例1、已知一次函数y=(2m+4)x+(3-n)(1)m、n为什么数时,y随x的增大而增大?(2)m 、n 为什么数时,函数图像与y 轴的交点在x 轴的下方?(3)m 、n 为什么数时,函数图像过原点?(4)若图像经过一,二,三象限,求m 、n 的取值范围?课后练习:1.若ab >0,bc <0,则ax+by=c 的图像不经过的象限是( )。

2.已知直线y=x+3k 和y=2x-4交于x 轴上一点,则k=( )。

3.直线y=-3x+7与x 轴的交点是( ),与y 轴的交点是( ),直线与坐标轴所围成的面积是( )。

4.把直线y=21x+3向( )平移( )个单位就得到直线y=21x 。

5.如果直线y 1=ax+1和直线y2=bx-1都经过(1,0),那么这两条直线和y 轴所围成的三角形面积是( )。

6.如果直线y=kx+b 经过第一、三、四象限,那么直线y=-bx+k 经过第( )象限。

7.若点P (a ,b )在第三象限内,则直线y=ax+b 不经过的象限是( )。

8.一次函数y=(m-1)x+m-1的图像与y 轴交于点(0,-1),那m 的值为( )。

9.若函数y=-x+m 2 与y=4x-1的图像交于x 轴,则m 的值为( )。

10.一次函数y=ax+b ,ab <0,则其大致图象正确的是( )11.已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是【 】12.已知一次函数32-=x y 的大致图像为 ( )【一次函数解析式五种确定方法】一、根据直线的解析式和图像上一个点的坐标,确定函数的解析式例1、若函数y=3x+b 经过点(2,-6),求函数的解析式。

二、根据直线经过两个点的坐标,确定函数的解析式例2、直线y=kx+b 的图像经过A (3,4)和点B (2,7),求函数的表达式。

三、根据函数的图像,确定函数的解析式例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.四、根据平移规律,确定函数的解析式例4、如图2,将直线OA向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是.五、根据直线的对称性,确定函数的解析式例5、已知直线y=kx+b与直线y= -3x+7关于y轴对称,求k、b的值。

【一次函数解析式的确定综合训练】例题1(2012•聊城)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.【变式练习1】(2008•北京)如图,已知直线y=kx-3经过点M,求此直线与x 轴,y轴的交点坐标.例题2如图,在平面直角坐标系中,点A在第一象限,点B的坐标为(3,0),OA=2,∠AOB=60°.(1)求点A 的坐标;(2)若直线AB 交y 轴于点C ,求△AOC 的面积.【变式练习1】如图,已知直线y=x+3的图象与x 、y 轴交于A 、B 两点.直线l 经过原点,与线段AB 交于点C ,把△AOB 的面积分为2:1的两部分.求直线l 的解析式.【变式练习2】如图,已知直线L1经过点A (-1,0)与点B (2,3),另一条直线L2经过点B ,且与x 轴相交于点P (m ,0).(1)求直线L1的解析式.(2)若△APB 的面积为3,求m 的值.【变式练习3】(2011•咸宁)如图,在平面直角坐标系中,▱OABC 的顶点A 在x 轴上,顶点B 的坐标为(6,4).若直线l 经过点(1,0),且将▱OABC 分割成面积相等的两部分,则直线l 的函数解析式是____________________例题3一次函数图像经过点(1,-1)且与直线52=+y x 平行,求此函数解析式。

例题4已知一次函数图像b kx y +=于另一个函数23+=x y 的图像相交于y 轴上的同一点A ,且x 轴下方的一点B (3,n )在一次函数b kx y +=的图像上,n 满足n n 16-=,求这个一次函数的解析式。

例题5一次函数b kx y +=的自变量x 的取值范围是63≤≤-x ,相应的函数值的取值范围是25-≤≤-y ,求该函数的解析式。

【变式练习1】如图11,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式;(3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接写出点P 的坐标.【课后练习】一、填空题1、函数21y y y +=,21y y 、的函数图像如右图,则函数y 的解析式为______。

2、已知一次函数图像过点(0,1)和点(2,-1),点M (m ,21)在图像上,则m=_______。

3、如果直线1+=px y 和直线43-=qx y 相交于x 轴上的一点,则p :q=__ (p 、q ≠0)图114、若直线)2(12-+=-n mxy m 交于y 轴的上方,则满足条件的m=_____,n=_______。

5、直线21+=x k y 与32-=x k y 交于x 轴上一点,则21k k =_____________。

6、已知y-m 与2x+n 成正比例关系,(m 、n 为常数)当x=2时,y=4,当x=3时,y=7,那么y 与x 之间的函数关系式为_______________。

7、一次函数y=ax+b ,若a+b=1,则它的图象必经过点( )A 、(-1,-1)B 、(-1,1)C 、(1,-1)D 、(1,1)9、如图,在平面直角坐标系中,▱OABC 的顶点A 在x 轴上,顶点B 的坐标为(6,4).若直线l 经过点(1,0),且将▱OABC 分割成面积相等的两部分,则直线l 的函数解析式是( )10、已知四条直线y=kx-3,y=-1,y=3和x=1所围成的四边形的面积是12,则k 的值为( )A 、1或-2,B 、-1或2,C 、3,D 、411、已知点A ( 3,1),B (0,0),C ( 3,0),AE 平分∠BAC ,交BC 于点E ,则直线AE 对应的函数表达式是( )12、已知直线y=kx-4(k <0)与两坐标轴所围成的三角形面积等于4,则直线的解析式为( )13、已知一次函数的图象是一条直线,该直线经过(0,0),(2,-a ),(a ,-8)三点,且函数值随自变量x 值的增大而减小,则此函数的解析式是( )二、解答题如图,一次函数b ax y +=与正比例函数kx y =的图像交于第三象限的点A ,与y 轴相交于B (0,-4),且AO=AB ,△AOB 的面积为6,求两函数的解析式。

相关文档
最新文档