一次函数专项练习题
一次函数练习题难题
一次函数练习题难题一、选择题1. 下列函数中,是一次函数的是()A. y = 2x^2 + 1B. y = 3x + 4C. y = √x + 2D. y = 5/x2. 一次函数y = 3x 2的图象经过()A. 第一、二、三象限B. 第一、三象限C. 第一、二、四象限D. 第二、四象限3. 当k > 0时,一次函数y = kx + b的图象一定经过()A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限二、填空题1. 一次函数的图象是一条______。
2. 一次函数y = 2x + 3的斜率为______,y轴截距为______。
3. 一次函数y = x + 5与y轴的交点坐标为______。
三、解答题1. 已知一次函数y = kx + b的图象经过点A(2, 3)和B(1, 4),求该一次函数的解析式。
2. 一次函数y = 2x + 5与x轴、y轴分别相交于点A、B,求线段AB的长度。
3. 已知一次函数y = 3x 1与y = x + 4相交于点P,求点P的坐标。
4. 在同一坐标系中,一次函数y = 2x + 3与y = x + 5的图象相交于点Q,求点Q的坐标。
5. 已知一次函数y = kx + 1的图象经过点(2, 5),且与y = x + 3平行,求k的值。
四、应用题1. 某商品的原价为1000元,商场进行打折促销,折后价格为800元。
设折后价格与原价的比例为k,求k的值。
2. 某公司生产一种产品,每件产品的成本为200元,售价为300元。
设公司每月生产x件产品,求公司每月的利润y(元)与生产数量x的函数关系式。
3. 甲、乙两地相距120公里,小明从甲地骑自行车前往乙地,速度为15公里/小时。
设小明骑行时间为t小时,求小明与甲地的距离s (公里)与时间t的函数关系式。
五、判断题1. 一次函数的图象是一条直线,所以它一定经过原点。
()2. 两个一次函数的斜率相同,则它们的图象一定平行。
第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册
第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册一、利用一次函数模型解决实际问题例1.实验表明,在某地,温度在15℃至25℃的范围内,一种蟋蟀1min的平均鸣叫次数y可近似看成该地当时温度x(℃)的一次函数.已知这种蟋蟀在温度为16℃时,1min平均鸣叫92次;在温度为23℃时,1min平均鸣叫155次.(1)求y与x之间的函数表达式;(2)当这种蟋蟀1min平均鸣叫128次时,该地当时的温度约是多少?变式1.如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位:cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数表达式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8cm,求此时碗的数量最多为多少个?变式2.某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.二、利用一次函数解决行程问题例2.小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,l1,l2分别表示小军与观光车所行的路程y(m)与时间x(min)之间的关系.根据图象解决下列问题:(1)观光车出发分钟追上小军;(2)求l2所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.变式1.在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A 地路程s(米)之间的函数图象.(1)a=,乐乐去A地的速度为;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.变式2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s (km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h,C点的坐标为.(2)慢车出发多少小时后,两车相距200km.变式3.某物流公司的一辆货车A从乙地出发运送货物至甲地,1小时后,这家公司的一辆货车B从甲地出发送货至乙地.货车A、货车B距甲地的距离y(km)与时间x(h)之间的关系如图所示.(1)求货车B距甲地的距离y与时间x的关系式;(2)求货车B到乙地后,货车A还需多长时间到达甲地.三、利用一次函数解决最低费用和最高利润问题例3.某校开设棋类社团,购买了五子棋和象棋.五子棋比象棋的单价少8元,用1000元购买的五子棋数量和用1200元购买的象棋数量相等.(1)两种棋的单价分别是多少?(2)学校准备再次购买五子棋和象棋共30副,根据学生报名情况,购买五子棋数量不超过象棋数量的3倍.问购买两种棋各多少副时费用最低?最低费用是多少?变式1.眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用960元购进的A款文创产品和用780元购进的B款文创产品数量相同.每件A款文创产品进价比B款文创产品进价多15元.(1)求A,B两款文创产品每件的进价各是多少元?(2)已知A款文创产品每件售价为100元,B款文创产品每件售价为80元,根据市场需求,商店计划再用不超过7400元的总费用购进这两款文创产品共100件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?变式 2.近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如表:价格/类别短款长款进货价(元/件)8090销售价(元/件)100120(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?变式3.某小区物管中心计划采购A,B两种花卉用于美化环境.已知购买2株A 种花卉和3株B种花卉共需要21元;购买4株A种花卉和5株B种花卉共需要37元.(1)求A,B两种花卉的单价.(2)该物管中心计划采购A,B两种花卉共计10000株,其中采购A种花卉的株数不超过B种花卉株数的4倍,当A,B两种花卉分别采购多少株时,总费用最少?并求出最少总费用.变式4.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见如表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.变式5.成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A 种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.变式6.某县著名传统土特产品“豆笋”、“豆干”以“浓郁豆香,绿色健康”享誉全国,深受广大消费者喜爱.已知2件豆笋和3件豆干进货价为240元,3件豆笋和4件豆干进货价为340元.(1)分别求出每件豆笋、豆干的进价;(2)某特产店计划用不超过10440元购进豆笋、豆干共200件,且豆笋的数量不低于豆干数量的,该特产店有哪几种进货方案?(3)若该特产店每件豆笋售价为80元,每件豆干售价为55元,在(2)的条件下,怎样进货可使该特产店获得利润最大,最大利润为多少元?变式7.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?四、利用一次函数解决含参数的最高利润问题例4.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.变式1.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?变式2.为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.变式3.为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:衬衫价格甲乙m m﹣10进价(元/件)260180售价(元/件)若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠a元(60<a<80)出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?五、利用一次函数解决方案问题例5.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.变式1.某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为a kg时,它们的利润和为1500元,求a的值.。
一次函数练习题(必做30道)
1.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y ≤4范围内,求相应的y的值在什么范围内.2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤4,求y的取值范围.3.一次函数的图象经过点(2,1)和(-1,-3)(1)求此一次函数表达式;(2)求此一次函数与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形的面积。
4.知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= x的图象相交于点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形面积.5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?x轴,y轴,分别交于A、B 8.在直角坐标系x0y中,一次函数y=3两点,•点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.9.已知:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.10.已知直线y=43x+4与x轴、y轴的交点分别为A、B.又P、Q两点的坐标分别为P(•0,-1),Q(0,k),其中0<k<4,再以Q点为圆心,PQ长为半径作圆,则当k取何值时,⊙Q•与直线AB相切?11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A 地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.已知写文章、出版图书所获得稿费的纳税计算方法是f(x)=(800)20%(130%),400(120%)20%(130%),400x xx x--≤⎧⎨-->⎩其中f(x)表示稿费为x元应缴纳的税额.假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购买甲商品x 个,乙商品y 个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.•又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元. (1)求x 、y 的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x ,y 的值.14. 已知直线1l :45y x =-+和直线2l :142y x =-,求两条直线1l 和2l 的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15. 已知正比例函数y =kx 经过点P (1,2),如图所示.(1)求这个正比例函数的解析式;(2)将这个正比例函数的图像向右平移4个单位,写出在这个平移下,点P 、原点O 的像P '、O '的坐标,并求出平移后的直线的解析式.16. 如图,在直角坐标系中,已知矩形OABC 的两个顶点坐标(30)A ,,(32)B ,,对角线AC 所在直线为l ,求直线l 对应的函数解析式.x17. “一方有难,八方支援”.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据右表提供的信息,解答下列问题:(1)设装运食品的车辆数为x ,装运药品的车辆数为y .求y 与x 的函数关系式; (2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆, 那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.18. 某农户种植一种经济作物,总用水量y (米3)与种植时间x (天)之间的函数关系式如图10所示.(1)第20天的总用水量为多少米3?(2)当x 20时,求y 与x 之间的函数关系式.(3)种植时间为多少天时,总用水量达到7000米3?物资种类 食品 药品 生活用品 每辆汽车运载量(吨) 6 5 4 每吨所需运费(元/吨) 120 160 100天)19. 武警战士乘一冲锋舟从A地逆流而上,前往C地营救受困群众,途经B地时,由所携带的救生艇将B地受困群众运回A地,冲锋舟继续前进,到C地接到群众后立刻返回A地,途中曾与救生艇相遇.冲锋舟和救生艇距A地的距离y(千米)和冲锋舟出发后所用时间x (分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.(1)请直接写出冲锋舟从A地到C地所用的时间.(2)求水流的速度.(3)冲锋舟将C地群众安全送到A地后,又立即去接应救生艇.已知救生艇与A地的距离y(千米)和冲锋舟出发后所用时间x(分)之间的函数关系式为11112y x=-+,假设群众上下船的时间不计,求冲锋舟在距离A地多远处与救生艇第二次相遇?20. 甲乙两人同时登西山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是每分钟米,乙在A地提速时距地面的高度b为米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度y(米)与登山时间x(分)之间的函数关系式.(3)登山多长时间时,乙追上了甲?此时乙距A地的高度为多少米?x(分)21. 我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按>)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系每吨b元(b a如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元?x>时,y与x之间的函数关系式;(2)求b的值,并写出当10(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?22. 我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:(1)设装运A x之间的函数关系式;(2)如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.23. 某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?24. 五月份,某品牌衬衣正式上市销售,5月1日的销售量为10件,5月2日的销售量为35件,以后每天的销售量比前一天多25件,直到日销售量达到最大后,销售量开始逐日下降,至此,每天的销售量比前一天少15件,直到5月31日销售量为0.设该品牌衬衣的日销售量为P(件),销售日期为n(日),P与n之间的关系如图所示.(1)写出P关于n的函数关系式P= (注明n的取值范围);(2)经研究表明,该品牌衬衣的日销售量超过150件的时间为该品牌衬衣的流行期.请问:该品牌衬衣本月在市面的流行期是多少天?(3)该品牌衬衣本月共销售了件.25. 某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:根据上表的表格中的数据,求a、b、c.26.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值.(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y 表示总运费W(元),并求W的最大值和最小值.27了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.28.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x (小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)•求小明出发多长时间距家12千米?29.(宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.30. 某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.根据下表提供的信息,解答数关系式.(2)如果装运每辆土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.。
完整版)一次函数专项练习题
完整版)一次函数专项练习题一次函数专项练题题型一、点的坐标在x轴上的点,其纵坐标为0,在y轴上的点,其横坐标为0.若两个点关于x轴对称,则它们的横坐标相同,纵坐标互为相反数;若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数。
1、若点A(m,n)在第二象限,则点(|m|,-n)在第三象限;2、若点P(2a-1,2-3b)是第二象限的点,则a的范围为(0,1/2],b的范围为(0,2/3];3、已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=4,b=-(-2)=2;若A,B关于y轴对称,则a=-4,b=b;若A,B关于原点对称,则a=-4,b=-b;4、若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第一象限。
题型二、关于点的距离的问题点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示。
任意两点A(xA,yA),B(xB,yB)的距离为√[(xA-xB)²+(yA-yB)²];A(xA,0),B(xB,0)的距离为|xA-xB|;若AB∥y轴,则A(0,yA),B(0,yB)的距离为|yA-yB|;点A(xA,yA)到原点之间的距离为√(xA²+yA²)。
1、点B(2,-2)到x轴的距离是2;到y轴的距离是2;2、点C(0,-5)到x轴的距离是5;到y轴的距离是0;到原点的距离是5;3、点D(a,b)到x轴的距离是|b|;到y轴的距离是|a|;到原点的距离是√(a²+b²);4、已知点P(3,0),Q(-2,0),则PQ=5;已知点M(0,1),N(0,-1),则MN=2;已知点E(2,-1),F(2,-8),则EF的距离是7;已知点G(2,-3)、H(3,4),则GH两点之间的距离是7.5、求出点(3,-4)和(5,a)间的距离为2,可以利用两点间距离公式:$\sqrt{(5-3)^2+(a+4)^2}=2$,化简后得到$(a+4)^2=4$,解得$a=-2,2$。
一次函数复习与练习题(专题练习)
一次函数专题复习一、一次函数解析式问题1.已知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x 轴交点的横坐标是6,求这个一次函数的解析式。
2.已知2y -3与3x +1成正比例,且x=2时,y=5,(1)求y 与x 之间的函数关系式,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a .3.若一次函数y=kx+b 的自变量x 的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9, 求此函数的解析式。
4.某一次函数的图象与直线y=6-x 交于点A (5,k ),且与直线y=2x-3无交点,求此函数的关系式.5.如图,直线的解析表达式为,且与轴交于点,直线经过点,直线、交于点.(1)求点的坐标;(2)求直线的解析表达式;(3)求的面积;(4)在直线上存在异于点的另一点,使得与的面积相等,请直接写出点的坐标.6.如图,折线ABC 是在某市乘出租车所付车费y (元)与行车里程x (km )之间的函数关系图象. ①根据图象,写出该图象的函数关系式;②某人乘坐2.5km ,应付多少钱?③某人乘坐13km ,应付多少钱?④若某人付车费30.8元,出租车行驶了多少千米?二、次函数平移问题1. 直线y=2x+1向上平移4个单位得到直线 ;直线y=-3x+5向下平移6个单位得到直线 .1l 33y x =-+1l x D 2l AB ,1l 2lCD 2l ADC △2l C P ADP △ADC △P2. 直线y=5x-3向左平移2个单位得到直线 ; 直线y=-x-2向右平移3个单位得到直线 .3.把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得函数是____________; 规律总结:“上加下减在末梢,左加右减在括号”.4. 过点(2,-3)且平行于直线y=-3x+1的直线是___________.5.已知直线y=kx+b 与直线y= -3x+7关于y 轴对称,求k 、b 的值。
初中求一次函数的解析式专项练习30题(有答案)
求一次函数解析式专项练习1.已知A(2,﹣1),B(3,﹣2),C(a,a)三点在同一条直线上.(1)求a的值;(2)求直线AB与坐标轴围成的三角形的面积.2.如图,直线l与x轴交于点A(﹣1.5,0),与y轴交于点B(0,3)(1)求直线l的解析式;(2)过点B作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.3.已知一次函数的图象经过(1,2)和(﹣2,﹣1),求这个一次函数解析式及该函数图象与x轴交点的坐标.4.如图所示,直线l是一次函数y=kx+b的图象.(1)求k、b的值;(2)当x=2时,求y的值;(3)当y=4时,求x的值.5.已知一次函数y=kx+b的图象与x轴交于点A(﹣6,0),与y轴交于点B.若△AOB的面积为12,求一次函数的表达式.6.已知一次函数y=kx+b,当x=﹣4时,y的值为9;当x=6时,y的值为3,求该一次函数的关系式.7.已知y与x+2成正比例,且x=0时,y=2,求:(1)y与x的函数关系式;(2)其图象与坐标轴的交点坐标.8.如果y+3与x+2成正比例,且x=3时,y=7.(1)写出y与x之间的函数关系式;(2)画出该函数图象;并观察当x取什么值时,y<0?9.直线y=kx+b是由直线y=﹣x平移得到的,此直线经过点A(﹣2,6),且与x轴交于点B.(1)求这条直线的解析式;(2)直线y=mx+n经过点B,且y随x的增大而减小.求关于x的不等式mx+n<0的解集.10.已知y与x+2成正比例,且x=1时,y=﹣6.(1)求y与x之间的函数关系式,并建立平面直角坐标系,画出函数图象;(2)结合图象求,当﹣1<y≤0时x的取值范围.11.已知y﹣2与2x+1成正比例,且当x=﹣2时,y=﹣7,求y与x的函数解析式.12.已知y与x﹣1成正比例,且当x=﹣5时,y=2,求y与之间的函数关系式.13.已知一次函数的图象经过点A(,m)和B(,﹣1),其中常量m≠﹣1,求一次函数的解析式,并指出图象特征.14.已知一次函数y=(k﹣1)x+5的图象经过点(1,3).(1)求出k的值;(2)求当y=1时,x的值.15.一次函数y=k1x﹣4与正比例函数y=k2x的图象经过点(2,﹣1).(1)分别求出这两个函数的表达式;(2)求这两个函数的图象与x轴围成的三角形的面积.16.已知y﹣3与4x﹣2成正比例,且x=1时,y=﹣1.(1)求y与x的函数关系式.(2)如果y的取值范围为3≤y≤5时,求x的取值范围.17.若一次函数y=3x+b的图象与两坐标轴围成的三角形面积为24,试求这个一次函数的解析式.18.如果一次函数y=kx+b的变量x的取值范围是﹣2≤x≤6,相应函数值是﹣11≤y≤9,求此函数解析式.19.某一次函数图象的自变量的取值范围是﹣3≤x≤6,相应的函数值的变化范围是﹣5≤y≤﹣2,求这个函数的解析式.20.已知,直线AB经过A(﹣3,1),B(0,﹣2),将该直线沿y轴向下平移3个单位得到直线MN.(1)求直线AB和直线MN的函数解析式;(2)求直线MN与两坐标轴围成的三角形面积.21.一次函数的图象经过点A(0,﹣2),且与两条坐标轴截得的直角三角形的面积为3,求这个一次函数的解析式.22.如果y+2与x+1成正比例,当x=1时,y=﹣5.(1)求出y与x的函数关系式.(2)自变量x取何值时,函数值为4?23.已知y﹣3与4x﹣2成正比例,且当x=1时,y=5,(1)求y与x的函数关系式;(2)求当x=﹣2时的函数值:(3)如果y的取值范围是0≤y≤5,求x的取值范围;(4)若函数图象与x轴交于A点,与y轴交于B点,求S△AOB.24.已知y﹣3与x成正比例,且x=2时,y=7.(1)求y与x的函数关系式;(2)当时,求y的值;(3)将所得函数图象平移,使它过点(2,﹣1).求平移后直线的解析式.25.已知:一次函数y=kx+b的图象与y轴的交点到原点的距离为3,且过A(2,1)点,求它的解析式.26.已知一次函数y=(3﹣k)x+2k+1.(1)如果图象经过(﹣1,2),求k;(2)若图象经过一、二、四象限,求k的取值范围.27.正比例函数与一次函数y=﹣x+b的图象交于点(2,a),求一次函数的解析式.28.已知y+5与3x+4成正比例,且当x=1时,y=2.(1)求出y与x的函数关系式;(2)设点P(a,﹣2)在这条直线上,求P点的坐标.29.已知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式.30.已知:关于x的一次函数y=(2m﹣1)x+m﹣2若这个函数的图象与y轴负半轴相交,且不经过第二象限,且m为正整数.(1)求这个函数的解析式.(2)求直线y=﹣x和(1)中函数的图象与x轴围成的三角形面积.一次函数的解析式30题参考答案:1.(1)设直线AB解析式为y=kx+b,依题意,得,解得∴直线AB解析式为y=﹣x+1∵点C(a,a)在直线AB上,∴a=﹣a+1,解得a=;(2)直线AB与x轴、y轴的交点分别为(1,0),(0,1)∴直线AB 与坐标轴围成的三角形的面积为2.(1)设直线l的解析式为y=kx+b,∵直线l与x轴交于点A(﹣1.5,0),与y轴交于点B (0,3),∴代入得:,解得:k=2,b=3,∴直线l的解析式为y=2x+3;(2)解:分为两种情况:①当P在x轴的负半轴上时,∵A(﹣1.5,0),B(0,3),∴OP=2OA=3,0B=3,∴AP=3﹣1.5=1.5,∴△ABP 的面积是×AP×OB=×1.5×3=2.25;②当P在x轴的正半轴上时,∵A(﹣1.5,0),B(0,3),∴OP=2OA=3,0B=3,∴AP=3+1.5=4.5,∴△ABP 的面积是×AP×OB=×4.5×3=6.25.3.设一次函数的解析式为y=kx+b(k≠0),由已知得:,解得:,∴一次函数的解析式为y=x+1,当y=0时,x+1=0,∴x=﹣1,∴该函数图象与x轴交点的坐标是(﹣1,0)4.(1)由图象可知,直线l过点(1,0)和(0,),则,解得:,即k=,b=;(2)由(1)知,直线l的解析式为y=x+,当x=2时,有y=×2+=;(3)当y=4时,代入y=x+得:4=x+,解得x=﹣5.5.∵图象经过点A(﹣6,0),∴0=﹣6k+b,即b=6k①,∵图象与y轴的交点是B(0,b),∴?OB=12,即:,∴|b|=4,∴b1=4,b2=﹣4,代入①式,得,,一次函数的表达式是或6.根据题意,得,解得.故该一次函数的关系式是y=﹣x+.7.(1)根据题意,得y=k(x+2)(k≠0);由x=0时,y=2得2=k(0+2),解得k=1,所以y与x的函数关系式是y=x+2;(2)由,得;由,得,所以图象与x轴的交点坐标是:(﹣2,0);与y轴的交点坐标为:(0,2).8.(1)∵y+3与x+2成正比例,∴设y+3=k(x+2)(k≠0),∵当x=3时,y=7,∴7+3=k(3+2),解得,k=2.则y+3=2(x+2),即y=2x+1;(2)由(1)知,y=2x+1.令x=0,则y=1,.令y=0,则x=﹣,所以,该直线经过点(0,1)和(﹣,0),其图象如图所示:由图示知,当x <﹣时,y<09.(1)一次函数y=kx+b的图象经过点(﹣2,6),且与y=﹣x的图象平行,则y=kx+b中k=﹣1,当x=﹣2时,y=6,将其代入y=﹣x+b,解得:b=4.则直线的解析式为:y=﹣x+4;(2)如图所示:∵直线的解析式与x轴交于点B,∴y=0,0=﹣x+4,∴x=4,∴B点坐标为:(4,0),∵直线y=mx+n经过点B,且y随x的增大而减小,∴m<0,此图象与y=﹣x+4增减性相同,∴关于x的不等式mx+n<0的解集为:x>4 10.(1)设y=k(x+2),∵x=1时,y=﹣6.∴﹣6=k(1+2)k=﹣2.∴y=﹣2(x+2)=﹣2x﹣4.图象过(0,﹣4)和(﹣2,0)点(2)从图上可以知道,当﹣1<y≤0时x的取值范围﹣2≤x <﹣.11.∵y﹣2与2x+1成正比例,∴设y﹣2=k(2x+1)(k≠0),∵当x=﹣2时,y=﹣7,∴﹣7﹣2=k(﹣4+1),∴k=3,∴y=6x+5.12.设y=k(x﹣1),把x=﹣5,y=2代入,得2=(﹣5﹣1)k,解得.所以y与x 之间的函数关系式是13.设过点A,B的一次函数的解析式为y=kx+b,则m=k+b,﹣1=k+b,两式相减,得m+1=k+k,即m+1=(m+1),∵m≠﹣1,则k=2,∴b=m﹣1,则函数的解析式为y=2x+m﹣1(m≠﹣1),其图象是平面内平行于直线y=2x(但不包括直线y=2x﹣2)的一切直线14.(1)∵一次函数y=(k﹣1)x+5的图象经过点(1,3),∴3=(k﹣1)×1+5.∴k=﹣1.(2)∵y=﹣2x+5中,当y=1时,1=﹣2x+5∴x=2.15.(1)把点(2,﹣1)代入y=k1x﹣4得:2k1﹣4=﹣1,解得:k1=,所以解析式为:y=x﹣4;把点(2,﹣1)代入y=k2x得:2k2=﹣1,解得:k2=﹣,所以解析式为:y=﹣x;(2)因为函数y=x﹣4与x 轴的交点是(,0),且两图象都经过点(2,﹣1),所以这两个函数的图象与x轴围成的三角形的面积是:S=××1=.16.(1)设y﹣3=k(4x﹣2),(2分)当x=1时,y=﹣1,∴﹣1﹣3=k(4×1﹣2),∴k=﹣2(4分),∴y﹣3=﹣2(4x﹣2),∴函数解析式为y=﹣8x+7.(5分)(2)当y=3时,﹣8x+7=3,解得:x=,当y=5时,﹣8x+7=5,解得:x=,∴x 的取值范围是≤x ≤.17.当x=0时,y=b,当y=0时,x=﹣,∴一次函数与两坐标轴的交点为(0,b)(﹣,0),∴三角形面积为:×|b|×|﹣|=24,即b2=144,解得b=±12,∴这个一次函数的解析式为y=3x+12或y=3x﹣12 18.根据题意,①当k>0时,y随x增大而增大,∴当x=﹣2时,y=﹣11,x=6时,y=9∴解得,∴函数解析式为y=x﹣6;②当k<0时,函数值随x增大而减小,∴当x=﹣2时,y=9,x=6时,y=﹣11,∴解得,∴函数解析式为y=﹣x+4.因此,函数解析式为y=x﹣6或y=﹣x+419.设一次函数解析式为y=kx+b,根据题意①当k>0时,x=﹣3时,y=﹣5,x=6时,y=﹣2,∴解得,∴函数的解析式为:y=x﹣4;②当k<0时,x=﹣3时,y=﹣2,x=6时,y=﹣5,∴解得,∴函数解析式为y=﹣x﹣3;因此这个函数的解析式为y=x﹣4或y=﹣x﹣3.20.设直线AB的解析式为y=kx+b,∵A(﹣3,1),B(0,﹣2),∴,∴k=﹣1,∴直线AB的解析式为:y=﹣x﹣2,∵将该直线沿y轴向下平移3个单位得到直线MN,∴直线MN的函数解析式为:y=﹣x﹣5;(2)∵直线MN与x轴的交点为(﹣5,0),与y轴的交点坐标为(0,﹣5),∴直线MN 与两坐标轴围成的三角形面积为×|﹣5|×||﹣5=12.5.21.设与x轴的交点为B,则与两坐标轴围成的直角三角形的面积=AO?BO,∵AO=2,∴BO=3,∴点B纵坐标的绝对值是3,∴点B横坐标是±3;设一次函数的解析式为:y=kx+b,当点B纵坐标是3时,B(3,0),把A(0,﹣2),B(3,0)代入y=kx+b,得:k=,b=﹣2,所以:y=x﹣2,当点B纵坐标=﹣3时,B(﹣3,0),把A(0,﹣2),B(﹣3,0)代入y=kx+b,得k=﹣,b=﹣2,所以:y=﹣x﹣2.22.(1)依题意,设y+2=k(x+1),将x=1,y=﹣5代入,得k(1+1)=﹣5+2,解得k=﹣1.5,∴y+2=﹣1.5(x+1),即y=﹣1.5x﹣3.5;(2)把y=4代入y=﹣1.5x﹣3.5中,得﹣1.5x﹣3.5=4,解得x=﹣5,即当x=﹣5时,函数值为423.(1)设y﹣3=k(4x﹣2),∵x=1时,y=5,∴5﹣3=k(4﹣2),解得k=1,∴y与x的函数关系式y=4x+1;(2)将x=﹣2代入y=4x+1,得y=﹣7;(3)∵y的取值范围是0≤y≤5,∴0≤4x+1≤5,解得﹣≤x≤1;(4)令x=0,则y=1;令y=0,则x=﹣,∴A(0,1),B (﹣,0),∴S△AOB =××1=.24.(1)∵y﹣3与x成正比例,∴y﹣3=kx(k≠0)成正比例,把x=2时,y=7代入,得7﹣3=2k,k=2;∴y与x的函数关系式为:y=2x+3,(2)把x=﹣代入得:y=2×(﹣)+3=2;(3)设平移后直线的解析式为y=2x+3+b,把点(2,﹣1)代入得:﹣1=2×2+3+b,解得:b=﹣8,故平移后直线的解析式为:y=2x﹣525.根据题意得:当b=3时,y=kx+3,过A(2,1).1=2k+3k=﹣1.∴解析式为:y=﹣x+3.当b=﹣3时,y=kx﹣3,过A(2,1),1=2k﹣3,k=2.故解析式为:y=2x﹣3.26.(1)∵一次函数y=(3﹣k)x+2k+1的图象经过(﹣1,2),∴2=(3﹣k)×(﹣1)+2k+1,即2=3k﹣2,解得k=;(2))∵一次函数y=(3﹣k)x+2k+1的图象经过一、二、四象限,∴,解得,k>3.故k的取值范围是k>3.27.根据题意,得,解得,,所以一次函数的解析式是y=﹣x+3.28.(1)∵y+5与3x+4成正比例,∴设y+5=k(3x+4),即y=3kx+4k﹣5(k是常数,且k≠0).∵当x=1时,y=2,∴2+5=(3×1)k,解得,k=1,故y与x的函数关系式是:y=3x﹣1;(2)∵点P(a,﹣2)在这条直线上,∴﹣2=3a﹣1,解得,a=﹣,∴P 点的坐标是(﹣,﹣2)29.把(1,5)、(6,0)代入y=kx+b中,得,解得,∴一次函数的解析式是y=﹣x+6.30.(1)由题意得:,解得:<m<2,又∵m为正整数,∴m=1,函数解析式为:y=x﹣1.(2)由(1)得,函数图象与x轴交点为(1,0)与y 轴交点为(0,﹣1),∴所围三角形的面积为:×1×1=。
一次函数的定义专项练习30题(有答案)
一次函数的定义专项练习30题1.下列五个式子,①,②,③y=﹣x+1,④,⑤y=2x2+1,其中表示y是x的一次函数的有()A.5个B.4个C.3个D.2个2.下列函数中,y是x的一次函数的是()A.y=﹣3x2﹣1 B.y=x﹣1+2 C. y=2(x﹣1)2D.3.下列问题中,变量y与x成一次函数关系的是()A.路程一定时,时间y和速度x的关系B.长10米的铁丝折成长为y,宽为x的长方形C.圆的面积y与它的半径xD.斜边长为5的直角三角形的直角边y和x4.下列函数:①y=﹣x+2;②y=﹣x2+2;③y=﹣3x;④;⑤,其中不是一次函数的有()A.1个B.2个C.3个D.4个5.下列函数(1)y=2x﹣1;(2)y=πx;(3)y=;(4)y=;(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个6.下列说法正确的是()A.一次函数是正比例函数B.正比例函数是一次函数C.正比例函数不是一次函数D.一次函数不可能是正比例函数7.已知函数y=3x+1,当自变量增加3时,相应的函数值增加()A.10 B.9C.3D.88.对于函数y=2x﹣1,当自变量增加m时,相应的函数值增加()A.2m B.2m﹣1 C.m D.2m+1az9.若+5是一次函数,则a=()A.±3 B.3C.﹣3 D.10.若函数y=(m﹣1)x|m|+2是一次函数,则m的值为()A.m=±1 B.m=﹣1 C.m=1 D.m≠﹣111.函数y=(m﹣2)x n﹣1+n是一次函数,m,n应满足的条件是()A.m≠2且n=0 B.m=2且n=2 C.m≠2且n=2 D.m=2且n=012.下列说法正确的是()A.y=kx+b(k、b为任意常数)一定是一次函数B.(常数k≠0)不是正比例函数C.正比例函数一定是一次函数D.一次函数一定是正比例函数13.已知y+2与x成正比例,则y是x的()A.一次函数B.正比例函数C.反比例函数D.无法判断14.设圆的面积为S,半径为R,那么下列说法确的是()A.S是R的一次函数B.S是R的正比例函数C.S是R2的正比例函数D.以上说法都不正确15.已知函数y=(k+2)x+k2﹣4,当k_________时,它是一次函数.16.如果函数y=(a﹣2)x+3是一次函数,那么a_________.17.当m=_________时,函数y=(m+5)x2m﹣1+7x﹣3(x≠0)是一个一次函数.18.已知一次函数y=(k﹣1)x|k|+3,则k=_________.19.已知:y=(m﹣1)x|m|+4,当m=_________时,图象是一条直线.20.把2x﹣y=3写成y是x的函数的形式为_________.21.在函数y=﹣2x﹣5中,k=_________,b=_________.22.一次函数y=﹣2x﹣1,当x=﹣5时,y=_________,当y=﹣7时,x=_________.23.一次函数y=kx+b中,k、b都是_________,且k_________,自变量x的取值范围是_________;当k_________,b_________时它是正比例函数.24.函数:①y=﹣2x+3;②x+y=1;③xy=1;④y=;⑤y=+1;⑥y=0.5x中,属于一次函数的有_________,属正比例函数的有_________(只填序号)25.若y=mx|m|+2是一次函数的解析式且y随x的增大而减小,则m的值等于_________.26.已知函数y=(m﹣3)x|m|﹣2+3是一次函数,求解析式.27.已知函数y=(m﹣10)x+1﹣2m.(1)m为何值时,这个函数是一次函数;(2)m为何值时,这个函数是正比例函数.28.已知函数y=(m+1)x+(m2﹣1)当m取什么值时,y是x的一次函数当m取什么值是,y是x的正比例函数.29.x为何值时,函数的值分别满足下列条件:(1)y=3;(2)y>2.30.说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数.①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,那么汽车离开A站的距离s(千米)和时间t(小时)之间的函数关系是什么的函数关系式为_________,它是_________函数;②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,那么汽车离开A站的距离s(千米)与时间t(小时)之间的函数关系是什么的函数关系式为_________,它是_________函数.一次函数定义30题参考答案:1.①是反比例函数,故本选项错误;②符合一次函数的定义;故本选项正确;③y=﹣x+1符合一次函数的定义;故本选项正确;④=x ﹣,符合一次函数的定义;故本选项正确;⑤y=2x2+1,是二次函数;故本选项错误;综上所述,表示y是x的一次函数的有3个;故选C2.A、自变量次数不为1,故不是一次函数;B、自变量次数不为1,故不是一次函数;C、自变量次数不为1,故不是一次函数;D、是一次函数.故选D.3.A、设路程是s,则根据题意知,y=,是反比例函数关系.故本选项错误;B、根据题意,知10=2(x+y),即y=﹣x+5,符合一次函数的定义.故本选项正确;C、根据题意,知y=πx2,这是二次函数,故本选项错误;D、根据题意,知x2+y2=25,这是双曲线方程,故本选项错误.故选B.4.①y=﹣x+2是一次函数;②y=﹣x2+2是二次函数;③y=﹣3x是一次函数;④y=﹣x是一次函数;⑤y=﹣是反比例函数;所以,不是一次函数的有②⑤共2个.故选B5.(1)y=2x﹣1是一次函数;(2)y=πx是一次函数;(3)y=,自变量次数不为1,故不是一次函数;(4)y==,自变量次数不为1,故不是一次函数;(5)y=x2﹣1自变量次数不为1,故不是一次函数;综上所述,一次函数有2个.故选C.6.A、一次函数不一定是正比例函数,故本选项错误;B、正比例函数一定是一次函数,故本选项正确;C、正比例函数一定是一次函数,故本选项错误;D、一次函数可能是正比例函数,故本选项错误.故选B.7.因为y=3x+1,所以当自变量增加3时,y1=3(x+3)+1=3x+1+9,相应的函数值增加9.故选B.8.当自变量增加m时,y=2(x+m)﹣1,即y=2x+2m ﹣1,故函数值相应增加2m.故选A.9.根据一次函数的定义可知:a2﹣8=1,a+3≠0,解得:a=3.故选B.10.根据题意得:,解得:m=﹣1.故选B.11.∵函数y=(m﹣2)x n﹣1+n是一次函数,∴,解得,.故选C.12.A、y=kx+b(k、b为任意常数),当k=0时,不是一次函数,故本选项错误;B 、(常数k≠0)是正比例函数,故本选项错误;C、正比例函数一定是一次函数,故本选项正确;D、一次函数不一定是正比例函数,故本选项错误.故选C.13.y+2与x成正比例,则y+2=kx,即y=kx﹣2,符合一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1,则y是x的一次函数.故选A.14.由题意得,S=πR2,所以S是R2的正比例函数.故选C.15.根据一次函数定义得,k+2≠0,解得k≠﹣2.故答案为:≠﹣2.16.∵y=(a﹣2)x+3是一次函数,∴a﹣2≠0,∴a≠2.故答案为:a≠﹣2.17. ①,解得:m=1根据题意得:2m﹣1=1,解得:m=1,此时函数化简为y=13x﹣3.②2m﹣1=0,解得:m=,此时函数化简为y=7x﹣2.5;③m+5=0,解得:m=﹣5,此时函数化简为y=7x﹣3.故答案为:1或﹣5或18.根据题意得k﹣1≠0,|k|=1则k≠1,k=±1,即k=﹣1.19.∵y=(m﹣1)x|m|+4的图象是一条直线,∴①当该图象是一次函数图象时,|m|=1,且m﹣1≠0,解得m=﹣1.②当该直线是平行于x轴的直线时,m﹣1=0,即m=1;综上所述,当m=±1时,y=(m﹣1)x|m|+4的图象是一条直线.故答案是:±120.2x﹣y=3写成y是x的函数的形式为y=2x﹣3.故答案为:y=2x﹣3.21.根据一次函数的定义,在函数y=﹣2x﹣5中,k=﹣2,b=﹣5.22.把x、y的值分别代入一次函数y=﹣2x﹣1,当x=﹣5时,y=﹣2×(﹣5)﹣1=9;当y=﹣7时,﹣7=﹣2x﹣1,解得x=3.故填9、3.23.一次函数y=kx+b中,k、b都是常数,且k≠0,自变量x的取值范围是任意实数;当k≠0,b =0时它是正比例函数.24.函数:①y=﹣2x+3;②x+y=1;③xy=1;④y=;⑤y=+1;⑥y=0.5x中,属于一次函数的有①②⑥,属正比例函数的有⑥(只填序号)25.∵y=mx|m|+2是一次函数,∴|m|=1,∴m=±1,∵y随x的增大而减小,∴m=﹣1.故答案为:﹣126.∵m﹣3≠0且|m|﹣2=1,∴m=﹣3,∴函数解析式为:y=﹣6x+327.(1)根据一次函数的定义可得:m﹣10≠0,∴m≠10,这个函数是一次函数;(2)根据正比例函数的定义,可得:m﹣10≠0且1﹣2m=0,∴m=时,这个函数是正比例函数.28.由函数是一次函数可得,m+1≠0,解得m≠﹣1,所以,m≠﹣1时,y是x的一次函数;函数为正比例函数时,m+1≠0且m2﹣1=0,解得m=1,所以,当m=1时,y是x的正比例函数.29.(1)当y=3时,可得:1.5x+6=3,解得x=﹣2;(2)当y>2时,1.5x+6>2,解得30.①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,则汽车离开A站的距离s=40t,它是正比例函数;故两空应分别填s=40t,正比例;②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,则汽车离开A站的距离s=40t+4,它是一次函数;故两空应分别填s=40t+4,一次.。
一次函数练习题(带答案)
1. 若一次函数y=kx+b 的图象经过(0,1)和(-1,3)两点,则此函数的解析式为_____________.
2. 若正比例函数y=kx 的图象经过点(1,2),则此函数的解析式为_____________.
3、一次函数的图象与y 轴的交点为(0,-3),且与坐标轴围成的三角形的面积为6,求这个一次函数的解析式.
4.已知一次函数图象经过(-4,15),(6, -5)的两点,求其解析式。
5.已知点A (1,-1),B (3, 4)在x 轴上找一点P ,PA+PB 最短,求P 点的坐标。
6.直线1-=ax y
向上平移3个单位时过点(-1,-1),求该函数解析式。
7.已知直线62+-=x y 上点A 的横坐标为2,直线b kx y +=经过点A 且与x 轴交于点B (0,2
1),求k 、b 的值。
8. 已知正比例函数x k y 1=的图象与一次函数92-=x k y 的图象交于P(3,-6)。
求k 1 , k 2的值;(2)如果一次函数92-=x k y 与x 轴交于点A ,求点A 的坐标。
(1)y 与x 成正比例函数,当 时,y=5.求这个正比例函数的解析式.
(2)已知一次函数的图象经过A (-1,2)和B (3,-5)两点,求此一次函数的解析式.
9. 拖拉机开始工作时,油箱中有油20升,如果每小时耗油5升,求油箱中的剩余油量Q (升)与工作时间t (时)之间的函数关系式,指出自变量x 的取值范围,并且画出图象.
分析:拖拉机一小时耗油5升,t 小时耗油5t 升,以20升减去5t 升就是余下的油量.
10. 已知一次函数的图象经过点P (-2,0),且与两坐标轴截得的三角形面积为3,求此一次函数的解析式.。
一次函数专题练习题含答案
一次函数专题练习题含答案一次函数知识点专题练题一、相信你一定能填对!(每小题3分,共30分)1.下列函数中,自变量x的取值范围是x≥2的是()A.y=2-x。
B.y=1/x。
C.y=4-x^2.D.y=x+2/(x-2)答案:D5.若函数y=(2m+1)x^2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>1/2.B.m=1/2.C.0<m<1/2.D.m<0答案:D11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,该函数的解析式为_______答案:m=1,y=x+1二、相信你也能找到正确答案!(每小题6分,共36分)2.下面哪个点在函数y=x+1的图象上()A.(2,1)B.(-2,1)C.(2,3)D.(-2,-1)答案:A15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.答案:a+b=818.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.答案:a=0,b=717.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组x-y-3=02x-y+2=0的解是________.答案:(-1,-2)4.一次函数y=-5x+3的图象经过的象限是()A.一、二、三。
B.二、三、四。
C.一、二、四。
D.一、三、四答案:B6.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3.B.0<k≤3.C.-1≤k<3.D.0<k<3答案:-1≤k<3三、最后,再来几道大题吧!(每小题12分,共54分)7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()答案:y=-x+1010.一次函数y=kx+b的图象经过点(2,-1)和(4,3),那么这个一次函数的解析式为()答案:y=2x-512.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为()答案:y=3x1.农民卖土豆一位农民带了一些土豆去卖。
一次函数练习题及答案
一次函数练习题及答案本文将为大家提供一系列有关一次函数的练习题,同时附带相应的答案。
一次函数,也叫线性函数,是初中数学中的重要知识点之一。
希望通过这些练习题的训练,大家能够更好地掌握一次函数的概念、性质和解题方法。
一、选择题1.已知函数y=3x+2,则它的斜率是多少?– A. 2– B. 3– C. -2– D. -3答案:B2.若一次函数图像上两点的坐标分别为(1,4)和(3,y),则y的值是多少?– A. 10– B. 12– C. 14– D. 16答案:D3.已知函数经过点(−2,1)和(4,y),则y的值是多少?– A. -5– B. 0– C. 3– D. 6答案:C二、填空题1.若一次函数y=kx+3经过点(2,5),则k的值为 \\\_。
答案:12.一次函数y=−2x+b经过点(3,−1),则b的值为 \\\_。
答案:53.若一次函数图像上两点的坐标分别为(1,y1)和(2,y2),则$\\frac{{y_1}}{{y_2}}$ 的值为 \\\_。
答案:$\\frac{1}{2}$三、计算题1.求函数y=2x−1和y=x+3的交点坐标。
解:将两个方程联立起来,得到方程组:$$ \\begin{cases} y = 2x - 1\\\\ y = x + 3\\\\ \\end{cases} $$解方程组可得:$$ x + 3 = 2x - 1 \\\\ \\Rightarrow x = 4 $$将x=4代入其中一个方程,得到y=8−1=7。
因此,交点坐标为(4,7)。
2.已知函数y=3x+b经过点(2,−1),求b的值。
解:代入点(2,−1),得到方程 $-1 = 3 \\cdot 2 + b$,解方程可得b=−7。
3.一辆汽车以匀速行驶,开车起点距离目的地 600 公里。
如果行驶 4小时后,已行驶距离为 320 公里,求每小时行驶的公里数。
解:设每小时行驶的公里数为x,根据题意可得方程 $\\frac{320}{4} = x$,解方程可得x=80。
一次函数综合练习题
一次函数综合练习题一、选择题1. 一次函数的图象是一条()。
A. 折线B. 曲线C. 直线D. 折线和曲线2. 下列函数中,是一次函数的是()。
A. y = 2x^2 + 1B. y = 3x + 5C. y = x^3D. y = √x3. 一次函数y = kx + b中,当k > 0时,函数图象在()。
A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限4. 一次函数y = 2x 3的图象与x轴的交点坐标是()。
A. (1.5, 0)B. (1.5, 0)C. (3, 0)D. (3, 0)5. 一次函数y = x + 5的图象与y轴的交点坐标是()。
A. (0, 5)B. (0, 5)C. (5, 0)D. (5, 0)二、填空题1. 一次函数的一般形式是_________。
2. 一次函数的图象是一条_________。
3. 一次函数y = 3x 2的斜率是_________,y轴截距是_________。
4. 当一次函数的斜率k > 0时,函数图象_________;当斜率k < 0时,函数图象_________。
5. 一次函数y = 2x + 4的图象与x轴的交点坐标是_________。
三、解答题1. 已知一次函数y = kx + b的图象过点(1, 3)和(3, 7),求该一次函数的解析式。
2. 一次函数y = x + 6的图象与x轴、y轴分别相交于点A、B,求线段AB的长度。
3. 已知一次函数y = 2x 5的图象在x轴下方,求x的取值范围。
4. 画出一次函数y = x 2的图象,并标出其与x轴、y轴的交点坐标。
5. 已知一次函数y = kx + 1的图象过点(2, 5),求斜率k的值。
四、应用题1. 某商品的单价为x元,销售量为y件。
根据市场调查,销售量与单价之间存在一次函数关系,已知当单价为50元时,销售量为100件;当单价为80元时,销售量为50件。
一次函数基础知识专题练习题(解析版)
一次函数基础知识专题练习题一、选择题1.点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,在平面直角坐标系xOy中,点P(﹣3,5)关于y轴的对称点的坐标为()A.(﹣3,﹣5)B.(3,5)C.(3.﹣5)D.(5,﹣3)3.已知y轴上点P到x轴的距离为3,则点P坐标为()A.(0,3)B.(3,0)C.(0,3)或(0,﹣3)D.(3,0)或(﹣3,0)4.在如图所示的平面直角坐标系内,画在透明胶片上的?ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,﹣1)处,则此平移可以是()A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位5.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移4个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(3,﹣1)7.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,.若点A的坐标是(1,2),则点A′的坐标是()得到△A′B′OA.(2,4)B.(﹣1,﹣2)C.(﹣2,﹣4)D.(﹣2,﹣1)8.小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为v1,v2,v3,v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()A. B. C. D.9.甲乙两位同学用围棋子做游戏.如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是(),[说明:棋子的位置用数对表示,如A点在(6,3)].A.黑(3,7);白(5,3)B.黑(4,7);白(6,2)C.黑(2,7);白(5,3) D.黑(3,7);白(2,6)二、填空题10.点M(1,2)关于原点的对称点的坐标为.11.将点P(﹣1,3)向右平移2个单位得到点P′,则P′的坐标是.12.将边长分别为1、2、3、4…19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为.13.在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移2个单位称为1次变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),把△ABC经过连续9次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是.三、解答题14.在平面直角坐标系中,点A关于y轴的对称点为点B,点A关于原点O的对称点为点C.(1)若A点的坐标为(1,2),请你在给出的坐标系中画出△ABC.设AB与y轴的交点为D,则=;(2)若点A的坐标为(a,b)(ab≠0),则△ABC的形状为.15.[阅读]在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为.[运用](1)如图,矩形ONEF的对角线相交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为.(2)在直角坐标系中,有A(﹣1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.《19.1 函数》参考答案与试题解析一、选择题1.点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【专题】常规题型.【分析】根据各象限点的坐标的特点解答.【解答】解:点P(﹣2,1)在第二象限.故选B.【点评】本题考查了点的坐标,熟记四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)是解题的关键.2.如图,在平面直角坐标系xOy中,点P(﹣3,5)关于y轴的对称点的坐标为()A.(﹣3,﹣5)B.(3,5)C.(3.﹣5)D.(5,﹣3)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点P(﹣3,5)关于y轴的对称点的坐标为(3,5).故选B.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3.已知y轴上点P到x轴的距离为3,则点P坐标为()A.(0,3)B.(3,0)C.(0,3)或(0,﹣3)D.(3,0)或(﹣3,0)【考点】点的坐标.【分析】根据题意,结合点的坐标的几何意义,可得点P横坐标为0,且纵坐标的绝对值为3,即可得点P的坐标.【解答】解:∵y轴上点P到x轴的距离为3,∴点P横坐标为0,且纵坐标的绝对值为3,∴点P坐标为(0,3)或(0,﹣3).故选C.【点评】本题考查了点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离.4.在如图所示的平面直角坐标系内,画在透明胶片上的?ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,﹣1)处,则此平移可以是()A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位【考点】坐标与图形变化﹣平移.【分析】利用平面坐标系中点的坐标平移方法,利用点A的坐标是(0,2),点A′(5,﹣1)得出横纵坐标的变化规律,即可得出平移特点.【解答】解:根据A的坐标是(0,2),点A′(5,﹣1),横坐标加5,纵坐标减3得出,故先向右平移5个单位,再向下平移3个单位,故选:B.【点评】此题主要考查了平面坐标系中点的平移,用到的知识点为:左右移动横坐标,左减,右加,上下移动,纵坐标上加下减.5.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标;非负数的性质:偶次方.【分析】根据非负数的性质确定出点P的纵坐标是正数,然后根据各象限内点的坐标特征解答.【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移4个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(3,﹣1)【考点】坐标与图形变化﹣对称;坐标与图形变化﹣平移.【分析】将△ABC向右平移4个单位得△A1B1C1,让A的横坐标加4即可得到平移后A1的坐标;再把△A1B1C1以x轴为对称轴作轴对称图形△A2B2C2,那么点A2的横坐标不变,纵坐标为A1的纵坐标的相反数.【解答】解:∵将△ABC向右平移4个单位得△A1B1C1,∴A1的横坐标为﹣2+4=2;纵坐标不变为3;∵把△A1B1C1以x轴为对称轴作轴对称图形△A2B2C2,∴A2的横坐标为2,纵坐标为﹣3;∴点A2的坐标是(2,﹣3).故选B.【点评】本题考查了坐标与图形的变化﹣﹣对称及平移的知识;认真观察图形,根据各种特点做题是正确解答本题的关键.7.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,.若点A的坐标是(1,2),则点A′的坐标是()得到△A′B′OA.(2,4)B.(﹣1,﹣2)C.(﹣2,﹣4)D.(﹣2,﹣1)【考点】位似变换;坐标与图形性质.【分析】根据以原点O为位似中心,将△ABO扩大到原来的2倍,即可得出对应点的坐标应乘以﹣2,即可得出点A′的坐标.【解答】解:根据以原点O为位似中心,图形的坐标特点得出,对应点的坐标应乘以﹣2,故点A的坐标是(1,2),则点A′的坐标是(﹣2,﹣4),故选:C.【点评】此题主要考查了关于原点对称的位似图形的性质,得出对应点的坐标乘以k或﹣k是解题关键.8.小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为v1,v2,v3,v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()A. B. C. D.【考点】函数的图象.【专题】压轴题;数形结合;函数思想.【分析】根据题意可对每个选项逐一分析判断图象得正误.【解答】解:A、从图象上看小亮的路程走平路不变是不正确的,故不是.B、从图象上看小亮走的路程随时间有一段更少了,不正确,故不是.C、小亮走的路程应随时间的增大而增大,两次平路的两条直线互相平行,此图象符合,故正确.D、因为平路和上坡路及下坡路的速度不一样,所以不应是一条直线,不正确,故不是.故选:C.【点评】此题考查的知识点是函数的图象,关键是根据题意看图象是否符合已知要求.9.甲乙两位同学用围棋子做游戏.如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是(),[说明:棋子的位置用数对表示,如A点在(6,3)].A.黑(3,7);白(5,3)B.黑(4,7);白(6,2)C.黑(2,7);白(5,3) D.黑(3,7);白(2,6)【考点】利用轴对称设计图案.【分析】分别根据选项所说的黑、白棋子放入图形,再由轴对称的定义进行判断即可得出答案.【解答】解:A、若放入黑(3,7);白(5,3),则此时黑棋是轴对称图形,白棋也是轴对称图形,故本选项不符合题意;B、若放入黑(4,7);白(6,2),则此时黑棋是轴对称图形,白棋也是轴对称图形,故本选项不符合题意;C、若放入黑(2,7);白(5,3),则此时黑棋不是轴对称图形,白棋是轴对称图形,故本选项正确;D、若放入黑(3,7);白(2,6),则此时黑棋是轴对称图形,白棋也是轴对称图形,故本选项不符合题意;故选:C.【点评】此题考查了轴对称图形的定义,属于基础题,注意将选项各棋子的位置放入,检验是否为轴对称图形,有一定难度,注意细心判断.二、填空题10.点M(1,2)关于原点的对称点的坐标为(﹣1,﹣2).【考点】关于原点对称的点的坐标.【专题】常规题型.【分析】根据关于原点的对称点,横纵、坐标都互为相反数解答.【解答】解:点(1,2)关于原点的对称点的坐标为(﹣1,﹣2).故答案为:(﹣1,﹣2).【点评】本题考查了关于原点对称的点的坐标,熟记“关于原点的对称点,横纵、坐标都互为相反数”是解题的关键.11.将点P(﹣1,3)向右平移2个单位得到点P′,则P′的坐标是(1,3).【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:将点P(﹣1,3)向右平移2个单位,则点横坐标加2,纵坐标不变,即P′的坐标为(1,3).故答案为:(1,3).【点评】本题考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.12.将边长分别为1、2、3、4…19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为210.【考点】规律型:图形的变化类.【专题】压轴题.【分析】第一个阴影部分的面积等于第二个图形的面积减去第一个图形的面积,第二个阴影部分的面积等于第四个图形的面积减去第三个图形的面积,由此类推,最后一个阴影部分的面积等于最后一个图形的面积减去倒数第二个图形的面积,然后相加即可得出答案.【解答】解:图中阴影部分的面积为:(22﹣1)+(42﹣32)+…+(202﹣192)=(2+1)(2﹣1)+(4+3)(4﹣3)+…+(20+19)(20﹣19)=3×1+7×1+11×1+…+39×1=3+7+11+15+19+23+27+31+35+39=210;故答案为:210.【点评】此题考查了图形的变化类,关键是找出每一个阴影部分的面积等于两个正方形面积的差,这样可以将阴影部分的面积看做边长为偶数的正方形的面积减去边长为奇数的正方形的面积.13.在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移2个单位称为1次变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(﹣1,﹣1)、(﹣,则点A的对应点A′的坐标3,﹣1),把△ABC经过连续9次这样的变换得到△A′B′C′是(16,1+).【考点】翻折变换(折叠问题);坐标与图形性质.【专题】压轴题.【分析】首先由△ABC是等边三角形,点B、C的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),求得点A的坐标,然后根据题意求得第1次、2次、3次变换后的点A的对应点的坐标,即可得规律:第n次变换后的点A的对应点的为:当n为奇数时为(2n﹣2,1+),当n为偶数时为(2n﹣2,﹣1﹣),继而求得把△ABC经过连续9次这样的变换得到,则点A的对应点A′的坐标.△A′B′C′【解答】解:∵△ABC是等边三角形,点B、C的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),∴点A的坐标为(﹣2,﹣1﹣),根据题意得:第1次变换后的点A的对应点的坐标为(﹣2+2,1+),即(0,1+),第2次变换后的点A的对应点的坐标为(0+2,﹣1﹣),即(2,﹣1﹣),第3次变换后的点A的对应点的坐标为(2+2,1+),即(4,1+),第n次变换后的点A的对应点的为:当n为奇数时为(2n﹣2,1+),当n为偶数时为(2n﹣2,﹣1﹣),,则点A的对应点A′的坐标是:(16,∴把△ABC经过连续9次这样的变换得到△A′B′C′1+).故答案为:(16,1+).【点评】此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点A的对应点的为:当n为奇数时为(2n﹣2,1+),当n为偶数时为(2n﹣2,﹣1﹣)是解此题的关键.三、解答题14.在平面直角坐标系中,点A关于y轴的对称点为点B,点A关于原点O的对称点为点C.(1)若A点的坐标为(1,2),请你在给出的坐标系中画出△ABC.设AB与y轴的交点为D,则=;(2)若点A的坐标为(a,b)(ab≠0),则△ABC的形状为直角三角形.【考点】关于原点对称的点的坐标;三角形的面积;关于x轴、y轴对称的点的坐标.【专题】作图题.【分析】(1)由A点的坐标为(1,2),而点A关于y轴的对称点为点B,点A关于原点O的对称点为点C,根据关于原点对称的坐标特点得到B点坐标为(﹣1,2),C 点坐标为(﹣1,﹣2),则D点坐标为(0,2),利用三角形面积公式有S△ADO=OD?AD=×2×1=1,S△ABC=BC?AB=×4×2=4,即可得到=;(2)点A的坐标为(a,b)(ab≠0),则B点坐标为(﹣a,b),C点坐标为(﹣a,﹣b),则AB∥x轴,BC∥y轴,AB=2|a|,BC=2|b|,得到△ABC的形状为直角三角形.【解答】解:(1)∵A点的坐标为(1,2),点A关于y轴的对称点为点B,点A关于原点O的对称点为点C,∴B点坐标为(﹣1,2),C点坐标为(﹣1,﹣2),连AB,BC,AC,AB交y轴于D点,如图,D点坐标为(0,2),∴S△ADO=OD?AD=×2×1=1,S△ABC=BC?AB=×4×2=4,∴=;(2)点A的坐标为(a,b)(ab≠0),则B点坐标为(﹣a,b),C点坐标为(﹣a,﹣b),AB∥x轴,BC∥y轴,AB=2|a|,BC=2|b|,∴△ABC的形状为直角三角形.故答案为:;直角三角形.【点评】本题考查了关于原点对称的坐标特点:点P(a,b)关于原点的对称点P′的坐标为(﹣a,﹣b).也考查了关于x轴、y轴对称的坐标特点以及三角形的面积公式.15. [阅读]在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为.[运用](1)如图,矩形ONEF的对角线相交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为(2,1.5).(2)在直角坐标系中,有A(﹣1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.【考点】平行四边形的性质;坐标与图形性质;矩形的性质.【专题】几何综合题;压轴题.【分析】(1)根据矩形的对角线互相平分及点E的坐标即可得出答案.(2)根据题意画出图形,然后可找到点D的坐标.【解答】解:(1)M(,),即M(2,1.5).(2)如图所示:根据平行四边形的对角线互相平分可得:设D点的坐标为(x,y),∵以点A、B、C、D构成的四边形是平行四边形,①当AB为对角线时,∵A(﹣1,2),B(3,1),C(1,4),∴BC=,∴AD=,∵﹣1+3﹣1=1,2+1﹣4=﹣1,∴D点坐标为(1,﹣1),②当BC为对角线时,∵A(﹣1,2),B(3,1),C(1,4),∴AC=2,BD=2,D点坐标为(5,3).③当AC为对角线时,∵A(﹣1,2),B(3,1),C(1,4),∴AB==,∴CD=,D点坐标为:(1﹣3﹣1,4﹣1+2),即(﹣3,5),(5,3).综上所述,符合要求的点有:D'(1,﹣1),D″(﹣3,5),D″′【点评】本题考查了平行四边形的性质及矩形的性质,关键是掌握已知两点求其中点坐标的方法.。
一次函数专项练习(经典题型收集)
一次函数专项练习(经典题型收集)1.自变量x的取值范围为x≠-1.2.自变量x的取值范围为x≠0.3.代入点P(-2,m),得m=2*(-2)+1=-3.4.交点坐标分别为(0,-1)和(1,1)。
5.由于函数经过原点,代入得m=2.6.答案为B,即(-2,1)。
7.底为y,面积为1/2*y*x=8,解得y=16/x。
8.图象为y=x^2,不是一次函数。
9.长度剩余y与时间x成反比例关系,即y=20-5x。
10.代入交点(1,6),解得k=1,b=-3.一次函数练(二)1.n=2.2.解析式为y=(2m-1)/(m^2-3)。
3.m<1/2.4.解得m=4或m=-2.5.y=-6.6.答案为(-2,-4)。
7.根据比例关系,y-2=kx,代入x=-2和y=4,解得k=-3/2,再代入x=6,解得y=7.1.一次函数是指函数的自变量的最高次数为1的函数。
因此,③y=x和④y=-x-1是一次函数。
2.首先将函数展开,得到y=mx^5+10x- m^2+3.由于一次函数的解析式为y=kx+b,因此要求m使得y=mx^5+10x-m^2+3满足一次函数的形式。
因为一次函数的自变量的最高次数为1,因此只有当m=4或m=-4时,y才能写成一次函数的形式。
此时解析式分别为y=4x+3和y=-4x+3.3.当m=1时,y=(m+2)x+m-1变为y=3x,为一次函数;当m=-2时,y=(m+2)x+m-1变为y=-4x-5,为正比例函数。
4.向下平移1个单位后,直线y=-2x的解析式变为y=-2x-1.5.直线y=2x-4与x轴的交点坐标为(2,0),与y轴的交点坐标为(0,-4),三角形的底为2,高为4,因此面积为4.6.当a=-2时,直线经过原点,此时解析式为y=-2x;当a=1时,直线与y轴交于点(0,-2),此时解析式为y=3x-1.7.将点A的坐标代入函数y=2x-1中,得到1-a=2(a+2)-1,解得a=1.8.因为直线与y轴平行,所以斜率为2.又因为过点(-2,1),所以解析式为y=2x+5.9.由于两个函数的图象平行,因此它们的斜率相等。
一次函数练习题和参考答案
一次函数练习题和参考答案第1题. 某工厂加工一批产品,为了提前完成任务,规定每个工人完成150个以内,按每个产品3元付报酬,超过150个,超过部分每个产品付酬增加0.2元;超过250个,超过部分出按上述规定外,每个产品付酬增加0.3元,求一个工人:①完成150个以内产品得到的报酬y元与产品数x个之间的函数关系式;②完成150个以上,但不超过250个产品得到的报酬y元与产品数量x个的函数关系式;③完成250个以上产品得到的报酬y元与产品数量x个的函数关系式.答案:① 0② 150③ x250第2题. 商品的销售量也受销售价格的影响,比如,某衬衣定价为100元时,每月可卖出2000件,价格每上涨10元,销售量便减少50件.那么,每月售出衬衣的总件数y件与衬衣价格x元销售之间的函数关系式为_________.答案:第3题. 写出下列函数关系式,并指出自变量的取值范围:油箱中有油60升,每小时耗油2升,求耗油量M与时间t小时的关系.答案: 030第4题. 写出下列函数关系式,并指出自变量的取值范围:轮子每分钟转60圈,求轮子旋转的转数N与时间t分的关系答案: t0第5题. 下列关于函数的说法中,正确的是A.一次函数是正比例函数B.正比例函数是一次函数C.正比例函数不是一次函数D.不是正比例函数的就不是一次函数答案:B第6题. 等腰三角形的周长为20cm,腰长为y cm,底边长为xcm,则y与x的函数关系式为______.答案:第7题. 若函数y=m-3xm-1+x+3是一次函数,且x0,则m的值为______.答案:2或1第8题. 一次函数y=kx+b中,k、b都是,且k ,自变量x的取值范围是,当k ,b 时,它是正比例函数.答案:常数,0,全体实数,0,=0第9题. 观察图形上图中每个小正方形都是由四根火柴秆组成的,那么火柴秆的数量y根与小正方形的个数n的’关系为 .答案:. y=3n+1n为1、2、3、4、.第10题. △ABC中,一边长为x cm,这边上的高为4cm,面积为y cm2,那么y与x 之间的函数关系式为 .答案:y=2x第11题. 出租车收费按路程计算,2km内包括2km收费3元,超过2km,每增加1km 加收1元,则路程x2km时,车费y元与x之间的函数关系为____.答案:第12题. 拖拉机开始工作时,油箱中有油36L,如果每小时耗油4L,那么油箱中剩余油量yL,与工作时间xh之间的函数关系式是____,自变量x的取值范围是____.答案:第13题. 《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必交税,超过800元的部分为全月应纳税所得额,此项税款按下表分段累计进行计算:全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%某合资企业一工人工资在1400元-2000元之间变化,求他应交税金y元与其工资x元之间的函数关系.答案:第14题. 出租车收费按路程计算,2km内包括2km收费3元,超过2km,每增加1 km 加收1元,则路程x2 km时,车费y元与路程xkm之间的函数关系为______.答案:第15题. 将长为30cm,宽为10cm的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为3cm,则5张白纸粘合后的长度是多少?设x张白纸粘合后的总长度为ycm,y与x之间的函数关系式是什么?答案:138cm,y=30x-3x-1=27x+3.第16题. 已知y+a与x-b成正比例其中a、b都是常数,试说明:y是x的一次函数答案:设y+a=kx-bx0y=kx-a+bk第17题. 已知y+a与x-b成正比例其中a、b都是常数1试说明y是x的一次函数;2如果x=-1时,y=-15;x=7时,y=1,求这个一次函数的解析式.答案:1因为y+a与x-b成正比例,所以y+a=kx-bk0,即y=kx-bk+a因为k不等于0,a、b为常数,所以y是x的一次函数;2代入解得k=2,bk+a=13, 所以y=2x-13.第18题. 下列关于函数的说法中,正确的是A.一次函数是正比例函数B.正比例函数是一次函数C.正比例函数不是一次函数D.不是正比例函数的就不是一次函数答案:B第19题. 汽车由天津开往相距120km的北京,若它的平均速度为60km/h,则汽车距北京的路程Skm与行驶时间th之间的函数关系式是______.答案:S=120-60t第20题. 两港相距640千米,轮船以15千米/时的速度航行,t小时后剩下的距离y 与t的函数关系式为________.答案:第21题. 某种国库卷的年利率为9.18%,则存满三年的本息和y与本金x之间的函数关系式为 .答案:y=x+39.18%xx0第22题. 一个长为120m,宽为100m的矩形场地要扩建成一个正方形场地,设长增加x米,宽增加y米,则y与x的函数关系式是,自变量的取值范围是,且y是x的函数.答案:y=x+20,x0,一次感谢您的阅读,祝您生活愉快。
一次函数练习题及答案
一次函数练习题及答案一、选择题1. 一次函数y = 2x - 3的斜率是:A. 2B. -3C. -2D. 3答案:A2. 如果一次函数y = kx + b的图象经过点(1, 0)和(0, -1),那么k 的值是:A. 1B. -1C. 0D. 2答案:A3. 函数y = 3x + 5与x轴的交点坐标是:A. (-5/3, 0)B. (0, 5)C. (1, 0)D. (-1, 0)答案:A二、填空题4. 已知一次函数y = 4x + 1,当x = 2时,y的值为________。
答案:95. 一次函数y = -2x + 4的图象与y轴的交点坐标是________。
答案:(0, 4)三、解答题6. 已知直线y = 3x + 2与直线y = -x + 4相交于点P,求点P的坐标。
解:将两个方程联立求解:\[ \begin{cases} y = 3x + 2 \\ y = -x + 4 \end{cases} \]解得:\[ x = \frac{2}{4}, y = 3 \times \frac{2}{4} + 2 \] 所以点P的坐标为(\(\frac{1}{2}\), 3)。
7. 一次函数y = kx + b的图象经过点A(-1, -2)和点B(2, 6),求k 和b的值。
解:将点A和点B的坐标代入一次函数方程得:\[ \begin{cases} -k + b = -2 \\ 2k + b = 6 \end{cases} \] 解得:\[ k = 2, b = 0 \]8. 已知直线y = 5x - 7在x轴上的截距为a,在y轴上的截距为b,求a和b的值。
解:当y = 0时,x = \frac{7}{5},所以a = \frac{7}{5};当x = 0时,y = -7,所以b = -7。
四、应用题9. 某工厂生产一种产品,每件产品的成本为c元,售价为p元。
已知当生产x件时,利润为y元,且利润函数为y = 20x - 30。
初中数学一次函数练习题
初中数学一次函数练习题一、选择题1. 一次函数的图像是一条()。
A. 折线B. 曲线C. 直线D. 折线和曲线2. 下列函数中,是一次函数的是()。
A. y = 2x^2 + 1B. y = 3x + 5x^2C. y = 4x 3D. y = √x3. 一次函数y = 3x + 2的斜率为()。
A. 2B. 3C. 3D. 24. 一次函数y = kx + b(k≠0)的图像是一条直线,那么直线一定()。
A. 经过原点B. 与y轴相交C. 与x轴相交D. 经过一、三象限二、填空题1. 一次函数的一般形式是______。
2. 一次函数y = 5x 1的截距是______。
3. 当x = 0时,一次函数y = 2x + 3的值为______。
4. 已知一次函数的图像经过点(2,3)和(4,7),则该一次函数的斜率为______。
三、解答题1. 已知一次函数的图像经过点(1,2)和(3,4),求该一次函数的解析式。
2. 一次函数y = 2x 3的图像与x轴、y轴分别相交于A、B两点,求线段AB的长度。
3. 已知一次函数y = kx + b的图像经过点(1,2)和(2,3),求k和b的值。
4. 画出一次函数y = x + 2的图像,并标出其与x轴、y轴的交点。
5. 设一次函数y = kx + b的图像与两坐标轴围成的三角形面积为6,求满足条件的所有一次函数解析式。
四、应用题1. 某商店举行优惠活动,原价商品打8折销售。
设商品原价为x 元,优惠后的价格为y元,求y与x之间的关系式。
2. 一辆汽车以60km/h的速度匀速行驶,行驶t小时后,行驶路程为s km。
求s与t之间的关系式。
3. 某班学生参加数学竞赛,共有10道题目,每道题目答对得10分,答错或不答得0分。
设学生答对题目数为x,得分为y,求y与x之间的关系式。
4. 一条直线经过点(3,2)和(5,8),求这条直线的解析式,并解释其意义。
五、判断题1. 一次函数的图像一定经过第一象限。
一次函数专项训练题
一次函数专项训练题一、选择题1. 下列函数中,是一次函数的是()A. y = 2/xB. y = 3x²C. y = x + 1D. y = √x解析:一次函数的一般形式为y = kx + b(k、b 为常数,k≠0)。
A 选项是反比例函数;B 选项是二次函数;C 选项符合一次函数形式;D 选项不是一次函数。
答案是C。
2. 若函数y = (m - 1)x + m² - 1 是一次函数,则m 的值为()A. m = 1B. m = -1C. m ≠ 1D. m = ±1解析:因为是一次函数,所以x 的系数不能为0,即m - 1≠0,解得m≠1。
答案是C。
二、填空题1. 已知一次函数y = 2x - 3,则当x = 2 时,y = _____。
解析:把x = 2 代入函数y = 2x - 3,可得y = 2×2 - 3 = 1。
2. 若一次函数y = kx + 3 的图象经过点(1,5),则k = _____。
解析:把点(1,5)代入函数y = kx + 3,可得 5 = k×1 + 3,解得k = 2。
三、解答题1. 已知一次函数y = 3x + b 的图象经过点(-2,5),求这个一次函数的解析式。
解析:把点(-2,5)代入函数y = 3x + b,可得 5 = 3×(-2) + b,解得 b = 11。
所以这个一次函数的解析式为y = 3x + 11。
2. 若一次函数y = (2m - 1)x + 3 - 2m 的图象经过第一、二、四象限,求m 的取值范围。
解析:因为图象经过第一、二、四象限,所以斜率小于0,在y 轴上的截距大于0。
即2m - 1<0 且 3 - 2m>0。
解2m - 1<0 得m<1/2;解 3 - 2m>0 得m<3/2。
综合起来,m 的取值范围是m<1/2。
3. 已知一次函数y = kx + b 的图象与直线y = -2x + 1 平行,且经过点(2,-1),求这个一次函数的解析式。
一次函数基础练习题(必做)
一次函数基础练习题(必做)1.汽车以60千米/时的速度匀速行驶,行驶路程y(千米)与行驶时间x之间的函数关系是y=60x。
2.圆的面积y(平方厘米)与它的半径x之间的函数关系是y=πx^2.3.直角三角形两锐角的度数分别为x,y,其关系式为x+y=90度。
4.若点A(m-1,2)在函数y=2x-6的图象上,则m的值为7.5.已知一次函数y=x+4的图像经过点(m,6),则m=2.6.已知一次函数y=2x+4的图像经过点(m,8),则m=2.7.已知点P(a,4)在函数y=x+3的图象上,则a=1.8.已知一次函数y=kx+5的图象经过点(-1,2),则k=-3.9.已知一次函数y=2x+4的图像经过点(m,8),则m=2.10.已知点P(a,4)在函数y=x+3的图象上,则a=1.11.若直线y=kx+b平行直线y=3x+2,且过点(2,-1),则k=3,b=-7.12.函数y=kx(k≠0)的图象过P(-3,7),则k=-(7/3)。
13.这一段没有明显的格式错误,不需要修改。
14.这一段没有明显的格式错误,不需要修改。
15.这一段没有明显的格式错误,不需要修改。
16.这一段没有明显的格式错误,不需要修改。
17.这一段没有明显的格式错误,不需要修改。
18.已知一次函数y=kx+5的图象经过点(-1,2),则这个一次函数的表达式是y=-3x+1.19.(1)已知一个正比例函数的图象经过点(1,5),则这个正比例函数的表达式是y=5x。
(2)已知一次函数y=kx-k+4的图象与y轴的交点坐标是(0,-2),那么这个一次函数的表达式是y=kx-2.20.两直线y=x-1与y=-x+2的交点坐标为(1,0),一次函数y=2x-4的图象与x轴交点坐标是2,与y轴交点坐标是-4.21.直线y=4x-6与x轴交点坐标为3/2,与y轴交点坐标为-6,图象经过第一象限,y随x增大而增大。
一次函数y=-3x+6的图象与x轴的交点坐标是2,与y轴的交点坐标是6.22.已知直线y=x+8与x轴、y轴围成一个三角形,则这个三角形面积为16.23.已知一次函数y=(m+2)x+1,函数值随x的增大而增大,则m的取值范围是m>-2.24.若一次函数y=kx+b的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过第三象限。
一次函数练习题20道
一次函数练习题20道一、选择题:1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为y=8x y=2x+6y=8x+6y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k 不经过一象限二象限三象限四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是 164.若甲、乙两弹簧的长度y与所挂物体质量x 之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为y1>y y1=y2y1 5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,?则有一组a,b的取值,使得下列4个图中的一个为正确的是6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k 不经过第象限.一二三四7.一次函数y=kx+2经过点,那么这个一次函数y随x的增大而增大y随x的增大而减小图像经过原点图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在第一象限第二象限第三象限第四象限9.要得到y=-33x-4的图像,可把直线y=-x.2 向左平移4个单位向右平移4个单位向上平移4个单位向下平移4个单位10.若函数y=x+x2中的y与x成正比例,则m的值为m>-11 m>m=- m=4411.若直线y=3x-1与y=x-k的交点在第四象限,则k 的取值范围是.k1 k>1或k 12.过点P直线,使它与两坐标轴围成的三角形面积为5,?这样的直线可以作4条条条 1条13.已知abc≠0,而且a?bb?cc?a=p,那么直线y=px+p 一定通过 ??cab第一、二象限第二、三象限第三、四象限第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y -4 -4 15.在直角坐标系中,已知A,在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有1个个个个16.一次函数y=ax+b的图象过点,交x轴于,交y轴于,若p为质数,q为正整数,那么满足条件的一次函数的个数为01 无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k的交点为整点时,k的值可以取2个个个个18.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取2个个个个19.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,;乙上山的速度是1a米/分,下山的速度是2b米/分.如2 果甲、乙二人同时从点A出发,时间为t,离开点A的路程为S,?那么下面图象中,大致表示甲、乙二人从点A出发后的时间t与离开点A的路程S?之间的函数关系的是220.若k、b是一元二次方程x+px-│q│=0的两个实根,在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过第1、2、4象限第1、2、3象限第2、3、4象限第1、3、4象限一次函数测试题1. 函数y=中,自变量x的取值范围是 x?1A.x≥0 B.x>1 C.x>0且x≠1 D.x≥0且x≠1. 已知正比例函数y=-2x,当x=-1时,函数y的值是A. B.- C.-0. D.0.5. 一次函数y=-2x-3的图像不经过A.第一象限 B.第二象限 C.第三象限 D.第四象限4. 某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y与所用时间x 之间的函数关系,则以下判断错误的是A.骑车的同学比步行的同学晚出发30分钟 B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟D.步行的速度是6千米/小时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数专项练习题题型一、点的坐标 方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0; 若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。
题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;任意两点(,),(,)A A B B A x y B x y 的距离为22()()A B A B x x y y -+-; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -; 点(,)A A A x y 到原点之间的距离为22A A x y + 1、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________;2、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;3、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;4、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________;5、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;6、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。
☆A 与B 成正比例 A=kB(k ≠0)1、当k_____________时,()2323y k x x =-++-是一次函数;2、当m_____________时,()21345m y m x x +=-+-是一次函数; 3、当m_____________时,()21445m y m x x +=-+-是一次函数;4、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为________________; 题型四、函数图像及其性质方法:☆一次函数y=kx+b (k≠0)中k 、b 的意义:k(称为斜率)表示直线y=kx+b (k≠0) 的倾斜程度;b (称为截距)表示直线y=kx+b (k≠0)与y 轴交点的 ,也表示直线在y 轴上的 。
☆同一平面内,不重合的两直线 y=k 1x+b 1(k 1≠0)与 y=k 2x+b 2(k 2≠0)的位置关系:当 时,两直线平行。
当 时,两直线垂直。
当 时,两直线相交。
当 时,两直线交于y 轴上同一点。
☆特殊直线方程:X 轴 : 直线 Y 轴 : 直线与X 轴平行的直线 与Y 轴平行的直线一、 三象限角平分线 二、四象限角平分线1、对于函数y =5x+6,y 的值随x 值的减小而___________。
2、对于函数1223y x =-, y 的值随x 值的________而增大。
3、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__。
4、直线y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是_________。
5、直线y=kx+b 经过第一、二、四象限,则直线y=-bx+k 经过第____象限。
6、无论m 为何值,直线y=x+2m 与直线y=-x+4的交点不可能在第______象限。
7、已知一次函数(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点? 题型五、待定系数法求解析式方法:依据两个独立的条件确定k,b 的值,即可求解出一次函数y=kx+b (k ≠0)的解析式。
☆ 已知是直线或一次函数可以设y=kx+b (k ≠0);☆ 若点在直线上,则可以将点的坐标代入解析式构建方程。
1、若函数y=3x+b 经过点(2,-6),求函数的解析式。
2、直线y=kx+b 的图像经过A (3,4)和点B (2,7),4、一次函数的图像与y=2x-5平行且与x 轴交于点(-2,0)求解析式。
6、已知直线y=kx+b 与直线y= -3x+7关于y 轴对称,求k 、b 的值。
7、已知直线y=kx+b 与直线y= -3x+7关于x 轴对称,求k 、b 的值。
8、已知直线y=kx+b 与直线y= -3x+7关于原点对称,求k 、b 的值。
5、若一次函数y=kx+b 的自变量x 的取值范围是-2≤x ≤6,相应的函数值的范围是-11≤y ≤9,求此函数的解析式。
题型六、平移方法:直线y=kx+b 与y 轴交点为(0,b ),直线平移则直线上的点(0,b )也会同样的平移,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。
直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。
1. 直线y=5x-3向左平移2个单位得到直线 。
2. 直线y=-x-2向右平移2个单位得到直线3. 直线y=21x 向右平移2个单位得到直线4. 直线y=223+-x 向左平移2个单位得到直线 5. 直线y=2x+1向上平移4个单位得到直线 6. 直线y=-3x+5向下平移6个单位得到直线7. 直线x y 31=向上平移1个单位,再向右平移1个单位得到直线 。
8. 直线143+-=x y 向下平移2个单位,再向左平移1个单位得到直线________。
9. 过点(2,-3)且平行于直线y=2x 的直线是____ _____。
10. 过点(2,-3)且平行于直线y=-3x+1的直线是___________.11.把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得到的图像表示的函数是____________;12.直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=____________;题型七、交点问题及直线围成的面积问题方法:两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形);往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高;1、 直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。
2、 已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB 求两个函数的解析式;(2)求△AOB 的面积;第2题 第3题 第4题 第5题3、 已知直线m 经过两点(1,6)、(-3,-2),它和x 轴、y 轴的交点式B 、A ,直线n 过点(2,-2),且与y 轴交点的纵坐标是-3,它和x 轴、y轴的交点是D 、C ;(1) 分别写出两条直线解析式,并画草图;(2)计算四边形ABCD 的面积;(3)若直线AB 与DC 交于点E ,求△BCE 的面积。
4、 如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,p )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,△AOP的面积为6;(1)求△COP 的面积;(2)求点A 的坐标及p 的值;(3)若△BOP 与△DOP 的面积相等,求直线BD 的函数解析式。
5、已知:经过点(-3,-2),它与x 轴,y 轴分别交于点B 、A ,直线经过点(2,-2),且与y 轴交于点C (0,-3),它与x 轴交于点D (1)求直线的解析式; (2)若直线与交于点P ,求的值。
6. 如图,已知点A (2,4),B (-2,2),C (4,0),求△ABC 的面积。
7、如图1表示一辆汽车油箱里剩余油量y (升)与行驶时间x (小时)之间的关系.求油箱里所剩油y (升)与行驶时间x (小时)之间的函数关系式,并且确定自变量x 的取值范围。
第6题 第7题 第8 第9 8、如图,一次函数y=(m -1)x+3的图像与x 轴的负半轴相交于点A ,与y 轴相交于点B ,且△OAB 面积为9/4.(1)求m 的值及点A 的坐标;(2)过点B 作直线BP 与x 轴的正半轴相交于点P ,且OP=2OA ,求直线BP 的函数表达式 .(3)求这两个函数图像与轴所围成的△AOC 的面积.9、如图,直线l 1:y=kx+b 与x 轴交于点B (1,0),直线l 2:y=0.5x+1与y 轴交于点C ,这两条直线交于A (2,a ).(1)直接写出a 的值;(2)求点C 的坐标;(3)求直线l 1的表达式;(4)求四边形ABOC 的面积.10、已知y -2与x 成正比,且当x=1时,y= -6 (1)求y 与x 之间的函数关系式 (2)若点(a ,2)在这个函数图象上,求a 的值11、已知一次函数y=kx+b 的图象经过点(-1, -5),且与正比例函数y= 12x 的图象相交于点(2,a),求(1)a 的值(2)k ,b 的值 (3)这两个函数图象与x 轴所围成的三角形的面积。
12、已知函数y=(2m+1)x+m -3(1)若函数图象经过原点,求m 的值(2)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围。