六年级下册数学作业第四单元比例的意义和基本性质第1课时比例的意义人教版
人教版2020年小升初六年级数学下册总复习第四单元【比例】1导学案
2020年小升初六年级数学下册总复习导学案第四单元比例第1课时比例的意义【学习目标】1.在具体的情境中理解比例的意义,掌握组成比例的关键条件。
2.能应用比例的意义判断两个比能否组成比例。
【学习过程】一、知识铺垫1.什么叫做比?你能不能举个例子说一说什么叫做比的前项、后项和比值?2.你会分类么?试一试,能不能把下面几个比按照比值的不同分分类呢?你发现了什么规律?2:3 4.5:2.710:6180:44:610:2二、自主探究(一)探究比例的意义1.看课本图完成下表。
选择其中两面国旗(例如操场和教室的国旗),请同学们分别写出它们长与宽的比,并求出比值。
即::=;:=小组讨论:根据求出的比值,和同桌说一说你发现了什么?:=:小结:因为这两个比的比值相等,所以我们也可以写成一个等式:2.4∶1.6=60∶40像这样由组成的式子我们把它叫做比例。
2.在图上这三面国旗的尺寸中,还能找出哪些比来组成比例?3.判断:2:3和6:4能组成比例吗?为什么?4.比较:想一想,“比”和“比例”有什么区别呢?三、课堂达标1.2.3.判断:①两个比可以组成一个比例。
()②比和比例都是表示两个数的倍数关系。
()③8:2和1:4能组成比例。
()第2课时比例的基本性质【学习目标】1.理解认识比例各部分的名称,探究比例的基本性质并尝试用字母表示。
2.学会应用比例基本性质判断两个比能否组成比例并解决简单的问题。
【学习过程】一、知识铺垫1.什么叫比?比的基本性质是什么?2.什么叫比例?请你写出一个比例。
二、自主探究自学课本第41页并完成下面的部分。
(一)认识比例各部分的名称。
1.写出下面比例各部分的名称。
2.想一想:比例各部分的名称和什么有关?怎样记住它们?(二)探究比例的基本性质。
1.计算上面比例中两个外项的积和两个内项的积。
比较一下,你能发现什么?把你的发现写下来。
2.你能用字母表示你的发现吗?试一试。
三、课堂达标1.独立练习:应用比例的基本性质,判断下面哪组中的两个比可以组成比例。
人教版六年级数学下册第四单元第6课时比例尺1《比例尺的意义及求比例尺》(授课课件)
(3)在比例尺是50∶1的平面图上,表示( 图上 )距离是
( 实际 )距离的50倍。
(4)
这是( 线段 )比例尺,表示图上距离
1 cm相当于实际距离( 50 )m,将这个线段比例尺改
成数值比例尺是( 1∶5000)。
2.判断。(对的画“√”,错的画“×”)
(1) 实际距离一定比图上距离大。
()
(2) 在比例尺是20∶1的图纸上,2 cm长的线段表示零
或
图上距离 实际距离
=比例尺
生活中常见的比例尺有:
数值比例尺
线段比例尺
1∶50000
1 ∶ 50000
数值比例尺
比的前项 比的后项
1 50000
图上距离 实际距离 1cm 50000cm
把线段比例尺改 成数值比例尺。 图上距离∶实际距离
线段比例尺 =1 cm∶50 km =1 cm∶5000000 cm
4 比例
比例尺1 (比例尺的意义及求比例尺)
你知道地图是怎 么绘制出来的吗?
探究点 1 比例尺的意义和分类
在绘制地图时,需要 把实际距离按一定比 缩小,再画在图纸上。 这时,就要确定图上 距离和相对应的实际 距离的比。
一幅图的图上距离和实际距离的 比,叫做这幅图的比例尺。
图上距离∶实际距离=比例尺
地图上1cm的距离相当于
=1∶5000000
地面上50km的实际距离。
单位要统一。
想一想: 比例尺1∶5000000表示图上距离是实际距离的几分之几?实 际距离是图上距离的多少倍?
图上距离 实际距离
比例尺1∶5000000表示图上距离是实际距离的
50010000,实际距离是图上距离的5000000倍。
第四单元比例(易错梳理)-六年级下册数学单元复习讲义人教版
比例知识盘点知识点1:比例的意义和基本性质1、比例的意义:表示两个比相等的式子叫做比例。
2、比例的基本性质①组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
②比例的基本性质:在比例里,两个外项的积等于两个内项的积。
可以用字母表示比例的基本性质,如果a:b =c:d ,那么ad =bc 。
3、解比例:求比例中的未知项,叫做解比例。
解比例的方法:利用比例的基本性质将比例转化为外项之积与内项之积相等的 等式,再通过解方程求出未知项的值。
知识点2:正比例和反比例1、正比例:两种相关联的量的比值一定。
正比例关系式:yx =k 正比例的图像:一条射线2、反比例:两种相关联的量的乘积一定。
反比例关系式:xy =k 反比例图像:一条光滑的曲线 知识点3:比例尺1、意义:一幅图的图上距离和实际距离的比。
2、分类:线段比例尺和数值比例尺;缩小比例尺和放大比例尺3、计算:比例尺=图上距离:实际距离 知识点4:图形的放大和缩小 形状相同,大小不同 知识点5:用比例解决问题 造出情境中不变的量是关键。
易错集合易错点1:比例的基本性质典例 比例24:6=12:3,第一项24减去6,第二项的6怎样变化,才能使比例仍然成立?解析 根据比例的性质,24-6=18,外项的积变为18×3=54,内项12不变,根据比例的基本性质,两个外项的积等于两个内项的积,求解。
解答 24-6=18 18×3=54 54÷12=4.5 6-4.5=1.5 答:第二项6应减去1.5,才能使比例仍然成立。
✨针对练习1比例24:6=12:3,第三项12乘2,第四项的3怎样变化,才能使比例仍然成立?易错点2:利用图像解决正比例问题 典例 下图是老虎和猎豹比赛跑步的情况。
猎豹的奔跑路程和时间是否成正比例关系?老虎呢?解析 判断老虎、猎豹奔跑的路程和奔跑时间是否成正比例关系,根据正比例的意义要看它们的比值是否一定。
第1课时 比例的意义【教案】
本单元是六年级下册的重点单元。
本单元的内容主要包括比例的意义和基本性质、正比例和反比例、比例的应用三个部分。
比例的知识是除法、分数、比、方程等知识的综合与提升,并为学生的进一步学习打下坚实的基础。
比例的意义和基本性质是整个单元的基础与核心,是后续学习的有效支持。
比例的意义是学习正比例、反比例知识和用比例解决问题的基础,必须让学生深刻理解,牢固掌握;比例的基本性质是解比例和进一步研究比例问题的基础,直接涉及解决问题的效率。
正比例和反比例是重要的数学模型,体现了基本的函数思想,对学生代数思维的发展十分有益。
比例的应用,是在更高水平上对一些特殊的实际问题以及原来遇到过的数学问题运用代数方法进行分析与解答,要求学生具备综合运用各方面知识的能力,在数学思想方法的层面上具有重要的教育教学价值。
教科书重视呈现真实的问题情境,体现数学与生活的密切联系,展示数学知识的抽象与建模过程,使学生经历知识的发现、抽象、表征、建模的过程,更好地理解知识的本质,促进学生对基础知识的建构。
教科书还重视用直观形象的图形或图象来揭示知识的本质属性,帮助学生更好地体会知识的内涵。
学生在学习比例这一单元时,已经学习了比、除法的意义和分数的意义,以及分数的基本性质、分数与除法的关系、分数乘除法的计算方法等,这些都是学习本单元内容的基础知识。
比例是小学阶段数与代数部分最后一单元学习的内容,这部分内容的特点是应用性强、综合性强、内容情境不新,但采用新的思维方式和数学模型,需要学生在较高水平层面上学习。
1.重视概念的理解,让学生经历概念的形成过程。
本单元有许多重要的基础性概念,如比例的意义、比例的基本性质、比例尺、正比例的意义、反比例的意义等。
这些概念揭示了数学中的重要规律或关系,并且与解比例等技能或用比例解决问题密切相关。
因此,教学中不仅仅需要记住概念,更重要的是要理解这些概念,并能正确地加以应用,同时提升对概念掌握的水平。
2.让学生充分经历和体会解决问题的全过程,积累基本的数学活动经验,获得基本的数学思想方法,提高能力。
人教版六年级下册数学单元知识点归纳——第四单元 比例
4 比 例一、比例的意义表示两个比相等的式子叫做比例。
二、比例的基本性质1.组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
2.比例的基本性质:在比例里....,.两个外项的积等于两.........个内项的积。
......可以用字母表示比例的基本性质,如果a ∶b=c ∶d ,那么ad=bc 。
3.运用比例的意义和比例的基本性质可以判断两个比是否可以组成比例,也可以解比例。
三、解比例1.求比例中的未知项........,.叫做解比例。
......2.解比例的依据:比例的基本性质.......。
3.解比例的方法:利用比例的基本性质将比例转化..............为外项之积与内项之积相等的等式...............,.再通过解方程求出........未知项的值。
......四、正比例1.两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
2.如果用字母y 和x 表示两种相关联的量,用k 表示它们的比值(一定),正比例关系可以表示为=k ..。
3.正比例的图象......:如果把成正比例关系的两个量中相对应的数都看作是一个数对,在方格纸上把写这些数对相对应的点连起来,形成一条射线..;反之,该射线上的每一个点对应的就是正比例关系中两个相关联的量的一组具体值。
五、反比例提示:组成比例的两个比既可以写成带比号的形式,也可以写成分数的形式,但读法相同。
例如:2.4×40=1.6×60提示:如果4个不同的数能组成比例,那么这4个数一共能组成8个不同的比例。
提示:应用比例的基本性质不是解比例唯一的方法,也可以用求比值的方法或其他方法解比例。
总结:判断两种量是否成正比例的方法:先找变量(两种相关联的量),再看定量(两种量是比值一定,还是乘积一定),最后作出判断。
小学六年级下册数学讲义第四章 比例 人教新课标版(含解析)
人教版小学六年级数学下册同步复习与测试讲义第四章比例【知识点归纳总结】故选:B.点评:本题主要考查比例的意义,注意判断能否组成比例可以用求比值的方法,求出比值,比值相等两个比就能组成比例.例2:在比例3:4=9:12中,若第一个比的后项加上8,要使比例仍然成立,则第二个比的后项应加上()A、8B、12C、24D、36分析:在比例3:4=9:12中,若第一个比的后项加上8,由4变成12,这样两内项的积就成了108,根据比例的性质,两外项的积也得是108,再用108除以前一个比的前项3即得后一个比的后项,进而求出第二个比的后项应加上几即可.解:比例3:4=9:12中,第一个比的后项加上8,由4变成12,则两内项的积:12×9=108,两外项的积也得是108,第二个比的后项应是:108÷3=36,第二个比的后项应加上:36-12=24;故选:C.点评:此题主要考查比例的基本性质:在比例里,两内项的积等于两外项的积.点评:此题属于辨识两种相关联的量成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,再做出判断.例2:长方形的面积一定,长和宽()A、成正比例B、成反比例C、不成比例分析:根据正比例的意义x:y=k(一定)和反比例的意义xy=k(一定),因为长×宽=长方形的面积(一定),符合反比例的意义.解:根据长方形的面积公式,长×宽=长方形的面积(一定),符合反比例的意义xy=k(一定),所以长方形的面积一定,长和宽成反比例.故选:B.点评:此题主要考查正、反比例的意义,以及长方形的面积公式.3. 解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项.求比例中的未知项,叫做解比例.一般来说,求比例的未知项有以下两种情况:例2:如果比例的两个外项互为倒数,那么比例的两个内项()A、成反比例B、成正比例C、不成比例分析:根据互为倒数的定义和比例的两内项之积等于两外项之积,可得比例的两个内项之积等于1,再根据成反比例的定义即可求解.解:因为比例的两个外项互为倒数,那么比例的两个内项之积=1(为恒指),则比例的两个内项成反比例.故选:A.点评:本题考查了倒数的定义和成反比例的条件,两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定.这两种量叫做成反比例的量.它们的关系叫做反比例关系.4. 比例的应用根据问题中的不变量找出两种相关联的量,并判断这两种相关联的量成什么比例关系,根据正、5. 比的应用1.按比例分配问题的解题方法:(1)把比看作分得的份数,用先求出每一份的方法来解答.解题步骤:a.求出总份数;b.求出每一份是多少;c.求出各部分相应的具体数量.(2)转化成份数乘法来解答.解题步骤:a.先根据比求出总份数;b.再求出各部分量占总量的几分之几;c.求出各部分的数量.2.按比例分配问题常用解题方法的应用:(1)已知一个数量的各部分的比和其中某一部分的量,求另外几个部分量;(2)已知两个量或几个量的比和其中两个量的差,求总量.【经典例题】例1:一个三角形与一个平行四边形的面积和底部都相等,这个三角形与平行四边形高的比是()A、2:1B、1:2C、1:1D、3:1分析:根据三角形和平行四边形的面积公式可得:三角形的高=面积×2÷底;平行四边形的高=面积÷底,由此即可进行比较,解答问题.解:三角形的高=面积×2÷底,平行四边形的高=面积÷底,当三角形和平行四边形的面积和底分别相等时,三角形的高是平行四边形的高的2倍.所以这个三角形与平行四边形高的比是2:1.故选:A.点评:考查了平行四边形的面积和三角形的面积公式,解题的关键是知道底相等、面积也相等的三角形和平行四边形中三角形的高是平行四边形的高的2倍.例2:甲、乙两人各走一段路,他们的速度比是3:4,路程比是8:3,那么他们所需时间比是()答:甲乙所需的时间比是32:9.故选:B.点评:关键是把速度和路程设出来,然后根据时间=路程÷速度,先求得各自用的时间,再写出所用的时间比并化简比.6.辨识成正比例的量与成反比例的量1.成正比例的量:(1)“变化方向”相同,一种量扩大或缩小,另一种量也扩大或缩小.2.成反比例的量:(1)“变化方向”相反,一种量扩大或缩小,另一种量反而缩小或扩大.(2)相对应的两个数的乘积一定.(3)关系式:xy=k(一定).3.判断方法:关键是看着两种相关量中相对应的两个数是商一定还是积一定,如果商一定,所以xy=1,是乘积一定,x和y成反比例;故选:D.点评:此题属于根据正、反比例的意义,辨识两种相关联的量是否成反比例,就看这两种量是否是对应的乘积一定,再做出选择.【同步测试】单元同步测试题一.选择题(共8小题)1.当:4=x:5时,x的值是()A.B.C.D.2.根据6×7=2×21,写出下面的比例中正确的一组是()A.6:7=2:24B.6:2=7:21C.6:2=21:7 3.如表,如果x和y成反比例,那么“?”处应填()x3?y56A.2B.3.6C.2.5D.104.语文书和数学书共40本,语文书的本数和数学书的本数的比可能是()A.4:3B.4:5C.5:3D.无法确定5.煤的总量一定,每天烧煤量和烧煤的天数()关系.A.成正比例B.成反比例C.不成比例D.无法判断6.A=,如果B一定,A和C这两种量成()关系.A.正比例B.反比例C.不成比例D.按比例分配7.一个三角形三个内角度数的比是1:3:4,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形8.一个长4cm,宽2cm的长方形按4:1放大,得到的图形的面积是()cm2.A.32B.72C.128二.填空题(共8小题)9.甲数与乙数的比例为5:3,甲数为60,乙数为.10.解比例:3.5:x=0.5:20%则x=11.表中x和y是两个成反比例的量,请将表格填写完整.x36120.18y10154012.一个最简分数的分母减去一个数,分子加上同一个数,所得的新分数可以约简为,这个数是.13.按照如图的配方,做5人份炒面,需要购买克面.14.利用正比例图象解决问题时,想找出已知量所在的数轴及位置,然后在另一数轴上找出已知量相的数值.15.一个比例中,两个内项的积是1,其中一个外项是1.25,另一个外项是.16.在3,15,12,5,9,30,20中,把可以组成的比例写出两组、.三.判断题(共5小题)17.比例2:a=b:3,那么a与b的积是6.(判断对错)18.甲数的与乙数的相等,且甲、乙均不为零,则甲数大于乙数..(判断对错)19.a:b=2:4,则b是a的2倍.(判断对错)20.小明上学,已经走的路程与剩下的路程,是两个相关联的量.(判断对错)21.如果小华与小红体重的比是7:8,那么小华就比小红轻.(判断对错)四.计算题(共1小题)22.解比例.=4:2.4x:=15:五.应用题(共6小题)23.一种酒精溶液,水和酒精的比是4:1.如果要调3.2升的酒精溶液,水和酒精分别需要多少毫升?24.学校体育组购进12根大绳,准备按年级学生人数分配给参加“蓓蕾计划”的一、二、三年级学生.一年级45人,二年级75人,三年级60人,二年级能分到多少根大绳?25.修路队修一段铁路,修了一天后,已修路程和未修路程的比是1:4,第二天修了3600米,正好修完这条铁路的一半,这段铁路长多少米?26.甜甜学习做面包,她搜索得知,做面包需要的面粉、全麦、黄油可以按10:4:1配制.如果三样食材配成后共重3000克,其中含有全麦多少克?如果这三样食材各有200克制作这种面包,当面粉全部用完时,黄油还剩多少克?27.六年级一、二、三3个班献爱心捐书,一班捐的本数是三个班总数的,二、三两个班捐的本数比是4:3.已知三个班捐书总数为700本.求三班捐了多少本?28.解决问题.参考答案与试题解析一.选择题(共8小题)1.【分析】根据比例的性质,把比例先改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,再进行选择.【解答】解::4=x:5,4x=×5,4x=3,x=.故选:B.【点评】此题考查比例性质的运用即解比例.2.【分析】根据比例的性质:两内项的积等于两外项的积,据此逐项写出等式,与等式6×7=2×21比较得解.【解答】解:A、因为6:7=2:24,6×24不等于7×2,所以选项A不正确.B、因为6:2=7:21,6×21不等于7×2,所以选项B不正确.C、因为6:2=21:7,所以6×7=2×21,所以选项C正确.由此得出C是正确的.故选:C.【点评】此题考查比例性质的灵活运用,即:两内项的积等于两外项的积.3.【分析】如果x和y成反比例,则x和y的乘积一定,由此列出比例解答即可.【解答】解:6x=3×56x=15x=2.5答:如果x和y成反比例,那么“?”处填2.5.故选:C.【点评】此题属于根据反比例的意义解题,如果两种相关联的量成反比例,则对应的乘积一定;再根据乘积一定列出比例,求得未知数的数值即可.4.【分析】要求这两种书的本数比是几比几,因为数的本数应该为整数,所以只要40能整除比的前项和后项份数的和即可.【解答】解:A、因为4+3=7,7不能整除40,所以这两种书的本数比不可能是4:3;B、因为4+5=9,9不能整除40,所以这两种书的本数比不可能是4:5;C、5+3=8,40能被8整除,所以这两种书的本数比可能是5:3;故选:C.【点评】此题考查了学生对比的应用以及分析判断的能力.5.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:因为:每天烧煤量×烧煤天数=煤的总量(一定),是乘积一定,所以每天烧煤量和烧煤天数成反比例;故选:B.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.6.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:A=,如果B一定,即AC=B(一定),是乘积一定,则A和C成反比例;故选:B.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.7.【分析】根据题意可得:三角形的三个内角分别占三角形内角和的、和,三角形的内角和是180度,根据一个数乘分数的意义分别求出三个角,进而进行判断即可.【解答】解:1+3+4=8180°×=22.5°180°×=67.5°180°×=90°所以该三角形是直角三角形.故选:B.【点评】解答此题的关键是先根据一个数乘分数的意义分别求出三个角,进而根据三角形的分类,判断即可.8.【分析】先根据按4:1放大,放大后长和宽是原来的4倍,求出放大后的长和宽,再求出面积.【解答】解:放大后的长:4×4=16(厘米);放大后的宽:2×4=8(厘米);面积:16×8=128(平方厘米);故选:C.【点评】先根据比例求出放大后的长和宽,再求出面积.二.填空题(共8小题)9.【分析】利用比例的基本性质即可求解,即两内项之积等于两外项之积.【解答】解:设乙数为x,则5:3=60:x,5x=180,x=36.故答案为:36.【点评】此题主要考查比例的基本性质.10.【分析】根据比例的基本性质,原式化成0.5x=3.5×20%,再依据等式的性质,方程两边同时除以0.5求解.【解答】解:3.5:x=0.5:20%0.5x=3.5×20%0.5x÷0.5=0.7÷0.5x=1.4;故答案为:1.4.【点评】本题主要考查学生依据等式的性质以及比例基本性质解方程的能力,解方程时注意对齐等号.11.【分析】根据x和y两个量成反比例关系,可知x和y这两个量对应的乘积一定,进而根据乘积一定得解.【解答】解:12×15=180180÷36=5180÷10=18180÷0.18=1000180÷40=4.5如图:x36180120.18 4.5y51015100040故答案为:5,180,1000,4.5.【点评】此题属于考查正、反比例的意义,如果两种相关联的量成反比例关系,那么它们对应的乘积一定相等.12.【分析】若设这个数为x,则的分母减去一个数,分子加上同一个数后,新分数的分子与分母的比是,据此就可以列比例求解.【解答】解:设这个数为x,则=,5×(13+x)=3×(27﹣x),65+5x=81﹣3x,8x=16,x=2;答:这个数是2.故答案为:2.【点评】解答此题的关键是明白的分母减去一个数,分子加上同一个数后,新分数与成比例,从而问题得解.13.【分析】通过观察配方表可知,2人份炒面需要600克面粉,由此可以求出1人份炒面需要面粉多少克,再根据乘法的意义,用乘法解答即可.【解答】解:600÷2×5=300×5=1500(克)答:需要购买1500克面粉.故答案为:1500.【点评】此题考查的目的是理解比的意义,掌握比与除法之间的联系及应用.14.【分析】根据正比例的定义,以及函数图象的对应关系即可求解.【解答】解:利用正比例图象解决问题时,想找出已知量所在的数轴及位置,然后在另一数轴上找出已知量相对应的数值.故答案为:对应.【点评】考查了正比例图象,关键是熟练掌握正比例的定义,以及利用正比例图象解决问题.15.【分析】根据比例的基本性质:在比例中,两个外项的积等于两个内项的积;已知两个内项的积是1,则两个外项的积也是1;用1除以1.25,即为另一个外项.【解答】解:因为两内项之积等于两外项之积,所以另一个外项是:1÷1.25=0.8.故答案为:0.8.【点评】本题主要考查比例基本性质的应用.16.【分析】根据比例的基本性质“两外项的积等于两内项的积”,只要找出四个数中任意两个数的积等于另外两个数的积,就说明这四个数能组成比例.据此解答.【解答】解:在3,15,12,5,9,30,20中3×20=12×5所以可以组成比例:3:12=5:20、3:5=12:20.故答案为:3:12=5:20、3:5=12:20.【点评】此题考查比例的意义和比例的性质的运用:验证所给的四个数能否组成比例,可以根据比例的性质:两外项的积等于两内项的积;也可以用求比值的方法,任意两个数的比值和另外两个数的比值相等,就能组成比例,否则就不能组成比例.三.判断题(共5小题)17.【分析】根据比例的性质,两个内项之积等于两个外项之积,进行判断即可.【解答】解:2:a=b:3,ab=2×3=6;所以原题计算正确;故答案为:√.【点评】此题考查比例性质的运用.18.【分析】利用比例的性质,将两个内项积等于两个外项积先改写成比例,再进一步化简比得解.【解答】解:甲数×=乙数×,则甲数:乙数=:=24:25,因为24份的数<25份的数,所以甲数<乙数.故答案为:错误.【点评】此题考查比例的运用,关键是把两个内项积等于两个外项积先改写成比例的形式.19.【分析】在比例中,两个外项的积等于两个内项的积,据此先把a:b=2:4改写成2b=4a,再根据等式的性质,两边同除以2得到b=2a,即b是a的2倍;据此判断即可.【解答】解:a:b=2:4,即2b=4a,则b=2a,即b是a的2倍;所以原题说法正确.故答案为:√.【点评】此题考查了比例的基本性质和等式性质的运用.20.【分析】已经走的路程与剩下的路程相加是总路程,它们是加数、加数与和的关系,所以已经走的路程与剩下的路程是两个相关联的量,据此判断.【解答】解:已经走的路程与剩下的路程相加是总路程,所以已经走的路程与剩下的路程是两个相关联的量.原题说法正确.故答案为:√.【点评】此题考查了两种相关联的量,成正比例、反比例,不成比例,有三种情况.21.【分析】如果小华与小红体重的比是7:8,把小华的体重看作7份数,把小红体重看作8份数,据此解答.【解答】解:小华与小红体重的比是7:8,把小华的体重看作7份数,把小红体重看作8份数,7<8,所以小华就比小红轻;原题说法正确.故答案为:√.【点评】此题考查了比的运用,把比看作份数比来理解.四.计算题(共1小题)22.【分析】(1)根据比例的性质,两外项之积等于两内项之积,把比例转化成一般方程4x=0.2×2.4,再根据等式的性质,方程两边都除以4即可得到原比例的解.(2)根据比例的性质,两外项之积等于两内项之积,把比例转化成一般方程x=×15,再根据等式的性质,方程两边都除以即可得到原比例的解.【解答】解:(1)=4:2.44x=0.2×2.44x÷4=0.2×2.4÷4x=0.12(2)x:=15:x=×15x÷=×15÷x=8【点评】解比例时,先根据比例的性质,两外项之积等于两内项之积,把比例转化成一般方程,然后再根据解方程的方法解答.五.应用题(共6小题)23.【分析】先求出总份数,即4+1=5份,然后分别求出水和酒精各占3.2升的几分之几,最后根据分数乘法的意义解答即可.【解答】解:4+1=53.2×=2.56(升)3.2×=0.64(升)答:水需要2.56毫升;酒精需要0.64毫升.【点评】此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.24.【分析】把大绳的根数看作单位“1”,先求出总人数,再求出二年级学生人数占总人数的几分之几,然后根据一个数乘分数的意义,用乘法解答.【解答】解:45+75+60=180(人)12×=5(根)答:二年级能分到5根大绳.【点评】此题考查的目的是理解掌握按比例分配应用题的结构特征及解答规律.即先求出总份数,再求出各部分占总数的几分之几,然后根据一个数乘分数的意义解答.25.【分析】把这段铁路的总长度看作单位“1”,修了1天后,已修的占总长度的,第二天修3600米,已修的占总长度的,则3600的对应分率是(﹣),用对应量除以对应分率,就是这段铁路的总长度.【解答】解:3600÷(﹣)=3600÷=12000(米)答:这段铁路长12000米.【点评】解答此题的关键是:求出3600的对应分率,用对应量除以对应分率,就是这条段路的总长度.26.【分析】已知一种面包需要的面粉、全麦、黄油可以按10:4:1配制.又知三样食材配成后共重3000克,先求出一份是多少克,进而求出含有全麦多少克;如果这三样食材各有200克制作这种面包,先求出面粉200克对应的黄油克数,再用200克减去对应的黄油克数即可求解.【解答】解:3000×=3000×=800(克)200﹣200÷10×1=200﹣20=180(克)答:其中含有全麦800克,黄油还剩180克.【点评】此题考查的目的是掌握按比例分配应用题的结构特征和解答规律,此题关键是求出一份是多少千克.进而求出缺少和剩余的各是多少千克.27.【分析】把六年级三个班捐书的总数看作单位“1”,一班捐的本数是三个班总数的,根据一个数乘分数的意义,用乘法即可得出一班捐的本数,用总数减去一班捐的本数就是二班和三班共捐书多少本,已知二、三两个班捐的本数比是4:3,也就是三班捐书的本数占二、三班捐书本数的,根据一个数乘分数的意义,用乘法即可求得三班捐了多少本.【解答】解:700×=280(本)(700﹣280)×=420×=180(本)答:三班捐书180本.【点评】此题考查的目的是理解掌握比的意义及应用,以及比与分数之间的联系及应用.28.【分析】根据高年级和低年级所分的本数比,求出各占剩余本数的几分之几,进而根据分数乘法解决问题.【解答】解:640×=400(本)640×=240(本)答:高年级分得400本图书,低年级分得240本图书.【点评】本题考查了分数问题和按比例分配的实际问题,按比例分配的方法求出两个年级的本数,是比较难的问题.。
人教版数学六年级下册比例的意义优秀教案(推荐3篇)
人教版数学六年级下册比例的意义优秀教案(推荐3篇) 人教版数学六年级下册比例的意义优秀教案【第1篇】知识结构重难点分析本节的重点是线段的比和比例线段的概念以及比例的性质.以前的平面几何主要研究线段的位置关系和相等关系,从本章开始研究线段及相关图形的比例关系――相似三角形,这些内容的研究都离不开线段的比和比例性质的应用.本节的难点是比例性质及应用,虽然小学时已经接触过比例性质的一些知识,但由于内容比较简单,而且间隔时间较长,学生印象并不深刻,而本节涉及到的比例基本性质变式较多,合分比性质以及等比性质学生又是初次接触,内容不但多,而且轻易混淆,作题不知应用哪条性质,不知如何应用是常有的.教法建议1.生活中比例的例子比比皆是,在新课引入时最好从生活实例引入,可使学生感觉轻松自然,轻易产生爱好,增加学生学习的主动性2.小学时曾学过数的比及相关概念,学习时也可以复习引入,从数的比过渡到线段的比,渗透类比思想3.这一节概念比较多,也比较轻易混淆,教学中可设计不同层次的题组来进行巩固,非凡是要举一些反例,同时要注重对相近概念的比较4.黄金分割的内容要求学生理解,主要体现数学美,可由学生从生活中寻找实例,激发学生的爱好和参与感5.比例性质由于变式多,理解和应用上轻易出现错误,教学时可利用等式性质和分式性质来处理教学设计示例1(第1课时)一、教学目标1.理解线段的比的概念.2.通过与小学知识到比较,初步培养学生“类比”的数学思想.3.通过线段的比的有关计算,培养学习的计算能力.4.通过“引言”及“例1”的教学,激发学生学习爱好,对学生进行热爱爱国主义教育.二、教学设计先学后做,启发引导三、重点及难点1.教学重点两条线段比的概念.2.教学难点正确理解两条线段的比及应用.四、课时安排1课时五、教具学具预备股影仪、胶片、常用画图工具六、教学步骤复习提问找学生回答小学学过的比、比的前项和后项的概念.(两个数相除又叫做两数的比,记作或a:b,其中a叫比的前项,b 叫比的后项)讲解新课把学生分成三组,分别以米、厘米、毫米作为长度单位,量一下几何教材的长与宽(令长为a,宽为b).再求出长与宽的比.然后找三名同学把结果写在黑板上.如:等.可以看出,在同一长度单位下,两条线段长度的比就是两条线段的比.一般地:若a、b的长度分别是、n(单位相同),那么就说这两条线段的比是 ,或写成 ,和数的比一样,a叫比的前项,b叫比的后项.关于两条线段比的概念,教学中要揭示它的实质,即表示a是b 的倍,这是学生已有的知识,较易理解,也轻易使学生注重到求比时,长度单位要一致.另外,可组织学生举例实际生活中两条线段的比的问题,充分调动学生联系实际和积极思维的能力,对活跃课堂气氛也很有利,但教师需注重尺度.就刚才三组学生做过的练习及问题回答,在教师启发和点拨下,让学生讨论或试述两条线段的比应注重的问题,归纳出: (l)两条线段的比就是它们的长度的比.(2)比与所选线段的长度单位无关,求比时,两条线段的长度单位要一致.(3)两条线段的比值总是正数.(并不都是正数)(4)除了a=b之外, . 与互为倒数.例1 见教材P202.讲解完例1后:(l)提问学生AB是的多少倍, 是AB的多少倍,以加深学生对线段比的逾义的理解.(2)给出:比例尺= ,就例1的图上,若图距是8c的两地,实际距离是多少?另外,还可鼓励学生课后根据地图上的比例尺,测量并计算出你所在省会与首都北京的直线距离,从而丰富了知识,激发了学习爱好.例2 见教材P202.讲解完例2后:(l)可改变线段AB的长度,或给出AC、BC的长度,再求这些比,使学生熟悉这种三角形中边的比与长度无关.(2)常识1:有一锐角是30°的直角三角形中,三边(从小到大)的比为 .常识2:等腰直角三角形三边(从小到大)的比为1:1: .学生把握了这些常识可有两点好处:①知道例2中“”以及习题5.l第2题(1)中“边长为4”.(2)中的“对角线AC=a”这些条件实际上都是多余的.②这些题目若改成“填空题”,可避免一些不必要的计算.从而提高做题速度.这样不仅培养了能力,而且在考试中也受益匪浅.因此,今后如碰到和此常识有关的知识要反复渗透,反复给学生强调,让它扎根于学生的下意识中。
人教版六年级数学下册第4单元--比例(比例的应用共7课时)
第4单元比例第1课时比例尺(1)【教学目标】知识目标:使学生在具体情境中理解比例尺的意义,能看懂线段比例尺。
能力目标:会求一幅图的比例尺,会把数值比例尺与线段比例尺进行转化。
情感目标:培养分析、抽象、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。
【教学重难点】重点:使学生在具体情境中理解比例尺的意义,能看懂线段比例尺。
难点:会求一幅图的比例尺,会把数值比例尺与线段比例尺进行转化。
【教学过程】一、创境激疑, 情境导入谈话:同学们,我国历史悠久,地域辽阔,国土面积大约有960万平方千米。
但这么辽阔的地域却可以用一张并不很大的纸画下来。
出示大小不一的中国地图,并提问:想知道这些地图是怎样绘制出来的吗?今天我们就学习这方面的知识——比例尺。
板书课题:比例尺二、自主探究,理解比例尺的意义1、出示例1,在学生理解题意后提问:题目要求我们写出几个比?这两个比分别是哪两个数量的比?什么是图上距离?什么是实际距离?2、探索写图上距离和实际距离的比的方法。
提问:图上距离和实际距离单位不同,怎样写出它们的比?引导学生通过交流,明确方法:先要把图上距离和实际距离统一成相同的单位,写出比后再化简。
学生独立完成后,展示、交流写出最简的比。
3、揭示比例尺的意义以及求比例尺的方法。
谈话:像刚才写出的两个比,都是图上距离和实际距离的比。
我们把图上距离和实际距离的比,叫做这幅图的比例尺。
提问:这张长方形草坪平面图的比例尺是多少?图上距离:实际距离=比例尺120km=12000000cm24 :12000000=1 :5000000三、拓展应用教材56页1、2题四、总结这节课你学会了什么?你有哪些收获和体会?计算一幅图的比例尺时要注意什么?五、作业布置教材56页3、4题【板书设计】比例尺的意义例1 图上距离:实际距离=比例尺120km=12000000cm24 :12000000=1 :5000000【教学反思】在教学比例尺的过程中,针对课本上出现的两种问题,一类是已知比例尺和图上距离求实际距离,另一类是已知比例尺和实际距离求图上距离。
六年级下册数学教案-第4单元 第1课时 比例的意义 人教新课标
六年级下册数学教案-第4单元第1课时比例的意义人教新课标教学目标知识与技能1. 理解比例的意义,能根据比例写出两个比值相等的比。
2. 能根据比例的意义,辨识成正比例的量和成反比例的量。
过程与方法1. 通过实际情境,让学生体会比例在生活中的应用,培养学以致用的能力。
2. 通过小组讨论,培养学生的合作能力和解决问题的能力。
情感态度与价值观1. 培养学生对数学的兴趣,激发学生探究数学规律的欲望。
2. 培养学生的逻辑思维能力,提高学生的数学素养。
教学重点与难点教学重点1. 理解比例的意义,能根据比例写出两个比值相等的比。
2. 能根据比例的意义,辨识成正比例的量和成反比例的量。
教学难点1. 理解比例的意义,特别是比例中的比值相等的概念。
2. 能在实际情境中辨识成正比例的量和成反比例的量。
教学方法1. 讲授法:讲解比例的概念和意义。
2. 演示法:通过实际操作,展示比例的应用。
3. 小组讨论法:让学生在小组内讨论,共同解决实际问题。
教学过程一、导入(5分钟)1. 利用多媒体展示一些生活中的比例现象,如身高与体重的关系,速度与时间的关系等,引导学生思考这些现象背后的数学规律。
2. 提问:你们知道什么是比例吗?比例有什么意义?二、新课导入(15分钟)1. 讲解比例的概念:比例是表示两个比相等的式子。
2. 通过实例,让学生理解比例的意义。
例如,如果有两个长方形,一个长方形的长是10厘米,宽是5厘米,另一个长方形的长是20厘米,宽是10厘米,那么这两个长方形的长宽比是相等的,即10:5=20:10。
3. 引导学生思考:在生活中,还有哪些现象可以用比例来描述?三、小组讨论(10分钟)1. 将学生分成小组,每组讨论一个实际问题,如身高与体重的关系,速度与时间的关系等。
2. 每个小组汇报讨论结果,共同总结成正比例的量和成反比例的量的特点。
四、课堂小结(5分钟)1. 回顾本节课的内容,让学生复述比例的概念和意义。
2. 提问:如何辨识成正比例的量和成反比例的量?五、作业布置(5分钟)1. 课后练习:完成教材第4单元第1课时的课后练习题。
六年级下册数学教案《 4.2.正比例和反比例 第1课时 正比例 》 人教版
六年级下册数学教案《 4.2.正比例和反比例第1课时正比例》人教版一. 教材分析《4.2.正比例和反比例》是人教版六年级下册数学的教学内容。
这部分内容主要让学生理解正比例和反比例的概念,能够辨识生活中的正比例和反比例关系,并运用比例知识解决实际问题。
本节课是这一单元的第一课时,重点是让学生掌握正比例的定义和判断方法。
二. 学情分析六年级的学生已经具备了一定的逻辑思维能力和解决问题的能力。
他们在学习过程中,需要通过观察、操作、思考、交流等活动,理解正比例的概念,掌握正比例的判断方法。
同时,学生在生活中已经积累了一些关于比例的经验,为本节课的学习奠定了基础。
三. 教学目标1.让学生理解正比例的概念,能够判断两个相关联的量之间成正比例。
2.培养学生运用比例知识解决实际问题的能力。
3.激发学生的学习兴趣,培养学生的合作意识。
四. 教学重难点1.重点:掌握正比例的定义和判断方法。
2.难点:辨识生活中的正比例关系,运用比例知识解决实际问题。
五. 教学方法1.采用情境导入法,激发学生的学习兴趣。
2.运用实例分析法,让学生直观地理解正比例的概念。
3.采用合作交流法,培养学生的团队协作能力。
4.运用练习巩固法,提高学生的应用能力。
六. 教学准备1.准备相关的教学PPT或黑板。
2.准备一些生活中的实例,用于讲解正比例关系。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT或黑板展示一些生活中的图片,如行驶的汽车、升空的火箭等,引导学生观察这些图片,并提出问题:“这些图片中的物体有什么共同的特点?”让学生思考并回答,从而引出本节课的主题——正比例。
2.呈现(10分钟)讲解正比例的概念,并通过实例让学生直观地理解正比例关系。
例如,讲解速度、时间和路程之间的关系,引导学生判断它们是否成正比例。
同时,让学生举例说明生活中其他的正比例关系。
3.操练(10分钟)让学生分组讨论,每组找出生活中的一个正比例关系,并运用所学的判断方法进行验证。
人教版六年级数学下册4.1.1《比的意义》同步练习(含答案解析)
第四单元《比例》4.1.1《比的意义》同步练习一、填空题。
1.从36的因数中,选择四个因数,把它们组成一个比例是________。
2.比例中的四个数叫做这个比例的________。
其中两端的两个数叫做________,中间的两个数叫做________。
3.:的比值是________,8:18的比值是________,这两个比组成比例是________。
4.表示________的式子叫做比例。
5.用12的约数写出一个比例________。
6.= =24÷[ ]=[ ](填小数).二、单选题。
1.应用比例的意义,判断下面()中的两个比不可以组成比例.A. 6:10和9:15B. 20:5和4:1C. 5:1和6:22.能与3:8 组成比例的比是()A. 8:3B. 0.2:0.5C. 15:403.如果a∶b=c∶d,那么下面的比例错误的是()。
A. a∶c=b∶dB. c∶d=a∶bC. a∶d=b∶c4.下列比例正确的一组是()A. 12:6=2B. 0.8:0.2=1:4C. 16:4 =8:2三、判断题。
1.用2,3,2.5和1这四个数能组成比例。
()2.把15:14写成分数的形式是. ()3.比和比例的意义相同。
()4.比其实就是比例.()5.两个比值相等的比不一定能组成比例。
()四、解答题.1.判断下面每组中的两个比能否组成比例,把组成的比例写出来。
(1)9:12和0.8:0.6(2)6:5和(3)1.4:7和3:15(4)1:和1.8:0.6(5)和3:4(6)和2.2003年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。
在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。
(1)杨利伟展示的两面旗都是长15cm,宽10cm。
怎样用算式表示它们长和宽的关系?(2)“神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。
人教版数学六年级下册比例的基本性质教案(推荐3篇)
人教版数学六年级下册比例的基本性质教案(推荐3篇)人教版数学六年级下册比例的基本性质教案【第1篇】第一课时比例的意义教学内容:比例的意义(教材第40页的内容)教学目标:1、理解和掌握比例的意义。
2、了解比和比例的区别与联系。
2、能用比例的意义判断两个比能否组成比例。
教学重难点:1、认识比例,理解比例的意义。
2、在已有知识的基础上,结合实例引出新的知识。
教具准备:情景图、多媒体课件、习题卡。
教学过程:一、导入出示课题:比例看到课题你想到了以前学过的什么知识?(生1,生2等回答)我们已经了解了比的这些知识,请做下面练习。
求下面各比的比值。
18:453:52.7:4.5求完比值你觉得哪些比有联系?【设计意图:通过复习比单关的有关知识。
唤起学生对已有知识的回忆,为新知的学习做好准备。
】“例”在汉语词典里的解释为符合某种条件。
今天这两个比的比值一样,能不能用等号连接呢?师:相机板书:3:5=2.7=4.5?今天我们将深入学习比例的意义,看到课题你想了解什么知识呢?板书完整课题:比例的意义二、揭题示标。
预设:生:1、比例的意义是什么?生:2、比例的意义有什么作用?(师趁机板书在黑板右上角)【设计意图:通过让学生读课题,提问题,明确本节课的学习目标,做到有的放矢。
同时培养了学生的问题意识。
】本节课我们就来完成这两个目标:三、自主探索出示:中华人民共和国国旗国旗是我们中华民族的标志和象征,神圣不可侵犯,你在什么地方见过国旗?【设计意图:对学生同时进行思想品德教育和爱国教育】生各抒己见。
你知道下面这些国旗的长和宽是多少吗?它们有大有小,都符合要求吗?今天我们一起来探讨。
自学指导:1、请每位同学任选两面国旗,分别计算出它们长与宽的比值和宽与长的比值。
2、发现了什么有趣的现象?3、把你的发现尝试用算式写下来。
(5分钟后,期待你精彩的分享)【设计意图:充分利用教材中的主题图设计教学情景,设置悬念,国旗为什么形状相似却大小不一,这其中的奥秘何在?不仅激发了学生的学习兴趣,更能让学生通过形象的感受大小不同的国旗的变化。
2024年新人教版六年级数学下册《第4单元第1课时 比例的意义》课件
义务教育人教版六年级下册
4 比例
第1课时 比例的意义
环节一
1.什么是比?比各部分的名称是什么?
两个数的比表示两个数相除;
15
∶10=
3 2
前比后 比 项号项 值
2.求下面各比的比值。
36∶72
1.3∶2.6
8∶18
0.9∶1.5
36∶72 = 36÷72 =0.5
1.3∶2.6 =1.3÷2.6 = 0.5
8∶18
=
8÷18
=
4 9
0.9∶1.5 = 0.9÷1.5 = 0.6
哪两个比的 比值相等?
环节二
国旗长5m, 宽10 m。
3
国旗长2.4m, 国旗长60cm,
宽1.6m。
宽40cm。
你们想不想知道这些国旗的长和宽分别是多少?
,13
,16
和
1 4
1:1 = 1:1
23 46
(答案不唯一)
环节四
通过这节课的学习, 你有什么收获?
(2)20∶5和1∶4 因为20∶5=4 1∶4=0.25
所以6∶10=9∶15
所以不能组成比例。
1
(3)2
:
1 3
和6∶4
因为
1:1 23
3 2
6:4 3 2
所以 12∶13 =6∶4
(4)0.6∶0.2和 3 : 1 44
因为 0.6 : 0.2 3 3:1 3 44
所以0.6∶0.2= 34∶14
国旗长5m, 宽10 m。
3
国旗长2.4m, 宽1.6m。
国旗长60cm, 宽40cm。
六年级下册数学试题-比例的意义和基本性质(含答案)人教版
比例的意义和基本性质(一 )比例的意义比例的意义:表示两个比相等的式子叫做比例。
比例是一个等式。
注意:写比例时,组成比例的两个比既可以写成带比号的形式,也可以写成分数的形式,但是读法相同。
(二)比例的基本性质比例各部分的名称:组成比例的四个数,叫做比例的项,两端的两项叫做外项,中间的两项叫做比例的内项。
a :b =c : d比例的基本性质:在比例里,两个外项的积等于两个内项的积。
用字母表示,如果a:b=c:d (b 、d 均不为0),那么ad=bc 。
注意:比例写成分数形式后,内项和外项并不改变。
如b a =dc (b 、d 均不为0),a 、d 仍然是外项,c 、d 仍然是内项,这时求两个外项的积等于两个内项的积,就是把等号两边的分子和分母分别交叉相乘,即ad=bc 。
判断两个比能否组成比例内项外项方法1:根据比例的意义可以判断两个比能否组成比例:判定等式两边的比是否相等,若相等则能组成比例,否则不能组成比例。
方法2:应用比例的基本性质判断两个比能否组成比例:先假设这两个比能组成比例,再看两个内项的积与两个外项的积是否相等。
若相等,则假设成立,能够组成比例,否则不能组成比例。
(三)解比例解比例:求比例中的未知项,就是解比例。
解比例的方法:根据比例的基本性质解比例,先把比例转化成两个外项的积与两个内项的积相等的形式,再通过解方程求出未知项的值。
检验:把求得的未知数的值代入比例中,看比例是否成立。
知识点一:比例的意义例题1. 判断下面哪组中的两个比可以组成比例,能组成比例的填入()中0.9:1.2和8:651:61和6:5 0.6:0.4和43:41 1.2:43和54:5( )练习1. 12:9的比值是( ),31:41的比值是( ),所以这两个比( )组成比例(填“能”或者不能)。
练习2.(判断) 8:2=4是比例( )例题2.用图中的4个数据可以组成多少个比例?练习. 12的因数有( ),用其中的4个因数组成比例是( ):( )=( ):( )知识点二:比例的基本性质例题1:在24:9=8:3中,外项是( )和( ),内项是( )和( )。
人教版数学六年级下册第四单元 比例练习及答案二
第1课时比例的意义1.算一算下面哪两幅图片的长和宽的比值是相同的。
2.下面各组的两个比能组成比例吗?如果能,在括号里画“ ”。
6∶8和9∶12( ) 1.2∶0.6和38∶34( ) 56∶57和7∶6( ) 3.用右图中的4个数据可以组成多少个比例?答案:1.2.4∶1.8=2∶1.5 第一幅图和第二幅图是相同的。
2.( )( )( )3.解答:一共可以组成8个比例,分别是6∶3=8∶4 3∶6=4∶8 6∶8=3∶4 8∶6=4∶3 8∶4=6∶3 4∶8=3∶63∶4=6∶84∶3=8∶6第2课时比例的基本性质1.在比例9∶6=12∶8中,两个内项分别是( )和( ),两个外项分别是( )和( )。
把这个比例写成乘法等式为( )。
2.根据比例的基本性质,在括号里填上合适的数。
1.2∶67=2.4∶( ) 58=( )243∶9=( )∶1514( )=73 ( )∶3=4∶( )0.5∶( )=( )∶123.判断:12∶13=64是比,而不是比例。
答案:1.6 12 9 8 6×12=9×82.127 15 5 6 后两题答案不唯一,如:2 6 2 33.错解分析:错误解答错在只把64看作了比值,没有理解比例的含义。
64既可以看作比值,也可以看作6与4的比。
如果64看作6与4的比,那么12∶13与6∶4能组成比例,因此,12∶13=64可以看作是比,也可以看作是比例。
正确解答:✕第3课时解比例1.在下面的括号里填上合适的数。
8∶2=24∶( )( )15=451.5∶3=( )∶34 48∶( )=3.6∶92.解比例。
0.7∶x =48∶4858∶5=24∶x67∶56=65∶x 56∶14=x ∶23 3.按照下面的条件列出比例,然后解比例。
(1)6与5的比等于30与x 的比。
(2)等号左边的比是2∶1.5,等号右边的比的前项和后项分别是6和x 。
答案:1.6 12 17 1202.x=750 x=15 x=76 x=2093.(1)6∶5=30∶x x=25(2)2∶1.5=6∶x x=4.5第4课时练习课1.照这样计算,小雪15分钟行多少米?2.某美术组男生与女生的人数比是6∶7,男生有12人,女生有多少人?3.一幅画,长与宽的比是3∶2,已知这幅画的宽是80厘米,这幅画的长是多少厘米?答案:1.解:设小雪15分钟行x米。
人教版六年级下册第四单元第一课时《比例的意义》教学设计
人教版小学数学六年级下册第四单元《比例的意义》教学设计教学内容:人教版六年级下册第四单元第一课时《比例的意义》教学目标:1理解比例的意义,掌握组成比例的条件,能正确判断两个比能否组成比例;会用比例的观点解释生活中的问题;2初步体会知识之间的内在联系,理解“比例”来源于“比”,感受两列数之间的“函数”关系,构建知识网络。
感受“等价类”的数学思想方法。
3感受中国优秀的传统文化。
教学重点:理解比例的意义,掌握组成比例的条件,能正确判断两个比能否组成比例。
教学难点:会用比例的观点解释生活中的问题。
教具和学具准备:课件、练习纸。
教学过程:一、创设情境激发兴趣师:昨天咱们已经见过面了,对吗?还记得我那两个神秘的身份吗?生:记得,你是一个数学老师,还是新手奶爸。
师:其实新手奶爸可不是那么好当的。
这不,在照顾小宝宝的时候遇到难题啦!看!这是我刚买的奶粉,一不小心给弄脏了,这么多信息都不见了。
你能帮我找回来吗?师:请你拿出建议喂哺表,开始吧!谁先完成谁举手。
师:真快,才几秒钟就完成了。
这边也很快。
你是第一个完成的,给大家介绍一下吧。
生:2勺奶粉兑60毫升,3勺奶粉兑90毫升......师:你们跟他填的一样吗?哎?你是怎么想的?师:你是用(倍数关系)(约分)(数据的排列规律)的方法找到的,对吗?掌声!为你的智慧鼓掌。
师:同学们,你们知道吗,小婴儿刚出生的时候,胃只有一颗葡萄那么大。
我们给他喂0.5勺奶粉,该兑多少水呢?生:15毫升,因为......师:如果给他喂a勺奶粉,该兑多少水?生:30a毫升的水。
因为......师:谢谢你们,帮我解决了难题。
为了表述方便,我们把它们分别标号①到⑦,表示7杯不同的奶,可以吗?【设计意图】创设问题情境,自然的引出一系列比值相等的比,为比例的产生创造条件。
二、研究比之间的关系师:第①杯奶有多浓?用数学的语言怎么表示?只用一个数行吗?生:我是这样表示的:1:30师:浓度受几个因素影响?生:两个。
比例的基本性质(说课课件)-六年级下册数学人教版
说教材
比、除法和分数的知识
比例的意义
比 例 的 项
外内 项项 积积
分 数 形 式
比 例 基 本 性 质
解 决 问 题
说学生
比的知识
理解问题、归纳总结 算术的思考方式
自主探索
说目标
使学生了解和掌握比例的基本性质, 能用比例的基本性质判断两个比是否成比 例;认识比例各部分名称,并能正确地组
1、把 4.5,7.5, 1 , 1 和四个数组成比例,其中内项的积是(
)
A.33.75 B.2.2253
C.1.35
D.4.65
2、明辨是非
(1)因为5a=6b,所以a:b=6:5.
()
(2)在比例中,“:”左边两个数的乘积等于“:”右边两个数的乘积.
()
(3)运用比例的基本性质能判断两个比是否成比例.
组长
李响 付晓娜 胥日发 胡悦
武丛 王璐萍 贾舒然
组员
侯志臣 周星月 吕奇鹏 佟曦辉 王 书 李星辰 姜 楠王 硕
李思朦 刘可鑫 李思博 尹雁超 郑文巧 刘倬蓉 刘博闻 李 彤
郭亚楠 李 岩 王 淇姜珊
许强崔 昊 霍天赐 张云鹏
潘晓刚 冯天阳 尹燕楠 陈 宇
时间
互助情况
《
比
例
的设
基 本 性
计 亮
质点
突破难点
教学时有意识创设情境,激发学生探索问题 的欲望,根据后进生理解知识慢的情况,我想在介绍了比 例中各部分的名称后,可以再举一些比例,让学生说说每 个比例中的外项、内项分别是哪些数. 因为是刚认识比例 中各部分的名称,学生一般会与以前学习的比的前项与后 项发生混淆,而一旦混淆会影响后一部分的学习. 所以这 里可以适当放慢节奏. 另外在习题的训练过程中,将教材 中的习题重新设置补充,分层次由易变难.
六年级数学下册典型例题系列之第四单元比例尺部分(解析版)人教版
2021-2022学年六年级数学下册典型例题系列之第四单元比例尺部分(解析版)编者的话:《2021-2022学年六年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。
典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。
本专题是第四单元比例尺部分。
本部分内容主要考察比例尺的认识及应用,考点和题型相对简单,建议作为本章重点内容进行讲解,一共划分为十一个考点,欢迎使用。
【考点一】比例尺的意义。
【方法点拨】1.比例尺的意义:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺,一般用文字描述为图上1厘米表示实际距离多么厘米。
【典型例题】一幅地图的比例尺是1∶10000,图上1cm 的距离,表示实际( )m 。
解析:100【对应练习】比例尺1∶6000000表示图上1cm 的线段相当于实际距离( )km ;比例尺10∶1表示图上1cm 长的线段相当于实际( )mm 。
解析:60;1【考点二】比例尺的改写。
【方法点拨】1.比例尺主要有两种分类,即线段比例尺和数值比例尺。
2.比例尺三种形式的写法:①比的形式:比例尺是图上距离与实际距离的最简整数比,可以写成带比号的形式;②分数形式:也可以写成分数形式,即比例尺1∶2500也可以写成25001; ③线段形式: 注意:实际上,通常图上距离的单位是厘米,实际距离的单位是千米,因此计算时一定要进行单位换算。
【典型例题】地图上的线段比例尺是千米,把这个线段比例尺改成数值比例尺( )。
解析:1∶3000000这是一个( )比例尺,用数值比例尺表示是( )。
解析:线段;1∶4000000【对应练习2】是( )比例尺,把它改成数值比例尺是( )。
解析: 线段;1∶3000000【对应练习3】把改写成数值比例尺是( )。
人教版六年级数学下册第四单元比例PPT教学课件全套
4.判断。(对的画“√”,错的画“×”)
(1)在比例里,两个外项的积与两个内项的积的差等于0。 ( √ )
(2)已知xy=32,则可以有比例x:4=8:y。 (3)2:3和4:5可以组成比例。 ( ( √) ) ×
(4)如果5a=8b,那么a:b=5:8。
(5)8:4
1 3 和12:7 可以组成比例。 8 4
6∶ 4= 3 ∶ 2
1 1 所以, 2 : 3 和6∶4可以组成比 1 1 例,所以, : =6:4 。 2 3
方法提示:
判断两个比能不能组成比例,关键看它们的比值是否相等。
比例的意义:
1.比例的意义:表示两个比相等的式子叫做比例。
2.判断两个比能否组成比例的方法:根据比例的 意义,看两个比的比值是否相等,相等就能组 成比例。
夯实基础 (选题源于《典中点》)
1.填空。
2 在比例 3 :2=0.2:0.6里,( 0.9 18 = 40 里,( 2
2 3
)和( 0.6 )是外项;在
2
)和( 18
)是内项。
2.指出下面比例的外项和内项。 (1) 4.5:2.7=10:6 4.5和6是外项,2.7和10是内项。 (2)
x 1.2 = 25 75
像这样表示两个比相等的式子叫做比例。
提示: 写比例时,组成比例的两个比既可以写成带比号
的形式,也可以写成分数的形式,但读法相同。
国旗长5m,宽
10 m。 国旗长2.4m,宽1.6m。 国旗长60cm,宽40cm。 3
想一想,在上图的三面国旗的尺寸中, 还有哪些比可以组成比例?
归纳总结:
1.比例的意义:表示两个比相等的式子叫做比例。
(3) (
易错辨析 (选题源于《典中点》)
六年级数学下册试题 -《第4章 比例 第1课时 比例的意义和基本性质》同步测试题 人教版
人教版六年级数学下册《第4章比例第1课时比例的意义和基本性质》同步测试题一.选择题(共6小题)1.下列()组中的两个比不可以组成比例。
A.6:18和3:9B.3:和5:6C.:和2:0.52.在=中,a的值是()A.2B.4C.6D.83.解比例:=2:1,x=()A.6B.1.5C.0.7D.94.在一个比例中,已知两个外项互为倒数,其中一个内项是最小的质数,另一个内项是()A.4B.C.2D.5.根据ab=cd,下面不能组成比例的是()A.a:c和d:b B.b:d和a:c C.d:a和b:c6.下列能与:组成比例的是()A.3:4B.4:3C.1:4D.:3二.填空题(共6小题)7.解比例=,则x=8.解比例:3.5:x=0.5:20%则x=9.在一个比例里,两个内项互为倒数,其中一个外项是3,另一个外项是.10.在横线里填上适当的数.24:9=8:;:6=3:.11.如果4x=5y,那么x:y=:,x:5=:.12.下面哪组中的两个比可以组成比例?把能组成比例的在横线里打“√”.(1)2:6和3:1.(2)1:2和0.5:1.(3)0.8:0.2和16:4.(4)7:3和3:7.三.判断题(共5小题)13.交换比例的两个内项或两个外项,比例仍然成立..(判断对错)14.表示两个比相等的式子叫比例.(判断对错)15.比例的两个内项互为倒数,那么它的两个外项也互为倒数..(判断对错)16.若2:a=4:8那么a=1.(判断对错)17.解比例的依据是比的基本性质..(判断对错)四.计算题(共1小题)18.解比例。
(1)96:24=x:36(2):x=五.应用题(共2小题)19.如图,在左边刻度5的地方放3个棋子,那么在右边刻度3的地方应放多少个棋子才能保持平衡?20.如图所示,一个长方形,它的长是4cm,宽是2cm.这个长方形的宽和长之比是,长和周长之比是,这两个比能组成比例吗?六.解答题(共6小题)21.按照下面的条件列出比例,并且解比例.比例的两个外项分别是和,两个内项分别是x和.22.把15×6=30×3改写成四个不同的比例.23.两个外项是X和5,两个内项是25和4.24.一个比例的两个内项分别是最小的质数和合数,两个外项分别是1和x.25.一个比例中,两个内项都是6,而且两个比的比值都是5,x是一个外项,列出这个比例并解答.26.把、、0.4和四个数组成一个比例.参考答案与试题解析一.选择题(共6小题)1.【分析】要想判断两个比能不能组成比例,可以根据比例的基本性质:两个外项的积等于两个内项的积,计算出两个外项的积、两个内项的积,然后判断即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四单元 比 例
1.比例的意义和基本性质
一、填一填。
1.表示两个比相等的式子叫做( 比例)。
2.12∶9的比值是( 4
4 3
),
2 3
∶
1 2
的比值是
( 3),这两个比组成的比例是
(
12∶9)= 。23
∶
1 2
3.16的因数有( 1,)2,,用4,其8中,的164个因数组成一个比例是
( )。
1∶2=4∶8 (答案不唯一)
4.写出比值是
4 5
的两个比,并组成比例是(4∶5=8∶10)
ቤተ መጻሕፍቲ ባይዱ
(答案不唯一)
二、判一判。(对的在括号里画“√”,错的在括号里
画“×”)
1. 12∶3=4是比例。
(×)
√ 2. 能与0.8∶1.2组成比例的比有无数个。( )
3. 2∶5=8∶20
(√)
三、选一选。(将正确答案的字母填在括号里)
1.下列各式中( C )是比例。
A. 4∶1=4
B. 3×8=4×6
C. 0.4∶3.6=2∶18
2.能与6∶8组成比例的是( A )。
A.
1 4
∶
1 3
B. 4∶3
C. 12∶32
3.不能与2,3和6组成比例的数是( C )。
A. 1
B. 4
C. 8
四、解决问题。 1.一辆小汽车2小时行驶了140 km,以同样的速度4小 时行驶了280 km。小汽车的行驶时间和相应路程能 组成比例吗?如果能,写出比例。
2∶140 =
1 70
4∶280 =
1 70
1 70
=
1 70
小汽车的行驶时间和相应路程能组成比例
2∶140 = 4∶280
2.张阿姨调了两杯糖水,第一杯用20 g糖和100 g水, 第二杯用35 g糖和175 g水,分别写出每杯糖水中水 的克数和糖的克数的比,它们能不能组成比例?
第一杯:100∶20=5∶1 第二杯:175∶35=5∶1 5∶1=5∶1,能组成比例。
看图回答问题。
1.图中A,B两个正方形边长的比是多少?周长的比 是多少?这两个比能组成比例吗? 边长比:6∶10=3∶5 周长比:(6×4)∶(10×4)=3∶5 3∶5=3∶5, 这两个比能组成比例。
2.A,B两个正方形面积的比是多少?这个比和边长 的比能组成比例吗?
面积比:(6×6)∶(10×10)=9∶25 面积的比与边长的比不能组成比例