系统工程第四版习题解答(2)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姓名:姚德世

专业班级:工程管理1107班

学号:24

系统工程第三次作业

8、假设每月招工人数MHM和实际需要人数RM成比例,招工人员的速率方程是:MHM·KL=P*RM·K,请回答以下问题:

(1)K和KL的含义是什么?

(2)RM是什么变量?

(3)MHM、P、RM的量纲是什么?

(4)(4)P的实际意义是什么?

解:(1)K表示现在时间

KL表示由现在时刻到未来是可的时间间隔

(2)RM是速率变量

(3)MHM的量纲是KL;P的量纲是RM;RM的量纲是K;

(4)P的实际意义是现在之未来的增长速率。

9. 已知如下的部分DYNAMO方程:

MT·K=MT·J+DT*(MH·JK-MCT·JK),

MCT·KL=MT·K/TT·K,

TT·K=STT*TEC·K,

ME·K=ME·J*DT*(MCT·JK-ML·JK)

其中:MT表示培训中的人员(人)、MH表示招聘人员速率(人/月)、MCT表示人员培训速率(人/月)、TT表示培训时间、STT表示标准培训时间、TEC表示培训有效度、ME表示熟练人员(人),ML表示人员脱离速率(人/月)。请画出对应的SD(程)图。

10. 高校的在校本科生和教师人数(S和T)是按一定的比例而相互增长的。已知某高校现有本科生10000名,且每年以SR的幅度增加,每一名教师可引起增加本科生的速率是1人/年。学校现有教师1500名,每个本科生可引起教师增加的速率(TR)是0.05人/年。请用SD 模型分析该校未来几年的发展规模,要求:

(1) 画出因果关系图和流(程)图;

(2)写出相应的DYNAMO方程;

(3)列表对该校未来3~5年的在校本科生和教师人数进行仿真计算;

(4)请问该问题能否用其它模型方法来分析?如何分析?

(1)解:

(2)、解:

L S.K=S.J+SR.JK*DT

N S=10000

R SR.KL=T.K*TSR

C TSR=1

L T.K=T.J+TR.JK*DT

N T=1500

R TR.KL=S.K*STR

C STR=0.05

(3)解:

(4)

11.某城市

国营和集体服务网点的规模可用SD来研究。现给出描述该问题的DYNAMO方程及其变量说明。要求:

(1)绘制相应的SD流(程)图(绘图时可不考虑仿真控制变量);

(2)说明其中的因果反馈回路及其性质。

L S·K=S·J+DT*NS·JK

N S=90

R NS·KL=SD·K*P·K/(LENGTH-TIME·K)

A SD·K=SE-SP·K

C SE=2

A SP·K=SR·K/P·K

A SR·K=SX+S·K

C SX=60

L P ·K=P ·J+DT*NP ·JK N P=100

R NP ·KL=I*P ·K C I=0.02

其中:LENGTH 为仿真终止时间、TIME 为当前仿真时刻,均为仿真控制变量;S 为个体服务网点数(个)、NS 为年新增个体服务网点数(个/年)、SD 为实际千人均服务网点与期望差(个/千人)、SE 为期望的千人均网点数、SP 为的千人均网点数(个/千人)、SX 为非个体服务网点数(个)、SR 为该城市实际拥有的服务网点数(个)、P 为城市人口数(千人)、NP 为年新增人口数(千人/年)、I 为人口的年自然增长率。

解: (1) (2)

R R1•KL=DK/Z A D •K=Y-I •K C Z=5 C Y=6000

步长 I D R1 0 0 1000 5000 1000 1 1 2000 4000 800 2 1 2800 3200 640 3 1 3440 2560 512 4 1 3952 409 2048

t

一阶负反馈(简单 库存控制)系统输

相关文档
最新文档