《课程讲解》-1.1水力学基础知识

合集下载

《水力学基础》各章重要知识点

《水力学基础》各章重要知识点

《水力学基础》各章重要知识点一、绪论1.液体的力学特性2.密度与容重,水力计算中的取用值情况3.粘滞性,影响粘性的主要因素4.理想液体与实际液体二、水静力学1.静水压强的特性2.静力学基本方程及各项含意3.压强的单位,相互之间如何换算4.绝对压强与相对压强5.水力意义上的“真空”6.压力式水位计的工作原理7.静水压强分布图、压力体8.静水总压力的计算三、水动力学基本原理1.流线2.过水断面、湿周、水力半径3.流量、断面平均流速4.恒定流与非恒定流、均匀流与非均匀流、渐变流与急变流、5.连线性方程、能量方程式的物理意义及应用6.利用能量方程式分析水流运动的动、势能转换。

7.水力坡度、水面坡度8.均匀流、非均匀渐变流过水断面上z +四、水流型态和水头损失1.水头损失的分类2.雷诺试验,层流与紊流,雷诺数3.紊流的特征4.沿程水头损失的计算5.局部水头损失的计算五、明渠恒定均匀流1.明渠的类型:顺坡、平坡与逆坡明渠;棱柱体明渠与非棱柱体明渠2.明渠均匀流的特性及产生条件3.明渠均匀流的计算公式及水力计算4.明渠均匀流中各水力因素间的变化关系5.水力最佳断面六、明渠恒定非均匀流1.明渠水流的缓流与急流流态及其特征2.佛汝德数3.临界水深及主要影响因素4.临界底坡、缓坡与陡坡p γ=c5.水跌现象与水跃现象6.河渠水面线计算的基本思路7.弯道水流特点七、明渠非恒定渐变流明渠非恒定流的基本特性八、泄水建筑物过水流量的计算1.堰流与闸孔出流的异同点2.堰流的分类3.利用堰闸测流的基本思路。

水力学知识点总结

水力学知识点总结

水力学知识点总结1. 水的基本性质水是自然界中非常重要的物质,它具有一系列独特的物理、化学性质。

如水的密度、粘度、表面张力等重要性质对水力学研究有着重要的影响。

2. 水动力学水动力学是研究流体的运动规律及其与物体之间的相互作用的科学。

水动力学是水力学的基础,分为静水力学和流体力学。

静水力学研究静止的流体,而流体力学则研究流体的运动。

3. 流体静力学流体静力学是研究静止流体中的压力、浮力和力的平衡问题。

在水力学中,流体静力学主要用于水库、坝体等结构的压力分析。

4. 流体动力学流体动力学是研究流体运动及其产生的压力、阻力以及对物体的作用力。

在水力学中,流体动力学主要应用于河流、渠道等流体动力学性质的研究。

5. 流态力学流体力学是研究流体运动状态与性质的学问。

在水力学中,流态力学主要应用于分析水流的速度、流量、流向、涡流情况等。

6. 水流的稳定性水流的稳定性是水力学中的重要概念,它指的是水体流动时所产生的稳定的流态特性,包括流态的平稳性、安定性和可操作性等。

7. 水力工程水利工程是利用水资源进行灌溉、供水、发电等利用的工程。

水利工程设计要考虑水力学的各种知识,如水流的稳定性、水利工程的结构和设备等方面。

8. 水道工程水道工程是为了改善河流、渠道等水道的通航、排涝等目的的工程项目。

在水道工程设计中,水力学知识对水流速度、水位变化、水力坡等方面有着重要影响。

9. 水电站在水力学中,水电站是一个重要的应用领域。

水力功率的计算、水轮机的设计、水库的水位控制等都需要水力学知识。

10. 河流水文学河流水文学是研究河流的水文特性、水位变化规律、涨落情况等方面的科学。

水文学是水力学中应用最广泛的一个分支,水利工程、水资源评价等方面都需要水文学的知识。

11. 液压机械液压机械是以流体静力学和流体动力学的理论为基础,利用液体作为传动介质的机械装置。

水力学的理论基础对液压机械的设计、制造和使用都有着重要的影响。

12. 水资源评价水力学的知识还被应用于水资源评价领域,通过水文学、水文模型等方法来评价水资源的分布、利用、保护等问题。

水力学知识点

水力学知识点

水力学知识点水力学是一门研究液体在静止和运动状态下的力学规律及其应用的学科。

它在水利工程、土木工程、环境工程等领域都有着广泛的应用。

下面让我们来一起了解一些重要的水力学知识点。

一、水的物理性质水是一种常见的液体,具有一些独特的物理性质。

首先,水的密度在标准大气压下约为 1000 千克/立方米,但其密度会受到温度和压力的影响。

温度升高时,水的密度会减小;压力增大时,水的密度会略有增加。

水的粘性是另一个重要的物理性质。

粘性表示液体内部抵抗相对运动的能力。

水的粘性相对较小,但在一些情况下,如在管道中的低速流动或边界层内,粘性的影响不可忽略。

此外,水的表面张力也是值得关注的。

表面张力使得水滴能够保持一定的形状,并且在一些微小通道或界面现象中起着重要作用。

二、静水力学静水力学主要研究静止液体的力学特性。

压强是静水力学中的一个关键概念。

液体中某点的压强等于该点上方液体的重量除以受力面积。

在同一水平面上,液体中的压强处处相等。

帕斯卡定律指出,在密闭容器内,施加于静止液体上的压强将以等值传递到液体各点。

这一定律在液压系统中有着广泛的应用。

对于一个浸没在液体中的物体,其所受到的静水压力等于压强乘以受压面积。

通过计算物体各个表面所受的压力,可以确定物体所受的合力和合力矩。

三、水流的分类水流可以根据其流动状态分为层流和紊流。

层流时,液体质点作有条不紊的线状运动,各层液体之间互不混杂。

紊流则是液体质点的运动轨迹极为紊乱,质点之间相互掺混。

判断水流是层流还是紊流,通常使用雷诺数。

当雷诺数小于某一临界值时,水流为层流;当雷诺数大于该临界值时,水流为紊流。

水流还可以根据空间变化分为一元流、二元流和三元流。

一元流是指液体的运动参数仅在一个方向上有变化;二元流在两个方向上有变化;三元流则在三个方向上都有变化。

四、水流的能量方程伯努利方程是水力学中描述水流能量守恒的重要方程。

它表明在理想不可压缩液体的稳定流中,沿同一流线,单位重量液体的动能、势能和压力能之和保持不变。

1水力学

1水力学

用于平衡液体(静止或相对平衡) 用于平衡液体(静止或相对平衡)
等压面特性,力势函数和有势力 等压面特性,
等压面——压强相等的点所组成的面积称为等压 压强相等的点所组成的面积称为等压
面,等压面上p为常数(dp=0) 等压面上p为常数(dp=0)
等压面方程: 等压面方程:
Xdx+ Ydy+ Zdz= 0
du dy
γ ——运动粘度,单位为m 2 / s 运动粘度, 对同一种液体而言, 对同一种液体而言,µ 或 γ 随温度t升高而减小。 随温度t升高而减小。
µ = ργ
动力粘度, 动力粘度 µ ——动力粘度,单位为 N ⋅ s / m 2 或
Pa ⋅ s
§1.3 液体的主要物理性质
牛顿内摩擦定律的另一种表述: 牛顿内摩擦定律的另一种表述:
等压面特性, 等压面特性,力势函数和有势力
对上式积分得: 对上式积分得: p 为常数,由边界条件确定。 = ρW + c , c为常数,由边界条件确定。 若已知液体内任一点或液体表面一点压强为 p0 及该点力势函 数 W0 ,则 C = p − ρW 0 0 将C回代得: 回代得:
p = p0 + ρ (W − W0 )
即W对某坐标的偏导数等于单位质量力在该 坐标上的投影。由于W 坐标上的投影。由于W与质量力存在这种关 系,称W(x,y,z)为力势函数,而满足这种关 W(x, z)为 系的力称为有势力,如重力和惯性力,引入力 系的力称为有势力 如重力和惯性力, 势函数W 势函数W后:
dp = ρdW
等压面上dp=0,dW=0。 也为一常数, 等压面上dp=0,dW=0。W也为一常数, dp=0 因此,等压面为等势面。 因此,等压面为等势面。

水力学课件 第一章 水静力学

水力学课件  第一章  水静力学

§1.1 静水压强及其特征
联立上面各式代入后得:
1 2
pxyz
1 2
pnyz
1 6
xyzf x
0
1 2
p y xz
1 2
pnxz
1 6
xyzf y
0
1 2
pz xy
1 2
pnxy
1 6
xyzf z
0
联立上面各式代入后得:
1 2
pxyz
1 2
pnyz
1 6
xyzf x
0
1 2
p y xz
1 2
pnxz
§1.4 等压面
一、等压面(Isobaric Surface):在平衡的液体中, 由压强相等的各点所组成的面叫做等压面。 等压面的重要特性是: 1.在静止的或相对平衡的液体中,等压面同时也是
等势面(Isopotential Surface)。 dp dU
2.在相对平衡的液体中,等压面与质量力正交。
条件:只适用于静止、同种、连续液体
三、气体压强计算
p p0
§ 1.5几种质量力同时作用下的液体平衡
z
gm h z
zs
o
x
以z轴为对称轴的旋转抛物面方程:
R
o
r
x
m
F
y 1 2rBiblioteka gz C 2§ 1.5几种质量力同时作用下的液体平衡 平衡微分方程: dp ( fxdx f ydy fzdz) 质量力:离心惯性力和重力 F m 2r, mg 单位质量力: fx 2 x, f y 2 y, fz g 自由面上压强不变为大气压: dp 0
§ 1.5几种质量力同时作用下的液体平衡
2、圆筒中液体内任一点静水压强分布规律:

水力学主要知识点课件

水力学主要知识点课件
实验设备
水洞实验的主要设备包括水洞、水泵、压力计、速度测量仪等。
实验步骤
首先,开启水泵,使水流通过水洞并测量相关参数;然后,根据 测量结果计算水流的动力学特性和水力性能。
压力管实验基础
实验原理
压力管实验是通过测量压力管中的压力、流量等参数,研究水流 的压力变化和能量损失。
实验设备
压力管实验的主要设备包括压力管、水泵、流量计、压力计等。
实验设备
水槽实验的主要设备包括水槽、水泵、流量计、压力计、速度测量 仪等。
实验步骤
首先,将水槽中的水抽至一定高度,然后开启水泵,使水流通过实验 设备并测量相关参数;最后,根据测量结果计算水力学参数。
水洞实验基础
实验原理
水洞实验是通过测量水洞中的水流状态、压力等参数,研究水流 的动力学特性和水力性能。
现代水力学
20世纪中叶至今,水力学 研究领域不断扩大,涉及 水资源的开发、利用、保 护和管理等方面。
水力学的研究对象和任务
研究对象
水流的运动规律、水与边界的相 互作用以及水对物体的作用力等。
研究任务
为水利工程、土木工程、环境工 程等领域的实际应用提供理论支 持和设计依据。
水力学的应用领域
土木工程
实验步骤
首先,开启水泵,使水流通过压力管并测量相关参数;然后,根据 测量结果计算水流的压力变化和能量损失。
THANKS。
桥梁、隧道、港口、机场等工 程设施的水力学问题分析和设 计。
自然地理
研究地球上水的循环、河流、 湖泊和海洋的动力学特征。
水利工程
水库、水电站、堤防等水利设 施的设计、建设和运行管理。
环境工程
水污染控制、水资源保护、城 市排水和洪水控制等环境水力 学问题。

水力学ppt课件

水力学ppt课件
染色线
在流体中注入染色剂,形成的染色 质点在流动过程中描绘出的曲线。 染色线可以直观地显示流动状况。
一维流动和二维流动特点分析
一维流动
流动参数仅沿一个坐标方向变化,其 他两个坐标方向上的变化可忽略不计 。一维流动具有简单的流动特性和明 确的数学描述。
二维流动
流动参数沿两个坐标方向变化,另一 个坐标方向上的变化可忽略不计。二 维流动比一维流动复杂,但仍可采用 适当的数学方法进行描述和分析。
经验总结
结合实例分析,总结泄水建筑物设计的经验和教训,提出改进和优化 建议。
谢谢聆听
水力学ppt课件
目录
• 水力学基本概念与原理 • 流体静力学分析 • 流体动力学基础知识 • 管内流动与损失计算 • 明渠恒定均匀流与非均匀流分析 • 堰流、闸孔出流和泄水建筑物设计
原理
01 水力学基本概念与原理
水力学定义及研究对象
水力学的定义
研究液体在静止和运动状态下的 力学规律及其应用的科学。
非均匀流现象描述
在明渠中,若水流运动要素沿程发生变化,则称为非均匀流。非均匀流可表现为水面波动、流速分布不均等现象 。
分类方法
根据非均匀流产生的原因和表现形式,可将其分为渐变流和急变流两类。渐变流是指水流要素沿程逐渐变化,而 急变流则是指水流要素在较短时间内发生显著变化。
明渠恒定非均匀流水面曲线变化规律探讨
03
特性比较
恒定流具有稳定的流动特性,便于分析和计算;非恒定 流的流动特性复杂多变,需要采用动态分析方法。
流线、迹线和染色线概念辨析
流线
在某一瞬时,流场中每一点都与 速度矢量相切的曲线。流线反映 了该瞬时流场中速度的分布状况

迹线
某一质点在流动过程中不同时刻所 在位置的连线。迹线反映了该质点 在流动过程中的运动轨迹。

水力学基本知识

水力学基本知识

第一章水力学基本知识1.惯性:具有维持它原有运动状态的特性、质量越大,运动状态越难改变,因而惯性越大2.单位体积内液体所具有的重量称为该液体的容重(重度)3.内摩擦力f=黏滞力4.谬u:动力粘滞系数与液体性质有关5.u液体表面与底面流速差6.液体粘滞性还可用运动粘滞系数v表示v=谬u/破p7.压缩性:液体不能承受拉力,可以承受压力。

液体受压缩后体积缩小,密度增加,同时液体内部会产生压力抵抗压缩变形,这种性质被称为液体的压缩性;压力解除后消除变形,恢复原状,这种性质称为液体弹性8.表面张力:表面张力仅在液体表面存在,液体内部不存在9.连续介质假说:假设液体是一种连续充满其所占据空间毫无间隙的连续体,水力学所研究的液体运动是连续介质的连续运动10.理想液体概念:水是不可被压缩,没有粘滞性,没有表面张力的连续介质11.质量力:常见的重力和惯性力皆属于质量力,单位质量液体所受的质量力为单位质量力m第二章水力静学1.等压面:静止液体中凡压强相等的各点连接起来组成的面(平面或曲面)称为等压面2.等压面重要性质:作用于静止液体上任意一点的质量力必须垂直于通过该点的等压面3.重力液体的等压面是重力加速度g互相垂直的曲面4.所以平衡液体的自由表面是等压面,即液体静止时的自由表面是水平面,静止液体中两种不同液体的分界面是等压面5.等压面概念:相连通的两种液体6.绝对压强:以设想没有大气存在的绝对真空状态作为零点计量的压强7.相对压强:把当地大气压作为零点计量的压强8.p’绝对压强p相对压强Pa当地大气压强9.Yh为液体自重产生压强,与水呈线性关系,沿水深的压强分布图为直角三角形10.压强分布图中各点压强方向恒垂直指向作用面,两受压面交点处的压强具有各向等值性11.z—位置高度,即计算点距计算基准面的高度,称位置水头12.p/y—压强高度测压管中水面至计算点的高度,称压强水头13.z+p/y—测压管中水面至计算点的高度,称测压管水头(单位重量液体的势能,简称单位势能)第三章水力学基础1.迹线:是单个液体质点在某一时间段内的运动轨迹线2.流线:是在某一瞬时的空间流场中,表示各质点流动方向的曲线流线上所有各点在该瞬时的厉害矢量都和该流线相切,流线不能相交和转折3.元流,总流,过水断面:充满微小流管内的液体称为元流;充满流管内的液体称为总流,总流是无数元流的总和;与元流或总流中所有流线相正交的截面称为过水断面4.流量:单位时间内通过某一过水断面的液体体积5.恒定流,非恒定流:所有水流运动要素均不随时间变化的液流称恒定流;水流任一运动要素随时间变化的液流称非恒定流6.无压流,有压流:凡过水断面的部分周线为自由表面的液流称为无压流;凡过水断面的全部周线均于固体壁面相接触的液流称为有压流7.毕托管:一种测量液体点流速的仪器8.文丘里管:测量管道中液体流量的常用仪器9.雷诺数:表征了惯性力与黏滞力的比值雷诺数Rek≈2300是一个相当稳定的数值10.层流底层:液体作紊流运动时,紧邻壁面液体层的流速很小,流速梯度很大,黏滞力处于主导地位,且质点的横向混掺受到很大约束,因此总存在有保持层流流动的薄层,称为层流底层11.紊流切应力:在紊流中的水流阻力除了粘性阻力t1外,液体质点混参和运动量交换还将产生附加的切应力t2,简称紊流的附加应力12.重力流,无压流:明渠中水流是直接依靠重力作用而产生的,称重力流;同时它具有自由表面,相对压强为零,故称为无压流13.明渠均匀流形成条件①必须是顺坡渠道i>0并在较长一段距离保持不变②必须是长而直的棱柱形渠道③渠道表面的糙率n应沿程不变④渠道中的水流应是恒定流14.水力最佳断面:矩形渠道水力最佳断面的底宽为水深的两倍即水力半径为水深的1/215.水文资料应有以下四性①可靠性②代表性③独立性④一致性16.水位观测:水位是河流最基本的水文要素12.我国统一规定用青岛验潮站的黄海平均海平面作为水准基面17.水位观测通常用水尺和自记水位计,水尺读数加水尺零点高程就是水位18.水文调查:步骤是先建立水文断面,通过洪水调查,确定各种洪水位和洪水比降,进而确定水文断面的流速和流量19.洪水调查:访问调查洪痕调查20.其他调查:其他调查主要有冰凌调查和既有涉河工程调查21.堰流和堰:在明渠流中,为控制水位或控制流量而设置构筑物,使水流溢过构筑物的流动称为堰流,该构筑物称为堰22.堰水力特性:①堰的上游水流受阻,水面壅高,势能增大;在堰顶上由于水深变小,流速变大,使动能增大,在势能转化为动能过程中,水面有下跌的现象。

《水力学》自己复习整理知识框架

《水力学》自己复习整理知识框架

《水力学》自己复习整理知识框架水力学是研究水流在各种流动条件下的物理规律的学科。

水力学的研究对象包括河流、湖泊、水库、海洋等自然水体的运动规律,以及水力工程中涉及的渠道、管道、泵站等的水流行为。

以下是水力学的知识框架及复习整理。

一、基本概念和基本方程1.水力学的研究对象、目标和意义2.水的物理性质及其在水力学中的应用3.流动的基本概念:流线、流量、流速、剖面平均流速、平均流速、瞬时流速、表观流速、临界流速等4.流体运动的宏观描述:物质守恒定律、动量守恒定律、能量守恒定律5.海森堡统一速度场二、流态分类和力学特性1.流态分类:层流和湍流2.湍流的产生和发展机制3.湍流的统计特性:平均流速、涡度、雷诺应力、雷诺应力公式等4.湍流的判别方法和湍流的传输性质三、流动的基本方程1.牛顿第二定律和欧拉方程2.曼宁公式和雨道公式3.马克斯韦方程组和势流理论4.控制体分析法和控制体微分形式四、流动的能量方程1.泊肃叶方程和能量守恒方程2.流动过程中的能量转化和能量损失3.流体摩擦和阻力的计算五、水力学实验和模型1.水力学原理实验、水工模型2.模型尺度和相似理论3.型流和真流的关系4.实测资料的处理和分析六、流动的计算方法1.数值方法在水力学中的应用2.一维水流数值模拟方法3.CFD在水力学中的应用4.流动的计算机模拟与可视化技术七、水动力学1.水体运动的动力学机制2.水体运动的力学特性3.溶解氧和氨氮的弥散4.水体温度和盐度的传输以上是《水力学》的知识框架和复习整理,通过掌握这些知识点,可以对水力学的基本概念、基本方程和流态分类等进行全面地理解和复习。

同时,了解水力学实验和模型、流动的计算方法以及水动力学等内容,可以为深入研究水力学提供一定的基础。

在复习过程中,可以结合教材、参考书籍和相关研究论文进行学习和理解,通过刷题和实践练习来提高对该学科的应用能力和实际问题解决能力。

水力学讲义第一章水静力学

水力学讲义第一章水静力学
水力学部分知识
水力学是研究液体(主要是水) 的平衡 水 和机械运动规律,以及运用这些规律解决 力 生产实际中的工程技术问题的一门学科。 学 包括水静力学和水动力学两个部分。 讲 义
第一章 水静力学
本章研究处于静止和相对平衡状态下液体的力学规律。
➢学完本章,你应该掌握:
➢1、静水压强的两个重要的特性和等压面
不能承受切向力,故静压强方向与作
水 用面的内法线方向重合。

学 讲
(2)静压强的各向等值性:静止液体 内任一点沿各方向上静水压强的大小 都相等。或作用于静止流体同一点压
义 强的大小各向相等,与作用面的方位
无关。
B
证明第二个特性
• (1)表面力
1 dPx pxdAx px 2 dydz
dPy
3、重力作用下的静水压强基本公式 (另一种表达方式)为 p = p0+γh 式中:
p0—液体自由表面上的压强, h—测压点在自由面以下的淹没深度, γ—液体的容重。
水 力 ➢该式说明:在静止液体中,任一点 学 的压强等于表面压强与从该点到液 讲 体自由表面的单位面积上的液柱重 义 量之和。
已知:p0=98kN/m2, h=1m,
107.877 kPa
B
A
1m
pD p0 gh2
C
98.07 19.8071.6
D
0.6m
113.761 kPa
p
z C
g
p1
p0
p2
• 水头、液柱高度与能量守衡

2
测压管是一端与大气相通,
1
另一端与液体中某一点相接的
z1
z2
管子,如图。
在同一容器的静止液体中, 所有各点的测压管水面在同一水平面上。

大一水力学知识点总结

大一水力学知识点总结

大一水力学知识点总结水力学是工程力学的分支学科,主要研究流体(包括气体和液体)在液体静力学、液体动力学和液体稳定性等方面的基本原理与问题。

以下是大一水力学课程中的一些重要知识点的总结:一、水的基本性质1.密度和比重:水的密度及与其他物质的比重的计算方法。

2.流体的连续性方程:质量守恒定律,按照质量守恒定律推导流体的连续性方程。

二、液体静力学1.压力:压力的定义、计算公式及单位。

应力与压力的关系。

2.压力变化的原因:液体的自重、外部力及压强的作用。

3.水压力:水深及所受压力的计算公式。

4.压力分布:液体静压力在容器内的分布规律。

5.压力测量:压力计的原理及常见压力计的使用方法。

三、液体动力学1.流体力学基本假设:连续介质假设、定常流动假设和不可压缩流动假设。

2.流体运动的描述:流体速度和流线、流束、通量等概念的介绍。

3.流动的区域和轴线:通过描述轴线以及轴线所围成的流动区域来描述流动。

4.流量和流速:流量的计算公式以及流量与流速的关系。

5.流体的黏性:黏性力的概念及黏性对流动的影响。

四、一维流动1.管道流量:根据不同的管道流量类型,如层流、过渡流和紊流,计算流量。

2.流量与速度的关系:通过流速与管道横截面积的乘积得到流量。

3.法则表达式:流量与速度、管道截面积和液体的密度和黏度之间的关系。

4.流速分布:流体在管道内的流速分布规律及影响因素。

五、流体动力学方程1.动量守恒定律:根据动量守恒定律推导得到的动量守恒方程。

2.流体的浮力:根据浮力定律及阿基米德原理计算浮力。

3.流体的流量守恒定律:斯托克斯定理和贮水定理。

4.能量守恒定律:能量守恒定律的推导以及计算应用。

六、水力学计算方法1.水的工程应用:水力设计的基本要求。

2.水流计算:水流速度、流量、截面的计算。

3.快速流与水堰泄洪:剪切流速、均布流量、堰式水电站等的计算。

本文总结了大一水力学课程的一些重要知识点,包括水的基本性质、液体静力学、液体动力学、一维流动、流体动力学方程以及水力学计算方法等。

第一章 水力学基础知识

第一章   水力学基础知识

γ = G / V = mg / V = ρg
第一章 水力学基础知识
液体的粘滞性 定义: 定义:运动状态下的液体具有抵抗切应变能 力的特性称为液体的粘滞性。 力的特性称为液体的粘滞性。 判断:静止状态下的液体不具有粘滞性。 判断:静止状态下的液体不具有粘滞性。
第一章 水力学基础知识
液体的压缩性 定义:液体受压时体积压缩变形, 定义:液体受压时体积压缩变形,压力除去 后又恢复原状, 后又恢复原状,液体的这种性质称为压缩 性。
( (
形) 形) 形) 形)
形Re 形 k=2320
3、水流形态及水流损失 、
沿程阻力(均匀流或渐变流): 沿程阻力(均匀流或渐变流):
h f = il
(2)水头损失 )
非均匀流或急变流): 局部阻力(非均匀流或急变流):
v2 hj = ζ 2g
总水头损失: 总水头损失:hw = ∑ h f + ∑ h j
3、室外排水管网 、
2、液体的力学概念 、
)、水动力学概念 (2)、水动力学概念 )、
过水断面、 过水断面、流量和流速 过水断面A:与流线正交的液流横断面。 过水断面 :与流线正交的液流横断面。 注:过水断面可能是平面也可能是曲面。 过水断面可能是平面也可能是曲面。 流量Q:单位时间内通过过水断面的液体体积。 流量 :单位时间内通过过水断面的液体体积。 单位: 单位:m3 / s 断面平均流速 v : v = Q / A
2、液体的力学概念 、
)、水静力学概念 (1)、水静力学概念 )、 静止状态的理解 静水压强: 静水压强: 静水压强的基本方程
p = p0 + γh
静水压强的特性 • 静水压强的方向; 静水压强的方向; 静水压强分布图的画 • 静水压强的大小 静水压强的大小. 法。

水力学知识点讲解

水力学知识点讲解

《水力学》学习指南 第一章绪 论(一)液体的主要物理性质1.惯性与重力特性:掌握水的密度ρ和容重γ;2.粘滞性:液体的粘滞性是液体在流动中产生能量损失的根本原因。

描述液体内部的粘滞力规律的是牛顿内摩擦定律 :注意牛顿内摩擦定律适用范围:1)牛顿流体, 2)层流运动3.可压缩性:在研究水击时需要考虑。

4.表面张力特性:进行模型试验时需要考虑。

下面我们介绍水力学的两个基本假设: (二)连续介质和理想液体假设1.连续介质:液体是由液体质点组成的连续体,可以用连续函数描述液体运动的物理量。

2.理想液体:忽略粘滞性的液体。

(三)作用在液体上的两类作用力第二章 水静力学水静力学包括静水压强和静水总压力两部分内容。

通过静水压强和静水总压力的计算,我们可以求作用在建筑物上的静水荷载。

(一)静水压强:主要掌握静水压强特性,等压面,水头的概念,以及静水压强的计算和不同表示方法。

1.静水压强的两个特性:(1)静水压强的方向垂直且指向受压面(2)静水压强的大小仅与该点坐标有关,与受压面方向无关,2.等压面与连通器原理:在只受重力作用,连通的同种液体内, 等压面是水平面。

(它是静水压强计算和测量的依据)3.重力作用下静水压强基本公式(水静力学基本公式)p=p 0+γh 或 其中 : z —位置水头,p/γ—压强水头(z+p/γ)—测压管水头请注意,“水头”表示单位重量液体含有的能量。

4.压强的三种表示方法:绝对压强p ′,相对压强p , 真空度p v , ↑ 它们之间的关系为:p= p ′-p a p v =│p │(当p <0时p v 存在)↑相对压强:p=γh,可以是正值,也可以是负值。

要求掌握绝对压强、相对压强和真空度三者的概念和它们之间的转换关系。

1pa(工程大气压)=98000N/m 2=98KN/m2下面我们讨论静水总压力的计算。

计算静水总压力包括求力的大小、方向和作用点,受压面可以分为平面和曲面两类。

水力学基础知识

水力学基础知识

5 描述流体运动的基本概念
流线
流线是同一时刻不同质点所组成的曲线, 流线是同一时刻不同质点所组成的曲线,曲线 上任一点的速度方向与曲线在该点的切线方向 重合。 重合。 流线不能相交,不能转折, 流线不能相交,不能转折,只能是一条光滑的 连续曲线
5 描述流体运动的基本概念
流管
在流场(运动流体占据的空间)中,任意 在流场(运动流体占据的空间) 取一非流线且不自相交的封闭曲线, 取一非流线且不自相交的封闭曲线,从该 封闭曲线上各个点绘出流线, 封闭曲线上各个点绘出流线,组成封闭管 状曲面, 状曲面,称为流管 在无限小的时段内,除流管两端外, 在无限小的时段内,除流管两端外,流体 不能流入或流出流管。 不能流入或流出流管。
5.2 不可压缩均质实际流体恒定 流的伯努利方程
u1 p2 u 2 Z1 + + = Z2 + + + hw γ 2g γ 2g
物理意义 元流过流断面上单位重量流体所具有的 总机械能沿流程减小, 总机械能沿流程减小,部分机械能转化 为热能等而损失
p1
2
2
5.2 不可压缩均质实际流体恒定 流的伯努利方程
几何意义
对液体来说, 对液体来说,元流各个断面上总水头沿流程 减小
5.3 实际流体总流的伯努利方程
Z1 + p1
γ
+
α1v1
2g
2
= Z2 +
p2
γ
+
α 2 v2
2g
2
+ hw
物理意义
总流各过流断面上单位重量流体所具有的势能 平均值与动能平均值之和, 平均值与动能平均值之和,即总机械能之平均 值沿流程减小, 值沿流程减小,部分机械能转化为热能等而损 失

水力学复习知识点

水力学复习知识点

水力学复习知识点水力学是研究液体的运动和行为的学科,主要研究液体在管道中的流动、流体的力学性质以及与流体运动相关的现象。

下面将介绍水力学的一些重要知识点。

1.流体的性质:-流体的密度:单位体积流体的质量,通常用ρ表示。

-流体的粘度:流体阻止流动的性质,通常用μ表示。

-流体的压力:单位面积上流体对物体施加的作用力,通常用P表示。

2.流体静力学:- 流体压力:与深度有关,可以通过P = ρgh计算,其中ρ为液体密度,g为重力加速度,h为液体的高度。

-流体静力学定律:流体静力学定律包括帕斯卡定律、阿基米德原理和斯托克斯定律。

3.流体动力学:-流体的运动:流体可以分为层流和湍流。

层流是指流体的分子按照规则的、平行的和层层叠加的方式运动。

湍流是指流体的分子按照混乱无序的方式运动。

-流速:指流体在单位时间内通过其中一截面的体积,通常用v表示。

-流量:指流体在单位时间内通过其中一截面的质量,通常用Q表示,流量Q=Av,其中A为截面积。

-连续性方程:流体质量守恒定律,即当流体连续流动时,进出流体质量需要保持一致,表达式为A1v1=A2v2,其中A为截面积,v为流速。

- 能量守恒方程:描述了流体的能量转化和损失,表达式为P1 +0.5ρv1^2 + ρgh1 = P2 + 0.5ρv2^2 + ρgh2,其中P为压力,ρ为密度,v为流速,h为高度。

-流体动力学定律:主要包括伯努利定律、托利少定律和勒让德定律。

伯努利定律描述了流体在不同压力下的流动,托利少定律描述了流体在曲线壁面上的流动,勒让德定律描述了固体颗粒在流体中的运动。

4.管道流动:-管道流动类型:包括层流和湍流两种。

-管道流动速度分布:在层流中,流速沿半径方向呈线性分布;在湍流中,流速分布更复杂,通常是非线性的。

-管道流量与压力损失:管道流量与压力损失之间存在一定的关系,通常可以通过流体动力学定律来计算。

-管道流动的实际应用:管道流动广泛应用于供水、排水、油气输送管道等领域,对于基础设施建设和工程设计具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液体粘滞性的大小,可用粘度来表达。 实验证明:外界压强条件对液体的粘度影 响甚小,而温度条件对液体粘度的影响明 显。对于某种液体,温度增高,粘度减小; 温度降低,粘度增大。
• 1.1.1.4表面张力
液体表层由于分子间的吸引力,而形成 类似薄膜的表层,这个表面能承受一定的拉 力,称为表面张力。例如水面稍高出碗口而 不外溢。
由于水流中各流层的流速不同,相邻两流
层存在相对运动,这种相对运动使各流层的接 触面上产生一种相互作用的剪切力。速度快的 薄层对速度慢的薄层产生一种拖力;而速度慢 的薄层对速度快的薄层产生一种反拖力(即阻 力)。这种拖力与反拖力的剪切力是成对出现 的,是作用与反作用力的具体表现,这种剪切 力成为液体内摩擦力或称粘滞力。液体具有粘 滞力的性质,就称为液体的粘滞性。必须指出, 当液体处于静止状态时,粘滞力不存在,粘滞 性显示不出来。
γ = ρ ·g
(1-3)
式中 ——重力加速度, = 9.81m/s²。
以上关系式表明:液体的容重等于液体 的密度与重力加速度的乘积。
液体的密度和容重受外界压力和温度的 影响。因此,当表示某种液体的密度或容 重值时,必须指出所处外界压力和温度条 件。
水在标准大气压条件下,温度为4ºC时, 其密度和容重是: =1000kg/m3,γ = 9810N/m³(此处插入图片,不同温度下液 体的质量和密度)
• 1.1.2水静力学
水静力学是研究水在静止状态下的力学 规律,以及这些规律在工程上的应用的科 学。静止状态是指对地球不作相对运动的 状态。
• 1.1.2.1静水压强及特性 静水压强有两个基本特性:
(1)静水压强的方向垂直作用面,并指向作 用面。
(2)任意一点各方向的静水压强均相等。
• 1.1.2.2静水压强的分布规律
当液体的外界压强不变,而温度升高时,液体的 体积增大,这种物理性质称为液体的膨胀性。
在实际给水工程问题中,水的压缩性和膨胀性一 般均不考虑,也就是将水的密度、容重视为常数。
• 1.1.1.3液体的粘滞性
在管、渠中的水流,通过实验可以证实: 在过流断面上各质点流速不相同。在明渠 中做无压流动的水流,自由表面的水质点 流速最大,渠底水质点的流速为零;在圆 管中做压力流动的水流,管中心水质点的 流速最大,管内壁处的水质点流速为零。
(1)用单位面积上所受的压力表示:
工程单位制中以kgf/cm2或tf/m2 表示。 国际单位制中以Pa或 KPa表示 。
(2)以大气压表示。
物理学中规定:以海平面的平均大气压 (760mm高的水银柱的压强)为一标准大 气压(代号atm),其数值为:
1标准大气压(atm)=1.033 kgf/cm2
• 1.1.1.5汽化压力
当液体分子具有足够大的动能时,就 会克服分子间的引力,从液面释放出来而 成为蒸汽,这种现象称为汽化。液体汽化 时所具有的外扩张压力(压强)就是汽化 压力,也叫饱和蒸汽压力。若液体所受外 界压力等于或稍低于汽化压力,液体就沸 腾(冷沸)。水在正常流动时,如因压力 降低而汽化时将影响水流运动,造成不良 后果,必须注意防止。
第一章 概 论
• 1.1水力学基本知识
本节主要学习内容: 1、水的粘滞性与汽化压力(一般掌握) 2(一般掌握) 3(一般掌握) 教学难点:粘滞性与汽化压力
课前小思考:什么是水力学?
答:水力学是研究液体平衡和运动规律,以 及这些规律在工程实际方面的应用的科学. • 本节内容: • 1、 液体的主要物理性质 • 2、 水静力学 • 3、 水动力学 • 4、 流动阻力与水头损失
自由表面和表面压强:
所谓自由表面是指水体与气体的交界 面。在重力作用下静止液体的自由表面是 水平面,如水箱、水池、江河的水面。
液体的自由表面受上部气体压强作用, 此压强称为表面压强,用符号P0表示;当 自由表面上的压强为当地大气压时,用符 号Pa表示,则P0=Pa。
• 1.1.2.3压强的量度单位
• 1.1.1 液体的主要物理性质
液体中分子之间的聚合力比固体小,因 此液体的抗拉、抗剪能力是很小的,但具 有相当大的抗压能力。
由于液体具有流动性,所以它没有固定 的形状,但具有固定的体积,并能形成自 由表面。
下面分别介绍液体的几个主要物理性质。
• 1.1.1.1 密度和容重
液体和固体一样具有质量。质量愈大,其惯 性就愈大。对于匀质液体,单位体积所具 有的质量称为密度,以符号表示,即:
M
V
(1-1)
式中 ――液体的密度,kg/m3
――液体的质量,kg
―― 液体的体积,m3
对于匀质液体,单位体积所具有的重量称 为容重,以符号γ表示,即:
G
V
(1-2)
式中 ――液体的容重,N/ m³ ――液体的重量, N (牛顿) ――液体的体积, m³
由于物体的重量G等于质量M与重力加速度 的乘积,所以密度ρ和体的温度不变,而外界的压力增大时,液体 的体积减小,这种物理性质称为液体的压缩性。通过 实验证明:当外界压强在10个大气压范围内,每增加 一个大气压,水的体积相对减小量仅为十万分之五左 右,这说明当外界压强条件增大时,液体的压缩性是 很微小的,所以在实际工程中,可以不考虑压缩比的 影响,将液体视为不可压缩液体看待。
相关文档
最新文档