现代眼图测量方法和data pattern

合集下载

眼图观察测量实验

眼图观察测量实验

一、實驗目的及要求:1)實驗目的: 學會觀察眼圖及其分析方法2)實驗要求: 1 分析電路的工作原理,敘述其工作過程;2 敘述眼圖的產生原理以及它的作用;3 繪出實驗觀察到的眼圖形狀。

二、實驗原理:我們知道衡量整個通信系統的傳輸品質,最直觀的方法就是用眼圖來觀察傳輸畸變和雜訊干擾。

我們知道,在實際的通信系統中,數位信號經過非理想的傳輸系統必定要產生畸變,信號通過通道後,也會引入雜訊和干擾,也就是說,總是在不同程度上存在碼間串擾。

在碼間串擾和雜訊同時存在情況下,系統性能很難進行定量的分析,常常甚至得不到近似結果。

為了便於評價實際系統的性能,常用觀察眼圖進行分析。

眼圖可以直觀地估價系統的碼間干擾和雜訊的影響,是一種常用的測試手段。

什麼是眼圖?所謂“眼圖”,就是由解調後經過低通濾波器輸出的基帶信號,以碼元定時作為同步信號在示波器螢幕上顯示的波形。

干擾和失真所產生的傳輸畸變,可以在眼圖上清楚地顯示出來。

因為對於二進位信號波形,它很像人的眼睛的過程眼圖。

在圖15-1中畫出兩個無雜訊的波形和相應的“眼圖”,一個無失真,另一個有失真(碼間串擾)。

(無失真及有失真時的波形及眼圖):(a)無碼間串擾時波形; 無碼間串擾眼圖(b)有碼間串擾時波形; 有碼間串擾眼圖圖15-1中可以看出,眼圖是由虛線分段的接收碼元波形疊加組成的。

眼圖中央的垂直線表示取樣時刻。

當波形沒有失真時,眼圖是一隻“完全張開”的眼睛。

在取樣時刻,所有可能的取樣值僅有兩個:+1或-1。

當波形有失真時,在取樣時刻信號取值分佈在小於+1或大於-1附近,“眼睛”部分閉合。

這樣,保證正確判決所容許的雜訊電平就減小了。

換言之,在隨機雜訊的功率給定時,將使誤碼率增加。

“眼睛”張開的大小就表明失真的嚴重程度。

為便於說明眼圖和系統性能的關係,我們將它簡化成圖15-2的形狀。

(眼圖的重要性質,其中U=U++U)(a) 二进制系统(b) 随机数据输入后的二进制系统三、實驗步驟:、眼圖觀察及分析實驗;、模擬眼圖觀察測量實驗;观察眼图SP109 SP614 SP615CPLD 32PN 码'()H ω观察眼图SP708PSK 译码SP614SP615'()H ω1、打開實驗箱右側電源開關,電源指示燈亮,按動帶鎖開關使L2(紅燈)點亮表示系統正常工作;2、連接SP614和SP109或SP809,送入基帶信號;3、用模擬示波器CH1觀察SP105,CH2觀察SP615,調節示波器特性調節電位器,可以觀察到有碼間串擾和無碼間串擾時的眼圖;4、當連接SP809是將PSK 解調模組解調還原的數位基帶信號送入眼圖電路。

信号完整性分析基础系列之一——眼图测量

信号完整性分析基础系列之一——眼图测量

信号完整性分析基础系列之一——关于眼图测量(上)汪进进美国力科公司深圳代表处内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。

全分为上、下两篇。

上篇包括一、二部分。

下篇包括三、四部分。

您知道吗?眼图的历史可以追溯到大约47年前。

在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。

您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。

很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。

这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。

在我2004年来力科面试前,我也从来没有听说过眼图。

那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。

之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。

刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。

网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。

“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。

为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。

如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。

眼图有关知识详细解释

眼图有关知识详细解释

眼图有关知识详细解释眼图综述报告-----------李洋⽬录1. 眼图的形成 (2)1.1 传统的眼图⽣成⽅法 (2)1.2 实时眼图⽣成⽅法 (3)1.3 两种⽅法⽐较 (4)2. 眼图的结构与参数介绍 (4)2.1 眼图的结构图 (4)2.2 眼图的主要参数 (5)2.2.1 消光⽐ (5)2.2.2 交叉点 (5)2.2.3 Q因⼦ (6)2.2.4 信号的上升时间、下降时间 (6)2.2.5 峰—峰值抖动和均⽅根值抖动 (6)2.2.6 信噪⽐ (6)3. 眼图与系统性能的关系 (7)4. 眼图与BER的关系 (7)4. 如何获得张开的眼图 (8)5. 阻抗匹配的相关知识 (9)5.1 串联终端匹配 (9)5.2 并联终端匹配 (10)6. 眼图常见问题分析 (10)7. 总结 (17)1.眼图的形成眼图是⼀系列数字信号在⽰波器上累积⽽显⽰的图形,其形状类似于眼睛,故叫眼图。

在⽤余辉⽰波器观察传输的数据信号时,使⽤被测系统的定时信号,通过⽰波器外触发或外同步对⽰波器的扫描进⾏控制,由于扫描周期此时恰为被测信号周期的整数倍,因此在⽰波器荧光屏上观察到的就是⼀个由多个随机符号波形共同形成的稳定图形。

这种图形看起来象眼睛,称为数字信号的眼图。

⽰波器测量的⼀般信号是⼀些位或某⼀段时间的波形,更多的反映的是细节信息。

⽽眼图则反映的是链路上传输的所有数字信号的整体特性。

如下图:1.1 传统的眼图⽣成⽅法采样⽰波器的CLK通常可能是⽤户提供的时钟,恢复时钟,或者与数据信号本⾝同步的码同步信号.图:采样⽰波器眼图形成原理1.2 实时眼图⽣成⽅法实时⽰波器通过⼀次触发完成所有数据的采样,不需附加的同步信号和触发信号.通常通过软件PLL⽅法恢复时钟。

图:实时⽰波器眼图形成原理另⼀种⽰意图:图:实时⽰波器眼图形成原理1.3 两种⽅法⽐较1.传统的⽅法⽐实时眼图⽣产⽅法测量的速度要慢100⾄1000倍。

2.传统的眼图⽣成⽅法测量精度没有实时眼图⽣成⽅法⾼。

眼图测量

眼图测量

眼图——概念与测量(摘记)中文名称:眼图英文名称:eyediagram;eye pattern定义:示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。

“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。

一.概述“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。

为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。

在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。

当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。

若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。

由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。

另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。

通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。

显然,最佳抽样时刻应选在眼睛张开最大的时刻。

(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。

(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。

(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。

(6)横轴对应判决门限电平。

透彻解析眼图测量技术(lecroy)_力科

透彻解析眼图测量技术(lecroy)_力科

Slice 1
Slice 2
Slice 3
3
Slice 4
Slice 12
Slice 11
Slice 5
Slice 6
Slice 7
Slice 8
Slice 9
数据按单位间隔逐 位与恢复时钟比较 重叠形成眼图
4
ZERO TRIGGER JITTER
• 数据是根据单位间隔排列而不是触发点. • 零时钟恢复抖动,零触发抖动.
用户自定义模板可直接 输入示波器使用
19
力科示波器在眼图测量方面的特点
力科在眼图测量领域的解决方案拥有如下功能或特点: 力科在业界最先采用实时眼图生成方法来绘制眼图,如今该方法已成 为眼图测量的现实行业标准 力科SDAII串行数据分析软件包为您提供全面的眼图及抖动分析能力 力科Zi系列示波器拥有业界最为领先的硬件指标与全面的响应优化模 式,确保眼图测量结果权威精确 流程图式的操作界面与可拆卸式的前控面板确保眼图测量轻松顺畅 创新的 X-Stream II 架构与先进的计算机系统确保快速完成眼图测量 眼图故障定位功能助力您轻松完成眼图失效分析 IsoBER功能帮助您深入预测眼图张开程度 力科独有的ISI Plot功能帮助您分析眼图中的码间干扰 力科独有的光电转换器帮助您完成光信号眼图测量 眼图医生工具EyeDoctor II为您提供了最佳的信号完整性分析工具
23
速度需求 -- 眼图测量需要采集并处理大量数据
18M个UI叠加的眼图
18M个UI叠加的眼图,每周期采集8个样点,总共需要处理150M样点。
24
速度需求-- 测量环境改变需要重复眼图测量
10英寸长的传输线,眼高 = 592mV
20英寸长的传输线,眼高 = 457mV

眼图——概念与测量

眼图——概念与测量

眼图——概念与测量中文名称:眼图英文名称:eye diagram;eye pattern定义:示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。

“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。

一.概述“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。

为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。

在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。

当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。

若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。

由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。

另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。

通常眼图可以用下图所示的图形来描述,由此图可以看出:眼图的重要性质(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。

显然,最佳抽样时刻应选在眼睛张开最大的时刻。

(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。

(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。

(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。

(6)横轴对应判决门限电平。

眼图--概念与测量

眼图--概念与测量

眼图——概念与测量(摘记)中文名称:眼图英文名称:eye diagram;eye pattern定义:示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。

“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。

一.概述“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。

为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。

在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。

当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。

若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。

由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。

另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。

通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。

显然,最佳抽样时刻应选在眼睛张开最大的时刻。

(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。

(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。

(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。

(6)横轴对应判决门限电平。

眼图概述——精选推荐

眼图概述——精选推荐

眼图概述1眼图概述1.1 串⾏数据的传输由于通讯技术发展的需要,特别是以太⽹技术的爆炸式应⽤和发展,使得电⼦系统从传统的并⾏总线转为串⾏总线。

串⾏信号种类繁多,如PCI Express、SPI、USB等,其传输信号类型时刻在增加。

为何串⾏总线⽬前应⽤越来越⼴泛呢?相⽐并⾏数据传输,串⾏数据传输的整体特点如下:1 信号线的数量减少,成本降低2 消除了并⾏数据之间传输的延迟问题3 时钟是嵌⼊到数据中的,数据和时钟之间的传输延迟也同样消除了4 传输线的PCB设计也更容易些5 信号完整性测试也更容易实际中,描述串⾏数据的常⽤单位是波特率和UI,串⾏数据传输⽰例如下:图串⾏数据传输⽰例例如,⽐特率为3.125Gb/s的信号表⽰为每秒传送的数据⽐特位是3.125G⽐特,对应的⼀个单位间隔即为1UI。

1UI表⽰⼀个⽐特位的宽度,它是波特率的倒数,即1UI=1/(3.125Gb/s)=320ps。

现在⽐较常见的串⾏信号码形是NRZ码,因此在⼀般的情况下对于串⾏数据信号,我们的⼯作均是针对NRZ码进⾏的。

1.2 眼图的形成原理眼图,是由于⽰波器的余辉作⽤,将扫描所得的每⼀个码元波形重叠在⼀起,从⽽形成眼图。

眼图中包含了丰富的信息,从眼图上可以观察出码间串扰和噪声的影响,体现了数字信号整体的特征,从⽽可以估计系统优劣程度,因⽽眼图分析是⾼速互连系统信号完整性分析的核⼼。

另外也可以⽤此图形对接收滤波器的特性加以调整,以减⼩码间串扰,改善系统的传输性能。

⽬前,⼀般均可以⽤⽰波器观测到信号的眼图,其具体的操作⽅法为:将⽰波器跨接在接收滤波器的输出端,然后调整⽰波器扫描周期,使⽰波器⽔平扫描周期与接收码元的周期同步,这时⽰波器屏幕上看到的图形就称为眼图。

⽰波器⼀般测量的信号是⼀些位或某⼀段时间的波形,更多的反映的是细节信息,⽽眼图则反映的是链路上传输的所有数字信号的整体特征,两者对⽐如下图所⽰:图⽰波器中的信号与眼图如果⽰波器的整个显⽰屏幕宽度为100ns,则表⽰在⽰波器的有效频宽、取样率及记忆体配合下,得到了100ns下的波形资料。

眼图测量

眼图测量
Modern Approach to Eye Pattern Test
1 2
Slice 10
NRZ data record acquired from a single trigger
Clock recovered using software PLL ZERO CDR JITTER
3
Slice 12
15
LeCroy Company Confidential
眼图形成的现代方法
同步切割+叠加显示 示波器首先捕获一组连续比特位的信号,然后用软 Traditional Method 件PLL方法恢复出时钟,最后利用恢复出的时钟和 For Eye Pattern Formation 捕获到的信号按比特位切割,切割一次,叠加一次 ,最终将捕获到的一组数据的每个比特位都叠加到 了眼图上。
Q因子和眼图误码率
Q 因子是用于测量眼图信噪比的参数。 值0)
(与 OSFTP-9 标准相一致)
Q 因子具体是由以下公式计算得到:由眼幅度(“1”电平的平均值1减去“0”电平的平均 除以“1”信号噪声有效值(1)与“0”信号噪声有效值(
0)之和。
Q factor =
EyeBER 是通过眼图用来评估误码率的参数。
16
LeCroy Company Confidential
实时眼图生成方法(Real Time Eye) ("Continuous-Bit Eye Pattern Rendering", "Single-Shot Eye"), 2002 - Presen
(与触发点无关)
示波器采集 的时间窗口
Step 1: 采集到一长串 连续的数据波形
1
1

信号完整性分析基础系列之一——眼图测量

信号完整性分析基础系列之一——眼图测量

信号完整性分析基础系列之一——关于眼图测量(上)汪进进美国力科公司深圳代表处内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。

全分为上、下两篇。

上篇包括一、二部分。

下篇包括三、四部分。

您知道吗?眼图的历史可以追溯到大约47年前。

在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。

您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。

很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。

这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。

在我2004年来力科面试前,我也从来没有听说过眼图。

那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。

之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。

刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。

网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。

“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。

为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。

如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。

眼图测量分析

眼图测量分析

眼圖之量測分析引言眼圖是一項時間分析工具,讓使用者能夠清楚看見時間和強度的誤差。

在真實生活中,諸如抖動之類的誤差非常難以量化,因為經常改變,而且非常小。

因此,眼圖非常利於尋找最大抖動以及電壓強度的誤差,如圖一所示。

圖一、眼圖檢視的抖動和電壓雜訊示意圖誤差增加時,眼圖中心的白色空間就會縮小。

那個空間由兩項特性所定義:眼寬(Eye Width)和眼高(Eye Height)。

圖二中白色空間的寬度就稱為眼寬。

因此,眼圖由數量足夠的樣本構成(數百萬個時間段落轉換),眼寬就是用來度量在任何指定的時間期間內、資料線穩定的時間長度的良好工具。

這樣可以了解可允許的保存時間和建立時間有多少。

最後完成的眼圖中的白色空間的高度就稱為眼高。

如果眼圖由數量足夠的樣本構成(數百萬個時間段落轉換),眼高可以指出接收器的VIH和VIL必須位於何處,才能正確地對資料取樣。

數位訊號轉換的品質越好,眼圖中的開放白色空間越大。

換言之,眼寬和眼高應該盡可能地大。

圖二、眼圖的高度及寬度示意圖實驗原理其形狀似人的眼睛,因此被稱爲眼圖。

而檢視數位傳輸器的輸出三個時間段落,即可建構出眼圖。

圖三中的眼圖是將所有可能的0與1的組合疊在一條線段上,而完成建構。

圖三、數位訊號對應之眼圖在數位系統中,時間是最重要的因素之一。

數位通訊的可靠性和準確性都是根據其時間功能的品質而定。

在真實世界的數位通訊系統中,有許多時間上的誤差,其中最重要的兩個是抖動(Jitter)和飄移(Drift)。

分別以抖動(Jitter)及飄移(Drift)敘述之:一、抖動(Jitter)抖動(Jitter)是指與事件的理想時間的誤差,通常是從參考訊號的過零點(Zero-Crossing)進行測量。

抖動通常歸因於串音(Cross-Talk)、同時切換輸出,以及其它週期性發生的干擾訊號。

由於抖動會隨著時間而變化,如圖四所示,因此對抖動的測量及量化有多種進行方式,從目測幾秒鐘內的抖動範圍,到以數據進行的測量(例如根據長時間的標準誤差)。

眼图基础知识ppt课件

眼图基础知识ppt课件

辅助设备 待测设备
转接
小板
HUB
PC
探头1 探头2 探头3
示波器
高速
示波器
探头1
转接 小板
HOST
ppt课件完整
12
眼图测试-模板
高速
ppt课件完整
全速
13
案例分析-串22欧电阻
1.5m
6.5m
PASS
NG
ppt课件完整
14
案例分析-串共模电感
1.5m
3.5m
6.5m
PASS
PASS
ppt课件完整
眼图基础知识分享
ppt课件完整
1
目录
1. 关于USB
2. 眼图的定义
3. 眼图测试方法
4. 如何获得张开大的眼图
5. 眼图常见问题
ppt课件完整
2
USB-电气特性
速率 输出电流 幅度 上升时间
低速 1.5Mbps 500mA 3.3V 75-300ns
全速 12Mbps 500mA
3.3V
4-20ns
高速 480Mbps 500mA 400mV 500ps
应用 键盘、鼠标
触摸框 U盘、硬盘
ppt课件完整
3
USB--物理特性
ppt课件完整
4
USB-接口定义
引脚编号 信号名称 缆线颜色
1
Vcc

2 Date-(D-) 白
3 Date+(D+) 绿
4
Ground

ppt课件完整
5
USB-全速和低速设备识别
反映波形的细节
体现信号的整体特征
ppt课件完整
9

眼图测量

眼图测量
眼图测量
Click to edit text styles
Edit your company slogan
Text
Text
Text
眼图基本概念
串行数据的背景
眼图测量方法
眼图基本概念
眼图是用余辉方式累积叠加显示采集到的
串行信号的比特位的结果,叠加后的图形形 状看起来和眼睛很像,故名眼图。
眼图上通常显示的是1.25UI的时间窗口。眼
图三
图三
眼图测试方法
Click to edit text styles
Edit your company slogan
眼图测试方法
传统方法
现代方法
传统方法
同步触发+叠加显示
传统的眼图方法就是同步触发一次,然后叠加一次。每触发一次,眼
图上增加了一个UI,每个UI的数据是相对于触发点排列的,因此是 “Single-Bit Eye”,每触发一次眼图上只增加了一个比特位。
能有串扰或预(去)加重
ቤተ መጻሕፍቲ ባይዱ
睛的形状各种各样,眼图的形状也各种各样。 通过眼图的形状特点可以快速地判断信号的 质量。
漂亮的眼图 双眼皮眼图
漂亮的眼图
串行数据的背景知识
一个单位间隔(1UI)表示为一个比特位的
宽度是波特率的倒数,1UI=1/(3.125Gb/s) =320ps。现在比较常见的串行信号码形是 NRZ码。正电平表示”1”,负电平表示“0”。 图三所示是示波器捕获到的一组串行信号, 虚线之间的时间间隔代表了一个UI,图中对 应的码型是101100101010001。
现代方法
示波器首先捕获一组连续比特位的信号,然后用软件PLL方法恢复出时钟,最

最常用的就是眼图的测量方法,眼图测试分析

最常用的就是眼图的测量方法,眼图测试分析

最常用的就是眼图的测量方法,眼图测试分析
 波形参数测试是数字信号质量评估最常用的测量方法,但是随着数字信号速率的提高,仅仅靠幅度、上升时间等的波形参数的测量方法越来越不适用了。

 比如下图的一个5Gbps的信号来说,由于受到传输通道的损耗的影响,不同位置的信号的幅度、上升时间、脉冲宽度等都是不一样的。

不同的操作人员在波形的不同位置测量得到的结果也是不一样的。

 因此我们必须采用别的方法对于信号的质量进行评估,对于高速数字信号来说最常用的就是眼图的测量方法。

 所谓眼图,实际上就是高速数字信号不同位置的数据比特按照时钟的间隔叠加在一起自然形成的一个统计分布图。

 下面几张图显示了眼图的形成过程。

我们可以看到,随着叠加的波形数量的增加,数字信号逐渐形成了一个个类似眼睛一样的形状,我们就把这种图形叫做眼图。

眼图

眼图

[转帖]眼图基本知识介绍随着数据速率超过Gb/s水平,工程师必须能够识别和解决抖动问题。

抖动是在高速数据传输线中导致误码的定时噪声。

如果系统的数据速率提高,在几秒内测得的抖动幅度会大体不变,但在位周期的几分之一时间内测量时,它会随着数据速率成比例提高,进而导致误码。

新兴技术要求误码率(BER),亦即误码数量与传输的总码数之比,低于一万亿分之一(10-12)。

随着数据通信、总线和底板的数据速率提高,市场上已经出现许多不同的抖动检定技术,这些技术采用各种不同的实验室设备,包括实时数字示波器、取样时间间隔分析仪(TIA)、等时取样示波器、模拟相位检波器和误码率测试仪(BERT)。

为解决高数据速率上难以解决的抖动问题,工程师必需理解同步和异步网络中使用的各种抖动分析技术本文重点介绍3 Gb/s以上新兴技术的数据速率。

低于3 Gb/s的实时示波器可以捕获连续的数据流,可以同时在时域和频域中分析数据流;在更高的数据速率上,抖动分析要更具挑战性。

本文将从数字工程师的角度,介绍应对SONET/SDH挑战的各种经验。

抖动分析基本上包括比较抖动时钟信号和参考时钟信号。

参考时钟是一种单独的黄金标准时钟,或从数据中重建的时钟。

在高数据速率时,分析每个时钟的唯一技术是位检测和误码率测试;其它技术则采用某种取样技术。

如图1所示,眼图是逻辑脉冲的重叠。

它为测量信号质量提供了一种有用的工具,即使在极高的数据速率时,也可以在等时取样示波器上简便生成。

边沿由‘1’到‘0’转换和‘0’到‘1’转换组成,样点位于眼图的中心。

如果电压(或功率)高于样点,则码被标为逻辑‘1’;如果低于样点,则标为‘0’。

系统时钟决定着各个位的样点水平位置。

图1: 具有各项定义的眼图E1是逻辑‘1’的平均电压或功率电平,E0是逻辑‘0’的平均电压或功率电平。

参考点t = 0在左边的交点进行选择,右边的交点及其后是位周期TB。

Eye Crossing Point: 眼图交点Left Edge: 左沿Right Edge: 右沿Nominal Sampling Point: 标称样点幅度噪声可能会导致逻辑‘1’的电压或功率电平垂直波动,低于样点,导致逻辑‘1’码错误地标为逻辑‘0’码,即误码。

眼图观察测量实验

眼图观察测量实验

实验12 眼图观察测量实验一、实验目的1.学会观察眼图及其分析方法,调整传输滤波器特性。

二、实验仪器1. 眼图观察电路(底板右下侧)2.时钟与基带数据发生模块,位号:G 3.噪声模块,位号E 4.100M双踪示波器1台三、实验原理在整个通信系统中,通常利用眼图方法估计和改善(通过调整)传输系统性能。

我们知道,在实际的通信系统中,数字信号经过非理想的传输系统必定要产生畸变,也会引入噪声和干扰,也就是说,总是在不同程度上存在码间串扰。

在码间串扰和噪声同时存在情况下,系统性能很难进行定量的分析,常常甚至得不到近似结果。

为了便于评价实际系统的性能,常用观察眼图进行分析。

眼图可以直观地估价系统的码间干扰和噪声的影响,是一种常用的测试手段。

什么是眼图所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示的波形称为眼图。

干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。

因为对于二进制信号波形,它很像人的眼睛故称眼图。

在图12-1中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。

图12-1中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。

眼图中央的垂直线表示取样时刻。

当波形没有失真时,眼图是一只“完全张开”的眼睛。

在取样时刻,所有可能的取样值仅有两个:+1或-1。

当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。

这样,保证正确判决所容许的噪声电平就减小了。

换言之,在随机噪声的功率给定时,将使误码率增加。

“眼睛”张开的大小就表明失真的严重程度。

为便于说明眼图和系统性能的关系,我们将它简化成图12-2的形状。

由此图可以看出:(1)最佳取样时刻应选择在眼睛张开最大的时刻;(2)眼睛闭合的速率,即眼图斜边的斜率,表示系统对定时误差灵敏的程度,斜边愈陡,对定位误差愈敏感; (3)在取样时刻上,阴影区的垂直宽度表示最大信号失真量;(4)在取样时刻上,上下两阴影区的间隔垂直距离之半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决;(5) 阴影区与横轴相交的区间表示零点位置变动范围,它对于从信号平均零点位置提取定时信息的解调器有重要影响。

眼图测量

眼图测量

眼图测量masks can be used for compliance testingEye patterns generally display a time window of approximately 1.25 UI同步触发+叠加Eye WidthEyeAmplitudeEye HeightOne LevelZero Level眼宽眼高眼幅度眼交叉比“1”电平“0”电平消光比Q-factor平均功率PercentageOne(Eye)Zero(Eye)One(Eye)Zero(Eye)1 2 SNR (Eye)=20Log (Qfactor(Eye))BER(Eye)=0.5erfc(Qfactor(Eye)/2)One(Eye)100%Zero(Eye)0%One(Eye)Zero(Eye) ER(Eye)=10Log(One(Eye)/Zero(Eye)))80%20%Q factor =EyeBER =Q 因子是用于测量眼图信噪比的参数。

(与OSFTP-9 标准相一致)Q 因子具体是由以下公式计算得到:由眼幅度(“1”电平的平均值µ1减去“0”电平的平均值µ0)除以“1”信号噪声有效值(σ1)与“0”信号噪声有效值(σ0)之和。

EyeBER 是通过眼图用来评估误码率的参数。

EyeBER 是计算“1”电平概率分布与“0”电平概率分布的重叠部分所占的比例,由百分比来表示。

同步触发+叠加显示同步:硬件CDR恢复出理想时钟触发:时钟的上升沿作为触发源触发一次,叠加一个UI。

1. In the traditional eye pattern, data is aligned with respect to the trigger point.2. The eye pattern is formed from multiple acquisitions.3. Aligning data with respect to the trigger and combining multiple acquisitions introduces instrument trigger jitter.4. Instrument trigger jitter results in measurement inaccuracy.Block of continuousserial data acquiredBits are separatedusing softwareclock recoveryOverlapped bits form the eye pattern41. This method is immune to trigger jitter because data is aligned with the unit interval, not the trigger.2. Multiple acquisitions (multiple triggers) can be used and still no trigger jitter will be introduced because data from those acquisitions are not combined using a trigger point reference.Segments overlayed to form eye patternZERO TRIGGER JITTER1Oscilloscope AcquisitionWindow011010001101110001Trigger Point1st Aquisition2nd Aquisition3rd Aquisition4th Aquisition5th AquisitionEye PatternOscilloscope Acquisition Window(Trigger Point is Irrelevant)Step 1:Blocks of continuous serial data acquiredEye Pattern Displayed110011Step 2:Bits are separated using software clock recoveryStep 3:Overlapped bits form the eye patternTraditional Eye Pattern (TEP):•Is 100-1000x slower than RTE•Provides lower measurement accuracy than RTE •Introduces trigger jitter•Introduces CDR jitter (when using CDR)•Does not allow for edge timing measurements to be performed during eye pattern testing•Events that occur on consecutive bits are not Real Time Eye (RTE):•Is 100-1000x faster than TEP•Provides higher measurement accuracy than TEP•Trigger jitter is completely eliminated (trigger jitter = 0 ps)•CDR jitter is completely eliminated (CDR jitter = 0 ps)•Allows edge timing (jitter) measurements to be performed Historical note: The real time eye was first implemented on an oscilloscope by LeCroy Corporation (in 2002). Today, all major oscilloscope vendors (followed in 2003, 2004) use this method to form eye patterns on high performance real time scopes.ConventionalTrigger and CDR jitter: 150ps p-pLeCroy SDA 6000Low jitter reveals detailDeterministic jitter Random jitterSame Fibre Channel 1063 source was used to produce both eye patt ernsTransmit Data Receive DataIEEE 1394 transmit and receive data blocks Traditional Eye Pattern combines Transmit andReceive dataTransmit and Receive data in eye patternTransmit or receive data canbe extracted by zoomingZooming can isolate transmit or receive dataContinuous bit eye patternrendering of Zoom trace canisolate Transmit or ReceivedataThis view could not be achieved usingtraditional eye pattern methodsReceive data block isolated in eye pattern用户自定义模板可用免费的Polymask软件图形化设计或用免费的Masks Database Editor数据库编辑器数字化设计.可直接输入至SDA进行容限测试.Step 1: 首先关闭示波器应用软件,然后在示波器中直接运行Mask Database EditorStep 5: 添加新的眼图模板Step 6: 修改参数后点击OK, 重新运行示波器软件即可电信号测试选择Absolute在软件的菜单中出现的名字Ø眼图测量是衡量高速信号质量的最常用方法力科是业界最先采用软件恢复时种的方法来形成眼图的,而现在这种方法已成为眼图测量的行业标准Ø力科示波器的眼图测量操作界面非常的简洁快速, 而且不需要利用第三方面软件,眼图的测试结果显示在示波器显示界面上,不需要打开第三个窗口Ø力科示波器测量眼图的速度快,不管当前捕获的数据样本数是400Kpts,还是4Mpts,都能一次利用所有的这些数据形成眼图。

测量眼位的几种方法

测量眼位的几种方法

测量眼位的几种方法眼位是指眼球与头部、眼眶等结构的相对位置关系。

眼位的正常与异常会直接影响人的视觉感知和眼动协调能力。

为了准确测量眼位,医学和视觉科学领域发展了多种方法。

本文将介绍几种常见的测量眼位的方法,包括直接测量法、间接测量法和电子测量法。

1. 直接测量法直接测量法是通过测量眼睛相对于头部的位置来确定眼位的方法。

常用的直接测量法有Hirschberg 钢卡法和Krimsky 试验法。

Hirschberg 钢卡法Hirschberg 钢卡法是采用观察角膜反射点的位置来估计眼位的方法。

该方法将光线投射在患者的角膜上,观察角膜反射点的位置来判断眼球的位置。

具体操作步骤如下:1.让患者坐直并注视前方;2.用钢卡或手电筒等工具照射光线在患者的角膜上;3.观察角膜上的反射点位置,通常在角膜中央上方略偏外;4.根据反射点的位置差异来确定眼位是否正常。

Krimsky 试验法Krimsky 试验法是通过观察试镜中反射光线的偏向来判断眼位的方法。

具体操作步骤如下:1.让患者坐直并注视前方;2.使用Krimsky 试镜,将反射光线投射在患者的瞳孔上;3.观察反射光线的位置,包括垂直和水平方向上的偏向;4.根据光线的偏向来确定眼位是否正常。

直接测量法具有操作简单、不需要特殊设备等优点,但准确度较低,仅适用于初步判断眼位是否异常。

2. 间接测量法间接测量法是通过测量眼球肌肉的收缩和松弛程度来判断眼位的方法。

常用的间接测量法有Maddox 棒法和Heterophoria 检查法。

Maddox 棒法Maddox 棒法是用于测量斜视、眼肌麻痹等眼位异常的方法。

具体操作步骤如下:1.让患者坐直并注视前方;2.将Maddox 棒平行于患者眼前,让患者用一个眼睛看准棒上的某一点;3.观察另一个眼睛的红色极线(红色光线穿过棒后形成的水平或垂直线)和患者注视的点之间的位置差异;4.通过调整Maddox 棒的位置来纠正眼位,直到红色极线与患者注视的点重合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

***Eyediagram
****传统眼图生成
硬件CDR恢复出理想时钟,时钟上升沿作为触发源,触发一次,叠加一个UI。

****现代眼图生成
同步切割,叠加显示:示波器捕获一连串数据,用软件PLL恢复出时钟,用恢复出来的时钟按照比特位进行切割,切割一次叠加一次。

****CJPAT
在8B/10B编码之前,CJPA T数据包构成如下:
Preamble/SFD:
55 55 55 55 55 55 55 D5
Modified JPAT sequence:
7E for 580 bytes: Low density transition pattern
B5 for 172 bytes: high density transition pattern
7E for 580 bytes: Low density transition pattern
B5 for 172 bytes: high density transition pattern
CRC
F3 CF F9 0F
IPG
00 00 00 00 00 00 00 00 00 00 00 00
END
共1528byte,经过8B10B编码成为15280bit
At 6.144 Gbps, the UI is about 162.76 ps
CJPAT duration/pattern: 162.76 ps * 15280 = 2.487 us/pattern
****PRBS
Pseudo Random Binary Sequence:伪随机二进制序列。

0和1在周期内部是随机出现的(即码流生成函数和初始码确定后,码流的顺序是固定的),但各个周期中的码流却是完全相同的。

The sequence is not truly random in that it is completely determined by a relatively small set of initial values, called the PRNG's state, which includes a truly random seed.(这说明每个周期的初始码不是固定的)在高速信号链路进行无码测试时,基本上都是用PRBS码模拟真实的码流环境。

因为PRBS的频谱特征与白噪声非常接近。

At 6.144 Gbps, the UI is about 162.76 ps
PRBS23 duration/pattern: 162.76 ps * 8,388608 = 1.365 ms/pattern。

相关文档
最新文档