眼图测量方法B

合集下载

眼图观察测量实验

眼图观察测量实验

一、實驗目的及要求:1)實驗目的: 學會觀察眼圖及其分析方法2)實驗要求: 1 分析電路的工作原理,敘述其工作過程;2 敘述眼圖的產生原理以及它的作用;3 繪出實驗觀察到的眼圖形狀。

二、實驗原理:我們知道衡量整個通信系統的傳輸品質,最直觀的方法就是用眼圖來觀察傳輸畸變和雜訊干擾。

我們知道,在實際的通信系統中,數位信號經過非理想的傳輸系統必定要產生畸變,信號通過通道後,也會引入雜訊和干擾,也就是說,總是在不同程度上存在碼間串擾。

在碼間串擾和雜訊同時存在情況下,系統性能很難進行定量的分析,常常甚至得不到近似結果。

為了便於評價實際系統的性能,常用觀察眼圖進行分析。

眼圖可以直觀地估價系統的碼間干擾和雜訊的影響,是一種常用的測試手段。

什麼是眼圖?所謂“眼圖”,就是由解調後經過低通濾波器輸出的基帶信號,以碼元定時作為同步信號在示波器螢幕上顯示的波形。

干擾和失真所產生的傳輸畸變,可以在眼圖上清楚地顯示出來。

因為對於二進位信號波形,它很像人的眼睛的過程眼圖。

在圖15-1中畫出兩個無雜訊的波形和相應的“眼圖”,一個無失真,另一個有失真(碼間串擾)。

(無失真及有失真時的波形及眼圖):(a)無碼間串擾時波形; 無碼間串擾眼圖(b)有碼間串擾時波形; 有碼間串擾眼圖圖15-1中可以看出,眼圖是由虛線分段的接收碼元波形疊加組成的。

眼圖中央的垂直線表示取樣時刻。

當波形沒有失真時,眼圖是一隻“完全張開”的眼睛。

在取樣時刻,所有可能的取樣值僅有兩個:+1或-1。

當波形有失真時,在取樣時刻信號取值分佈在小於+1或大於-1附近,“眼睛”部分閉合。

這樣,保證正確判決所容許的雜訊電平就減小了。

換言之,在隨機雜訊的功率給定時,將使誤碼率增加。

“眼睛”張開的大小就表明失真的嚴重程度。

為便於說明眼圖和系統性能的關係,我們將它簡化成圖15-2的形狀。

(眼圖的重要性質,其中U=U++U)(a) 二进制系统(b) 随机数据输入后的二进制系统三、實驗步驟:、眼圖觀察及分析實驗;、模擬眼圖觀察測量實驗;观察眼图SP109 SP614 SP615CPLD 32PN 码'()H ω观察眼图SP708PSK 译码SP614SP615'()H ω1、打開實驗箱右側電源開關,電源指示燈亮,按動帶鎖開關使L2(紅燈)點亮表示系統正常工作;2、連接SP614和SP109或SP809,送入基帶信號;3、用模擬示波器CH1觀察SP105,CH2觀察SP615,調節示波器特性調節電位器,可以觀察到有碼間串擾和無碼間串擾時的眼圖;4、當連接SP809是將PSK 解調模組解調還原的數位基帶信號送入眼圖電路。

眼图测量

眼图测量

眼图——概念与测量(摘记)中文名称:眼图英文名称:eyediagram;eye pattern定义:示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。

“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。

一.概述“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。

为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。

在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。

当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。

若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。

由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。

另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。

通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。

显然,最佳抽样时刻应选在眼睛张开最大的时刻。

(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。

(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。

(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。

(6)横轴对应判决门限电平。

透彻解析眼图测量技术(lecroy)_力科

透彻解析眼图测量技术(lecroy)_力科

Slice 1
Slice 2
Slice 3
3
Slice 4
Slice 12
Slice 11
Slice 5
Slice 6
Slice 7
Slice 8
Slice 9
数据按单位间隔逐 位与恢复时钟比较 重叠形成眼图
4
ZERO TRIGGER JITTER
• 数据是根据单位间隔排列而不是触发点. • 零时钟恢复抖动,零触发抖动.
用户自定义模板可直接 输入示波器使用
19
力科示波器在眼图测量方面的特点
力科在眼图测量领域的解决方案拥有如下功能或特点: 力科在业界最先采用实时眼图生成方法来绘制眼图,如今该方法已成 为眼图测量的现实行业标准 力科SDAII串行数据分析软件包为您提供全面的眼图及抖动分析能力 力科Zi系列示波器拥有业界最为领先的硬件指标与全面的响应优化模 式,确保眼图测量结果权威精确 流程图式的操作界面与可拆卸式的前控面板确保眼图测量轻松顺畅 创新的 X-Stream II 架构与先进的计算机系统确保快速完成眼图测量 眼图故障定位功能助力您轻松完成眼图失效分析 IsoBER功能帮助您深入预测眼图张开程度 力科独有的ISI Plot功能帮助您分析眼图中的码间干扰 力科独有的光电转换器帮助您完成光信号眼图测量 眼图医生工具EyeDoctor II为您提供了最佳的信号完整性分析工具
23
速度需求 -- 眼图测量需要采集并处理大量数据
18M个UI叠加的眼图
18M个UI叠加的眼图,每周期采集8个样点,总共需要处理150M样点。
24
速度需求-- 测量环境改变需要重复眼图测量
10英寸长的传输线,眼高 = 592mV
20英寸长的传输线,眼高 = 457mV

眼图测量的概念

眼图测量的概念

眼图测量的概念眼图测量是一种用于分析和评估数字通信系统的技术。

在数字通信中,信息以数字信号的形式传输,而数字信号由一系列离散的样本组成。

眼图测量通过显示和分析这些样本的时域波形,从而提供关于系统性能的重要信息。

在眼图中,每个数字信号样本被绘制为一个脉冲,这些脉冲被垂直堆叠在一起形成一个图像,类似于一个开放的眼睛。

每个脉冲代表着一个时刻的信号状态,而整个眼图则显示了多个时刻的信号状态的叠加。

通过观察眼图的形状、宽度和高度等特征,可以获得关于系统的多种信息。

眼图主要提供以下几个方面的信息:1. 时基抖动:眼图的开口宽度可以反映系统的时基抖动性能。

时基抖动是由于时钟不准确或传输路径中的噪声引起的,它会导致样本位置的不确定性。

如果眼图的开口很窄,意味着系统中存在较大的时基抖动,这可能会导致信号误码率的增加。

2. 眼图的对称性:眼图的对称性可以反映系统的码间干扰情况。

如果眼图两边的形状不对称,即开口宽度不一致,可能表明系统中存在码间干扰或码间失配。

码间干扰会导致信号间的互相干扰,增加误码率。

3. 眼图的噪声水平:眼图的噪声水平可以反映系统的噪声性能。

噪声会导致信号波形的不规则性和抖动,从而影响系统的可靠性和性能。

通过观察眼图的噪声水平,可以评估系统的抗噪声性能。

4. 采样时刻偏移:眼图可以显示信号采样时刻的偏移情况。

采样时刻偏移会导致信号样本的错位,从而影响信号的恢复和解调。

通过观察眼图的采样时刻偏移情况,可以判断系统是否存在采样时刻同步问题。

除了以上几个方面的信息,眼图还可以用于估计信号的传输带宽、检测系统中的串扰和非线性等问题。

通过对眼图的仔细分析,可以发现可能存在的问题,并采取相应的调整和优化措施,以提高系统的性能和稳定性。

眼图测量可以使用专用的示波器、时钟回路、采样仪等设备进行。

这些设备可以通过触发和同步功能来捕获和显示眼图。

通过调整样本时钟、增加采样速率、降低噪声等措施,可以改善眼图的质量和可读性,并获得更准确的眼图测量结果。

眼图——概念与测量

眼图——概念与测量

眼图——概念与测量中文名称:眼图英文名称:eye diagram;eye pattern定义:示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。

“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。

一.概述“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。

为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。

在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。

当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。

若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。

由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。

另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。

通常眼图可以用下图所示的图形来描述,由此图可以看出:眼图的重要性质(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。

显然,最佳抽样时刻应选在眼睛张开最大的时刻。

(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。

(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。

(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。

(6)横轴对应判决门限电平。

眼图观察测量实验

眼图观察测量实验

实验12 眼图观察测量实验一、实验目得1、学会观察眼图及其分析方法,调整传输滤波器特性。

二、实验仪器1、眼图观察电路(底板右下侧)2.时钟与基带数据发生模块,位号:G 3.噪声模块,位号E 4.100M双踪示波器1台三、实验原理在整个通信系统中,通常利用眼图方法估计与改善(通过调整)传输系统性能。

我们知道,在实际得通信系统中,数字信号经过非理想得传输系统必定要产生畸变,也会引入噪声与干扰,也就就是说,总就是在不同程度上存在码间串扰。

在码间串扰与噪声同时存在情况下,系统性能很难进行定量得分析,常常甚至得不到近似结果。

为了便于评价实际系统得性能,常用观察眼图进行分析。

眼图可以直观地估价系统得码间干扰与噪声得影响,就是一种常用得测试手段。

什么就是眼图?所谓“眼图”,就就是由解调后经过接收滤波器输出得基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示得波形称为眼图。

干扰与失真所产生得传输畸变,可以在眼图上清楚地显示出来。

因为对于二进制信号波形,它很像人得眼睛故称眼图。

在图12-1中画出两个无噪声得波形与相应得“眼图”,一个无失真,另一个有失真(码间串扰)。

图12-1中可以瞧出,眼图就是由虚线分段得接收码元波形叠加组成得。

眼图中央得垂直线表示取样时刻。

当波形没有失真时,眼图就是一只“完全张开”得眼睛。

在取样时刻,所有可能得取样值仅有两个:+1或-1。

当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。

这样,保证正确判决所容许得噪声电平就减小了。

换言之,在随机噪声得功率给定时,将使误码率增加。

“眼睛”张开得大小就表明失真得严重程度。

为便于说明眼图与系统性能得关系,我们将它简化成图12-2得形状。

由此图可以瞧出:(1)最佳取样时刻应选择在眼睛张开最大得时刻;(2)眼睛闭合得速率,即眼图斜边得斜率,表示系统对定时误差灵敏得程度,斜边愈陡,对定位误差愈敏感; (3)在取样时刻上,阴影区得垂直宽度表示最大信号失真量;(4)在取样时刻上,上下两阴影区得间隔垂直距离之半就是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决;(5) 阴影区与横轴相交得区间表示零点位置变动范围,它对于从信号平均零点位置提取定时信息得解调器有重要影响。

眼图--概念与测量

眼图--概念与测量

眼图——概念与测量(摘记)中文名称:眼图英文名称:eye diagram;eye pattern定义:示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。

“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。

一.概述“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。

为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。

在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。

当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。

若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。

由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。

另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。

通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。

显然,最佳抽样时刻应选在眼睛张开最大的时刻。

(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。

(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。

(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。

(6)横轴对应判决门限电平。

眼图测试

眼图测试

实验二数字光纤通信系统信号眼图测试一.实验目的1.了解眼图产生的基础,根据眼图测量数字通信系统性能的原理;2.学习通过数字示波器调试、观测眼图;3.掌握判别眼图质量的指标;4.熟练使用数字示波器和误码仪。

二.实验原理眼图是估计数字传输系统性能的一种十分有效的实验方法。

这种方法已广泛应用于数字通信系统,在光纤数字通信中也是评价系统性能的重要实验方法。

眼图是在时域进行的用示波器显示二进制数字信号波形的失真效应的测量方法。

图2.1是测量眼图的装置图。

由Aς5233X误码仪产生一定长度的伪随机二进制数据流(AMI码、H∆B3码、PZ码、NPZ码)调制单模光产生相应的伪随机数据光脉冲并通过光纤活动连接器注入单模光纤,经过光纤传输后,再与光接收机相接。

光接收机将从光纤传输的光脉冲变为电脉冲,并输入到Aς4451(500MHζ)示波器,示波器显示的扫描图形与人眼相似,因此称为眼图。

用眼图法测量系统时应有多种字型,可以采用各比特位上0和1出现的概率相等的随机数字信号进行测试。

Aς5233X误码仪用来产生伪随机数字序列信号。

在这里“伪随机”的意义是伪随机码型发生器产生N比特长度的随机二进制数字信号是数字序列在N 比特后发生重复,并不是测试时间内整个数字序列都是随机的,因此称为“伪随机”。

伪随机序列如果由2比特位组成,则共有四种组合,3比特数字信号有8种组合,N比特数字信号有2N个组合。

伪随机数字信号的长度为2N-1,这种选择可保证字型不与数据率相关。

例如N可取7、10、15、23、31等。

如果只考虑3比特非归零码,应有如图2.2所示的8种组合。

将这8种组合同时叠加,就可形成如图2.3所示的眼图。

图2.1 眼图测量装置许多数字通信系统的重要性能可以从眼图测试中得到。

为了理解眼图测量原理,考虑图2.4所示简化的眼图,可以得到关于信号幅度失真、定时抖动和系统上升时间等系统性能参数。

接收信号的最佳取样时间是纵向眼开度最大的时刻t1。

眼图测量

眼图测量
Modern Approach to Eye Pattern Test
1 2
Slice 10
NRZ data record acquired from a single trigger
Clock recovered using software PLL ZERO CDR JITTER
3
Slice 12
15
LeCroy Company Confidential
眼图形成的现代方法
同步切割+叠加显示 示波器首先捕获一组连续比特位的信号,然后用软 Traditional Method 件PLL方法恢复出时钟,最后利用恢复出的时钟和 For Eye Pattern Formation 捕获到的信号按比特位切割,切割一次,叠加一次 ,最终将捕获到的一组数据的每个比特位都叠加到 了眼图上。
Q因子和眼图误码率
Q 因子是用于测量眼图信噪比的参数。 值0)
(与 OSFTP-9 标准相一致)
Q 因子具体是由以下公式计算得到:由眼幅度(“1”电平的平均值1减去“0”电平的平均 除以“1”信号噪声有效值(1)与“0”信号噪声有效值(
0)之和。
Q factor =
EyeBER 是通过眼图用来评估误码率的参数。
16
LeCroy Company Confidential
实时眼图生成方法(Real Time Eye) ("Continuous-Bit Eye Pattern Rendering", "Single-Shot Eye"), 2002 - Presen
(与触发点无关)
示波器采集 的时间窗口
Step 1: 采集到一长串 连续的数据波形
1
1

测量眼位的几种方法

测量眼位的几种方法

测量眼位的几种方法一、引言眼位是指两只眼睛相对于头部的位置关系,它对于人类正常的视觉功能至关重要。

因此,测量眼位是眼科医生和研究者在诊断和治疗眼部疾病时必须掌握的技能。

本文将介绍几种常用的测量眼位的方法。

二、直接观察法直接观察法是最简单、最基础的测量眼位方法之一。

这种方法只需要肉眼观察患者双目的位置关系即可。

步骤:1.让患者坐直,正对医生。

2.观察患者双目是否在同一水平线上,是否有斜视或偏斜现象。

3.如果发现问题,可以通过调整患者头部或使用遮盖物等方式来确定具体问题所在。

优点:1.简单易行,不需要任何特殊设备或工具。

2.可以初步判断患者是否存在明显的斜视或偏斜问题。

缺点:1.无法精确地测量出两只眼睛之间的距离差异等细节信息。

2.不能确切地确定问题所在以及解决方案。

三、盲点试验法盲点试验法是一种通过观察患者的盲点来确定眼位问题的方法。

它需要使用一个特殊的仪器——盲点试验仪。

步骤:1.让患者坐直,正对医生。

2.将盲点试验仪放置在患者前方,要求患者双目注视着试验仪中心。

3.医生向患者的眼睛中投射光线,观察光线在患者视网膜上形成的盲点位置。

4.通过观察两只眼睛的盲点位置差异来判断是否存在眼位问题。

优点:1.可以精确地测量出两只眼睛之间的距离差异等细节信息。

2.可以快速准确地确定问题所在以及解决方案。

缺点:1.需要使用特殊设备,成本较高。

2.需要专业人员进行操作和解读结果。

四、角膜反射法角膜反射法是一种通过观察患者双目在反光镜中的角膜反射来确定眼位问题的方法。

它需要使用一个特殊的仪器——角膜反射仪。

步骤:1.让患者坐直,正对医生。

2.将角膜反射仪放置在患者前方,要求患者双目注视着试验仪中心。

3.医生向患者的眼睛中投射光线,观察光线在反光镜上形成的角膜反射位置。

4.通过观察两只眼睛的角膜反射位置差异来判断是否存在眼位问题。

优点:1.可以精确地测量出两只眼睛之间的距离差异等细节信息。

2.可以快速准确地确定问题所在以及解决方案。

眼图观察测量实验

眼图观察测量实验

实验12 眼图观察测量实验一、实验目的1.学会观察眼图及其分析方法,调整传输滤波器特性。

二、实验仪器1. 眼图观察电路(底板右下侧)2.时钟与基带数据发生模块,位号:G 3.噪声模块,位号E 4.100M双踪示波器1台三、实验原理在整个通信系统中,通常利用眼图方法估计和改善(通过调整)传输系统性能。

我们知道,在实际的通信系统中,数字信号经过非理想的传输系统必定要产生畸变,也会引入噪声和干扰,也就是说,总是在不同程度上存在码间串扰。

在码间串扰和噪声同时存在情况下,系统性能很难进行定量的分析,常常甚至得不到近似结果。

为了便于评价实际系统的性能,常用观察眼图进行分析。

眼图可以直观地估价系统的码间干扰和噪声的影响,是一种常用的测试手段。

什么是眼图所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示的波形称为眼图。

干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。

因为对于二进制信号波形,它很像人的眼睛故称眼图。

在图12-1中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。

图12-1中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。

眼图中央的垂直线表示取样时刻。

当波形没有失真时,眼图是一只“完全张开”的眼睛。

在取样时刻,所有可能的取样值仅有两个:+1或-1。

当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。

这样,保证正确判决所容许的噪声电平就减小了。

换言之,在随机噪声的功率给定时,将使误码率增加。

“眼睛”张开的大小就表明失真的严重程度。

为便于说明眼图和系统性能的关系,我们将它简化成图12-2的形状。

由此图可以看出:(1)最佳取样时刻应选择在眼睛张开最大的时刻;(2)眼睛闭合的速率,即眼图斜边的斜率,表示系统对定时误差灵敏的程度,斜边愈陡,对定位误差愈敏感; (3)在取样时刻上,阴影区的垂直宽度表示最大信号失真量;(4)在取样时刻上,上下两阴影区的间隔垂直距离之半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决;(5) 阴影区与横轴相交的区间表示零点位置变动范围,它对于从信号平均零点位置提取定时信息的解调器有重要影响。

眼图测量分析

眼图测量分析

眼圖之量測分析引言眼圖是一項時間分析工具,讓使用者能夠清楚看見時間和強度的誤差。

在真實生活中,諸如抖動之類的誤差非常難以量化,因為經常改變,而且非常小。

因此,眼圖非常利於尋找最大抖動以及電壓強度的誤差,如圖一所示。

圖一、眼圖檢視的抖動和電壓雜訊示意圖誤差增加時,眼圖中心的白色空間就會縮小。

那個空間由兩項特性所定義:眼寬(Eye Width)和眼高(Eye Height)。

圖二中白色空間的寬度就稱為眼寬。

因此,眼圖由數量足夠的樣本構成(數百萬個時間段落轉換),眼寬就是用來度量在任何指定的時間期間內、資料線穩定的時間長度的良好工具。

這樣可以了解可允許的保存時間和建立時間有多少。

最後完成的眼圖中的白色空間的高度就稱為眼高。

如果眼圖由數量足夠的樣本構成(數百萬個時間段落轉換),眼高可以指出接收器的VIH和VIL必須位於何處,才能正確地對資料取樣。

數位訊號轉換的品質越好,眼圖中的開放白色空間越大。

換言之,眼寬和眼高應該盡可能地大。

圖二、眼圖的高度及寬度示意圖實驗原理其形狀似人的眼睛,因此被稱爲眼圖。

而檢視數位傳輸器的輸出三個時間段落,即可建構出眼圖。

圖三中的眼圖是將所有可能的0與1的組合疊在一條線段上,而完成建構。

圖三、數位訊號對應之眼圖在數位系統中,時間是最重要的因素之一。

數位通訊的可靠性和準確性都是根據其時間功能的品質而定。

在真實世界的數位通訊系統中,有許多時間上的誤差,其中最重要的兩個是抖動(Jitter)和飄移(Drift)。

分別以抖動(Jitter)及飄移(Drift)敘述之:一、抖動(Jitter)抖動(Jitter)是指與事件的理想時間的誤差,通常是從參考訊號的過零點(Zero-Crossing)進行測量。

抖動通常歸因於串音(Cross-Talk)、同時切換輸出,以及其它週期性發生的干擾訊號。

由於抖動會隨著時間而變化,如圖四所示,因此對抖動的測量及量化有多種進行方式,從目測幾秒鐘內的抖動範圍,到以數據進行的測量(例如根據長時間的標準誤差)。

眼图基础知识ppt课件

眼图基础知识ppt课件

辅助设备 待测设备
转接
小板
HUB
PC
探头1 探头2 探头3
示波器
高速
示波器
探头1
转接 小板
HOST
ppt课件完整
12
眼图测试-模板
高速
ppt课件完整
全速
13
案例分析-串22欧电阻
1.5m
6.5m
PASS
NG
ppt课件完整
14
案例分析-串共模电感
1.5m
3.5m
6.5m
PASS
PASS
ppt课件完整
眼图基础知识分享
ppt课件完整
1
目录
1. 关于USB
2. 眼图的定义
3. 眼图测试方法
4. 如何获得张开大的眼图
5. 眼图常见问题
ppt课件完整
2
USB-电气特性
速率 输出电流 幅度 上升时间
低速 1.5Mbps 500mA 3.3V 75-300ns
全速 12Mbps 500mA
3.3V
4-20ns
高速 480Mbps 500mA 400mV 500ps
应用 键盘、鼠标
触摸框 U盘、硬盘
ppt课件完整
3
USB--物理特性
ppt课件完整
4
USB-接口定义
引脚编号 信号名称 缆线颜色
1
Vcc

2 Date-(D-) 白
3 Date+(D+) 绿
4
Ground

ppt课件完整
5
USB-全速和低速设备识别
反映波形的细节
体现信号的整体特征
ppt课件完整
9

眼图测试问题探讨

眼图测试问题探讨

眼图测试及其疑难问题探讨来源[网络与通信]【关键词】眼图测试摘要目前,在长途干线和城域网中,密集波分复用(DWDM)系统的应用越来越多,对DWDM系统的光接口测试要求也越来越高,其中包括光发送信号的眼图测试。

在实际进行眼图测试时,经常遇到不符合标准模板的情况,在不断实践中发现,其中大部分是因为测试方法不完善造成的误判断,只有小部分真正不符合ITU-T规范。

文章介绍正确测试眼图的要点。

1、码间串扰的形成1.1 光纤线路码在光纤数字传输中,一般不直接传输由电端机传送来的数字信号,而是经过码型变换,变换成适合在光纤数字传输系统中传输的光纤线路码(简称线路码)。

有多种线路码型,最常用的有mBnB分组码、插入比特码和简单扰码。

在选择线路码时,不仅要考虑光纤的传输特性,还要考虑光电器件的特性。

一般来说,由于光电器件都有一定的非线性,因此采用脉冲的“有”、“无”来表示“1”和“0”的二进制码要方便得多。

但是简单的二进制信号有三个实际问题需要解决,否则无法取得良好效果。

a)不能有长连“0”或长连“1”出现。

因为长连“0”和长连“1”会使定时信息消失,给再生中继器和终端接收机的定时提取带来困难。

b)简单的二进制码中含有直流成分,“0”、“1”码出现个数的随机变化会使直流成分的大小也随机变化。

目前,在光接收机中普遍采用交流耦合,直流成分的变化会引起信号基线浮动,给判决再生带来困难。

c)简单的二进制信号在业务状态下无法监测线路误码率。

为此,在光纤传输之前,需将简单二进制信号变换成适合光纤传输系统的光纤线路码型。

CCITT最终采用简单扰码方式(如RZ、NRZ码),目前又有基于RZ码新的编码方式,如CS-RZ、DCS-RZ、CRZ、D-RZ、DPSK-RZ码等。

1.2 线性网络的无失真传输条件密集波分复用(DWDM)的工作原理是:发送端将不同波长的光信号通过光合波器合成一束光,送入光纤中进行传输;在接收端由光分波器将这些不同波长的光信号区分开来,再经过光电转换送入线路终端设备。

眼图测量

眼图测量
眼图测量
Click to edit text styles
Edit your company slogan
Text
Text
Text
眼图基本概念
串行数据的背景
眼图测量方法
眼图基本概念
眼图是用余辉方式累积叠加显示采集到的
串行信号的比特位的结果,叠加后的图形形 状看起来和眼睛很像,故名眼图。
眼图上通常显示的是1.25UI的时间窗口。眼
图三
图三
眼图测试方法
Click to edit text styles
Edit your company slogan
眼图测试方法
传统方法
现代方法
传统方法
同步触发+叠加显示
传统的眼图方法就是同步触发一次,然后叠加一次。每触发一次,眼
图上增加了一个UI,每个UI的数据是相对于触发点排列的,因此是 “Single-Bit Eye”,每触发一次眼图上只增加了一个比特位。
能有串扰或预(去)加重
ቤተ መጻሕፍቲ ባይዱ
睛的形状各种各样,眼图的形状也各种各样。 通过眼图的形状特点可以快速地判断信号的 质量。
漂亮的眼图 双眼皮眼图
漂亮的眼图
串行数据的背景知识
一个单位间隔(1UI)表示为一个比特位的
宽度是波特率的倒数,1UI=1/(3.125Gb/s) =320ps。现在比较常见的串行信号码形是 NRZ码。正电平表示”1”,负电平表示“0”。 图三所示是示波器捕获到的一组串行信号, 虚线之间的时间间隔代表了一个UI,图中对 应的码型是101100101010001。
现代方法
示波器首先捕获一组连续比特位的信号,然后用软件PLL方法恢复出时钟,最

最常用的就是眼图的测量方法,眼图测试分析

最常用的就是眼图的测量方法,眼图测试分析

最常用的就是眼图的测量方法,眼图测试分析
 波形参数测试是数字信号质量评估最常用的测量方法,但是随着数字信号速率的提高,仅仅靠幅度、上升时间等的波形参数的测量方法越来越不适用了。

 比如下图的一个5Gbps的信号来说,由于受到传输通道的损耗的影响,不同位置的信号的幅度、上升时间、脉冲宽度等都是不一样的。

不同的操作人员在波形的不同位置测量得到的结果也是不一样的。

 因此我们必须采用别的方法对于信号的质量进行评估,对于高速数字信号来说最常用的就是眼图的测量方法。

 所谓眼图,实际上就是高速数字信号不同位置的数据比特按照时钟的间隔叠加在一起自然形成的一个统计分布图。

 下面几张图显示了眼图的形成过程。

我们可以看到,随着叠加的波形数量的增加,数字信号逐渐形成了一个个类似眼睛一样的形状,我们就把这种图形叫做眼图。

眼图观察测量实验

眼图观察测量实验

实验六:眼图观察测量实验
一.实验目的
1.学会眼图观察与测量方法 2.学会利用眼图对传输特性进行调整 二.实验仪器
1.RZ8621D 实验箱一台 2.20MHz 双踪示波器一台 3.平头小起子一个 三.实验电路连接
CPLD PSK 解调FSK 解调
TP708
图6-1 眼图观察实验方框图
四.实验预习测量点说明
实验前请预习规格化眼图的五项重点参量的定义,及观察眼图时示波器连接方法。

1、位同步提取是采用CPLD 软件编程实现位脉冲的提取及码元再生。

眼图观察是通过改变低通滤波器的传递函数H(f)使眼图图形随之改变。

用CPLD 实现位同步提取的功能框图如图6-2所示。

图6-2 数字锁相法位同步提取框图
数字锁相环框图中,频率为Nf B 的晶振产生方波振荡经两并联的窄脉形成电路,形成的输出信号为反向的方波。

分别加到扣除门和附加门,扣除门为常开门,附加门为常闭门。

因。

测量眼位的几种方法

测量眼位的几种方法

测量眼位的几种方法眼位是指眼球与头部、眼眶等结构的相对位置关系。

眼位的正常与异常会直接影响人的视觉感知和眼动协调能力。

为了准确测量眼位,医学和视觉科学领域发展了多种方法。

本文将介绍几种常见的测量眼位的方法,包括直接测量法、间接测量法和电子测量法。

1. 直接测量法直接测量法是通过测量眼睛相对于头部的位置来确定眼位的方法。

常用的直接测量法有Hirschberg 钢卡法和Krimsky 试验法。

Hirschberg 钢卡法Hirschberg 钢卡法是采用观察角膜反射点的位置来估计眼位的方法。

该方法将光线投射在患者的角膜上,观察角膜反射点的位置来判断眼球的位置。

具体操作步骤如下:1.让患者坐直并注视前方;2.用钢卡或手电筒等工具照射光线在患者的角膜上;3.观察角膜上的反射点位置,通常在角膜中央上方略偏外;4.根据反射点的位置差异来确定眼位是否正常。

Krimsky 试验法Krimsky 试验法是通过观察试镜中反射光线的偏向来判断眼位的方法。

具体操作步骤如下:1.让患者坐直并注视前方;2.使用Krimsky 试镜,将反射光线投射在患者的瞳孔上;3.观察反射光线的位置,包括垂直和水平方向上的偏向;4.根据光线的偏向来确定眼位是否正常。

直接测量法具有操作简单、不需要特殊设备等优点,但准确度较低,仅适用于初步判断眼位是否异常。

2. 间接测量法间接测量法是通过测量眼球肌肉的收缩和松弛程度来判断眼位的方法。

常用的间接测量法有Maddox 棒法和Heterophoria 检查法。

Maddox 棒法Maddox 棒法是用于测量斜视、眼肌麻痹等眼位异常的方法。

具体操作步骤如下:1.让患者坐直并注视前方;2.将Maddox 棒平行于患者眼前,让患者用一个眼睛看准棒上的某一点;3.观察另一个眼睛的红色极线(红色光线穿过棒后形成的水平或垂直线)和患者注视的点之间的位置差异;4.通过调整Maddox 棒的位置来纠正眼位,直到红色极线与患者注视的点重合。

眼图测量方法B

眼图测量方法B

三、眼图测量方法之前谈到,眼图测量方法有两种:2002年以前的传统眼图测量方法和2002年之后力科发明的现代眼图测量方法。

传统眼图测量方法可以用两个英文关键词来表示:“Triggered Eye”和“Single‐Bit Eye”。

现代眼图测量方法用另外两个英文关键词来表示:“Continuous‐Bit Eye”和“Single‐Shot Eye”。

传统眼图测量方法用中文来理解是八个字:“同步触发+叠加显示”,现代眼图测量方法用中文来理解也是八个字:“同步切割+叠加显示”。

两种方法的差别就四个字:传统的是用触发的方法,现代的是用切割的方法。

“同步”是准确测量眼图的关键,传统方法和现代方法同步的方法是不一样的。

“叠加显示”就是用模拟余辉的方法不断累积显示。

传统的眼图方法就是同步触发一次,然后叠加一次。

每触发一次,眼图上增加了一个UI,每个UI的数据是相对于触发点排列的,因此是“Single‐Bit Eye”,每触发一次眼图上只增加了一个比特位。

图一形象表示了这种方法形成眼图的过程。

图一传统眼图测量方法的原理传统方法的第一个缺点就是效率太低。

对于现在的高速信号如PCI‐Express Gen2,PCI‐SIG 要求测量1百万个UI的眼图,用传统方法就需要触发1百万次,这可能需要几个小时才能测量完。

第二个缺点是,由于每次触发只能叠加一个UI,形成1百万个UI的眼图就需要触发1百万次,这样不断触发的过程中必然将示波器本身的触发抖动也引入到了眼图上。

对于2.5GBbps以上的高速信号,这种触发抖动是不可忽略的。

如何同步触发,也就是说如何使每个UI的数据相对于触发点排列?也有两种方法,一种方法是在被测电路板上找到和串行数据同步的时钟,将此时钟引到示波器作为触发源,时钟的边沿作为触发的条件。

另外一种方法是将被测的串行信号同时输入到示波器的输入通道和硬件时钟恢复电路(CDR)通道,硬件CDR恢复出串行数据里内嵌的时钟作为触发源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、眼图测量方法之前谈到,眼图测量方法有两种:2002年以前的传统眼图测量方法和2002年之后力科发明的现代眼图测量方法。

传统眼图测量方法可以用两个英文关键词来表示:“Triggered Eye”和“Single‐Bit Eye”。

现代眼图测量方法用另外两个英文关键词来表示:“Continuous‐Bit Eye”和“Single‐Shot Eye”。

传统眼图测量方法用中文来理解是八个字:“同步触发+叠加显示”,现代眼图测量方法用中文来理解也是八个字:“同步切割+叠加显示”。

两种方法的差别就四个字:传统的是用触发的方法,现代的是用切割的方法。

“同步”是准确测量眼图的关键,传统方法和现代方法同步的方法是不一样的。

“叠加显示”就是用模拟余辉的方法不断累积显示。

传统的眼图方法就是同步触发一次,然后叠加一次。

每触发一次,眼图上增加了一个UI,每个UI的数据是相对于触发点排列的,因此是“Single‐Bit Eye”,每触发一次眼图上只增加了一个比特位。

图一形象表示了这种方法形成眼图的过程。

图一传统眼图测量方法的原理传统方法的第一个缺点就是效率太低。

对于现在的高速信号如PCI‐Express Gen2,PCI‐SIG 要求测量1百万个UI的眼图,用传统方法就需要触发1百万次,这可能需要几个小时才能测量完。

第二个缺点是,由于每次触发只能叠加一个UI,形成1百万个UI的眼图就需要触发1百万次,这样不断触发的过程中必然将示波器本身的触发抖动也引入到了眼图上。

对于2.5GBbps以上的高速信号,这种触发抖动是不可忽略的。

如何同步触发,也就是说如何使每个UI的数据相对于触发点排列?也有两种方法,一种方法是在被测电路板上找到和串行数据同步的时钟,将此时钟引到示波器作为触发源,时钟的边沿作为触发的条件。

另外一种方法是将被测的串行信号同时输入到示波器的输入通道和硬件时钟恢复电路(CDR)通道,硬件CDR恢复出串行数据里内嵌的时钟作为触发源。

这种同步方法引入了CDR抖动,这是传统方法的第三个缺点。

此外,硬件CDR只能侦测连续串行信号才能工作正常,如果被测信号不是连续的,譬如两段连续比特位之间有一段低电平,硬件CDR就不能恢复出正确的时钟。

另外,传统方法的工作原理决定了它不能对间歇性的串行信号做眼图,不能对保存的波形做眼图,不能对运算后的波形做眼图,这限制了应用范围。

这是传统方法的第四个缺点。

力科于2002年发明的现代方法形成眼图的原理如图二所示。

示波器首先捕获一组连续比特位的信号,然后用软件PLL方法恢复出时钟,最后利用恢复出的时钟和捕获到的信号按比特位切割,切割一次,叠加一次,最终将捕获到的一组数据的每个比特位都叠加到了眼图上。

在力科的示波器中,恢复出的时钟可以单独输出来另作它用。

软件PLL方法恢复时钟代替了传统方法中的硬件CDR方法是一大进步。

我们需要对软件PLL的工作原理深入理解。

关于软件PLL,我们将另文介绍。

如果一次捕获了1百万UI的PCI-E Gen2的数据,那么用这种方法基于力科的第四代示波器可以在1-2秒内形成眼图,因此,这种方法形成眼图的效率非常高,这是现代方法的第一个优点。

此外,该方法通过触发一次捕获的大量数据就能形成大量数据的眼图,触发抖动约等于零,这是该方法的第二个优点。

由于是用软件PLL方法,因此时钟恢复抖动也为零,这是该方法的第三个优点。

该方法可以对局部放大之后的波形做眼图,可以对历史保存的波形做眼图,可以有一些高级眼图分析功能,如眼图失败定位跟踪功能,ISOBer功能等,这是该方法的第四个优点。

图二现代眼图测量方法的原理图三所示清楚表示了现代方法对于非连续性的信号做眼图的优势。

传统的方法无法分离出发射数据和接收数据,但用现代的方法则能隔离出发射和接收数据。

在实际应用中这种非连续性的信号比较常见,如处于实际工作模式下的PON信号,就是突发的一帧一帧的数据。

图三现代眼图方法的优势——对局部放大之后的波形做眼图四、力科示波器在眼图测量方面的特点和优势自2002年力科发明创新的眼图测量方法以来,力科一直在眼图测量方面保持了绝对领先优势。

力科的串行数据分析仪SDA系列成为测量眼图的首选工具。

现在总结力科公司在眼图测量方面的特点和优势如下:1,眼图测量是衡量高速信号质量的最常用方法。

力科是业界最先采用软件恢复时种的方法来形成眼图的,而现在这种方法已成为眼图测量的行业标准。

也就是说,力科定义了眼图测量的新标准。

前面已详细比较了两种方法的优缺点。

下面这张图片是用力科示波器和其它品牌示波器测试相同信号的对比。

用传统方法引入的触发抖动和CDR抖动带来了150ps的峰‐峰值误差,这是不能忽略的误差。

在力科的示波器中保留了用硬件时钟形成图的功能,但已几乎没有工程师再喜欢用这种传统的方法了。

图四现代方法和传统方法测量眼图的差别2,力科示波器的眼图测量操作界面非常的简洁快速,而且不需要利用第三方面软件,眼图的测试结果显示在示波器显示界面上,不需要打开第三个窗口。

在关于示波器的第三方调查报告中,易于操作常作为使用者对理想示波器的期待的首项。

“Although ease‐of‐use means different things to different people.”,但稍微有一点点公正之心的人都会同意这个结论:力科示波器的操作界面是最清晰简洁的,最容易上手的,眼图测量更是最方便的。

图五是力科SDA操作界面。

一级菜单,一目了然的操作步骤。

第一步点击选择信号源,第二步选择信号类型,第三步查找比特率,第四步点击眼图出来了。

如果PLL不是Golden PLL,多一次点击PLL设置的操作。

第一步、第二步、第三步在第一次进入测试界面设置完成后,随后不用再重复设置。

所以在持续测试过程中,通常每次只需要点一键“Mask Tes”就产生了眼图。

更是可以在点击“Summary”之后,同时产生了眼图、浴盆曲线、抖动趋势图、抖动直方图、各种抖动测量参数等,如图六所示。

何其方便哉!图五力科SDA眼图测试操作步骤在一次面对面的PK中,客户要求同时测量眼图和抖动参数,我们一秒钟操作完之后,大家开始观看T公司的AE在操作,只见鼠标飞速点击上百次,结果等了整整几分钟后还不见结果出来(也有可能那天是操作上出现了失误)。

一级又一级深埋的菜单,呼啦啦弹出一个又一个的窗口。

图七就是那次PK的时候D公司点击上百次鼠标之后的结果。

但显然和力科的图片相比,缺少了抖动测量参数。

这些参数去哪里了?为什么没有显示出来?因为D 公司的示波器测试眼图的窗口和眼图参数的窗口是两个窗口,不能同时保存起来,除非是接上键盘按PrintScreen键。

为了完成眼图测量,D公司的示波器总共需要有四个窗口——操作设置窗口,眼图结果显示窗口,测量参数窗口,示波器自身的窗口。

除了窗口多以外,D公司的眼图测量操作真的有那么复杂吗?是的,但也未必,如果你是D公司示波器的Fans,你已经知道如何飞速地点击鼠标,可能你也不会觉得复杂,但对于初学者,其操作怎一个“烦”字了得!第一次我们在培训中和D公司的示波器亲密接触,我和我的同事们都象遇到一个刺猬一样无从下手,最后都只得利用其操作向导的方式(如图八所示)来执行,但这种向导方式必须要设置七步,每一步至少要点击两次鼠标。

操作到第七步时如果发现第一步设置不对,要重新点击六次回到第一步。

但如果第三步时发现被测信号不是标准的总线信号,这个向导似乎不能用来测试普通的串行信号。

(可能有更简便的操作步骤,我仅提供的是我两次测试的体验感受,不对之处,请指正。

)第一次操作了D的眼图测量之后激起了我对它的操作步骤的强烈兴趣,我下载了RT‐EYE图六一键操作,信息大全图七D公司的资深工程师点击上百次鼠标之后的结果,但测量参数结果不见了图八D公司示波器眼图测量操作步骤软件包的操作手册,在操作手册的第66页,有图九所示的操作说明示意图。

仅此一图便可见其操作之繁琐了,难怪D公司的AE不太愿意去教会工程师们去用他们的眼图测量功能,D公司的眼图软件是基于外挂的Java程序开发的,操作的繁琐和界面的复杂是由该基因决定的。

图九引自RT‐EYE软件包操作手册3,力科示波器测量眼图的速度快,不管当前捕获的数据样本数是400Kpts,还是10Mpts,都能一次利用所有的这些数据形成眼图。

信号速率越来越高,眼图测量中要求包含的UI样本数越来越多,为使自己对产品的硬件性能放心,很多工程师喜欢连续测量眼图累计几百万的UI来观察有没有碰到模板。

如果您有这种冲动,希望测试很多样本下的眼图,D公司的工程师们会以专业地口吻告诉你,不必要这样做,因为XX协会没有规定测试这么多样本。

图六显示力科示波器捕获了4Mpts的采样点,对应的一次测量了494.046K个UI的眼图。

图十显示力科示波器捕获了50Mpts的采样点,一次性测量了18.73449M个UI的眼图。

力科示波器做10Mpts采样点的PCI‐E G1眼图需要1‐2秒钟,但D公司的示波器需要6分钟(360秒)。

力科示波器做20Mpts 采样点的PCI‐E G1眼图,需要2‐3秒钟,D公司的示波器通常这时候会死机。

以上数据来自于本人实测。

但D公司在演示眼图测量时,您不会觉得很慢,反而觉得很快。

为什么?您注意到图七的左上图有一个标识UIs:8000:574996;Total:8000:574996了吗?这表示D示波器这时捕获了574996个UI,但只截取了其中的8000个来做眼图。

如果您要测量100万个UI的眼图,D的这个标识数字会不断增加,8000‐16000‐24000‐32000,一路涨到1000000,数字要翻转125次,整个过程历时大约20分钟,如果当时示波器的状态不好,可能会导致死机。

估计等您先去喝一杯咖啡就可以翻转完成。

股票每天也都只样翻转就好了☺图十一次捕获测量18.73449M个UI的眼图在图十一中,我们看到D公司自己声明的软件限制,稍懂英语的朋友可以阅读一下这个限制的含义。

其核心意思是这个软件太消耗计算资源了,用的时候要小心一点;如果要去除存储深度的限制,您需要创建一个文本文件来解除限制。

在那次PK大战中,D公司坚持要以测量8K个UI来和我们比较测量494K个UI的速度,但坚持不同意解除这个限制——不解除限制,测量一次8K个UI就不再翻转数字了,停在8000个,股票一次涨停了!后来D公司另外一个软件包DPOJET可以在菜单中解除这个限制,如图十二所示,“Enable high performance eye rendering”,选中这个之后就可以不断翻转了。

如果您的测试需求是要测量8K个UI,请注意在测量前设置这个界面。

这个设置隐藏在"Jitter&Eye Analysis"菜单列表下的"Preferences"子菜单的"Measurement"子菜单中。

相关文档
最新文档